JP7537669B2 - Metal detector - Google Patents

Metal detector Download PDF

Info

Publication number
JP7537669B2
JP7537669B2 JP2020207513A JP2020207513A JP7537669B2 JP 7537669 B2 JP7537669 B2 JP 7537669B2 JP 2020207513 A JP2020207513 A JP 2020207513A JP 2020207513 A JP2020207513 A JP 2020207513A JP 7537669 B2 JP7537669 B2 JP 7537669B2
Authority
JP
Japan
Prior art keywords
metal detector
coils
detection unit
coil
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020207513A
Other languages
Japanese (ja)
Other versions
JP2022094561A (en
Inventor
亨 尾▲崎▼
俊章 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Densok Ltd
Original Assignee
Nikka Densok Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Densok Ltd filed Critical Nikka Densok Ltd
Priority to JP2020207513A priority Critical patent/JP7537669B2/en
Publication of JP2022094561A publication Critical patent/JP2022094561A/en
Application granted granted Critical
Publication of JP7537669B2 publication Critical patent/JP7537669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

特許法第30条第2項適用 ・販売日 令和 2年 3月 3日 ・販売した場所 株式会社サンコウ電子研究所 東京都千代田区神田2-6-4柴田ビル2階Article 30, paragraph 2 of the Patent Act applies. Sales date: March 3, 2020. Sales location: Sanko Electronics Laboratory Co., Ltd., Shibata Building 2F, 2-6-4 Kanda, Chiyoda-ku, Tokyo.

本発明は、衣類等の検査物に混入した針などの金属異物を検出する金属検出機に関する。 The present invention relates to a metal detector that detects metallic foreign objects such as needles that are mixed into clothing or other items to be inspected.

衣類等の検査物に混入した針などの金属異物を永久磁石などで帯磁させ、または金属異物が永久磁石などで形成される磁場内を通過することによる磁束密度の変化を検出する方法を用いた金属検出機がある。
図7は従来の金属検出機の説明図1である。金属検出機1Aは、永久磁石2と、鉄心3にコイル4を巻き回した検知部材5を検査物の搬送路を間に挟んで対向するように配置している。検知部材5は同一平面上に複数並べて配置している(例えば特許文献1の図1、特許文献2の図7、特許文献3の図13に開示有り)。このような構成の金属検出機1Aは、検知部材5と永久磁石2の間に検査物を移動させる。検査物に金属異物が混入していると、永久磁石2のN極とS極間に発生した磁力線によって形成される磁場内を金属異物が通過することで磁場変動が生じ、検知部材5の鉄心3に入力される磁界に変動が生じ、磁界の変動による誘導起電力がコイル4に発生し、金属異物の検出信号として取り出せる。このときコイル4同士で差分を取ることで外乱によるノイズへの耐性を向上させている。
There are metal detectors that use a method in which metallic foreign objects such as needles that have become mixed in with clothing or other items to be inspected are magnetized using a permanent magnet or the like, or that detect a change in magnetic flux density that occurs when a metallic foreign object passes through a magnetic field generated by a permanent magnet or the like.
FIG. 7 is an explanatory diagram 1 of a conventional metal detector. In the metal detector 1A, a permanent magnet 2 and a detection member 5 having a coil 4 wound around an iron core 3 are arranged to face each other with the transport path of the inspection object sandwiched between them. A plurality of detection members 5 are arranged side by side on the same plane (for example, as disclosed in FIG. 1 of Patent Document 1, FIG. 7 of Patent Document 2, and FIG. 13 of Patent Document 3). In the metal detector 1A configured in this way, the inspection object is moved between the detection member 5 and the permanent magnet 2. If a metal foreign object is mixed in the inspection object, a magnetic field fluctuation occurs when the metal foreign object passes through the magnetic field formed by the magnetic field lines generated between the N pole and S pole of the permanent magnet 2, causing a fluctuation in the magnetic field input to the iron core 3 of the detection member 5, and an induced electromotive force due to the magnetic field fluctuation is generated in the coil 4, which can be extracted as a detection signal for the metal foreign object. At this time, the difference between the coils 4 is taken to improve resistance to noise due to disturbances.

しかしながら、コイル4の検出性能を高めるために単位長さ当たりの巻き数を多くすると、コイル4の厚みよりも外径が大きくなることがある。同一平面上に配置された(性能向上のため巻き数を多くして外径が大きくなった)コイル同士は検出機の設置位置及びノイズ源の位置によって各コイル4からノイズ源までの距離に明確な差が生じてしまう。この場合、ノイズの原因となる磁束密度の変化量は距離によって増減することから、特に同一平面にノイズ源がある場合には各コイル4が受けるノイズに差が生じてしまうため、差分を取った後もノイズが残ってしまいS/N比(信号雑音比)の低下につながっていた。 However, when the number of turns per unit length is increased to improve the detection performance of the coil 4, the outer diameter may become larger than the thickness of the coil 4. Coils arranged on the same plane (with a larger outer diameter due to an increased number of turns to improve performance) will have a clear difference in the distance from each coil 4 to the noise source depending on the installation position of the detector and the position of the noise source. In this case, since the amount of change in magnetic flux density that causes noise increases or decreases depending on the distance, differences will occur in the noise received by each coil 4, especially when the noise source is on the same plane, and even after the difference is taken, noise remains, leading to a decrease in the S/N ratio (signal-to-noise ratio).

図8は従来の金属検出機の説明図2である。金属検出機1Bは永久磁石2に突設した鉄心3に一層ずつコイル4を巻き回した検知部6A,6Bを検査物の通路の上下に配置している(例えば特許文献2の図6、特許文献3の図2に開示有り)。このような構成の金属検出機1Bは、検査物が移動する通路を挟んで検知部6A,6Bを対向させてそれぞれの鉄心3を同心状に配置して検知部6A,6Bを通る磁束が直線状となるようにしているので、均一の検出能力を有し、検出感度に差異が生じることを防止できる。 Figure 8 is an explanatory diagram 2 of a conventional metal detector. In metal detector 1B, detection units 6A and 6B, each of which has a coil 4 wound around an iron core 3 protruding from a permanent magnet 2, are arranged above and below the path of the object being inspected (for example, as disclosed in FIG. 6 of Patent Document 2 and FIG. 2 of Patent Document 3). In metal detector 1B of this configuration, detection units 6A and 6B face each other across the path along which the object being inspected moves, and each iron core 3 is arranged concentrically so that the magnetic flux passing through detection units 6A and 6B is linear, providing uniform detection capability and preventing differences in detection sensitivity.

しかしながら、帯磁部(永久磁石)の磁束の向きなどの影響を受け易く、金属異物の検出時の波形、外乱によって発生したノイズ波形、振動によって発生したノイズ波形の向きの組合せが通路を挟んで上層のコイル(検知部6A)と下層のコイル(検知部6B)で全て同じ向き又は全て逆向きのどちらかにならない。そのため、上層コイルと下層コイル間で差分を取った場合にはいずれかに対して弱くなってしまうという問題があった。 However, it is easily affected by factors such as the direction of the magnetic flux of the magnetized portion (permanent magnet), and the combination of the directions of the waveform when a metal foreign object is detected, the noise waveform generated by disturbance, and the noise waveform generated by vibration will not all be in the same direction or all in opposite directions in the upper coil (detection unit 6A) and the lower coil (detection unit 6B) on either side of the passage. Therefore, there is a problem that when a difference is taken between the upper coil and the lower coil, one of them will be weaker.

特開平8-291420号公報Japanese Patent Application Publication No. 8-291420 特開10-121370号公報JP 10-121370 A 特開2006-113043号公報JP 2006-113043 A

本発明が解決しようとする課題は、上記従来技術の問題点に鑑み、外乱によるノイズに対するS/N比を改善した金属検出機を提供することにある。 The problem that the present invention aims to solve is to provide a metal detector that has an improved S/N ratio against noise caused by external disturbances, in consideration of the problems of the conventional technology described above.

本発明は、上記課題を解決するための第1の手段として、検査物に含まれる金属異物を帯磁させ、又は前記検査物が通過する空間に磁場を生じさせる磁石と、
前記検査物が移動する中空部を挟んで前記磁石と対向し、前記金属異物による磁束密度の変化による誘導起電力を発生するコイルを有する検知部を備えた金属検出機において、
前記検知部は、前記コイルを前記検査物の移動方向と直交する方向に複数上下に重ねて配置し、前記コイルにより外乱ノイズを打ち消した検出信号を得ることを特徴とする金属検出機を提供することにある。
上記第1の手段によれば、外乱によるノイズに対するS/N比を改善できる。
また外乱に対して強くなり、従来ノイズの影響を受けるために設置できなかった様々な場所で機械を設置することができる。
さらに外乱によって誤作動が起きる可能性が減ることによって検査精度が上がり効率的な検査ができる。
同一軸心のため位相差がなく、振動などのノイズ信号を効率良く打ち消すことができる。また検出信号、ノイズ信号に時間差などの誤差が発生し難くなる。
コイル近傍を通過する金属異物によって発生する局所磁場による影響は、千鳥配置によるコイルの位相差によって同じタイミングで発生する磁気の変化による信号に大きな差が生じる。このため、検出信号が打ち消されることが低減できる。
遠方より入力される外乱の一様磁場では、千鳥配置によるコイルの位相差の影響は小さくなり、良好なノイズの打ち消しが可能であり、その結果、S/N比の向上を見込むことができる。
As a first means for solving the above problems, the present invention provides a magnet that magnetizes metallic foreign matter contained in an object to be inspected or generates a magnetic field in a space through which the object to be inspected passes;
A metal detector including a detection unit having a coil that faces the magnet across a hollow space through which the inspection object moves and generates an induced electromotive force due to a change in magnetic flux density caused by the metallic foreign object,
The object of the present invention is to provide a metal detector characterized in that the detection unit has multiple coils stacked one on top of the other in a direction perpendicular to the direction of movement of the object to be inspected, and the coils obtain a detection signal that cancels out external noise .
According to the first means, the S/N ratio for noise due to disturbances can be improved.
In addition, the system is more resistant to external disturbances, allowing the machine to be installed in a variety of locations where it previously could not be installed due to the effects of noise.
Furthermore, by reducing the possibility of malfunctions due to disturbances, inspection accuracy is improved and inspections can be performed more efficiently.
Since they are on the same axis, there is no phase difference, and noise signals such as vibrations can be cancelled out efficiently. In addition, errors such as time lags in the detection signals and noise signals are less likely to occur.
The effect of local magnetic fields generated by metal foreign objects passing near the coils causes large differences in signals due to magnetic changes that occur at the same timing due to the phase difference of the coils in the staggered arrangement, which reduces the cancellation of detection signals.
In a uniform magnetic field caused by a disturbance input from a distance, the effect of the phase difference of the coils due to the staggered arrangement is small, making it possible to cancel out noise effectively, and as a result, an improvement in the S/N ratio can be expected.

本発明は、上記課題を解決するための第2の手段として、第1の手段において、前記検知部は、前記コイルを同一軸心状に複数重ねて配置したことを特徴とする金属検出機を提供することにある。
上記第2の手段によれば、同一軸心のため位相差がなく、振動などのノイズ信号を効率良く打ち消すことができる。また検出信号、ノイズ信号に時間差などの誤差が発生し難くなる。
As a second means for solving the above problem, the present invention provides a metal detector as recited in the first means, characterized in that the detection unit has multiple coils stacked on top of each other and arranged on the same axis.
According to the second aspect, since the two sensors have the same axis, there is no phase difference, and noise signals such as vibrations can be cancelled efficiently. Also, errors such as time differences between the detection signals and noise signals are less likely to occur.

本発明は、上記課題を解決するための第3の手段として、第1の手段において、前記検知部は、複数重ねた前記コイルの軸心を偏心させて千鳥配置したことを特徴とする金属検出機を提供することにある。
上記第3の手段によれば、コイル近傍を通過する金属異物によって発生する局所磁場による影響は、千鳥配置によるコイルの位相差によって同じタイミングで発生する磁気の変化による信号に大きな差が生じる。このため、検出信号が打ち消されることが低減できる。
遠方より入力される外乱の一様磁場では、千鳥配置によるコイルの位相差の影響は小さくなり、良好なノイズの打ち消しが可能であり、その結果、S/N比の向上を見込むことができる。
As a third means for solving the above problem, the present invention provides a metal detector as in the first means, characterized in that the detection unit is arranged in a staggered manner with the axes of the multiple stacked coils eccentrically arranged.
According to the third aspect, the influence of a local magnetic field generated by a metallic foreign object passing near the coil produces a large difference in signals due to magnetic changes that occur at the same timing due to the phase difference of the coils in the staggered arrangement, which reduces the cancellation of the detection signals.
In a uniform magnetic field caused by a disturbance input from a distance, the effect of the phase difference of the coils due to the staggered arrangement is small, making it possible to cancel out noise effectively, and as a result, an improvement in the S/N ratio can be expected.

本発明は、上記課題を解決するための第4の手段として、第1ないし第3のいずれか1の手段において、前記検知部は、前記コイル内に鉄心を配置したことを特徴とする金属検出機を提供することにある。
上記第4の手段によれば、ボビンの中心が中空のコイルと比べて、コイルを通過する磁束密度が上がるため、より遠方にある又はより微小な金属異物を検出することが可能となる。
As a fourth means for solving the above problem, the present invention provides a metal detector characterized in that, in any one of the first to third means, the detection unit has an iron core disposed within the coil.
According to the fourth aspect, the magnetic flux density passing through the coil is increased compared to a coil in which the center of the bobbin is hollow, making it possible to detect metallic foreign matter that is located farther away or is smaller.

本発明は、上記課題を解決するための第5の手段として、第1ないし第4のいずれか1の手段において、前記検知部は、前記コイルをボビンに巻き付けたことを特徴とする金属検出機を提供することにある。
上記第5の手段によれば、コイルの巻き付けに適した形状のボビンにコイルを巻き付けてボビンの中心に鉄心を配置することにより、鉄心に直にコイルを巻き付ける構成と比べて、コイルの形状及びコイルの特性を揃えることができる。また製造工程の簡略化及び製造コストの低廉化を図ることができる。
As a fifth means for solving the above problem, the present invention provides a metal detector which, in any one of the first to fourth means, is characterized in that the detection unit has the coil wound around a bobbin.
According to the fifth aspect, by winding a coil around a bobbin having a shape suitable for winding the coil and placing the iron core at the center of the bobbin, it is possible to make the coil shape and characteristics uniform compared to a configuration in which the coil is wound directly around the iron core, and also to simplify the manufacturing process and reduce manufacturing costs.

本発明は、上記課題を解決するための第6の手段として、第2ないし第2を引用する場合の第4及び5のいずれか1に記載された金属検出機であって、前記検知部は、同一軸心状に複数重ねた前記コイルを同じボビンに巻き付けたことを特徴とする金属検出機を提供することにある。
上記第6の手段によれば、振動発生時に複数重ねた(上下の)コイルが同様に振動するようになり、発生する振動ノイズも同様の波形となり打ち消すことが可能となり、S/N比の向上を見込むことができる。
また複数重ねたコイルの構成と比べて、ボビンの数を半減でき製造コストの低廉化を図ることができる。
As a sixth means for solving the above problem, the present invention provides a metal detector as described in any one of claims 2 to 4 and 5 when quoting claim 2, characterized in that the detection unit has multiple coils stacked on the same axis and wound around the same bobbin.
According to the sixth means described above, when vibrations occur, the multiple stacked coils (upper and lower) vibrate in the same manner, and the generated vibration noise also has a similar waveform, making it possible to cancel it out, which is expected to improve the S/N ratio.
Furthermore, compared to a configuration in which multiple coils are stacked, the number of bobbins can be halved, making it possible to reduce manufacturing costs.

本発明は、上記課題を解決するための第7の手段として、第1ないし第6のいずれか1の手段において、前記検知部は、前記コイルを同一形状としたことを特徴とする金属検出機を提供することにある。
上記第7の手段によれば、複数のコイル間で性能のムラを小さくできる。このため検出信号のバラつきを小さくできる。またコイル製造の管理コストを下げることができる。
As a seventh means for solving the above problem, the present invention provides a metal detector according to any one of the first to sixth means, characterized in that the coils of the detection unit have the same shape.
According to the seventh aspect, it is possible to reduce the unevenness in performance between a plurality of coils, thereby reducing the variation in detection signals, and also to reduce the management costs of coil manufacturing.

本発明は、上記課題を解決するための第8の手段として、第1ないし第7のいずれか1の手段において、前記検知部は、複数重ねたコイル間で差又は和をとり検出信号を得る、又は前記コイルからの信号を回路上で差又は和をとり検出信号を得る信号検知部に接続したことを特徴とする金属検出機を提供することにある。
上記第8の手段によれば、複数重ねた(上下の)コイル間で差又は和をとり検出信号を得る、又は複数重ねた(上下の)コイルからの信号を回路上で差又は和をとり検出信号を得ることによって外乱ノイズを打ち消すことができ、S/N比の向上を見込むことができる。
As an eighth means for solving the above problem, the present invention provides a metal detector according to any one of the first to seventh means, characterized in that the detection unit is connected to a signal detection unit which obtains a detection signal by taking the difference or sum between multiple stacked coils, or which obtains a detection signal by taking the difference or sum of signals from the coils in a circuit.
According to the eighth means described above, a detection signal is obtained by taking the difference or sum between multiple overlapping (upper and lower) coils, or by taking the difference or sum of signals from multiple overlapping (upper and lower) coils in a circuit to obtain a detection signal, thereby making it possible to cancel out external noise and to expect an improvement in the S/N ratio.

本発明によれば、外乱によるノイズに対するS/N比を改善できる。
また外乱に対して強くなり、従来ノイズの影響を受けるために設置できなかった様々な場所で機械を設置することできる。
さらに外乱によって誤作動が起きる可能性が減ることによって検査精度が上がり効率的な検査ができる。
According to the present invention, the S/N ratio for noise due to disturbances can be improved.
In addition, the system is more resistant to external disturbances, making it possible to install the machine in various locations where it was previously not possible to do so due to the effects of noise.
Furthermore, by reducing the possibility of malfunctions due to disturbances, inspection accuracy is improved and inspections can be performed more efficiently.

本発明の金属検出機の構成概略図である。1 is a schematic diagram of a configuration of a metal detector according to the present invention. 上下2層のコイルの軸心を偏心させて千鳥配置した金属検出機の説明図である。FIG. 1 is an explanatory diagram of a metal detector in which upper and lower layers of coils are arranged in a staggered pattern with their axes offset. 信号検知部の説明図である。FIG. 4 is an explanatory diagram of a signal detection unit. 上下2層コイルとノイズ源の配置説明図であるAn explanatory diagram of the arrangement of the upper and lower two-layer coils and the noise source. 外乱と異物検出時のコイル波形の説明図である。5A and 5B are diagrams illustrating coil waveforms when disturbance and foreign object are detected. 外乱と異物検出時の波形サンプルの説明図である。11A and 11B are diagrams illustrating waveform samples when disturbance and foreign object are detected. 従来の金属検出機の説明図1である。FIG. 1 is an explanatory diagram of a conventional metal detector. 従来の金属検出機の説明図2である。FIG. 2 is an explanatory diagram 2 of a conventional metal detector.

本発明の金属検出機の実施形態について、図面を参照しながら、以下詳細に説明する。 The following describes in detail an embodiment of the metal detector of the present invention with reference to the drawings.

[金属検出機10]
図1は、本発明の金属検出機の構成概略図である。なお紙面と直交する方向が検査物の移動方向となり、紙面の上下方向が移動方向と直交する方向となる。図示のように本発明の金属検出機10は、検査物に含まれる金属異物を帯磁させ、又は前記検査物が通過する空間に磁場を生じさせる磁石20と、前記検査物が移動する中空部12を挟んで前記磁石20と対向し、前記金属異物による磁束密度の変化による誘導起電力を発生するコイル32を有する検知部30を備えた金属検出機10において、前記検知部30は、前記コイル32を前記検査物の移動方向と直交する方向に複数重ねて配置した構成としている。より具体的には、検査物をベルトコンベアで移動する中空部12をケーシングの中心に配置し、中空部12の上方の上側ヘッド14に上層及び下層の2層のコイル32と、中空部12の下方の下側ヘッド16に磁石20を配置している。
[Metal detector 10]
FIG. 1 is a schematic diagram of the configuration of the metal detector of the present invention. The direction perpendicular to the paper surface is the direction of movement of the object to be inspected, and the up-down direction of the paper surface is the direction perpendicular to the movement direction. As shown in the figure, the metal detector 10 of the present invention includes a magnet 20 that magnetizes a metallic foreign matter contained in the object to be inspected or generates a magnetic field in the space through which the object to be inspected passes, and a detection unit 30 that faces the magnet 20 across a hollow portion 12 through which the object to be inspected moves and has a coil 32 that generates an induced electromotive force due to a change in magnetic flux density caused by the metallic foreign matter. In the detection unit 30, the coils 32 are arranged in a multiple-layered manner in a direction perpendicular to the direction of movement of the object to be inspected. More specifically, the hollow portion 12 through which the object to be inspected moves on a belt conveyor is arranged in the center of the casing, and two layers of coils 32, upper and lower, are arranged in the upper head 14 above the hollow portion 12, and the magnet 20 is arranged in the lower head 16 below the hollow portion 12.

(コイル32)
上側ヘッド14には複数のコイル32を取り付けている。コイル32はボビンに巻き回して筒状に形成されている。
コイル32は単位長さ当たりの巻き数を多くするために厚みよりも外径を大きく(外径>>厚み)形成して上下の差分を取る際に最適な形状にしている。
ボビンの中心には鉄心34を取り付けている。これによりボビンの中心が中空のコイルと比べて、コイル32を通過する磁束密度が上がるため、より遠方にある又はより微小な金属異物を検出することが可能となる。
このようにコイル32の巻き付けに適した形状のボビンにコイル32を巻き付けてボビンの中心に鉄心34を配置することにより、鉄心に直にコイルを巻き付ける構成と比べて、コイル32の形状及びコイル32の特性を揃えることができる。また製造工程の簡略化及び製造コストの低廉化を図ることができる。
(Coil 32)
A plurality of coils 32 are attached to the upper head 14. The coils 32 are wound around bobbins and formed into a cylindrical shape.
The coil 32 is formed with an outer diameter larger than the thickness (outer diameter >> thickness) in order to increase the number of turns per unit length, giving it an optimal shape when obtaining the difference between the top and bottom.
An iron core 34 is attached to the center of the bobbin. This increases the magnetic flux density passing through the coil 32 compared to a coil with a hollow center of the bobbin, making it possible to detect metallic foreign objects that are located further away or that are smaller.
By winding the coil 32 around a bobbin having a shape suitable for winding the coil 32 and arranging the iron core 34 at the center of the bobbin in this way, it is possible to make the shape and characteristics of the coil 32 uniform compared to a configuration in which the coil is wound directly around the iron core. In addition, it is possible to simplify the manufacturing process and reduce manufacturing costs.

図1に示すコイル32は、検査物の移動方向と直交する方向(検出機の上下方向)に上層及び下層からなる2層構造とし、検査物の移動面に沿って3個並べて配置し、合計6個取り付けている。また上下2層のコイル32は鉄心34の軸心を同心状、換言するとコイル32を同一軸心状に配置している。このような構成により、コイル32の検出信号又はノイズ信号に時間差などの誤差を発生し難くして低減できる。
この他、上下2層のコイル32の鉄心34の軸心を偏心(ずらして)させて千鳥に配置することもできる。図2は上下2層のコイルの軸心を偏心させて千鳥配置した金属検出機の説明図である。このような構成により、コイル32近傍を通過する金属異物によって発生する局所磁場による影響は、千鳥配置によるコイル32の位相差によって同じタイミングで発生する磁気の変化による信号に大きな差が生じる。このため、検出信号が打ち消されることが低減できる。
遠方より入力される外乱の一様磁場では、千鳥配置によるコイル32の位相差の影響は小さくなり、良好なノイズの打ち消しが可能であり、その結果、S/N比の向上を見込むことができる。
The coil 32 shown in Fig. 1 has a two-layer structure consisting of an upper layer and a lower layer in a direction perpendicular to the direction of movement of the object to be inspected (the vertical direction of the detector), and three coils are arranged side by side along the surface of the object to be inspected, for a total of six coils. The upper and lower two layers of coils 32 are arranged concentrically with the axis of the iron core 34, in other words, the coils 32 are arranged on the same axis. This configuration makes it difficult for errors such as time differences to occur in the detection signal or noise signal of the coils 32, and reduces them.
In addition, the cores 34 of the two upper and lower layers of coils 32 may be eccentric (shifted) and arranged in a staggered pattern. Fig. 2 is an explanatory diagram of a metal detector in which the coils are staggered and eccentric. With this configuration, the influence of a local magnetic field generated by a metal foreign object passing near the coils 32 will cause a large difference in signals due to magnetic changes that occur at the same timing due to the phase difference of the coils 32 caused by the staggered arrangement. This reduces the cancellation of detection signals.
In a uniform magnetic field caused by a disturbance input from a distance, the effect of the phase difference of the coils 32 due to the staggered arrangement is small, making it possible to cancel out noise effectively, and as a result, an improvement in the S/N ratio can be expected.

上下2層のコイル32の鉄心34の軸心を同心状(コイル32を同一軸心状)に配置した場合には、同じボビンに巻き付けることも可能である。
これにより振動発生時に複数重ねた(上下の)コイルが同様に振動するようになり、発生する振動ノイズも同様の波形となり打ち消すことが可能となり、S/N比の向上を見込むことができる。また複数重ねたコイルの構成と比べて、ボビンの数を半減でき製造コスト低廉化を図ることができる。
また複数重ねたコイル32の形状は同一形状としてもよい。これにより、複数のコイル間で性能のムラを小さくできる。このため検出信号のバラつきを小さくできる。またコイル製造の管理コストを下げることができる。
When the axes of the iron cores 34 of the upper and lower layers of coils 32 are arranged concentrically (the coils 32 are coaxial), they can be wound around the same bobbin.
This allows the multiple stacked coils (upper and lower) to vibrate in the same way when vibration occurs, and the generated vibration noise also has a similar waveform, making it possible to cancel it out, which is expected to improve the S/N ratio. Also, compared to a configuration with multiple stacked coils, the number of bobbins can be halved, which reduces manufacturing costs.
In addition, the shape of the multiple overlapping coils 32 may be the same. This can reduce the unevenness in performance between the multiple coils. This can reduce the variation in detection signals. In addition, the management cost of coil manufacturing can be reduced.

(磁石20)
下側ヘッド16には磁石20を取り付けている。磁石20は検査物の搬送面の幅方向(検査物の移動方向と直行する方向)に跨るように取り付けた板状の永久磁石である。
本実施形態の磁石20は検査物に含まれる金属異物を帯磁させ、又は前記検査物が通過する空間に磁場を生じさせる構成、検査物に含まれる金属異物を帯磁させ、及び前記検査物が通過する空間に磁場を生じさせる構成のいずれかの形態をとり得る。
(Magnet 20)
A magnet 20 is attached to the lower head 16. The magnet 20 is a plate-shaped permanent magnet that is attached across the width of the transport surface of the inspection object (a direction perpendicular to the direction of movement of the inspection object).
The magnet 20 of this embodiment can take either of the following forms: a configuration for magnetizing metallic foreign bodies contained in the test object, or for generating a magnetic field in the space through which the test object passes, or a configuration for magnetizing metallic foreign bodies contained in the test object and for generating a magnetic field in the space through which the test object passes.

(信号検知部40)
検知部30は、複数重ねたコイル間で差又は和をとり検出信号を得る、又は前記コイルからの信号を回路上で差又は和をとり検出信号を得る信号検知部40に接続している。図3は信号検知部の説明図である。
図3(1)に示す信号検知部40は、コイル結線で複数重ねたコイル間の差又は和をとる構成を示している。
検知部30での上層及び下層コイル32A,32Bが同じコイル同士で逆方向に接続した場合、コイル間で差をとり(打ち消し合い)、信号検知部40によりフィルタなどを介して検出信号を得ている。
また検知部30での上層及び下層コイル32A,32Bが逆巻きコイルで順方向に接続した場合、コイル間で和をとり(打ち消し合い)、信号検知部40によりフィルタなどを介して検出信号を得ている。
図3(2)に示す信号検知部40は、回路上で複数重ねたコイルからの信号の差又は和をとり検出信号を得る構成を示している。
検知部30での上層及び下層コイル32A,32Bが同じコイル同士でそれぞれ信号検知部40に出力し、信号検知部40により回路上で差をとり(打ち消し合い)検出信号を得ている。
また検知部30での上層及び下層コイル32A,32Bが逆巻きコイルでそれぞれ信号検知部40に出力し、信号線検知部40により回路上で和をとり(打ち消し合い)検出信号を得ている。
このような構成により、外乱ノイズを打ち消すことができ、S/N比の向上を見込むことができる。
このような構成の金属検出機10は、中空部12内をベルトコンベアによって検査物11が移動する。検査物に金属異物があると検出信号が発生するように構成している。
(Signal detection unit 40)
The detection unit 30 is connected to a signal detection unit 40 which obtains a detection signal by taking the difference or sum between a plurality of overlapping coils, or obtains a detection signal by taking the difference or sum of signals from the coils on a circuit. Fig. 3 is an explanatory diagram of the signal detection unit.
The signal detection unit 40 shown in FIG. 3(1) has a configuration in which the difference or sum between a plurality of overlapping coils is detected by coil wiring.
When the upper and lower coils 32A, 32B in the detection unit 30 are the same coils connected in the opposite directions, the difference between the coils is taken (cancelled out), and the signal detection unit 40 obtains a detection signal via a filter or the like.
When the upper and lower coils 32A, 32B in the detection unit 30 are reversely wound and connected in the forward direction, the coils are summed (cancelled out) and the signal detection unit 40 obtains a detection signal via a filter or the like.
The signal detection unit 40 shown in FIG. 3(2) shows a configuration in which a detection signal is obtained by taking the difference or sum of signals from a plurality of coils stacked on a circuit.
The upper and lower coils 32A, 32B in the detection unit 30 are the same coils and output signals to the signal detection unit 40, which takes the difference (cancels each other) on the circuit to obtain a detection signal.
The upper and lower coils 32A, 32B in the detection section 30 are reversely wound coils that output signals to a signal detection section 40, which then sums them up (cancels each other) on the circuit to obtain a detection signal.
With such a configuration, disturbance noise can be cancelled, and an improvement in the S/N ratio can be expected.
In the metal detector 10 configured as above, the inspection object 11 moves by the belt conveyor within the hollow portion 12. If a metallic foreign object is present in the inspection object, a detection signal is generated.

[作用]
図4は上下2層コイルと外乱の発生源の配置説明図である。図示のように上層コイル32Aと下層コイル32Bの間の距離L3は想定される外乱の発生源からコイルまでの距離L1,L2と比較して十分短く設定している(L1orL2>>L3)。また検査物11とコイル32の間の距離L4はコイル32と外乱の発生源までの距離L1,L2と比較すると十分短く設定し(L1orL2>>L4)、検査物11がコイル32の近くを移動する。
[Action]
4 is an explanatory diagram of the arrangement of the upper and lower two-layer coils and the source of disturbance. As shown in the figure, the distance L3 between the upper layer coil 32A and the lower layer coil 32B is set to be sufficiently short compared with the distances L1, L2 from the assumed source of disturbance to the coils (L1 or L2 >> L3). Also, the distance L4 between the object 11 and the coil 32 is set to be sufficiently short compared with the distances L1, L2 from the coil 32 to the source of disturbance (L1 or L2 >> L4), so that the object 11 moves close to the coil 32.

図5は外乱と異物検出時のコイル波形の説明図である。図6は波形サンプルの説明図であり、(1)は金属異物検出時、(2)は外乱ノイズ発生時である。
金属検出機10の中空部12を移動する検査物11に金属異物が含まれる場合、金属異物との距離の近さが大きく影響する。換言すると金属異物に近い下層コイル32Bに発生する誘導起電力が大きく、下層コイル32Bよりも遠い位置の上層コイル32Aに発生する誘導起電力がそれよりも小さくなり差が生じる。このため上下2層コイル32間で差分を取ると大きな検出波形が残り観測することができる(図5、6(1)参照)。
外乱の発生時は、上下2層コイル32A,B間の距離差L3は、コイル32と外乱の発生源18の間の距離L1,L2と比べて無視できるため、上下2層コイル32A,Bで発生する誘導起電力がほぼ同等となる。このため、上下2層コイル32A,Bからの出力の差分を取ることにより、外乱によるノイズを互いに打ち消し合い、影響を低減できる(図5、6(2)参照)。なお金属検出機10本体が振動した場合に発生するノイズに関しては、上下2層コイル32A,Bが同じように振動するため、発生するノイズも打ち消し合うことができる。
Fig. 5 is an explanatory diagram of the coil waveform when a disturbance and a foreign object are detected. Fig. 6 is an explanatory diagram of waveform samples, (1) when a metallic foreign object is detected, and (2) when a disturbance noise occurs.
When the inspection object 11 moving through the hollow portion 12 of the metal detector 10 contains a metallic foreign object, the proximity of the metallic foreign object has a large effect. In other words, the induced electromotive force generated in the lower layer coil 32B, which is close to the metallic foreign object, is large, and the induced electromotive force generated in the upper layer coil 32A, which is located farther away than the lower layer coil 32B, is smaller, resulting in a difference. For this reason, when the difference between the upper and lower two-layer coils 32 is taken, a large detection waveform remains and can be observed (see Figures 5 and 6 (1)).
When a disturbance occurs, the difference in distance L3 between the upper and lower two-layer coils 32A and B can be ignored compared to the distances L1 and L2 between the coil 32 and the source of disturbance 18, so the induced electromotive forces generated in the upper and lower two-layer coils 32A and B are approximately equal. Therefore, by taking the difference in output from the upper and lower two-layer coils 32A and B, noises caused by disturbances can be cancelled out, reducing their impact (see Figures 5 and 6 (2)). Regarding noises generated when the metal detector 10 body vibrates, the upper and lower two-layer coils 32A and B vibrate in the same way, so the generated noises can also be cancelled out.

このような本発明の金属検出機によれば、磁石によって形成された磁場内を金属異物が移動したときに、コイルの鉄心内の磁束密度が変化して、それによってコイルに誘導起電力が発生する。これを検出波形として観測することができる。
また外乱となる電磁波が発生したとき、その影響によってコイルに誘導起電力が発生する。これがノイズとなってS/N比の低下につながっていた。この対策として、コイルを検査物の移動方向と直交する方向に複数重ねて配置して上層と下層のコイル間で差分をとることにより、ノイズを打ち消し合わせて低減することができる。
以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
In the metal detector of the present invention, when a metallic foreign object moves within the magnetic field generated by the magnet, the magnetic flux density in the iron core of the coil changes, which generates an induced electromotive force in the coil, which can be observed as a detection waveform.
In addition, when electromagnetic waves that cause disturbances occur, they affect the coils, generating induced electromotive forces. This becomes noise, leading to a decrease in the S/N ratio. To address this issue, multiple coils are stacked in a direction perpendicular to the direction of movement of the test object, and the difference between the coils in the upper and lower layers is taken, which cancels out and reduces the noise.
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and various modifications can be made without departing from the spirit and scope of the present invention.
Furthermore, the present invention is not limited to the combinations shown in the embodiments, but can be implemented in various combinations.

1A,1B 金属検出機
2 永久磁石
3 鉄心
4 コイル
5 検知部材
6A,6B 検知部
10 金属検出機
11 検査物
12 中空部
14 上側ヘッド
16 下側ヘッド
18 外乱の発生源
20 磁石
30 検知部
32 コイル
32A 上層コイル
32B 下層コイル
34 鉄心
40 信号検知部
Reference Signs List 1A, 1B Metal detector 2 Permanent magnet 3 Iron core 4 Coil 5 Detecting member 6A, 6B Detecting section 10 Metal detector 11 Inspection object 12 Hollow section 14 Upper head 16 Lower head 18 Source of disturbance 20 Magnet 30 Detecting section 32 Coil 32A Upper coil 32B Lower coil 34 Iron core 40 Signal detecting section

Claims (8)

検査物に含まれる金属異物を帯磁させ、又は前記検査物が通過する空間に磁場を生じさせる磁石と、
前記検査物が移動する中空部を挟んで前記磁石と対向し、前記金属異物による磁束密度の変化による誘導起電力を発生するコイルを有する検知部を備えた金属検出機において、
前記検知部は、前記コイルを前記検査物の移動方向と直交する方向に複数上下に重ねて配置し、前記コイルにより外乱ノイズを打ち消した検出信号を得ることを特徴とする金属検出機。
a magnet that magnetizes metallic foreign particles contained in an object to be inspected or generates a magnetic field in a space through which the object to be inspected passes;
A metal detector including a detection unit having a coil that faces the magnet across a hollow space through which the inspection object moves and generates an induced electromotive force due to a change in magnetic flux density caused by the metallic foreign object,
The detection unit is a metal detector characterized in that multiple coils are stacked one on top of the other in a direction perpendicular to the direction of movement of the object to be inspected, and a detection signal is obtained by canceling out external noise using the coils .
請求項1に記載された金属検出機であって、
前記検知部は、前記コイルを同一軸心状に複数重ねて配置したことを特徴とする金属検出機。
2. The metal detector according to claim 1,
The metal detector is characterized in that the detection unit has multiple coils stacked on top of each other along the same axis.
請求項1に記載された金属検出機であって、
前記検知部は、複数重ねた前記コイルの軸心を偏心させて千鳥配置したことを特徴とする金属検出機。
2. The metal detector according to claim 1,
The metal detector is characterized in that the detection unit has a staggered arrangement of multiple stacked coils with their axes offset from one another.
請求項1ないし3のいずれか1に記載された金属検出機であって、
前記検知部は、前記コイル内に鉄心を配置したことを特徴とする金属検出機。
4. A metal detector according to claim 1,
A metal detector characterized in that the detection unit has an iron core disposed within the coil.
請求項1ないし4のいずれか1に記載された金属検出機であって、
前記検知部は、前記コイルをボビンに巻き付けたことを特徴とする金属検出機。
5. A metal detector according to claim 1,
A metal detector characterized in that the detection unit has the coil wound around a bobbin.
請求項2ないし請求項2を引用する場合の請求項4及び5のいずれか1に記載された金属検出機であって、
前記検知部は、同一軸心状に複数重ねた前記コイルを同じボビンに巻き付けたことを特徴とする金属検出機。
A metal detector according to any one of claims 2 to 4 and 5 when claim 2 is recited ,
A metal detector characterized in that the detection unit has multiple coils stacked on the same axis and wound around the same bobbin.
請求項1ないし6のいずれか1に記載された金属検出機であって、
前記検知部は、前記コイルを同一形状としたことを特徴とする金属検出機。
7. A metal detector according to claim 1,
A metal detector characterized in that the coils of the detection unit have the same shape.
請求項1ないし7のいずれか1に記載された金属検出機であって、
前記検知部は、複数重ねたコイル間で差又は和をとり検出信号を得る、又は前記コイルからの信号を回路上で差又は和をとり検出信号を得る信号検知部に接続したことを特徴とする金属検出機。
8. A metal detector according to claim 1,
The metal detector is characterized in that the detection unit is connected to a signal detection unit that obtains a detection signal by taking the difference or sum between multiple stacked coils, or that obtains a detection signal by taking the difference or sum of signals from the coils in a circuit.
JP2020207513A 2020-12-15 2020-12-15 Metal detector Active JP7537669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020207513A JP7537669B2 (en) 2020-12-15 2020-12-15 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020207513A JP7537669B2 (en) 2020-12-15 2020-12-15 Metal detector

Publications (2)

Publication Number Publication Date
JP2022094561A JP2022094561A (en) 2022-06-27
JP7537669B2 true JP7537669B2 (en) 2024-08-21

Family

ID=82162536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020207513A Active JP7537669B2 (en) 2020-12-15 2020-12-15 Metal detector

Country Status (1)

Country Link
JP (1) JP7537669B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127600A (en) 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2011163886A (en) 2010-02-08 2011-08-25 Fuji Xerox Co Ltd Detecting device and program
JP2012052927A (en) 2010-09-01 2012-03-15 Fuji Xerox Co Ltd Detector and program
JP2012063259A (en) 2010-09-16 2012-03-29 Nikka Densoku Kk Metal detection unit
JP2018189533A (en) 2017-05-09 2018-11-29 オムロン株式会社 Proximity sensor and method
JP2019027985A (en) 2017-08-02 2019-02-21 アンリツインフィビス株式会社 Metal detector and method for detecting metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127600A (en) 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2011163886A (en) 2010-02-08 2011-08-25 Fuji Xerox Co Ltd Detecting device and program
JP2012052927A (en) 2010-09-01 2012-03-15 Fuji Xerox Co Ltd Detector and program
JP2012063259A (en) 2010-09-16 2012-03-29 Nikka Densoku Kk Metal detection unit
JP2018189533A (en) 2017-05-09 2018-11-29 オムロン株式会社 Proximity sensor and method
JP2019027985A (en) 2017-08-02 2019-02-21 アンリツインフィビス株式会社 Metal detector and method for detecting metal

Also Published As

Publication number Publication date
JP2022094561A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
JP5127440B2 (en) Magnetic pattern detector
US6057684A (en) Magnetic flaw detection apparatus using an E-shaped magnetic sensor and high-pass filter
JP5542466B2 (en) Magnetic sensor device
JP5719515B2 (en) Magnetic sensor device
KR102134492B1 (en) Differential sensor, inspection system and method for the detection of anomalies in electrically conductive materials
WO2000008458A1 (en) Eddy-current flaw detector probe
WO2017022764A1 (en) Wire rope flaw detector
JP2011163831A5 (en)
KR20100137770A (en) Magnetostrictive transducer, apparatus of monitoring structural health having the same and method of monitoring structural health
US8806949B2 (en) Electromagnetic ultrasound transducer
WO2006057409A1 (en) Electromagnetic induction sensor for metal detector and metal searching method
RU2442151C2 (en) Method for subsurface flaw detection in ferromagnetic objects
JP7537669B2 (en) Metal detector
WO2018097055A1 (en) Magnetic head for paper currency identification
KR20120075383A (en) Magnetic sensor device and method of manufacturing magnetic sensor device
JP2002257789A (en) Leakage flux detecting device
JP5638544B2 (en) Eddy current testing probe
JP2016206070A (en) Magnetic sensor device
JP2023124388A (en) magnetic sensor
CN107144628A (en) A kind of electromechanical detection method based on defect and magnetic leakage field source Yu active probe magnetic source
JP4484723B2 (en) Eddy current testing probe
US3317824A (en) Method of and apparatus for magnetically inspecting ferromagnetic members for inside and outside surface discontinuities and ascertaining therebetween
JP2012198202A (en) Device for inspecting minute magnetic metallic foreign matters
JP2017182852A (en) Magnetic head and card reader
JP6095063B2 (en) Eddy current testing probe

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240726

R150 Certificate of patent or registration of utility model

Ref document number: 7537669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150