以下図面について本発明の一実施の形態を詳述する。以下の説明において、同一の構成要素には同一の符号を付し、重複する説明は省略する。
An embodiment of the present invention will be described in detail below with reference to the drawings. In the following description, the same components are given the same reference numerals and duplicate descriptions will be omitted.
(1)本実施形態に係るソフトアクチュエータの概略
図1及び図2Aに示すように、本実施形態に係るソフトアクチュエータ1は、筒状の固定子2と、固定子2の筒内空間に配置される筒状の可動子3と、固定子2に接続された駆動部4と、を有する。ソフトアクチュエータ1は、固定子2の中心軸AX1と可動子3の中心軸AX2とが同軸上に配置されており、可動子3が固定子2の筒内空間を移動する。
1 and 2A , a soft actuator 1 according to this embodiment has a cylindrical stator 2, a cylindrical mover 3 disposed in the cylindrical space of the stator 2, and a driving unit 4 connected to the stator 2. In the soft actuator 1, a central axis AX1 of the stator 2 and a central axis AX2 of the mover 3 are disposed coaxially, and the mover 3 moves in the cylindrical space of the stator 2.
この場合、ソフトアクチュエータ1は、固定子2に設けた複数の極性可変素子22に駆動部4からそれぞれ電流(励磁電流)が供給されることで、固定子2の表面におけるN極及びS極の極性パターンを極性可変素子22によって変え、固定子2の筒内空間に配置された、磁極部32を有する可動子3を、磁力によって変形させる。これにより、ソフトアクチュエータ1は、可動子3の外周面の所定位置が所定の周期で固定子2の内周面に接触及び非接触を繰り返して可動子3が尺取虫状に動作し、固定子2の筒内空間を可動子3が所定方向に移動する。
In this case, the soft actuator 1 changes the polarity pattern of the north and south poles on the surface of the stator 2 by the polarity variable elements 22 when a current (excitation current) is supplied from the drive unit 4 to each of the multiple polarity variable elements 22 provided on the stator 2, and the mover 3 having magnetic pole parts 32 arranged in the cylindrical space of the stator 2 is deformed by magnetic force. As a result, the soft actuator 1 causes a predetermined position on the outer circumferential surface of the mover 3 to repeatedly come into contact with and not come into contact with the inner circumferential surface of the stator 2 at a predetermined period, causing the mover 3 to operate like an inchworm, and the mover 3 moves in a predetermined direction within the cylindrical space of the stator 2.
固定子2は、例えば、ゴム等のような柔軟性のあるソフトな材料により形成された筒状体の固定子本体21を有し、固定子本体21の周面に、複数の極性可変素子22が行列状に配置されている。極性可変素子22は、例えば、励磁コイルなどでなり、駆動部4から所定の電流が供給され、N極素子22n又はS極素子22sとなるよう励磁される。
The stator 2 has a cylindrical stator body 21 made of a flexible soft material such as rubber, and a plurality of polarity variable elements 22 are arranged in a matrix on the circumferential surface of the stator body 21. The polarity variable elements 22 are, for example, excitation coils, and are excited to become N pole elements 22n or S pole elements 22s when a predetermined current is supplied from the drive unit 4.
可動子3は、例えば、ゴムのような弾性部材や布や紐のような非弾性部材による薄膜、シート状部材などの軟質な材料により形成された、筒状の可変素子31を有しており、可変素子31の直径が固定子2の直径よりも小さく、固定子2の筒内空間に収容可能な構成を有する。なお、本実施形態では、主として、布などの柔軟な非弾性部材により可変素子31を形成し、後述する磁極部32間の距離が伸長及び短縮する(すなわち、隣接する磁極部32が遠ざかり及び近づく)可変素子31を適用した例について以下説明する。
The mover 3 has a cylindrical variable element 31 formed from a soft material such as a thin film or sheet-like material made of an elastic material such as rubber or a non-elastic material such as cloth or string, and the diameter of the variable element 31 is smaller than the diameter of the stator 2, so that it can be accommodated in the cylindrical space of the stator 2. Note that in this embodiment, the variable element 31 is mainly formed from a soft non-elastic material such as cloth, and an example in which the distance between the magnetic pole parts 32 described below expands and contracts (i.e., adjacent magnetic pole parts 32 move away and towards each other) is applied will be described below.
可変素子31の周面には、チェッカーボード・パターンで、極性が異なる磁極部(以下、N極の磁極部をN極部33nと称し、S極の磁極部をS極部34sと称する)32が交互に配置されている。なお、N極部33n及びS極部34sは、例えば、永久磁石であり、例えば、シート状の永久磁石を可変素子31の表面に貼着したり、又は、粉末状にした永久磁石を可変素子31に混合するなどの手法により、可変素子31に設けられ得る。
Magnetic poles 32 of different polarities (hereinafter, the magnetic poles of the north pole are referred to as the north pole parts 33n and the magnetic poles of the south poles are referred to as the south pole parts 34s) are alternately arranged in a checkerboard pattern on the circumferential surface of the variable element 31. The north pole parts 33n and the south pole parts 34s are, for example, permanent magnets, and can be provided on the variable element 31 by, for example, adhering a sheet-like permanent magnet to the surface of the variable element 31 or mixing a powdered permanent magnet into the variable element 31.
なお、本実施形態における、固定子2の極性可変素子22と可動子3の磁極部32の一例としては、例えば、四辺状に形成されているが、本発明はこれに限らず、円形状や五角形等の多角形状に形成してもよい。また、これら極性可変素子22と磁極部32との大きさは、同一の大きさに形成されていることが望ましい。ここで、極性可変素子22と磁極部32との大きさが同一とは、完全に同じである場合の他、極性可変素子22の極性変化により磁極部32を移動させることに鑑みて許容できる誤差程度(例えば、極性可変素子22と磁極部32の大きさの違いが±25%以内)に大きさがずれた場合も含み得る。ただし、極性可変素子22で発生する磁力の強さや、磁極部32の磁力の強さによっても、極性可変素子22の磁力により磁極部32を移動させる際に与える影響が異なってくるため、必ずしも極性可変素子22と磁極部32との大きさが同一である必要はなく、後述する「(2)並進動作」、「(3)回転動作」及び「(4)並進回転動作」が実現できるのであれば、極性可変素子22と磁極部32との大きさや形状は特に限定されるものではない。
In this embodiment, the polarity variable element 22 of the stator 2 and the magnetic pole portion 32 of the movable element 3 are formed, for example, in a quadrilateral shape, but the present invention is not limited to this, and they may be formed in a polygonal shape such as a circle or a pentagon. It is also desirable that the polarity variable element 22 and the magnetic pole portion 32 are formed to be the same size. Here, the polarity variable element 22 and the magnetic pole portion 32 being the same size may include a case where they are completely the same, as well as a case where the polarity variable element 22 and the magnetic pole portion 32 are deviated in size by an allowable error level (for example, the difference in size between the polarity variable element 22 and the magnetic pole portion 32 is within ±25%) in consideration of the movement of the magnetic pole portion 32 by the polarity change of the polarity variable element 22. However, the effect of the magnetic force of the polarity variable element 22 when moving the magnetic pole portion 32 varies depending on the strength of the magnetic force generated by the polarity variable element 22 and the strength of the magnetic force of the magnetic pole portion 32. Therefore, the polarity variable element 22 and the magnetic pole portion 32 do not necessarily need to be the same size. As long as the "(2) translational motion," "(3) rotational motion," and "(4) translational rotational motion" described below can be realized, the size and shape of the polarity variable element 22 and the magnetic pole portion 32 are not particularly limited.
また、本実施形態に係る可動子3の可変素子31は、図2Aに示すように、N極部33nとS極部34sとの間に柔軟な可変部35をそれぞれ有しており、N極部33n及びS極部34sが設けられていない可変部35の領域が曲折可能に構成されている。なお、可変素子31を弾性部材とした場合には、可変部35が伸縮可能に構成される。
As shown in FIG. 2A, the variable element 31 of the mover 3 according to this embodiment has flexible variable parts 35 between the N-pole part 33n and the S-pole part 34s, and the area of the variable part 35 where the N-pole part 33n and the S-pole part 34s are not provided is configured to be bendable. When the variable element 31 is made of an elastic material, the variable part 35 is configured to be expandable and contractible.
図2Bは、軸方向に並んだ磁極部32間の所定の可変部35が交互に伸長及び短縮したときの可動子3を示す概略図である。可動子3は、例えば、並進動作時(後述する)、周方向C1に並んだ磁極部32毎に、それぞれ軸方向に沿って磁極部32の間の可変部35が伸長及び短縮することで尺取虫状に動作し、固定子2の内部空間を移動可能に構成されている。
Figure 2B is a schematic diagram showing the mover 3 when certain variable parts 35 between the magnetic pole parts 32 aligned in the axial direction are alternately expanded and contracted. For example, during translational motion (described later), the mover 3 is configured to move in the internal space of the stator 2 by expanding and contracting the variable parts 35 between the magnetic pole parts 32 along the axial direction for each of the magnetic pole parts 32 aligned in the circumferential direction C1, thereby moving like an inchworm.
ここで、図3は、可変素子31を弾性部材とした場合に、可動子3が軸方向X1に伸長したときの構成を示す概略図である。例えば、可動子3においてN極部33n及びS極部34sのいずれにも、固定子2から磁力を受けていないとき、図3の上段に示すように、N極部33n及びS極部34sの間にある可変部35は、所定の自然長を有する。
Here, FIG. 3 is a schematic diagram showing the configuration when the mover 3 is expanded in the axial direction X1 when the variable element 31 is an elastic member. For example, when neither the N-pole portion 33n nor the S-pole portion 34s of the mover 3 receives magnetic force from the stator 2, as shown in the upper part of FIG. 3, the variable portion 35 between the N-pole portion 33n and the S-pole portion 34s has a predetermined natural length.
可動子3は、例えば、固定子2のS極素子22sからの磁力によりN極部33nが当該S極素子22sに引き寄せられた状態になると、当該N極部33nがS極素子22sの位置に仮固定される。この状態のまま、例えば、可動子3のS極部34sから軸方向X1に所定距離離れた、固定子2の極性可変素子22の極性がN極素子22nになると、可動子3のS極部33sが磁力により当該N極素子22nに引き寄せられる。これにより、図3の下段に示すように、可動子3は、N極部33nが固定子2のS極素子22sに仮固定されていることから、N極部33nとS極部34sとの間の一方の可変部35が伸長し、当該S極部34sと隣接する他方の可変部35が短縮する。これにより、可動子3は、S極部34sが固定子2のN極素子22nの位置にまで到達して、S極部34sがN極素子22nに仮固定される。
When the N-pole portion 33n of the mover 3 is attracted to the S-pole element 22s of the stator 2 by the magnetic force from the S-pole element 22s of the stator 2, the N-pole portion 33n is temporarily fixed to the position of the S-pole element 22s. In this state, for example, when the polarity of the polarity variable element 22 of the stator 2, which is a predetermined distance away from the S-pole portion 34s of the mover 3 in the axial direction X1, becomes the N-pole element 22n, the S-pole portion 33s of the mover 3 is attracted to the N-pole element 22n by the magnetic force. As a result, as shown in the lower part of Figure 3, since the N-pole portion 33n of the mover 3 is temporarily fixed to the S-pole element 22s of the stator 2, one variable portion 35 between the N-pole portion 33n and the S-pole portion 34s expands, and the other variable portion 35 adjacent to the S-pole portion 34s shortens. As a result, the south pole portion 34s of the mover 3 reaches the position of the north pole element 22n of the stator 2, and the south pole portion 34s is temporarily fixed to the north pole element 22n.
このように可変素子31を弾性部材とした場合、可動子3では、可変部35が伸長することで、可変部35が自然長に戻ろうとする弾性力が働き、軸方向X1に沿って推進力が生じる。例えば、可動子3のN極部33nを仮固定している固定子2のS極素子22sが、N極素子22nに切り替わることで、可動子3は、磁力によるN極部33nの仮固定が解放され、伸長していた可変部35が短縮して、当該N極部33nがS極部34sへと移動する。
When the variable element 31 is an elastic member in this way, as the variable portion 35 of the mover 3 expands, an elastic force acts on the variable portion 35 to return it to its natural length, generating a propulsive force along the axial direction X1. For example, when the S-pole element 22s of the stator 2, which temporarily fixes the N-pole portion 33n of the mover 3, switches to the N-pole element 22n, the temporary fixation of the N-pole portion 33n by the magnetic force of the mover 3 is released, the expanded variable portion 35 contracts, and the N-pole portion 33n moves to the S-pole portion 34s.
なお、可変素子31を非弾性部材とした場合には、例えば、可動子3が軸方向X1に移動する際、S極部34sと隣接する一方の、たるんだ可変部35が軸方向X1に向けて伸長し、かつ、当該S極部34sと隣接する一方の可変部35がたるんで、当該S極部34sの位置が自由に可変する。これにより、当該S極部34sが固定子2のN極素子22nの位置にまで到達し、S極部34sがN極素子22nに仮固定される。このように、可変素子31が非弾性部材であってもN極部33n及びS極部34sの間にある可変部35が伸長及び短縮し、これらN極部33n及びS極部34sの位置を軸方向X1において変化させることができる。
When the variable element 31 is an inelastic member, for example, when the mover 3 moves in the axial direction X1, one of the slack variable parts 35 adjacent to the S-pole portion 34s expands toward the axial direction X1, and one of the variable parts 35 adjacent to the S-pole portion 34s slackens, allowing the position of the S-pole portion 34s to freely change. As a result, the S-pole portion 34s reaches the position of the N-pole element 22n of the stator 2, and the S-pole portion 34s is temporarily fixed to the N-pole element 22n. In this way, even if the variable element 31 is an inelastic member, the variable part 35 between the N-pole portion 33n and the S-pole portion 34s expands and contracts, allowing the positions of the N-pole portion 33n and the S-pole portion 34s to change in the axial direction X1.
図4は、可動子3の周方向C1を直線的に展開した図であり、可変素子31を弾性部材とした場合に、可動子3のS極部34sが周方向C1にずれながら径方向Z1に移動したときの構成を示す概略図である。可動子3は、例えば、S極部34sと周方向C1にずれて対向配置された、固定子2の極性可変素子22(図示せず)の極性が、N極素子22nに切り替わると、N極素子22nからの磁力によりS極部34sが周方向C1にずれながら当該N極素子22nに引き寄せられる。このとき、可動子3は、図4の点線で示すように、S極部34の一方に隣接する可変部35が伸長し、当該S極部34sと隣接する他方の可変部35が短縮して、当該S極部34sが固定子2のN極素子22nに引き寄せられ、S極部34sがN極素子22nに仮固定される。なお、図4では、可動子3のN極部33nも、固定子2のS極素子22sにより径方向Z0に引き寄せられた状態を示しているが、可動子3のS極部34sと同様に、周方向C1にずれながら径方向Z0に移動し得る。
Figure 4 is a diagram showing the movable member 3 linearly developed in the circumferential direction C1, and is a schematic diagram showing the configuration when the S-pole portion 34s of the movable member 3 moves in the radial direction Z1 while shifting in the circumferential direction C1 when the variable element 31 is an elastic member. When the polarity of the polarity variable element 22 (not shown) of the stator 2, which is arranged opposite the S-pole portion 34s while shifting in the circumferential direction C1, is switched to the N-pole element 22n, the S-pole portion 34s is attracted to the N-pole element 22n while shifting in the circumferential direction C1 due to the magnetic force from the N-pole element 22n. At this time, as shown by the dotted line in Figure 4, the variable portion 35 adjacent to one side of the S-pole portion 34 of the movable member 3 expands, and the other variable portion 35 adjacent to the S-pole portion 34s shortens, so that the S-pole portion 34s is attracted to the N-pole element 22n of the stator 2, and the S-pole portion 34s is temporarily fixed to the N-pole element 22n. In addition, in FIG. 4, the N-pole portion 33n of the mover 3 is shown in a state where it is attracted in the radial direction Z0 by the S-pole element 22s of the stator 2, but like the S-pole portion 34s of the mover 3, it can move in the radial direction Z0 while shifting in the circumferential direction C1.
なお、可変素子31を非弾性部材とした場合には、例えば、可動子3が周方向C1にずれながら径方向Z1に移動する際、S極部34sと隣接する一方の可変部35が伸長し、かつ、当該S極部34sと隣接する他方の可変部35がたるんで、当該S極部34sの位置が自由に可変する。これにより、当該S極部34sが、当該S極部34sの斜め方向に位置する、固定子2のN極素子22nの位置にまで到達し、S極部34sがN極素子22nに仮固定される。
When the variable element 31 is an inelastic member, for example, when the mover 3 moves in the radial direction Z1 while shifting in the circumferential direction C1, one of the variable parts 35 adjacent to the S-pole portion 34s expands, and the other variable part 35 adjacent to the S-pole portion 34s sags, allowing the position of the S-pole portion 34s to freely change. As a result, the S-pole portion 34s reaches the position of the N-pole element 22n of the stator 2, which is located diagonally from the S-pole portion 34s, and the S-pole portion 34s is temporarily fixed to the N-pole element 22n.
次に、固定子2の極性可変素子22の極性を変えて可動子3を変形させたときの様子を、図5を用いて説明する。なお、図5では、説明を簡単にするために、一例として、可動子3の周面において対角線上に4つの磁極部32を設け、固定子2の周面において対角線上に6つの極性可変素子22を設けた構成について以下説明する。可動子3の周面には、磁極部32として、S極部34sa,34scが対向する位置に設けられ、N極部33nb,33ndが対向する位置に設けられており、S極部34sa、N極部33nb、S極部34sc、N極部33ndというように極性を交互に変えて磁極部32が配置されている。
Next, the state when the mover 3 is deformed by changing the polarity of the polarity variable element 22 of the stator 2 will be described with reference to FIG. 5. In FIG. 5, for ease of explanation, an example will be described in which four magnetic pole portions 32 are provided diagonally on the circumferential surface of the mover 3, and six polarity variable elements 22 are provided diagonally on the circumferential surface of the stator 2. On the circumferential surface of the mover 3, S pole portions 34sa and 34sc are provided in opposing positions as magnetic pole portions 32, and N pole portions 33nb and 33nd are provided in opposing positions, and the magnetic pole portions 32 are arranged with alternating polarities, such as S pole portion 34sa, N pole portion 33nb, S pole portion 34sc, and N pole portion 33nd.
図5の5A及び5Bは、後述する、「(3)回転動作」において説明する2相励磁の回転動作時における所定タイミングでの可動子3の状態を示す。なお、2相励磁の回転動作時における固定子2の極性可変素子22の極性パターンの変化については「(3)回転動作」にて詳細に説明する。
Figures 5A and 5B show the state of the mover 3 at a given timing during the two-phase excitation rotational operation described in "(3) Rotational Operation" below. The change in the polarity pattern of the polarity variable element 22 of the stator 2 during the two-phase excitation rotational operation will be described in detail in "(3) Rotational Operation".
この場合、駆動部4は、固定子2に設けた6つの極性可変素子22に配線を介して接続されているが、図5では構成を簡単にするため、駆動部4と各極性可変素子22を接続する各配線は省略している。
In this case, the drive unit 4 is connected to the six polarity variable elements 22 provided on the stator 2 via wiring, but in Figure 5, to simplify the configuration, the wiring connecting the drive unit 4 and each polarity variable element 22 is omitted.
図5の5Aは、駆動部4からの電流を基に、例えば、固定子2の6つの極性可変素子22のうち、最上部の極性可変素子22をN極素子22naとし、右上部の極性可変素子22をS極素子22sbとし、右下部の極性可変素子22を無極素子22cとし、最下部の極性可変素子22をN極素子22ndとし、左下部の極性可変素子22をS極素子22seとし、左上部の極性可変素子22を無極素子22fとした場合を示す。
Figure 5A shows a case where, for example, based on the current from the drive unit 4, of the six polarity variable elements 22 of the stator 2, the topmost polarity variable element 22 is an N-pole element 22na, the top right polarity variable element 22 is an S-pole element 22sb, the bottom right polarity variable element 22 is a non-pole element 22c, the bottommost polarity variable element 22 is an N-pole element 22nd, the bottom left polarity variable element 22 is an S-pole element 22se, and the top left polarity variable element 22 is a non-pole element 22f.
この場合、可動子3は、例えば、固定子2の隣接する最上部のN極素子22na及び右上部のS極素子22sbにそれぞれS極部34sa及びN極部33nbが引き寄せられる。これにより、可動子3は、S極部34sa及びN極部33nbが近づき、S極部34sa及びN極部33nb間の可変部35が短縮する。また、可動子3は、右下部の無極素子22cにはN極部33nb及びS極部34scが引き寄せられず、無極素子22cの周方向に隣接する最下部のN極素子22ndにS極部34scが引き寄せられる。これにより、可動子3は、N極部33nb及びS極部34scが遠ざかり、N極部33nb及びS極部34sc間の可変部35が伸長する。
In this case, for example, the S pole portion 34sa and the N pole portion 33nb of the mover 3 are attracted to the adjacent N pole element 22na at the top of the stator 2 and the S pole element 22sb at the top right, respectively. As a result, the S pole portion 34sa and the N pole portion 33nb of the mover 3 approach each other, and the variable portion 35 between the S pole portion 34sa and the N pole portion 33nb is shortened. Also, the N pole portion 33nb and the S pole portion 34sc of the mover 3 are not attracted to the non-pole element 22c at the bottom right, and the S pole portion 34sc is attracted to the bottom N pole element 22nd adjacent to the non-pole element 22c in the circumferential direction. As a result, the N pole portion 33nb and the S pole portion 34sc of the mover 3 move away from each other, and the variable portion 35 between the N pole portion 33nb and the S pole portion 34sc is extended.
同様に、可動子3は、固定子2の隣接する最下部のN極素子22nd及び左下部のS極素子22seにそれぞれS極部34sc及びN極部33ndが引き寄せられ、S極部34sc及びN極部33nd間の可変部35が短縮する。また、可動子3は、左上部の無極素子22fにはN極部33nd及びS極部34saが引き寄せられず、無極素子22fの周方向に隣接する最上部のN極素子22naにS極部34saが引き寄せられることにより、N極部33nd及びS極部34sa間の可変部35が伸長する。
Similarly, the S pole portion 34sc and the N pole portion 33nd of the mover 3 are attracted to the adjacent bottom N pole element 22nd and bottom left S pole element 22se of the stator 2, respectively, and the variable portion 35 between the S pole portion 34sc and the N pole portion 33nd is shortened. Also, the N pole portion 33nd and the S pole portion 34sa of the mover 3 are not attracted to the non-pole element 22f at the top left, and the S pole portion 34sa is attracted to the top N pole element 22na adjacent to the non-pole element 22f in the circumferential direction, so that the variable portion 35 between the N pole portion 33nd and the S pole portion 34sa is extended.
また、図5の5Bは、駆動部4からの電流を基に固定子2の極性可変素子22の極性を変え、例えば、固定子2の極性可変素子22の極性が、図5の5Aの状態から時計回り方向に1つずれている状態のときの一例である。具体的には、最上部の極性可変素子22を無極素子22aとし、右上部の極性可変素子22をN極素子22nbとし、右下部の極性可変素子22をS極素子22scとし、最下部の極性可変素子22を無極素子22dとし、左下部の極性可変素子22をN極素子22neとし、左上部の極性可変素子22をS極素子22sfとしたときの固定子2の構成を示す。
5B of FIG. 5 shows an example of a state in which the polarity of the polarity variable element 22 of the stator 2 is changed based on the current from the drive unit 4, for example, the polarity of the polarity variable element 22 of the stator 2 is shifted by one in the clockwise direction from the state of 5A of FIG. 5. Specifically, the configuration of the stator 2 is shown when the topmost polarity variable element 22 is a non-pole element 22a, the polarity variable element 22 in the upper right part is an N-pole element 22nb, the polarity variable element 22 in the lower right part is an S-pole element 22sc, the polarity variable element 22 in the lowermost part is a non-pole element 22d, the polarity variable element 22 in the lower left part is an N-pole element 22ne, and the polarity variable element 22 in the upper left part is an S-pole element 22sf.
ソフトアクチュエータ1では、固定子2における各極性可変素子22の極性を所定順序及び所定タイミングで変えてゆくことで、図5の5A及び5Bに示すように、可動子3のS極部34sa,34sc及びN極部33nb,33ndを回転させることができる。具体的には、固定子2の極性可変素子22の極性を所定順序で変えてゆくことで、図5の5Aに示すように、固定子2の最上部に位置していた可動子3のS極部34saを、図5の5Bに示すように、固定子2の右上部に回転により移動させることができ、図5の5Aに示すように、固定子2の右上部に位置していた可動子3のN極部33nbを、図5の5Bに示すように、固定子2の右下部に回転して移動させることができる。同様に、図5の5Aに示すように、固定子2の最下部に位置していた可動子3のS極部34scを、図5の5Bに示すように、固定子2の左下部に回転により移動させることができ、図5の5Aに示すように、固定子2の左下部に位置していた可動子3のN極部33ndを、図5の5Bに示すように、固定子2の左上部に回転して移動させることができる。
In the soft actuator 1, the polarity of each polarity variable element 22 in the stator 2 is changed in a predetermined order and at a predetermined timing, so that the S pole portion 34sa, 34sc and the N pole portion 33nb, 33nd of the mover 3 can be rotated as shown in 5A and 5B of FIG. 5. Specifically, by changing the polarity of the polarity variable element 22 of the stator 2 in a predetermined order, the S pole portion 34sa of the mover 3 located at the top of the stator 2 as shown in 5A of FIG. 5 can be rotated and moved to the upper right part of the stator 2 as shown in 5B of FIG. 5, and the N pole portion 33nb of the mover 3 located at the upper right part of the stator 2 as shown in 5A of FIG. 5 can be rotated and moved to the lower right part of the stator 2 as shown in 5B of FIG. 5. Similarly, as shown in FIG. 5A, the south pole portion 34sc of the mover 3, which was located at the bottom of the stator 2, can be moved by rotation to the bottom left of the stator 2, as shown in FIG. 5B, and the north pole portion 33nd of the mover 3, which was located at the bottom left of the stator 2, as shown in FIG. 5A, can be moved by rotation to the top left of the stator 2, as shown in FIG. 5B.
ソフトアクチュエータ1は、例えば、可動子3のS極部34sa、N極部33nb、S極部34sc、N極部33ndが周方向に移動することにより、S極部34sa及びN極部33nb間は、N極部33nb及びS極部34sc間等の隣接する磁極部32間の各可変部35が変形し、磁極部32間の距離がそれぞれ個別に伸長又は短縮することで、可動子3の所定位置が径方向に伸長又は収縮する。
In the soft actuator 1, for example, when the S pole portion 34sa, the N pole portion 33nb, the S pole portion 34sc, and the N pole portion 33nd of the mover 3 move in the circumferential direction, the variable portions 35 between adjacent magnetic pole portions 32, such as between the S pole portion 34sa and the N pole portion 33nb and between the N pole portion 33nb and the S pole portion 34sc, are deformed, and the distance between the magnetic pole portions 32 is individually expanded or contracted, so that a predetermined position of the mover 3 expands or contracts in the radial direction.
このようにして、ソフトアクチュエータ1は、駆動部4からの電流を基に、固定子2の極性可変素子22の極性パターンを変えることで、可動子3の外周面を固定子2の内周面に接触させたり、或いは、非接触とさせたりし、可動子3の外形を自由に変形させることができる。そして、ソフトアクチュエータ1では、このような可動子3の外周面が固定子2の内周面に接触する箇所を、軸方向X1に向けて順番にずらしたり、周方向C1に向けて順番にずらしたり、或いは、軸方向X1及び周方向C1に対して傾斜した斜め方向に向けて順番にずらしてゆくことで、所望の方向に可動子3を尺取虫状に動作させ、固定子2の筒内空間で可動子3を移動させることができる。
In this way, the soft actuator 1 can freely change the external shape of the mover 3 by changing the polarity pattern of the polarity variable element 22 of the stator 2 based on the current from the drive unit 4, thereby bringing the outer circumferential surface of the mover 3 into contact with or out of contact with the inner circumferential surface of the stator 2. In addition, in the soft actuator 1, the points at which the outer circumferential surface of the mover 3 comes into contact with the inner circumferential surface of the stator 2 can be shifted in sequence in the axial direction X1, in sequence in the circumferential direction C1, or in sequence in an oblique direction inclined relative to the axial direction X1 and the circumferential direction C1, thereby operating the mover 3 like an inchworm in the desired direction and moving the mover 3 in the cylindrical space of the stator 2.
(2)並進動作
以上のようにしてソフトアクチュエータ1は、固定子2の周面に行列状に配置された極性可変素子22の極性パターンを制御することで、固定子2の筒内空間に設けた可動子3の外形を所望の形状に変形させてゆき、固定子2の筒内空間で軸方向X1に沿って可動子3を移動させることができる。以下、固定子2の筒内空間において軸方向X1に沿って移動する可動子3の並進動作について説明する。
(2) Translational Action As described above, the soft actuator 1 controls the polarity pattern of the polarity variable elements 22 arranged in a matrix on the circumferential surface of the stator 2, thereby deforming the outer shape of the mover 3 provided in the cylindrical space of the stator 2 into a desired shape, and can move the mover 3 along the axial direction X1 in the cylindrical space of the stator 2. Hereinafter, the translational action of the mover 3 moving along the axial direction X1 in the cylindrical space of the stator 2 will be described.
(2-1)並進動作第1パターン
図6及び図7は、固定子2の筒内空間において軸方向X1に沿って移動する可動子3の並進動作の第1パターン(並進動作第1パターン)を説明するための概略図である。図6及び図7では、固定子2において極性可変素子22が行列状に配置された円筒形状の固定子本体21を平面状に展開し、その一部領域を示した概略図を「固定子磁極配列」として図示している。また、図6及び図7では、可動子3において磁極部32が行列状に配置された円筒形状の可変素子31を平面状に展開し、その一部領域を示した概略図を「可動子磁極配列」として図示している。
(2-1) First Translational Movement Pattern Figures 6 and 7 are schematic diagrams for explaining a first translational movement pattern (first translational movement pattern) of the mover 3 moving along the axial direction X1 in the cylindrical space of the stator 2. In Figures 6 and 7, the cylindrical stator body 21 in which the polarity variable elements 22 are arranged in a matrix in the stator 2 is developed in a plane, and a schematic diagram showing a partial area thereof is illustrated as a "stator magnetic pole arrangement." In addition, in Figures 6 and 7, the cylindrical variable element 31 in which the magnetic pole parts 32 are arranged in a matrix in the mover 3 is developed in a plane, and a schematic diagram showing a partial area thereof is illustrated as a "mover magnetic pole arrangement."
ここでは、可動子磁極配列において、周方向C1に並んだS極部34s及びN極部33nの対を第1領域MR1の磁極部32とし、この第1領域MR1と軸方向X1に隣接し、かつ周方向C1に並んだN極部33n及びS極部34sの対を第2領域MR2の磁極部32と称し、これら第1領域MR1の磁極部32(以下、単に第1領域MR1と称する)と、第2領域MR2の磁極部32(以下、単に第2領域MR2と称する)とに着目して、2行2列に配置された4つの磁極部32を軸方向X1に移動させる並進動作第1パターンについて説明する。
Here, in the mover magnetic pole arrangement, the pair of S pole portion 34s and N pole portion 33n aligned in the circumferential direction C1 is referred to as the magnetic pole portion 32 of the first region MR1, and the pair of N pole portion 33n and S pole portion 34s adjacent to this first region MR1 in the axial direction X1 and aligned in the circumferential direction C1 is referred to as the magnetic pole portion 32 of the second region MR2. Focusing on the magnetic pole portion 32 of the first region MR1 (hereinafter simply referred to as the first region MR1) and the magnetic pole portion 32 of the second region MR2 (hereinafter simply referred to as the second region MR2), a first translational motion pattern in which four magnetic pole portions 32 arranged in two rows and two columns are moved in the axial direction X1 will be described.
また、固定子磁極配列では、可動子3の第1領域MR1及び第2領域MR2(2行2列に配置された磁極部32)の並進動作第1パターンを実現する極性可変素子22が配置された領域(図中、固定子磁極配列において横点線間の領域)を注目領域ER1とし、以下、この注目領域ER1に着目して並進動作第1パターン時における極性パターンの変化について説明する。
In addition, in the stator magnetic pole arrangement, the area in which the polarity variable elements 22 that realize the first translational motion pattern of the first region MR1 and second region MR2 (magnetic pole parts 32 arranged in two rows and two columns) of the mover 3 are arranged (the area between the horizontal dotted lines in the stator magnetic pole arrangement in the figure) is set as the attention area ER1, and below, the change in the polarity pattern during the first translational motion pattern will be explained with a focus on this attention area ER1.
なお、固定子磁極配列の注目領域ER1は、3行2列に極性可変素子22が配置された構成を基本構成とし、1行1列目の極性可変素子22を極性可変素子S11、1行2列目の極性可変素子22を極性可変素子S12、2行1列目の極性可変素子22を極性可変素子S21、2行2列目の極性可変素子22を極性可変素子S22、3行1列目の極性可変素子22を極性可変素子S31、3行2列目の極性可変素子22を極性可変素子S32として説明する。
The focus area ER1 of the stator pole arrangement has a basic configuration in which the polarity variable elements 22 are arranged in 3 rows and 2 columns, and the polarity variable element 22 in the 1st row and 1st column will be described as polarity variable element S11 , the polarity variable element 22 in the 1st row and 2nd column as polarity variable element S12 , the polarity variable element 22 in the 2nd row and 1st column as polarity variable element S21 , the polarity variable element 22 in the 2nd row and 2nd column as polarity variable element S22 , the polarity variable element 22 in the 3rd row and 1st column as polarity variable element S31 , and the polarity variable element 22 in the 3rd row and 2nd column as polarity variable element S32 .
並進動作第1パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を軸方向X1に移動させる際の注目領域ER1(3行2列に配置した極性可変素子22)での励磁方式が、当該注目領域ER1の極性可変素子22のうち、移動方向(軸方向X1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを常に同時に励磁する2相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2相励磁方式の並進動作第1パターンについて説明するが、本発明はこれに限らない。並進動作第1パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を軸方向X1に移動させる際の基本構成(注目領域ER1であり、(N+1)行N列に極性可変素子22を配置した構成)での励磁方式はN相励磁方式となる。
In the first translational motion pattern, the excitation method in the attention area ER1 (polarity variable elements 22 arranged in 3 rows and 2 columns) when moving four magnetic pole parts 32 arranged in 2 rows and 2 columns with different polarities in a checkerboard pattern in the axial direction X1 is a two-phase excitation method in which only two of the predetermined first phase, second phase, and third phase aligned in the moving direction (axial direction X1) of the polarity variable elements 22 in the attention area ER1 are always excited simultaneously. Note that here, in order to simplify the explanation of the operation of the mover 3, the first translational motion pattern of the two-phase excitation method will be described, but the present invention is not limited to this. In the first translational motion pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (attention area ER1, configuration in which polarity variable elements 22 are arranged in (N+1) rows and N columns) when moving the magnetic pole parts 32 arranged in N rows and N columns in the axial direction X1 is the N-phase excitation method.
始めに、図6の並進動作第1パターン1に示すように、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行目の極性可変素子S11,S12を、N極及びS極のいずれの極性も与えない状態(以下、無極性と称する)とする。そして、可動子3の第1領域MR1と対向する、固定子2の2行目の極性可変素子S21,S22を、第1領域MR1と異なる極性として、可動子3の第1領域MR1を磁力により固定子2の2行目の極性可変素子S21,S22に引き寄せる。これにより、可動子3の第1領域MR1部分を膨張(拡径)させ、可動子3の第1領域MR1を固定子2の内周面に接触させる(第1極性変更)。
First, as shown in the first translational motion pattern 1 in Fig. 6, the polarity variable elements S11 and S12 in the first row of the stator 2, which are located in the moving direction of the first region MR1 of the mover 3, are set to a state in which neither N nor S polarity is given (hereinafter referred to as non-polarity). Then, the polarity variable elements S21 and S22 in the second row of the stator 2, which face the first region MR1 of the mover 3, are set to a polarity different from that of the first region MR1, and the first region MR1 of the mover 3 is attracted to the polarity variable elements S21 and S22 in the second row of the stator 2 by magnetic force. This causes the first region MR1 of the mover 3 to expand (expand in diameter), and the first region MR1 of the mover 3 is brought into contact with the inner circumferential surface of the stator 2 (first polarity change).
なお、本実施形態では、この際、可動子3における第1領域MR1の移動方向にある隣接領域MR0の磁極部32と、可動子3の第1領域MR1と、の間の可変部35においてその間の距離が伸長している。なお、可変素子31が弾性部材である場合には、このとき移動方向側への推進力が生じている。
In this embodiment, the distance between the magnetic pole portion 32 of the adjacent region MR0 in the direction of movement of the first region MR1 of the mover 3 and the first region MR1 of the mover 3 is increased in the variable portion 35 between the adjacent region MR0 and the first region MR1 of the mover 3. If the variable element 31 is an elastic member, a propulsive force is generated in the direction of movement.
また、可動子3の第2領域MR2と対向する、固定子2の3行目の極性可変素子S31,S32を、第2領域MR2と異なる極性として、可動子3の第2領域MR2を磁力により固定子2の3行目の極性可変素子S31,S32に引き寄せる。これにより、可動子3の第2領域MR2部分を膨張(拡径)させ、可動子3の第2領域MR2を固定子2の内周面に接触させる(第1極性変更)。
Furthermore, the polarity variable elements S31 , S32 in the third row of the stator 2, which face the second region MR2 of the mover 3, are set to a polarity different from that of the second region MR2, and the second region MR2 of the mover 3 is attracted by magnetic force to the polarity variable elements S31 , S32 in the third row of the stator 2. This causes the second region MR2 portion of the mover 3 to expand (expand in diameter), and the second region MR2 of the mover 3 is brought into contact with the inner circumferential surface of the stator 2 (first polarity change).
次に、図6の並進動作第1パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MR1と対向する、固定子2の2行目の極性可変素子S21,S22を、第1領域MR1と同じ極性とし、磁力により可動子3の第1領域MR1を固定子2の2列目の極性可変素子S21,S22から引き離す。これにより、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
6 , polarity switching 1 is performed in the stator 2, the polarity variable elements S21 and S22 in the second row of the stator 2 that face the first region MR1 of the mover 3 are set to the same polarity as the first region MR1, and the first region MR1 of the mover 3 is separated from the polarity variable elements S21 and S22 in the second row of the stator 2 by magnetic force. This causes the first region MR1 of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図6の並進動作第1パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2行目の極性可変素子S21,S22を無極性とするとともに、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行目の極性可変素子S11,S12を、第1領域MR1と異なる極性とする。
Next, as shown in the first translational operation pattern 3 in Figure 6, polarity switching 2 is performed on the stator 2, the polarity variable elements S21 , S22 in the second row of the stator 2 are made non-polar, and the polarity variable elements S11 , S12 in the first row of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, are made to have a polarity different from that of the first region MR1.
これにより、可動子3の第1領域MR1は、固定子2の1行目の極性可変素子S11,S12に引き寄せられる磁力により、固定子2の1行目の極性可変素子S11,S12に引き寄せられ、軸方向X1に移動する。なお、可変素子31が弾性部材である場合には、このとき移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)によっても、可動子3の第1領域MR1が軸方向X1に移動する。これにより、可動子3の第1領域MR1部分を、固定子2の1行目の極性可変素子S11,S12部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MR1 of the mover 3 is attracted to the polarity variable elements S11 , S12 in the first row of the stator 2 by the magnetic force that attracts them, and moves in the axial direction X1 . If the variable element 31 is an elastic member, the first region MR1 of the mover 3 also moves in the axial direction X1 due to a restoring force (propulsive force) toward the moving direction side caused by the extension of the variable part 35 on the moving direction side at this time. As a result, the first region MR1 portion of the mover 3 expands (expands in diameter) at the polarity variable elements S11 , S12 portion of the first row of the stator 2 and comes into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1が軸方向X1に移動することで、第1領域MR1と第2領域MR2とが離れ、これら第1領域MR1と第2領域MR2との間の可変部35が、移動方向である軸方向X1に伸長し、移動方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that, in the movable member 3, as the first region MR1 moves in the axial direction X1, the first region MR1 and the second region MR2 move apart, and the variable portion 35 between the first region MR1 and the second region MR2 extends in the axial direction X1, which is the direction of movement, generating a propulsive force in the direction of movement.
次に、図7の並進動作第1パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の3行目の極性可変素子S31,S32から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
7 , polarity switching 3 is performed in the stator 2, the polarity variable elements S31 and S32 in the third row of the stator 2 are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S31 and S32 in the third row of the stator 2. This causes the second region MR2 portion of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図7の並進動作第1パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の3行目の極性可変素子S31,S32を無極性とし、可動子3の第2領域MR2の移動方向に位置する、固定子2の2行目の極性可変素子S21,S22を、第2領域MR2と異なる極性とする。
Next, as shown in the first translational operation pattern 5 in Figure 7, polarity switching 4 is performed in the stator 2, the polarity variable elements S31 , S32 in the third row of the stator 2 are made non-polar, and the polarity variable elements S21 , S22 in the second row of the stator 2, which are located in the movement direction of the second region MR2 of the movable element 3, are made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、固定子2の2行目の極性可変素子S21,S22に引き寄せられる磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)により、固定子2の2行目の極性可変素子S21,S22に引き寄せられ、軸方向X1に移動する。これにより、可動子3の第2領域MR2部分を、固定子2の2行目の極性可変素子S21,S22部分で膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。
As a result, the second region MR2 of the mover 3 is attracted to the polarity variable elements S21 , S22 in the second row of the stator 2 by a magnetic force (and, if the variable element 31 is an elastic member, a restoring force in the direction of movement due to the extension of the variable part 35 of the mover 3) and moves in the axial direction X1. As a result, the second region MR2 portion of the mover 3 expands (increases in diameter) at the polarity variable elements S21 , S22 in the second row of the stator 2 and comes into contact with the inner circumferential surface of the stator 2 (third polarity change).
このようにして、ソフトアクチュエータ1は、固定子2の注目領域ER1毎にそれぞれ極性可変素子S11,S12,S21,S22,S31,S32の極性切り替えが行われることで、可動子3の第1領域MR1を軸方向X1に沿って移動させて固定子2の面に接触させた後、第2領域MR2を固定子2の面と非接触にして第1領域MR1に近づけるように軸方向X1に沿って移動させ、第2領域MR2を固定子2の面に接触させる。ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を軸方向X1に沿って繰り返し行うことで、固定子2の面に沿って可動子3を軸方向X1に移動させてゆくことができる。
In this way, the soft actuator 1 switches the polarity of the polarity variable elements S11 , S12 , S21 , S22 , S31 , and S32 for each region of interest ER1 of the stator 2, and then moves the first region MR1 of the mover 3 along the axial direction X1 to contact the surface of the stator 2, and then moves the second region MR2 along the axial direction X1 so as to approach the first region MR1 without contacting the surface of the stator 2, and brings the second region MR2 into contact with the surface of the stator 2. In the soft actuator 1, the mover 3 repeats such an inchworm-like movement along the axial direction X1, so that the mover 3 can be moved along the surface of the stator 2 in the axial direction X1.
(2-2)並進動作第2パターン
次に、上述した並進動作第1パターンとは異なる、可動子3の並進動作の第2パターン(並進動作第2パターン)について説明する。図8、図9及び図10は、固定子2の筒内空間において軸方向X1に移動する可動子3の並進動作第2パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER1、極性可変素子S11,S12,S21,S22,S31,S32などについては上述した「(2-1)並進動作第1パターン」と同じであるため、ここではその説明は省略する。
(2-2) Second Translational Movement Pattern Next, a second translational movement pattern (second translational movement pattern) of the mover 3, which is different from the above-mentioned first translational movement pattern, will be described. Figures 8, 9, and 10 are schematic diagrams for explaining the second translational movement pattern of the mover 3 moving in the axial direction X1 in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER1, the polarity variable elements S11 , S12 , S21 , S22 , S31 , S32 , etc. are the same as those in the above-mentioned "(2-1) First Translational Movement Pattern", so that the description thereof will be omitted here.
並進動作第2パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を軸方向X1に移動させる際の注目領域ER1での励磁方式が、当該注目領域ER1の極性可変素子22のうち、移動方向(軸方向X1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、当該移動方向に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2-3相励磁方式の並進動作第2パターンについて説明するが、本発明はこれに限らない。並進動作第2パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を軸方向X1に移動させる際の基本構成(注目領域ER1であり、(N+1)行N列に極性可変素子22を配置した構成)での励磁方式はN-(N+1)相励磁方式となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In the second translational motion pattern, the excitation method in the attention area ER1 when moving four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in the axial direction X1 is a 2-3 phase excitation method in which a 2-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases that are aligned in the movement direction (axial direction X1) of the polarity variable elements 22 in the attention area ER1, and a 3-phase excitation method is used to simultaneously excite three of the predetermined first, second, and third phases that are aligned in the movement direction. Note that, in order to simplify the explanation of the operation of the mover 3, the second translational motion pattern of the 2-3 phase excitation method will be explained here, but the present invention is not limited to this. In the second translational motion pattern, where N is a positive number equal to or greater than 2, the excitation method in the basic configuration (attention area ER1, configuration in which polarity variable elements 22 are arranged in (N+1) rows and N columns) when moving magnetic pole portions 32 arranged in N rows and N columns in the axial direction X1 is the N-(N+1) phase excitation method (- is a hyphen indicating that N-phase excitation and (N+1) phase excitation are repeated).
図8の並進動作第2パターン1は、上述した図6の並進動作第1パターン1と同様の状態であり、固定子2の2行目の極性可変素子S21,S22を、可動子3の第1領域MR1と異なる極性とし、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と異なる極性として、可動子3の第1領域MR1及び第2領域MR2を磁力により膨張(拡径)させ、可動子3の第1領域MR1及び第2領域MR2を固定子2の内周面に接触させる(第1極性変更)。
The second translational motion pattern 1 in Figure 8 is in the same state as the first translational motion pattern 1 in Figure 6 described above, where the polarity variable elements S21 , S22 in the second row of the stator 2 are set to a polarity different from that of the first region MR1 of the mover 3, and the polarity variable elements S31 , S32 in the third row of the stator 2 are set to a polarity different from that of the second region MR2 of the mover 3, and the first region MR1 and second region MR2 of the mover 3 are expanded (increased in diameter) by magnetic force, and the first region MR1 and second region MR2 of the mover 3 are brought into contact with the inner surface of the stator 2 (first polarity change).
次に、図8の並進動作第2パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MR1と対向する、固定子2の2行目の極性可変素子S21,S22を、第1領域MR1と同じ極性とし、磁力により可動子3の第1領域MR1を固定子2の2行目の極性可変素子S21,S22から引き離す。これにより、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
8 , polarity switching 1 is performed in the stator 2, the polarity variable elements S21 and S22 in the second row of the stator 2 that face the first region MR1 of the mover 3 are set to the same polarity as the first region MR1, and the first region MR1 of the mover 3 is separated from the polarity variable elements S21 and S22 in the second row of the stator 2 by magnetic force. This causes the first region MR1 of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図8の並進動作第2パターン3に示すように、固定子2において極性切り替え2を行い、可動子3の第1領域MR1の移動方向に位置する固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22と、の両方を可動子3の第1領域MR1と異なる極性とする。
Next, as shown in the second translational operation pattern 3 in Figure 8, polarity switching 2 is performed in the stator 2, and both the polarity variable elements S11 , S12 in the first row of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, and the polarity variable elements S21 , S22 in the second row of the stator 2 are set to a polarity different from that of the first region MR1 of the movable element 3.
これにより、可動子3の第1領域MR1は、固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22との間に引き寄せられる磁力(可変素子31が弾性部材の場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)により、固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22とを跨いだ中間領域ER10に引き寄せられる。このようにして、可動子3の第1領域MR1部分を、固定子2の中間領域ER10部分まで移動させ、中間領域ER10部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MR1 of the mover 3 is attracted to an intermediate region ER10 that straddles the polarity variable elements S11 , S12 of the first row of the stator 2 and the polarity variable elements S21 , S22 of the second row of the stator 2 by a magnetic force (if the variable element 31 is an elastic member, a restoring force (propulsive force) in the direction of movement due to the extension of the variable part 35 on the direction of movement side) that is attracted between the polarity variable elements S11 , S12 of the first row of the stator 2 and the polarity variable elements S21 , S22 of the second row of the stator 2. In this way, the first region MR1 portion of the mover 3 is moved to the intermediate region ER10 portion of the stator 2 and expanded (diameter enlarged) in the intermediate region ER10 portion to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1が軸方向X1に移動した際に、第1領域MR1と第2領域MR2との間を離して可変部35を伸長させ、移動方向側への推進力が生じた状態にすることが望ましい。
When the variable element 31 is an elastic member, it is desirable that in the mover 3, when the first region MR1 moves in the axial direction X1, the first region MR1 and the second region MR2 are separated to extend the variable portion 35, generating a propulsive force in the direction of movement.
次に、図9の並進動作第2パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、磁力によって固定子2の3行目の極性可変素子S31,S32から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
9 , polarity switching 3 is performed in the stator 2, the polarity variable elements S31 and S32 in the third row of the stator 2 are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S31 and S32 in the third row of the stator 2 by magnetic force. This causes the second region MR2 of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図9の並進動作第2パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の3行目の極性可変素子S31,S32を無極性とし、可動子3の第2領域MR2の移動方向に位置する、固定子2の2行目の極性可変素子S21,S22を、第2領域MR2と異なる極性とする。
Next, as shown in the second translational operation pattern 5 of Figure 9, polarity switching 4 is performed in the stator 2, the polarity variable elements S31 , S32 in the third row of the stator 2 are made non-polar, and the polarity variable elements S21 , S22 in the second row of the stator 2, which are located in the movement direction of the second region MR2 of the movable element 3, are made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、固定子2の2行目の極性可変素子S21,S22側に磁力によって引き寄せられる。この際、可動子3では、第1領域MR1が固定子2の2行目の極性可変素子S21,S22と一部領域に位置していることから、第2領域MR2が、固定子2の2行目の極性可変素子S21,S22と、固定子2の3行目の極性可変素子S31,S32とを跨いだ中間領域ER11に位置する。
As a result, the second region MR2 of the mover 3 is attracted by magnetic force toward the polarity variable elements S21 , S22 of the second row of the stator 2. At this time, in the mover 3, since the first region MR1 is located in a partial region including the polarity variable elements S21 , S22 of the second row of the stator 2, the second region MR2 is located in an intermediate region ER11 that straddles the polarity variable elements S21 , S22 of the second row of the stator 2 and the polarity variable elements S31 , S32 of the third row of the stator 2.
これにより、中間領域ER11において、可動子3の第2領域MR2部分を、固定子2の2行目の極性可変素子S21,S22の一部領域で膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。なお、このとき、可動子3の第1領域MR1は、極性が同じ、固定子2の2行目の極性可変素子S21,S22にも位置するが、極性が異なる、固定子2の1行目の極性可変素子S11,S12に引き寄せられているため、固定子2の内周面と接触した状態を維持する。
As a result, in the intermediate region ER11, the second region MR2 of the mover 3 expands (expands in diameter) in a portion of the polarity variable elements S21 , S22 in the second row of the stator 2 to contact the inner circumferential surface of the stator 2 (third polarity change). Note that at this time, the first region MR1 of the mover 3 is also located in the polarity variable elements S21 , S22 in the second row of the stator 2, which have the same polarity, but is attracted to the polarity variable elements S11 , S12 in the first row of the stator 2, which have different polarity, and therefore maintains a state of contact with the inner circumferential surface of the stator 2.
次に、図9の並進動作第2パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行目の極性可変素子S11,S12を、可動子3の第1領域MR1と同じ極性とする。これにより、可動子3の第1領域MR1を、固定子2の1行目の極性可変素子S11,S12から引き離すことで、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
9 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S11, S12 in the first row of the stator 2, which are located in the moving direction of the first region MR1 of the mover 3, are set to the same polarity as the first region MR1 of the mover 3. As a result, the first region MR1 of the mover 3 is separated from the polarity variable elements S11 , S12 in the first row of the stator 2, causing the first region MR1 of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図10の並進動作第2パターン7に示すように、固定子2において極性切り替え6を行い、固定子2の1行目の極性可変素子S11,S12を、可動子3の第1領域MR1と異なる極性とし、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と異なる極性とする。
Next, as shown in the second translational operation pattern 7 in Figure 10, polarity switching 6 is performed in the stator 2, and the polarity variable elements S11 , S12 in the first row of the stator 2 are set to a polarity different from that of the first region MR1 of the mover 3, and the polarity variable elements S31 , S32 in the third row of the stator 2 are set to a polarity different from that of the second region MR2 of the mover 3.
これにより、可動子3の第2領域MR2は、固定子2の2行目の極性可変素子S21,S22と、3行目の極性可変素子S31,S32と、を跨いだ中間領域ER11で磁力により膨張(拡径)され、固定子2の内周面と接触する。また、可動子3の第1領域MR1は、磁力(可変素子31が弾性部材の場合には、伸長していた可変部35の移動方向側への復元力も)によって、固定子2の1行目の極性可変素子S11,S12に引き寄せられ、軸方向X1に移動する。これにより、可動子3の第1領域MR1部分を、固定子2の1行目の極性可変素子S11,S12部分で膨張(拡径)させて固定子2の内周面に接触させる。
As a result, the second region MR2 of the mover 3 is expanded (expanded in diameter) by the magnetic force in an intermediate region ER11 that straddles the polarity variable elements S21 , S22 of the second row of the stator 2 and the polarity variable elements S31 , S32 of the third row, and comes into contact with the inner circumferential surface of the stator 2. Also, the first region MR1 of the mover 3 is attracted to the polarity variable elements S11, S12 of the first row of the stator 2 by the magnetic force (and the restoring force of the extended variable part 35 in the moving direction side, if the variable element 31 is an elastic member), and moves in the axial direction X1. As a result, the first region MR1 portion of the mover 3 is expanded (expanded in diameter) in the polarity variable elements S11 , S12 of the first row of the stator 2 , and comes into contact with the inner circumferential surface of the stator 2.
次に、図10の並進動作第2パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の2行目の極性可変素子S21,S22と、固定子2の3行目の極性可変素子S31,S32と、を可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の中間領域ER11から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
10 , polarity switching 7 is performed in the stator 2, the polarity variable elements S21 , S22 in the second row of the stator 2 and the polarity variable elements S31, S32 in the third row of the stator 2 are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the intermediate region ER11 of the stator 2. This causes the second region MR2 portion of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図10の並進動作第2パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の2行目の極性可変素子S21,S22を、可動子3の第2領域MR2と異なる極性とし、固定子2の3行目の極性可変素子S31,S32を無極性とする。これにより、可動子3の第2領域MR2は、磁力(可変素子31が弾性部材の場合には、伸長していた可変部35の移動方向側への復元力も)によって、固定子2の2行目の極性可変素子S21,S22に引き寄せられ、軸方向X1に移動する。このようにして、可動子3の第2領域MR2部分を、固定子2の2行目の極性可変素子S21,S22部分まで移動させ、固定子2の2行目の極性可変素子S21,S22で膨張(拡径)させて固定子2の内周面に接触させる。
Next, as shown in the second translational movement pattern 9 in Fig. 10, polarity switching 8 is performed in the stator 2, the polarity variable elements S21 and S22 in the second row of the stator 2 are made to have a polarity different from that of the second region MR2 of the mover 3, and the polarity variable elements S31 and S32 in the third row of the stator 2 are made to have no polarity. As a result, the second region MR2 of the mover 3 is attracted to the polarity variable elements S21 and S22 in the second row of the stator 2 by a magnetic force (and a restoring force toward the moving direction of the extended variable part 35 when the variable element 31 is an elastic member), and moves in the axial direction X1. In this way, the second region MR2 portion of the mover 3 is moved to the polarity variable elements S21 and S22 portion of the second row of the stator 2, and is expanded (expanded in diameter) by the polarity variable elements S21 and S22 in the second row of the stator 2 to contact the inner peripheral surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER1毎にそれぞれ極性可変素子S11,S12,S21,S22,S31,S32の極性切り替えが行われることで、可動子3の第1領域MR1を軸方向X1に沿って移動させて固定子2の面に接触させた後に、第2領域MR2を固定子2の面と非接触にして第1領域MR1に近づけるように軸方向X1に沿って移動させ、第2領域MR2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3が尺取虫状の動作を繰り返し行うことで、固定子2の面に沿って可動子3を軸方向X1に移動させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S21 , S22 , S31 , and S32 is switched for each region of interest ER1 of the stator 2, whereby the first region MR1 of the mover 3 is moved along the axial direction X1 to contact the surface of the stator 2, and then the second region MR2 is moved along the axial direction X1 so as to approach the first region MR1 without contacting the surface of the stator 2, and the second region MR2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats an inchworm-like motion, whereby the mover 3 can be moved in the axial direction X1 along the surface of the stator 2.
また、この並進動作第2パターンでは、可動子3の第1領域MR1及び第2領域MR2を軸方向X1へ移動させる移動量を並進動作第1パターンの半分にすることができる。
In addition, in this second translational motion pattern, the amount of movement of the first region MR1 and the second region MR2 of the mover 3 in the axial direction X1 can be reduced to half that of the first translational motion pattern.
(2-3)並進動作第3パターン
次に、上述した並進動作第1パターン及び並進動作第2パターンとは異なる、可動子3の並進動作の第3パターン(並進動作第3パターン)について説明する。図11、図12及び図13は、固定子2の筒内空間において軸方向X1に移動する可動子3の並進動作第3パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER1、極性可変素子S11,S12,S21,S22,S31,S32などについては上述した「(2-1)並進動作第1パターン」と同じであるため、ここではその説明は省略する。
(2-3) Third Translational Movement Pattern Next, a third translational movement pattern (third translational movement pattern) of the mover 3, which is different from the above-mentioned first and second translational movement patterns, will be described. Figures 11, 12, and 13 are schematic diagrams for explaining the third translational movement pattern of the mover 3 moving in the axial direction X1 in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER1, the polarity variable elements S11 , S12 , S21 , S22 , S31 , and S32 are the same as those in the above-mentioned "(2-1) First Translational Movement Pattern", and therefore will not be described here.
並進動作第3パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を軸方向X1に移動させる際の注目領域ER1での励磁方式が、当該注目領域ER1の極性可変素子22のうち、移動方向(軸方向X1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、当該移動方向に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2-3相励磁方式の並進動作第3パターンについて説明するが、本発明はこれに限らない。並進動作第3パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を軸方向X1に移動させる際の基本構成(注目領域ER1であり、(N+1)行N列に極性可変素子22を配置した構成)での励磁方式はN-(N+1)相励磁方式となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In the third translational motion pattern, the excitation method in the attention area ER1 when moving four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in the axial direction X1 is a 2-3 phase excitation method in which a 2-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases that are aligned in the movement direction (axial direction X1) of the polarity variable elements 22 in the attention area ER1, and a 3-phase excitation method is used to simultaneously excite three of the predetermined first, second, and third phases that are aligned in the movement direction. Note that, in order to simplify the explanation of the operation of the mover 3, the third translational motion pattern of the 2-3 phase excitation method will be explained here, but the present invention is not limited to this. In the third translational motion pattern, where N is a positive number equal to or greater than 2, the excitation method in the basic configuration (attention area ER1, configuration in which polarity variable elements 22 are arranged in (N+1) rows and N columns) when moving magnetic pole portions 32 arranged in N rows and N columns in the axial direction X1 is the N-(N+1) phase excitation method (- is a hyphen indicating that N-phase excitation and (N+1) phase excitation are repeated).
図11の並進動作第3パターン1は、上述した図6の並進動作第1パターン1と同様の状態であり、固定子2の2行目の極性可変素子S21,S22を、可動子3の第1領域MR1と異なる極性とし、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と異なる極性として、可動子3の第1領域MR1及び第2領域MR2を磁力により膨張(拡径)させ、可動子3の第1領域MR1及び第2領域MR2を固定子2の内周面に接触させる(第1極性変更)。
The third translational motion pattern 1 in Figure 11 is in the same state as the first translational motion pattern 1 in Figure 6 described above, where the polarity variable elements S21 , S22 in the second row of the stator 2 are set to a polarity different from that of the first region MR1 of the mover 3, and the polarity variable elements S31 , S32 in the third row of the stator 2 are set to a polarity different from that of the second region MR2 of the mover 3, and the first region MR1 and second region MR2 of the mover 3 are expanded (increased in diameter) by magnetic force, and the first region MR1 and second region MR2 of the mover 3 are brought into contact with the inner surface of the stator 2 (first polarity change).
次に、図11の並進動作第3パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MR1と対向する、固定子2の2行目の極性可変素子S21,S22を、第1領域MR1と同じ極性とし、磁力により可動子3の第1領域MR1を固定子2の2行目の極性可変素子S21,S22から引き離す。これにより、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
11 , polarity switching 1 is performed in the stator 2, the polarity variable elements S21 and S22 in the second row of the stator 2 that face the first region MR1 of the mover 3 are set to the same polarity as the first region MR1, and the first region MR1 of the mover 3 is separated from the polarity variable elements S21 and S22 in the second row of the stator 2 by magnetic force. This causes the first region MR1 of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図11の並進動作第3パターン3に示すように、固定子2において極性切り替え2を行い、可動子3の第1領域MR1の移動方向に位置する固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22と、の両方を可動子3の第1領域MR1と異なる極性とする。
Next, as shown in the third translational operation pattern 3 in Figure 11, polarity switching 2 is performed in the stator 2, and both the polarity variable elements S11 , S12 in the first row of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, and the polarity variable elements S21 , S22 in the second row of the stator 2 are set to a polarity different from that of the first region MR1 of the movable element 3.
これにより、可動子3の第1領域MR1は、固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22との間に引き寄せられる磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)により、固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22とを跨いだ中間領域ER10に引き寄せられる。このようにして、可動子3の第1領域MR1部分を、固定子2の中間領域ER10部分まで移動させ、中間領域ER10部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MR1 of the mover 3 is attracted to an intermediate region ER10 that straddles the polarity variable elements S11 , S12 of the first row of the stator 2 and the polarity variable elements S21 , S22 of the second row of the stator 2 by a magnetic force (if the variable element 31 is an elastic member, a restoring force (propulsive force) in the movement direction due to the extension of the variable part 35 on the movement direction side) that is attracted between the polarity variable elements S11 , S12 of the first row of the stator 2 and the polarity variable elements S21 , S22 of the second row of the stator 2. In this way, the first region MR1 portion of the mover 3 is moved to the intermediate region ER10 portion of the stator 2 and expanded (diameter enlarged) in the intermediate region ER10 portion to contact the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31を弾性部材とした場合、可動子3では、第1領域MR1が軸方向X1に移動した際に、第1領域MR1と第2領域MR2との間を離して可変部35を伸長させ、移動方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MR1 of the mover 3 moves in the axial direction X1, the first region MR1 and the second region MR2 are separated to extend the variable portion 35, generating a propulsive force in the direction of movement.
次に、図12の並進動作第3パターン4に示すように、固定子2において極性切り替え3を行い、可動子3の第1領域MR1の移動方向に位置する固定子2の1行目の極性可変素子S11,S12と、固定子2の2行目の極性可変素子S21,S22と、の両方を可動子3の第1領域MR1と同じ極性とする。
Next, as shown in the third translational operation pattern 4 in Figure 12, polarity switching 3 is performed in the stator 2, and both the polarity variable elements S11 , S12 in the first row of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, and the polarity variable elements S21 , S22 in the second row of the stator 2 are set to the same polarity as the first region MR1 of the movable element 3.
これにより、可動子3の第1領域MR1を、固定子2の中間領域ER10から引き離すことで、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
As a result, the first region MR1 of the mover 3 is pulled away from the intermediate region ER10 of the stator 2, causing the first region MR1 portion of the mover 3 to contract (reduced in diameter), and causing the first region MR1 of the mover 3 to be out of contact with the inner surface of the stator 2.
次に、図12の並進動作第3パターン5に示すように、固定子2において極性切り替え4を行い、可動子3の第1領域MR1の移動方向に位置する固定子2の1行目の極性可変素子S11,S12を、可動子3の第1領域MR1と異なる極性とし、固定子2の2行目の極性可変素子S21,S22を無極性とする。
Next, as shown in the third translational operation pattern 5 in Figure 12, polarity switching 4 is performed on the stator 2, and the polarity variable elements S11 , S12 in the first row of the stator 2, which are located in the movement direction of the first region MR1 of the mover 3, are set to a polarity different from that of the first region MR1 of the mover 3, and the polarity variable elements S21 , S22 in the second row of the stator 2 are set to non-polar.
これにより、可動子3の第1領域MR1は、固定子2の1行目の極性可変素子S11,S12に磁力により引き寄せられ、可動子3の第1領域MR1部分を、固定子2の1行目の極性可変素子S11,S12まで移動させ、固定子2の1行目の極性可変素子S11,S12部分で膨張(拡径)させて固定子2の内周面に接触させる。
As a result, the first region MR1 of the mover 3 is attracted by magnetic force to the polarity variable elements S11 , S12 in the first row of the stator 2, causing the first region MR1 portion of the mover 3 to move to the polarity variable elements S11 , S12 in the first row of the stator 2 and expand (increase in diameter) at the polarity variable elements S11 , S12 portion in the first row of the stator 2 to come into contact with the inner surface of the stator 2.
また、可変素子31が弾性部材でなる場合には、この際、可動子3の第1領域MR1と移動方向側に隣接した可変部35が伸長していることにより生じる、移動方向側への推進力によっても、可動子3の第1領域MR1部分を、固定子2の1行目の極性可変素子S11,S12まで移動させる。
In addition, when the variable element 31 is made of an elastic material, the first region MR1 of the movable element 3 is also moved to the polarity variable elements S11, S12 in the first row of the stator 2 by a propulsive force in the direction of movement generated by the extension of the variable part 35 adjacent to the first region MR1 of the movable element 3 on the direction of movement.
次に、図12の並進動作第3パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第2領域MR2が位置している、固定子2の3行目の極性可変素子S31,S32を、可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の3行目の極性可変素子S31,S32から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
12 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S31 and S32 in the third row of the stator 2, where the second region MR2 of the mover 3 is located, are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S31 and S32 in the third row of the stator 2. This causes the second region MR2 of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図13の並進動作第3パターン7に示すように、固定子2において極性切り替え6を行い、可動子3の第2領域MR2の移動方向に位置する固定子2の2行目の極性可変素子S21,S22と、固定子2の3行目の極性可変素子S31,S32と、を可動子3の第2領域MR2と異なる極性とする。
Next, as shown in the third translational operation pattern 7 in Figure 13, polarity switching 6 is performed in the stator 2, and the polarity variable elements S21 , S22 in the second row of the stator 2, which are located in the movement direction of the second region MR2 of the movable element 3, and the polarity variable elements S31 , S32 in the third row of the stator 2, are set to a polarity different from that of the second region MR2 of the movable element 3.
これにより、可動子3の第2領域MR2は、固定子2の2行目の極性可変素子S21,S22と、固定子2の3行目の極性可変素子S31,S32と、を跨いだ中間領域ER11に、磁力により引き寄せられる。可動子3の第2領域MR2は、固定子2の中間領域ER11部分で膨張(拡径)し、固定子2の内周面に接触する(第3極性変更)。
As a result, the second region MR2 of the mover 3 is attracted by magnetic force to an intermediate region ER11 that straddles the polarity variable elements S21 , S22 in the second row of the stator 2 and the polarity variable elements S31 , S32 in the third row of the stator 2. The second region MR2 of the mover 3 expands (expands in diameter) in the intermediate region ER11 of the stator 2 and comes into contact with the inner circumferential surface of the stator 2 (third polarity change).
また、可変素子31が弾性部材でなる場合には、この際、可動子3は、第1領域MR1と第2領域MR2との間の可変部35が伸長していたことによる移動方向側への復元力(推進力)によっても、固定子2の中間領域ER11に第2領域MR2を引き寄せ、第2領域MR2を軸方向X1に移動させる。
In addition, if the variable element 31 is made of an elastic material, the movable element 3 also attracts the second region MR2 to the intermediate region ER11 of the stator 2 due to the restoring force (propulsive force) in the direction of movement caused by the variable portion 35 between the first region MR1 and the second region MR2 being stretched, and moves the second region MR2 in the axial direction X1.
次に、図13の並進動作第3パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の2行目の極性可変素子S21,S22と、固定子2の3行目の極性可変素子S31,S32と、を可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の中間領域ER11から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
13 , polarity switching 7 is performed in the stator 2, the polarity variable elements S21 , S22 in the second row of the stator 2 and the polarity variable elements S31, S32 in the third row of the stator 2 are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the intermediate region ER11 of the stator 2. This causes the second region MR2 portion of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図13の並進動作第3パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の2行目の極性可変素子S21,S22を、可動子3の第2領域MR2と異なる極性とし、固定子2の3行目の極性可変素子S31,S32を無極性とする。これにより、可動子3の第2領域MR2は、固定子2の2行目の極性可変素子S21,S22に磁力により引き寄せられ、軸方向X1に移動する。
13, polarity switching 8 is performed in the stator 2, so that the polarity variable elements S21 , S22 in the second row of the stator 2 are set to a polarity different from that of the second region MR2 of the mover 3, and the polarity variable elements S31 , S32 in the third row of the stator 2 are set to a non-polarity. As a result, the second region MR2 of the mover 3 is attracted by the magnetic force to the polarity variable elements S21 , S22 in the second row of the stator 2, and moves in the axial direction X1.
また、可変素子31が弾性部材でなる場合には、この際、可動子3は、第1領域MR1と第2領域MR2との間の可変部35が伸長していたことによる移動方向側への復元力(推進力)によっても、固定子2の2行目の極性可変素子S21,S22に第2領域MR2を引き寄せ、第2領域MR2を軸方向X1に移動させる。
In addition, when the variable element 31 is made of an elastic material, in this case, the movable member 3 also attracts the second region MR2 to the polarity variable elements S21 , S22 in the second row of the stator 2 due to the restoring force (propulsive force) in the direction of movement caused by the extension of the variable part 35 between the first region MR1 and the second region MR2, and moves the second region MR2 in the axial direction X1.
このようにして、可動子3の第2領域MR2部分を、固定子2の2行目の極性可変素子S21,S22部分まで移動させて膨張(拡径)させ、固定子2の内周面に接触させる。
In this manner, the second region MR2 of the mover 3 is moved to the polarity variable elements S 21 and S 22 of the second row of the stator 2 and expanded (increased in diameter) to come into contact with the inner circumferential surface of the stator 2 .
以上、ソフトアクチュエータ1では、固定子2の注目領域ER1毎にそれぞれ極性可変素子S11,S12,S21,S22,S31,S32の極性切り替えが行われることで、可動子3の第1領域MR1を軸方向X1に沿って2段階で移動させて固定子2の面に接触させた後に、第2領域MR2を固定子2の面と非接触にして第1領域MR1に近づけるように軸方向X1に沿って2段階で移動させ、第2領域MR2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3が尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を軸方向X1に移動させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S21 , S22 , S31 , and S32 is switched for each region of interest ER1 of the stator 2, whereby the first region MR1 of the mover 3 is moved in two stages along the axial direction X1 to contact the surface of the stator 2, and then the second region MR2 is moved in two stages along the axial direction X1 so as to approach the first region MR1 without contacting the surface of the stator 2, and the second region MR2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats an inchworm-like motion, and the mover 3 can be moved in the axial direction X1 along the surface of the stator 2.
また、この並進動作第3パターンでは、可動子3の第1領域MR1を2段階で軸方向X1へ移動させた後、第2領域MR2を2段階で軸方向X1へ移動させ、第1領域MR1及び第2領域MR2を段階的に小刻みに移動させてゆくことができる。すなわち、並進動作第3パターンは、上述したように、1ピッチ(1つの極性可変素子22の領域単位)で伸長と短縮を繰り返す並進動作第1パターンや、ハーフピッチ(1つの極性可変素子22の半領域単位)で伸長と短縮を繰り返す並進動作第2パターンと異なり、ハーフピッチで2回伸長した後、ハーフピッチで2回短縮する。
In addition, in this third translational motion pattern, the first region MR1 of the movable element 3 is moved in the axial direction X1 in two stages, and then the second region MR2 is moved in the axial direction X1 in two stages, so that the first region MR1 and the second region MR2 can be moved stepwise in small increments. That is, as described above, the third translational motion pattern extends twice by a half pitch and then contracts twice by a half pitch, unlike the first translational motion pattern in which extension and contraction are repeated in one pitch (area unit of one polarity variable element 22) and the second translational motion pattern in which extension and contraction are repeated in half pitches (half area unit of one polarity variable element 22).
さらに、可変素子31が弾性部材でなる場合、この並進動作第3パターンでは、始めに可動子3の第1領域MR1を2段階で軸方向X1へ移動させることから、第1領域MR1及び第2領域MR2の間にある可変部35を一段と伸長させることができるため、当該可変部35による推進力により第2領域MR2を軸方向X1に一段と確実に移動させることができる。
Furthermore, when the variable element 31 is made of an elastic material, in this third translational motion pattern, the first region MR1 of the mover 3 is first moved in the axial direction X1 in two stages, so that the variable part 35 between the first region MR1 and the second region MR2 can be further extended, and the second region MR2 can be moved more reliably in the axial direction X1 by the driving force of the variable part 35.
(3)回転動作
ソフトアクチュエータ1は、固定子2の周面に行列状に配置された極性可変素子22の極性パターンを制御することで、固定子2の筒内空間に設けた可動子3の外形を所望の形状に変形させてゆき、固定子2の筒内空間で周方向C1に沿って可動子3を移動させることができる。以下、固定子2の筒内空間において周方向C1に沿って移動する可動子3の回転動作について説明する。
(3) Rotational Operation The soft actuator 1 controls the polarity pattern of the polarity variable elements 22 arranged in a matrix on the circumferential surface of the stator 2 to deform the outer shape of the mover 3 provided in the cylindrical space of the stator 2 into a desired shape, and can move the mover 3 along the circumferential direction C1 in the cylindrical space of the stator 2. Hereinafter, the rotational operation of the mover 3 moving along the circumferential direction C1 in the cylindrical space of the stator 2 will be described.
(3-1)回転動作第1パターン
図14及び図15は、固定子2の筒内空間において周方向C1に沿って回転移動する可動子3の回転動作の第1パターン(回転動作第1パターン)を説明するための概略図である。図14及び図15では、可動子磁極配列において、軸方向X1に並んだN極部33n及びS極部34sの対を第1領域MC1の磁極部32とし、この第1領域MC1と周方向C1に隣接し、かつ軸方向X1に並んだS極部34s及びN極部33nの対を第2領域MC2の磁極部32と称し、これら第1領域MC1の磁極部32(以下、単に第1領域MC1と称する)と、第2領域MC2の磁極部32(以下、単に第2領域MC2と称する)とに着目して、2行2列に配置された4つの磁極部32を周方向C1に移動させる回転動作第1パターンについて説明する。
(3-1) First Rotational Operation Pattern Figures 14 and 15 are schematic diagrams for explaining a first pattern (first rotational operation pattern) of the rotational operation of the mover 3 that rotates and moves along the circumferential direction C1 in the cylindrical space of the stator 2. In Figures 14 and 15, in the mover magnetic pole arrangement, a pair of N pole portion 33n and S pole portion 34s aligned in the axial direction X1 is referred to as the magnetic pole portion 32 of the first region MC1, and a pair of S pole portion 34s and N pole portion 33n adjacent to this first region MC1 in the circumferential direction C1 and aligned in the axial direction X1 is referred to as the magnetic pole portion 32 of the second region MC2. Focusing on the magnetic pole portion 32 of the first region MC1 (hereinafter simply referred to as the first region MC1) and the magnetic pole portion 32 of the second region MC2 (hereinafter simply referred to as the second region MC2), the first rotational operation pattern in which four magnetic pole portions 32 arranged in two rows and two columns are moved in the circumferential direction C1 will be described.
また、固定子磁極配列では、可動子3の第1領域MC1及び第2領域MC2の回転動作第1パターンを実現する極性可変素子22が配置された領域(図中、固定子磁極配列において横点線間の領域)を注目領域ER2とし、以下、この3行3列に極性可変素子22が配置された注目領域ER2に着目して回転動作第1パターン時における極性パターンの変化について説明する。
In addition, in the stator magnetic pole arrangement, the area in which the polarity variable elements 22 that realize the first rotational operation pattern of the first region MC1 and second region MC2 of the mover 3 are arranged (the area between the horizontal dotted lines in the stator magnetic pole arrangement in the figure) is designated as the attention area ER2, and below, the change in the polarity pattern during the first rotational operation pattern will be explained by focusing on this attention area ER2 in which the polarity variable elements 22 are arranged in three rows and three columns.
なお、固定子磁極配列の注目領域ER2は、3行3列に極性可変素子22が配置された構成とし、移動方向の目標位置を基準として、1行1列目の極性可変素子22を極性可変素子S11、1行2列目の極性可変素子22を極性可変素子S12、1行3列目の極性可変素子22を極性可変素子S13、2行1列目の極性可変素子22を極性可変素子S21、2行2列目の極性可変素子22を極性可変素子S22、2行3列目の極性可変素子22を極性可変素子S23、3行1列目の極性可変素子22を極性可変素子S31、3行2列目の極性可変素子22を極性可変素子S32、3行3列目の極性可変素子22を極性可変素子S33として説明する。
The focus area ER2 of the stator pole arrangement is configured such that the polarity variable elements 22 are arranged in 3 rows and 3 columns, and with respect to the target position in the direction of movement as a reference, the polarity variable element 22 in the 1st row and 1st column will be described as polarity variable element S11 , the polarity variable element 22 in the 1st row and 2nd column will be described as polarity variable element S12 , the polarity variable element 22 in the 1st row and 3rd column will be described as polarity variable element S13 , the polarity variable element 22 in the 2nd row and 1st column will be described as polarity variable element S21 , the polarity variable element 22 in the 2nd row and 2nd column will be described as polarity variable element S22 , the polarity variable element 22 in the 2nd row and 3rd column will be described as polarity variable element S23 , the polarity variable element 22 in the 3rd row and 1st column will be described as polarity variable element S31 , the polarity variable element 22 in the 3rd row and 2nd column will be described as polarity variable element S32 , and the polarity variable element 22 in the 3rd row and 3rd column will be described as polarity variable element S33 .
因みに、3行目の極性可変素子S31,S32,S33は、後述する、並進動作と回転動作を合わせた並進回転動作の説明時に用いるもので、回転動作においては、1行目の極性可変素子S11,S12,S13と、2行目の極性可変素子S21,S22,S23にのみ着目して以下説明する。すなわち、回転動作第1パターンにおいては、2行2列に配置された磁極部32を周方向C1に移動させる基本構成は、2行3列の極性可変素子22が配置された構成が基本構成となる。
Incidentally, the polarity variable elements S31 , S32 , and S33 in the third row are used when explaining a translational rotational operation that combines a translational operation and a rotational operation, which will be described later, and the rotational operation will be explained below by focusing only on the polarity variable elements S11 , S12 , and S13 in the first row and the polarity variable elements S21 , S22 , and S23 in the second row. That is, in the first rotational operation pattern, the basic configuration for moving the magnetic pole portions 32 arranged in two rows and two columns in the circumferential direction C1 is a configuration in which the polarity variable elements 22 are arranged in two rows and three columns.
回転動作第1パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を周方向C1に移動させる際の注目領域ER2での励磁方式が、当該注目領域ER2の極性可変素子22のうち、移動方向(周方向C1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを常に同時に励磁する2相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2相励磁方式の回転動作第1パターンについて説明するが、本発明はこれに限らない。回転動作第1パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を周方向C1に移動させる際の基本構成(N行(N+1)列に極性可変素子22を配置した構成)での励磁方式はN相励磁方式となる。
In the first rotational operation pattern, the excitation method in the attention area ER2 when the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern are moved in the circumferential direction C1 is a two-phase excitation method in which only two of the polarity variable elements 22 in the attention area ER2, that is, a first phase, a second phase, and a third phase arranged in the moving direction (circumferential direction C1), are always excited simultaneously. Note that, in order to simplify the explanation of the operation of the mover 3, the first rotational operation pattern of the two-phase excitation method will be described here, but the present invention is not limited to this. In the first rotational operation pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (the configuration in which the polarity variable elements 22 are arranged in N rows and (N+1) columns) when the magnetic pole parts 32 arranged in N rows and N columns are moved in the circumferential direction C1 is the N-phase excitation method.
始めに、図14の回転動作第1パターン1に示すように、可動子3の第1領域MC1の移動方向に位置する、固定子2の1列目の極性可変素子S11,S21を、無極性とする。そして、可動子3の第1領域MC1と対向する、固定子2の2列目の極性可変素子S12,S22を、第1領域MC1と異なる極性として、可動子3の第1領域MC1を磁力により固定子2の2列目の極性可変素子S12,S22に引き寄せる。これにより、可動子3の第1領域MC1部分を膨張(拡径)させ、可動子3の第1領域MC1を固定子2の内周面に接触させる(第1極性変更)。
First, as shown in the first rotational operation pattern 1 in Fig. 14, the polarity variable elements S11 , S21 in the first row of the stator 2, which are located in the moving direction of the first region MC1 of the mover 3, are set to non-polar. Then, the polarity variable elements S12 , S22 in the second row of the stator 2, which face the first region MC1 of the mover 3, are set to a polarity different from that of the first region MC1, and the first region MC1 of the mover 3 is attracted to the polarity variable elements S12 , S22 in the second row of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to expand (expand in diameter), and the first region MC1 of the mover 3 is brought into contact with the inner circumferential surface of the stator 2 (first polarity change).
また、可動子3の第2領域MC2と対向する、固定子2の3列目の極性可変素子S13,S23を、第2領域MC2と異なる極性として、可動子3の第2領域MC2を磁力により固定子2の3列目の極性可変素子S13,S23に引き寄せる。これにより、可動子3の第2領域MC2部分を膨張(拡径)させ、可動子3の第2領域MC2を固定子2の内周面に接触させる(第1極性変更)。
Furthermore, the polarity variable elements S13 , S23 in the third row of the stator 2, which face the second region MC2 of the mover 3, are set to a polarity different from that of the second region MC2, and the second region MC2 of the mover 3 is attracted by magnetic force to the polarity variable elements S13 , S23 in the third row of the stator 2. This causes the second region MC2 of the mover 3 to expand (expand in diameter), and the second region MC2 of the mover 3 to contact the inner circumferential surface of the stator 2 (first polarity change).
次に、図14の回転動作第1パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2列目の極性可変素子S12,S22を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を、固定子2の2列目の極性可変素子S12,S22から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
14 , polarity switching 1 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 that face the first region MC1 of the mover 3 are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is separated from the polarity variable elements S12 , S22 in the second row of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図14の回転動作第1パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2列目の極性可変素子S11,S22を無極性とするとともに、可動子3の第1領域MC1の移動方向に位置する、固定子2の1列目の極性可変素子S11,S21を、第1領域MC1と異なる極性とする。
Next, as shown in the first rotational operation pattern 3 in Figure 14, polarity switching 2 is performed on the stator 2, the polarity variable elements S11 , S22 in the second row of the stator 2 are made non-polar, and the polarity variable elements S11 , S21 in the first row of the stator 2, which are located in the movement direction of the first region MC1 of the movable element 3, are made to have a polarity different from that of the first region MC1.
これにより、可動子3の第1領域MC1は、固定子2の1列目の極性可変素子S11,S21に引き寄せられる磁力(可変素子31が弾性部材である場合は、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)により、固定子2の1列目の極性可変素子S11,S21に引き寄せられ、周方向C1に移動する。これにより、可動子3の第1領域MC1部分を、固定子2の1列目の極性可変素子S11,S21部分で膨張させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MC1 of the mover 3 is attracted to the polarity variable elements S11 , S21 in the first row of the stator 2 by a magnetic force (and, if the variable elements 31 are elastic members, a restoring force (propulsive force) in the direction of movement due to the extension of the variable parts 35 on the direction of movement side) and moves in the circumferential direction C1. This causes the first region MC1 of the mover 3 to expand at the polarity variable elements S11 , S21 in the first row of the stator 2 and come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MC1が周方向C1に移動することで、第1領域MC1と第2領域MC2とが離れ、これら第1領域MC1と第2領域MC2との間の可変部35が移動方向である周方向C1に伸長し、移動方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that, in the movable member 3, as the first region MC1 moves in the circumferential direction C1, the first region MC1 and the second region MC2 move apart, and the variable portion 35 between the first region MC1 and the second region MC2 stretches in the circumferential direction C1, which is the direction of movement, and a propulsive force is generated in the direction of movement.
次に、図15の回転動作第1パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の3列目の極性可変素子S13,S23から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
15 , polarity switching 3 is performed in the stator 2, the polarity variable elements S13 , S23 in the third row of the stator 2 are made to have the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the polarity variable elements S13 , S23 in the third row of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図15の回転動作第1パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の3列目の極性可変素子S13,S23を無極性とし、可動子3の第2領域MC2の移動方向に位置する、固定子2の2列目の極性可変素子S12,S22を、第2領域MC2と異なる極性とする。
Next, as shown in the first rotational operation pattern 5 of Figure 15, polarity switching 4 is performed in the stator 2, the polarity variable elements S13 , S23 in the third row of the stator 2 are made non-polar, and the polarity variable elements S12 , S22 in the second row of the stator 2, which are located in the movement direction of the second region MC2 of the movable element 3, are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2は、固定子2の2列目の極性可変素子S12,S22に引き寄せられる磁力(可変素子31が弾性部材である場合は、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)により、固定子2の2列目の極性可変素子S12,S22に引き寄せられ、周方向C1に移動する。可動子3の第2領域MC2部分は、固定子2の2列目の極性可変素子S12,S22部分で膨張(拡径)し、固定子2の内周面に接触する(第3極性変更)。
As a result, the second region MC2 of the mover 3 is attracted to the polarity variable elements S12 , S22 in the second row of the stator 2 by a magnetic force (and, if the variable element 31 is an elastic member, a restoring force in the direction of movement due to the extension of the variable part 35 of the mover 3) and moves in the circumferential direction C1. The second region MC2 of the mover 3 expands (increases in diameter) in the polarity variable elements S12 , S22 in the second row of the stator 2 and comes into contact with the inner circumferential surface of the stator 2 (third polarity change).
このようにして、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23の極性切り替えが行われることで、可動子3の第1領域MC1を周方向C1に沿って移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように周方向C1に沿って移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を周方向C1に移動(回転)させてゆくことができる。
In this way, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , and S23 is switched for each region of interest ER2 of the stator 2, whereby the first region MC1 of the mover 3 is moved along the circumferential direction C1 and brought into contact with the surface of the stator 2, and then the second region MC2 is moved along the circumferential direction C1 so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MC2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be moved (rotated) in the circumferential direction C1 along the surface of the stator 2.
(3-2)回転動作第2パターン
次に、上述した回転動作第1パターンとは異なる、可動子3の回転動作の第2パターン(回転動作第2パターン)について説明する。図16、図17及び図18は、固定子2の筒内空間において周方向C1に回転する可動子3の回転動作第2パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(3-1)回転動作第1パターン」と同じであるため、ここではその説明は省略する。なお、回転動作第2パターンにおいても、2行2列に配置された磁極部32を周方向C1に移動させる基本構成は、2行3列の極性可変素子22が配置された構成が基本構成となる。
(3-2) Rotational Operation Second Pattern Next, a second pattern (rotational operation second pattern) of the rotational operation of the mover 3, which is different from the above-mentioned rotational operation first pattern, will be described. Figures 16, 17, and 18 are schematic diagrams for explaining the rotational operation second pattern of the mover 3 rotating in the circumferential direction C1 in the cylindrical space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(3-1) Rotational Operation First Pattern", so their description will be omitted here. Note that, in the rotational operation second pattern, the basic configuration for moving the magnetic pole parts 32 arranged in two rows and two columns in the circumferential direction C1 is a configuration in which the polarity variable elements 22 are arranged in two rows and three columns.
回転動作第2パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を周方向C1に移動させる際の注目領域ER2での励磁方式が、当該注目領域ER2の極性可変素子22のうち、移動方向(周方向C1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、当該移動方向に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2-3相励磁方式の回転動作第2パターンについて説明するが、本発明はこれに限らない。回転動作第2パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を周方向C1に移動させる際の基本構成(N行(N+1)列に極性可変素子22を配置した構成)での励磁方式はN-(N+1)相励磁方式となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In the second rotational operation pattern, the excitation method in the attention area ER2 when moving the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in the circumferential direction C1 is a 2-3 phase excitation method in which a 2-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases that are aligned in the moving direction (circumferential direction C1) of the polarity variable elements 22 in the attention area ER2, and a 3-phase excitation method is used to simultaneously excite the three predetermined first, second, and third phases that are aligned in the moving direction. Note that, in order to simplify the explanation of the operation of the mover 3, the second rotational operation pattern of the 2-3 phase excitation method will be explained here, but the present invention is not limited to this. In the second rotational operation pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (configuration in which polarity variable elements 22 are arranged in N rows and (N+1) columns) when moving the magnetic pole portions 32 arranged in N rows and N columns in the circumferential direction C1 is the N-(N+1) phase excitation method (the - is a hyphen indicating that N-phase excitation and (N+1)-phase excitation are repeated).
図16の回転動作第2パターン1は、上述した図14の回転動作第1パターン1と同様の状態であり、固定子2の2列目の極性可変素子S12,S22を、可動子3の第1領域MC1と異なる極性とし、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と異なる極性として、可動子3の第1領域MC1及び第2領域MC2を、磁力により膨張(拡径)させて固定子2の内周面に接触させる(第1極性変更)。
The second rotational operation pattern 1 in Figure 16 is in the same state as the first rotational operation pattern 1 in Figure 14 described above, where the polarity variable elements S12 , S22 in the second row of the stator 2 have a polarity different from that of the first region MC1 of the movable member 3, and the polarity variable elements S13 , S23 in the third row of the stator 2 have a polarity different from that of the second region MC2 of the movable member 3, and the first region MC1 and second region MC2 of the movable member 3 are expanded (increased in diameter) by magnetic force to contact the inner surface of the stator 2 (first polarity change).
次に、図16の回転動作第2パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2列目の極性可変素子S12,S22を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を固定子2の2列目の極性可変素子S12,S22から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
16 , polarity switching 1 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 that face the first region MC1 of the mover 3 are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is separated from the polarity variable elements S12 , S22 in the second row of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図16の回転動作第2パターン3に示すように、固定子2において極性切り替え2を行い、可動子3の回転方向(周方向C1)に位置する、固定子2の1列目の極性可変素子S11,S21と、固定子2の2列目の極性可変素子S12,S22と、を可動子3の第1領域MC1と異なる極性とする。
Next, as shown in the second rotational operation pattern 3 in Figure 16, polarity switching 2 is performed in the stator 2, and the polarity variable elements S11 , S21 in the first row of the stator 2 and the polarity variable elements S12 , S22 in the second row of the stator 2, which are located in the rotational direction (circumferential direction C1) of the movable member 3, are set to a polarity different from that of the first region MC1 of the movable member 3.
これにより、可動子3の第1領域MC1は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35の復元力も)によって、固定子2の1列目の極性可変素子S11,S21と、固定子2の2列目の極性可変素子S12,S22と、を跨いだ中間領域ER12に引き寄せられる。このようにして、可動子3の第1領域MC1部分を、固定子2の中間領域ER12部分まで移動させ、中間領域ER12部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MC1 of the mover 3 is attracted by the magnetic force (and the restoring force of the variable part 35 on the moving direction side if the variable element 31 is an elastic member) to the intermediate region ER12 that straddles the polarity variable elements S11 , S21 of the first row of the stator 2 and the polarity variable elements S12 , S22 of the second row of the stator 2. In this way, the first region MC1 of the mover 3 is moved to the intermediate region ER12 of the stator 2 and expanded (diameter enlarged) in the intermediate region ER12 to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31を弾性部材とした場合、可動子3では、第1領域MC1が周方向C1に移動した際に、第1領域MC1と第2領域MC2との間を離して可変部35を伸長させ、移動方向側への推進力が生じた状態となることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MC1 of the movable member 3 moves in the circumferential direction C1, the first region MC1 and the second region MC2 are separated to extend the variable portion 35, generating a propulsive force in the direction of movement.
次に、図17の回転動作第2パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、磁力により固定子2の3列目の極性可変素子S13,S23から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
17 , polarity switching 3 is performed in the stator 2, the polarity variable elements S13 , S23 in the third row of the stator 2 are made to have the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the polarity variable elements S13 , S23 in the third row of the stator 2 by magnetic force. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図17の回転動作第2パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の3列目の極性可変素子S13,S23を無極性とし、可動子3の第2領域MC2の回転方向に位置する、固定子2の2列目の極性可変素子S12,S22を、第2領域MC2と異なる極性とする。
Next, as shown in the second rotational operation pattern 5 of Figure 17, polarity switching 4 is performed in the stator 2, the polarity variable elements S13 , S23 in the third row of the stator 2 are made non-polar, and the polarity variable elements S12 , S22 in the second row of the stator 2, which are located in the rotational direction of the second region MC2 of the movable member 3, are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2は、固定子2の2列目の極性可変素子S12,S22側に磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)によって引き寄せられる。この際、可動子3では、第1領域MC1が固定子2の2列目の極性可変素子S12,S22と一部領域に位置していることから、第2領域MC2が、固定子2の2列目の極性可変素子S12,S22と、固定子2の3列目の極性可変素子S13,S23とを跨いだ中間領域ER13に位置する。
As a result, the second region MC2 of the mover 3 is attracted by magnetic force ( and also by a restoring force (propulsive force) in the direction of movement caused by the extension of the variable part 35 of the mover 3, in the case where the variable element 31 is an elastic member) toward the polarity variable elements S12, S22 in the second row of the stator 2. At this time, since the first region MC1 of the mover 3 is located in a partial region including the polarity variable elements S12 , S22 in the second row of the stator 2, the second region MC2 is located in an intermediate region ER13 that straddles the polarity variable elements S12 , S22 in the second row of the stator 2 and the polarity variable elements S13 , S23 in the third row of the stator 2.
これにより、中間領域ER13において、可動子3の第2領域MC2部分を、磁力によって固定子2の2列目の極性可変素子S12,S22の一部領域で膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。なお、このとき、可動子3の第1領域MC1は、極性が同じ、固定子2の2列目の極性可変素子S12,S22にも位置するが、極性が異なる、固定子2の1列目の極性可変素子S11,S12にも引き寄せられているため、固定子2の内周面と接触した状態を維持する。
As a result, in the intermediate region ER13, the second region MC2 of the mover 3 is expanded (diameter enlarged) by the magnetic force in a partial region of the polarity variable elements S12 , S22 of the second row of the stator 2, and contacts the inner circumferential surface of the stator 2 (third polarity change). Note that at this time, the first region MC1 of the mover 3 is also located in the polarity variable elements S12 , S22 of the second row of the stator 2, which have the same polarity, but is also attracted to the polarity variable elements S11 , S12 of the first row of the stator 2, which have different polarity, and therefore maintains a state of contact with the inner circumferential surface of the stator 2.
次に、図17の回転動作第2パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第1領域MC1の回転方向に位置する、固定子2の1列目の極性可変素子S11,S21を、可動子3の第1領域MC1と同じ極性とする。これにより、可動子3の第1領域MC1を、固定子2の1列目の極性可変素子S11,S21から引き離すことで、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
17 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S11, S21 in the first row of the stator 2, which are located in the rotational direction of the first region MC1 of the mover 3, are made to have the same polarity as the first region MC1 of the mover 3. As a result, the first region MC1 of the mover 3 is separated from the polarity variable elements S11 , S21 in the first row of the stator 2, causing the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図18の回転動作第2パターン7に示すように、固定子2において極性切り替え6を行い、固定子2の1列目の極性可変素子S11,S21を、可動子3の第1領域MC1と異なる極性とし、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と異なる極性とする。
Next, as shown in the second rotational operation pattern 7 of Figure 18, polarity switching 6 is performed in the stator 2, and the polarity variable elements S11 , S21 in the first row of the stator 2 are set to a polarity different from that of the first region MC1 of the movable element 3, and the polarity variable elements S13 , S23 in the third row of the stator 2 are set to a polarity different from that of the second region MC2 of the movable element 3.
これにより、可動子3の第2領域MC2は、固定子2の2列目の極性可変素子S12,S22と、3列目の極性可変素子S13,S23と、を跨いだ中間領域ER13で磁力により膨張(拡径)され、固定子2の内周面と接触する。また、可動子3の第1領域MC1は、伸長していた可変部35の移動方向側への磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1列目の極性可変素子S11,S21に引き寄せられ、周方向C1に移動する。これにより、可動子3の第1領域MC1部分を、固定子2の1列目の極性可変素子S11,S21部分で膨張(拡径)させて固定子2の内周面に接触させる。
As a result, the second region MC2 of the mover 3 is expanded (expanded in diameter) by the magnetic force in an intermediate region ER13 that straddles the second row of polarity variable elements S12 , S22 and the third row of polarity variable elements S13 , S23 of the stator 2, and comes into contact with the inner peripheral surface of the stator 2. Also, the first region MC1 of the mover 3 is attracted to the polarity variable elements S11, S21 of the first row of the stator 2 by the magnetic force in the moving direction of the extended variable part 35 (if the variable element 31 is an elastic member, the restoring force in the moving direction due to the extension of the variable part 35 of the mover 3) and moves in the circumferential direction C1. As a result, the first region MC1 of the mover 3 is expanded (expanded in diameter) in the polarity variable elements S11 , S21 of the first row of the stator 2, and comes into contact with the inner peripheral surface of the stator 2.
次に、図18の回転動作第2パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の2列目の極性可変素子S12,S22と、固定子2の3列目の極性可変素子S13,S23と、を可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の中間領域ER13から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
18 , polarity switching 7 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 and the polarity variable elements S13 , S23 in the third row of the stator 2 are set to the same polarity as the second region MC2 of the mover 3 , and the second region MC2 of the mover 3 is separated from the intermediate region ER13 of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図18の回転動作第2パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の2列目の極性可変素子S12,S22を、可動子3の第2領域MC2と異なる極性とし、固定子2の3列目の極性可変素子S13,S23を無極性とする。これにより、可動子3の第2領域MC2は、伸長していた可変部35の移動方向側への磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2列目の極性可変素子S12,S22に引き寄せられ、周方向C1に移動する。このようにして、可動子3の第2領域MC2部分を、固定子2の2列目の極性可変素子S12,S22部分まで移動させて、固定子2の2列目の極性可変素子S12,S22で膨張(拡径)させ、固定子2の内周面に接触させる。
18, polarity switching 8 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 are set to a polarity different from that of the second region MC2 of the mover 3, and the polarity variable elements S13 , S23 in the third row of the stator 2 are set to a non-polarity. As a result, the second region MC2 of the mover 3 is attracted to the polarity variable elements S12, S22 in the second row of the stator 2 by the magnetic force in the moving direction of the extended variable part 35 (and the restoring force in the moving direction due to the extension of the variable part 35 of the mover 3 in the case where the variable element 31 is an elastic member), and moves in the circumferential direction C1. In this manner, the second region MC2 of the movable member 3 is moved to the portion of the polarity variable elements S12 , S22 in the second row of the stator 2, and is expanded (widened in diameter) by the polarity variable elements S12 , S22 in the second row of the stator 2, and is brought into contact with the inner circumferential surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MC1を周方向C1に移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように周方向C1に移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を周方向C1に移動(回転)させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MC1 of the mover 3 is moved in the circumferential direction C1 and brought into contact with the surface of the stator 2, and then the second region MC2 is moved in the circumferential direction C1 so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MC2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be moved (rotated) in the circumferential direction C1 along the surface of the stator 2.
また、この回転動作第2パターンでは、可動子3の第1領域MC1及び第2領域MC2を周方向C1へ移動させる移動量を回転動作第1パターンよりも小さくすることができる。
In addition, in this second rotational motion pattern, the amount of movement of the first region MC1 and the second region MC2 of the mover 3 in the circumferential direction C1 can be made smaller than in the first rotational motion pattern.
(3-3)回転動作第3パターン
次に、上述した回転動作第1パターン及び回転動作第2パターンとは異なる、可動子3の回転動作の第3パターン(回転動作第3パターン)について説明する。図19、図20及び図21は、固定子2の筒内空間において周方向C1に移動する可動子3の回転動作第3パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(3-1)回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(3-3) Rotational Operation Third Pattern Next, a third pattern (rotational operation third pattern) of the rotational operation of the mover 3, which is different from the above-mentioned rotational operation first pattern and rotational operation second pattern, will be described. Figures 19, 20, and 21 are schematic diagrams for explaining the rotational operation third pattern of the mover 3 moving in the circumferential direction C1 in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , S33 , etc. are the same as those in the above-mentioned "(3-1) Rotational Operation First Pattern", so their explanation will be omitted here.
回転動作第3パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を周方向C1に移動させる際の注目領域ER2での励磁方式が、当該注目領域ER2の極性可変素子22のうち、移動方向(周方向C1)に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、当該移動方向に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2-3相励磁方式の回転動作第3パターンについて説明するが、本発明はこれに限らない。回転動作第3パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を周方向C1に移動させる際の基本構成(N行(N+1)列に極性可変素子22を配置した構成)での励磁方式はN-(N+1)相励磁方式となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In the third rotational operation pattern, the excitation method in the attention area ER2 when moving the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in the circumferential direction C1 is a 2-3 phase excitation method in which a 2-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases that are aligned in the moving direction (circumferential direction C1) of the polarity variable elements 22 in the attention area ER2, and a 3-phase excitation method is used to simultaneously excite the three predetermined first, second, and third phases that are aligned in the moving direction. Note that, in order to simplify the explanation of the operation of the mover 3, the third rotational operation pattern of the 2-3 phase excitation method will be explained here, but the present invention is not limited to this. In the third rotational operation pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (configuration in which polarity variable elements 22 are arranged in N rows and (N+1) columns) when moving the magnetic pole portions 32 arranged in N rows and N columns in the circumferential direction C1 is the N-(N+1) phase excitation method (the - is a hyphen indicating that N-phase excitation and (N+1)-phase excitation are repeated).
図19の回転動作第3パターン1は、上述した図14の回転動作第1パターン1と同様の状態であり、固定子2の2列目の極性可変素子S12,S22を、可動子3の第1領域MC1と異なる極性とし、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と異なる極性として、可動子3の第1領域MC1及び第2領域MC2を、磁力により膨張(拡径)させて固定子2の内周面に接触させる(第1極性変更)。
The third rotational operation pattern 1 in Figure 19 is in the same state as the first rotational operation pattern 1 in Figure 14 described above, where the polarity variable elements S12 , S22 in the second row of the stator 2 have a polarity different from that of the first region MC1 of the movable member 3, and the polarity variable elements S13 , S23 in the third row of the stator 2 have a polarity different from that of the second region MC2 of the movable member 3, and the first region MC1 and second region MC2 of the movable member 3 are expanded (increased in diameter) by magnetic force to contact the inner surface of the stator 2 (first polarity change).
次に、図19の回転動作第3パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2列目の極性可変素子S12,S22を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を固定子2の2列目の極性可変素子S12,S22から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
19 , polarity switching 1 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 that face the first region MC1 of the mover 3 are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is separated from the polarity variable elements S12 , S22 in the second row of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図19の回転動作第3パターン3に示すように、固定子2において極性切り替え2を行い、可動子3の移動方向(周方向C1)に位置する、固定子2の1列目の極性可変素子S11,S21と、固定子2の2列目の極性可変素子S12,S22と、を可動子3の第1領域MC1と異なる極性とする。
Next, as shown in the third rotational operation pattern 3 in Figure 19, polarity switching 2 is performed in the stator 2, and the polarity variable elements S11 , S21 in the first row of the stator 2 and the polarity variable elements S12 , S22 in the second row of the stator 2, which are located in the movement direction of the movable element 3 (circumferential direction C1), are set to a polarity different from that of the first region MC1 of the movable element 3.
これにより、可動子3の第1領域MC1は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35の復元力も)によって、固定子2の1列目の極性可変素子S11,S21と、固定子2の2列目の極性可変素子S12,S22と、を跨いだ中間領域ER12に引き寄せられる。このようにして、可動子3の第1領域MC1部分を、固定子2の周方向C1側の中間領域ER12部分まで移動させ、中間領域ER12部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MC1 of the mover 3 is attracted by a magnetic force (and by the restoring force of the variable part 35 on the moving direction side when the variable element 31 is an elastic member) to an intermediate region ER12 that straddles the polarity variable elements S11 , S21 of the first row of the stator 2 and the polarity variable elements S12 , S22 of the second row of the stator 2. In this way, the first region MC1 of the mover 3 is moved to the intermediate region ER12 on the circumferential direction C1 side of the stator 2, and is expanded (diameter enlarged) in the intermediate region ER12 to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MC1が周方向C1に移動した際に、第1領域MC1と第2領域MC2との間を離して可変部35を伸長させ、移動方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MC1 of the movable member 3 moves in the circumferential direction C1, the first region MC1 and the second region MC2 are separated to extend the variable portion 35, generating a propulsive force in the direction of movement.
次に、図20の回転動作第3パターン4に示すように、固定子2において極性切り替え3を行い、可動子3の第1領域MC1の回転方向に位置する固定子2の1列目の極性可変素子S11,S21と、固定子2の2列目の極性可変素子S12,S22と、の両方を可動子3の第1領域MC1と同じ極性とする。
Next, as shown in the third rotational operation pattern 4 in Figure 20, polarity switching 3 is performed in the stator 2, and both the polarity variable elements S11 , S21 in the first row of the stator 2, which are located in the rotational direction of the first region MC1 of the movable member 3, and the polarity variable elements S12 , S22 in the second row of the stator 2 are set to the same polarity as the first region MC1 of the movable member 3.
これにより、可動子3の第1領域MC1を、固定子2の中間領域ER12から引き離すことで、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
As a result, the first region MC1 of the mover 3 is pulled away from the intermediate region ER12 of the stator 2, causing the first region MC1 of the mover 3 to shrink (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図20の回転動作第3パターン5に示すように、固定子2において極性切り替え4を行い、可動子3の第1領域MC1の回転方向に位置する固定子2の1列目の極性可変素子S11,S21を、可動子3の第1領域MC1と異なる極性とし、固定子2の2列目の極性可変素子S12,S22を無極性とする。
Next, as shown in the third rotational operation pattern 5 in Figure 20, polarity switching 4 is performed in the stator 2, and the polarity variable elements S11 , S21 in the first row of the stator 2, which are located in the rotational direction of the first region MC1 of the movable member 3, are set to a polarity different from that of the first region MC1 of the movable member 3, and the polarity variable elements S12 , S22 in the second row of the stator 2 are set to non-polar.
これにより、可動子3の第1領域MC1は、磁力によって、固定子2の1列目の極性可変素子S11,S21に引き寄せられ、可動子3の第1領域MC1部分を、固定子2の1列目の極性可変素子S11,S21まで移動させる。可動子3は、固定子2の1列目の極性可変素子S11,S21部分で膨張(拡径)させて固定子2の内周面に接触させる。
As a result, the first region MC1 of the mover 3 is attracted by the magnetic force to the polarity variable elements S11 , S21 in the first row of the stator 2, and the first region MC1 portion of the mover 3 moves to the polarity variable elements S11 , S21 in the first row of the stator 2. The mover 3 expands (increases in diameter) at the polarity variable elements S11 , S21 portion in the first row of the stator 2, and comes into contact with the inner circumferential surface of the stator 2.
また、可変素子31が弾性部材である場合には、この際、可動子3の第1領域MC1と回転方向側に隣接した可変部35が伸長していることにより生じる、回転方向側への推進力によっても、可動子3の第1領域MC1部分を、固定子2の1列目の極性可変素子S11,S21まで移動させるようにしてもよい。
Furthermore, in the case where the variable element 31 is an elastic material, the first region MC1 portion of the movable element 3 may also be moved to the polarity variable elements S11, S21 in the first row of the stator 2 by a propulsive force in the rotational direction generated by the extension of the variable portion 35 adjacent to the first region MC1 of the movable element 3 on the rotational direction side.
次に、図20の回転動作第3パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第2領域MC2が位置している、固定子2の3列目の極性可変素子S13,S23を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の3列目の極性可変素子S13,S23から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
20 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S13 , S23 in the third row of the stator 2, where the second region MC2 of the mover 3 is located, are made to have the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the polarity variable elements S13 , S23 in the third row of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図21の回転動作第3パターン7に示すように、固定子2において極性切り替え6を行い、可動子3の第2領域MC2の回転方向に位置する固定子2の2列目の極性可変素子S12,S22と、固定子2の3列目の極性可変素子S13,S23と、を可動子3の第2領域MC2と異なる極性とする。
Next, as shown in the third rotational operation pattern 7 of Figure 21, polarity switching 6 is performed in the stator 2, and the polarity variable elements S12 , S22 in the second row of the stator 2, which are located in the rotational direction of the second region MC2 of the movable member 3, and the polarity variable elements S13 , S23 in the third row of the stator 2 are set to a polarity different from that of the second region MC2 of the movable member 3.
これにより、可動子3の第2領域MC2は、固定子2の2列目の極性可変素子S12,S22と、固定子2の3列目の極性可変素子S13,S23と、を跨いだ中間領域ER13に、磁力によって引き寄せられる。可動子3の第2領域MC2は、固定子2の中間領域ER13部分で膨張(拡径)し、固定子2の内周面に接触する(第3極性変更)。
As a result, the second region MC2 of the mover 3 is attracted by magnetic force to an intermediate region ER13 that straddles the polarity variable elements S12 , S22 in the second row of the stator 2 and the polarity variable elements S13 , S23 in the third row of the stator 2. The second region MC2 of the mover 3 expands (expands in diameter) in the intermediate region ER13 of the stator 2 and comes into contact with the inner circumferential surface of the stator 2 (third polarity change).
また、この際、可動子3は、第1領域MC1と第2領域MC2との間の可変部35が伸長していたことによる回転方向側への復元力(推進力)によっても、固定子2の中間領域ER13に第2領域MC2が引き寄せられ、第2領域MC2を周方向C1に移動させる。
In addition, at this time, the second region MC2 of the mover 3 is attracted to the intermediate region ER13 of the stator 2 by a restoring force (propulsive force) in the rotational direction caused by the extension of the variable portion 35 between the first region MC1 and the second region MC2, causing the second region MC2 to move in the circumferential direction C1.
次に、図21の回転動作第3パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の2列目の極性可変素子S12,S22と、固定子2の3列目の極性可変素子S13,S23と、を可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の中間領域ER13から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
21 , polarity switching 7 is performed in the stator 2, the polarity variable elements S12 , S22 in the second row of the stator 2 and the polarity variable elements S13 , S23 in the third row of the stator 2 are set to the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the intermediate region ER13 of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図21の回転動作第3パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の2列目の極性可変素子S12,S22を、可動子3の第2領域MR2と異なる極性とし、固定子2の3列目の極性可変素子S13,S23を無極性とする。これにより、可動子3の第2領域MC2は、固定子2の2列目の極性可変素子S12,S22に磁力により引き寄せられ、周方向C1に移動する。
21 , polarity switching 8 is performed in the stator 2 to set the polarity variable elements S12 , S22 in the second row of the stator 2 to a polarity different from that of the second region MR2 of the mover 3, and set the polarity variable elements S13 , S23 in the third row of the stator 2 to a non-polarity. As a result, the second region MC2 of the mover 3 is attracted by the magnetic force to the polarity variable elements S12 , S22 in the second row of the stator 2, and moves in the circumferential direction C1.
また、可変素子31が弾性部材である場合には、この際、可動子3は、第1領域MC1と第2領域MC2との間の可変部35が伸長していたことによる回転方向側への復元力(推進力)によっても、固定子2の2列目の極性可変素子S12,S22に第2領域MC2が引き寄せられ、第2領域MC2を周方向C1に移動させる。
In addition, when the variable element 31 is an elastic material, in this case, the second region MC2 of the movable member 3 is attracted to the polarity variable elements S12 , S22 in the second row of the stator 2 by the restoring force (thrust force) in the rotational direction caused by the extension of the variable part 35 between the first region MC1 and the second region MC2, and moves the second region MC2 in the circumferential direction C1.
このようにして、可動子3の第2領域MC2部分を、固定子2の2列目の極性可変素子S12,S22部分まで移動させ、固定子2の2列目の極性可変素子S12,S22部分で膨張(拡径)させて固定子2の内周面に接触させる。
In this manner, the second region MC2 of the movable member 3 is moved to the portion of the polarity variable elements S12 , S22 in the second row of the stator 2, and expanded (increased in diameter) at the portion of the polarity variable elements S12 , S22 in the second row of the stator 2 to come into contact with the inner circumferential surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MC1を周方向C1に移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように周方向C1に移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を周方向C1に回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MC1 of the mover 3 is moved in the circumferential direction C1 and brought into contact with the surface of the stator 2, and then the second region MC2 is moved in the circumferential direction C1 so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MC2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be rotated in the circumferential direction C1 along the surface of the stator 2.
また、この回転動作第3パターンでは、可動子3の第1領域MC1を2段階で周方向C1へ移動させた後、第2領域MC2を2段階で周方向C1へ移動させ、第1領域MC1及び第2領域MC2を段階的に小刻みに回転させてゆくことができる。すなわち、回転動作第3パターンは、上述したように、1ピッチ(1つの極性可変素子22の領域単位)で伸長と短縮を繰り返す回転動作第1パターンや、ハーフピッチ(1つの極性可変素子22の半領域単位)で伸長と短縮を繰り返す回転動作第2パターンと異なり、ハーフピッチで2回伸長した後、ハーフピッチで2回短縮する。
In addition, in this third rotational operation pattern, the first region MC1 of the movable element 3 is moved in the circumferential direction C1 in two stages, and then the second region MC2 is moved in the circumferential direction C1 in two stages, so that the first region MC1 and the second region MC2 can be rotated stepwise in small increments. That is, unlike the first rotational operation pattern in which expansion and contraction are repeated in one pitch (area unit of one polarity variable element 22) and the second rotational operation pattern in which expansion and contraction are repeated in half pitches (half area unit of one polarity variable element 22), as described above, the third rotational operation pattern expands twice in a half pitch and then contracts twice in a half pitch.
さらに、可変素子31が弾性部材である場合、この回転動作第3パターンでは、始めに可動子3の第1領域MC1を2段階で周方向C1へ移動させることから、第1領域MC1及び第2領域MC2の間にある可変部35を一段と伸長させることができるため、当該可変部35による推進力により第2領域MC2を周方向C1に一段と確実に移動させることができる。
Furthermore, when the variable element 31 is an elastic member, in this third rotational operation pattern, the first region MC1 of the mover 3 is first moved in the circumferential direction C1 in two stages, so that the variable portion 35 between the first region MC1 and the second region MC2 can be further extended, and the second region MC2 can be moved more reliably in the circumferential direction C1 by the propulsive force of the variable portion 35.
(4)並進回転動作
ソフトアクチュエータ1は、固定子2の周面に行列状に配置された極性可変素子22の極性パターンを制御することで、固定子2の筒内空間に設けた可動子3の外形を所望の形状に変形させてゆき、固定子2の筒内空間で、軸方向X1と周方向C1との両方向に対して傾斜した斜め方向に沿って可動子3を移動させることができる。以下、固定子2の筒内空間において斜め方向に沿って移動する可動子3の並進回転動作について説明する。
(4) Translational Rotational Action The soft actuator 1 controls the polarity pattern of the polarity variable elements 22 arranged in a matrix on the circumferential surface of the stator 2 to deform the outer shape of the mover 3 provided in the cylindrical space of the stator 2 into a desired shape, and can move the mover 3 along an oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1 in the cylindrical space of the stator 2. Hereinafter, the translational rotational action of the mover 3 moving along an oblique direction in the cylindrical space of the stator 2 will be described.
(4-1)並進回転動作第1パターン
図22及び図23は、固定子2の筒内空間において斜め方向に沿って並進回転移動する可動子3の並進回転動作の第1パターン(並進回転動作第1パターン)を説明するための概略図である。図22及び図23では、可動子磁極配列において、軸方向X1に並んだN極部33n及びS極部34sの対を第1領域MC1の磁極部32とし、この第1領域MC1と周方向C1に隣接し、かつ軸方向X1に並んだS極部34s及びN極部33nの対を第2領域MC2の磁極部32と称し、これら第1領域MC1の磁極部32(以下、単に第1領域MC1と称する)と、第2領域MC2の磁極部32(以下、単に第2領域MC2と称する)とに着目して、並進回転動作第1パターンについて説明する。
(4-1) First Translational Rotational Movement Pattern Figures 22 and 23 are schematic diagrams for explaining a first pattern (first translational rotational movement pattern) of the translational rotational movement of the mover 3 that moves translationally and rotationally along an oblique direction in the cylindrical space of the stator 2. In Figures 22 and 23, in the mover magnetic pole arrangement, a pair of N pole portion 33n and S pole portion 34s aligned in the axial direction X1 is referred to as the magnetic pole portion 32 of the first region MC1, and a pair of S pole portion 34s and N pole portion 33n adjacent to this first region MC1 in the circumferential direction C1 and aligned in the axial direction X1 is referred to as the magnetic pole portion 32 of the second region MC2, and the first translational rotational movement pattern will be explained with attention to the magnetic pole portion 32 of the first region MC1 (hereinafter simply referred to as the first region MC1) and the magnetic pole portion 32 of the second region MC2 (hereinafter simply referred to as the second region MC2).
また、固定子磁極配列では、可動子3の第1領域MC1及び第2領域MC2の並進回転動作第1パターンを実現する極性可変素子22が配置された領域(図中、固定子磁極配列において横点線間の領域)を注目領域ER2とし、以下、この注目領域ER2に着目して並進回転動作第1パターン時における極性パターンの変化について説明する。
In addition, in the stator magnetic pole arrangement, the area in which the polarity variable element 22 that realizes the first pattern of translational rotational motion of the first region MC1 and the second region MC2 of the mover 3 is arranged (the area between the horizontal dotted lines in the stator magnetic pole arrangement in the figure) is designated as the attention area ER2, and below, the change in the polarity pattern during the first pattern of translational rotational motion will be explained with a focus on this attention area ER2.
なお、固定子磁極配列の注目領域ER2は、上述した「(3)回転動作」と同様に、3行3列に極性可変素子22が配置された構成を基本構成とし、移動方向の目標位置を基準として、1行1列目の極性可変素子22を極性可変素子S11、1行2列目の極性可変素子22を極性可変素子S12、1行3列目の極性可変素子22を極性可変素子S13、2行1列目の極性可変素子22を極性可変素子S21、2行2列目の極性可変素子22を極性可変素子S22、2行3列目の極性可変素子22を極性可変素子S23、3行1列目の極性可変素子22を極性可変素子S31、3行2列目の極性可変素子22を極性可変素子S32、3行3列目の極性可変素子22を極性可変素子S33として説明する。
In addition, the focus area ER2 of the stator pole arrangement has a basic configuration in which the polarity variable elements 22 are arranged in 3 rows and 3 columns, as in the above-mentioned "(3) Rotational Operation", and with respect to the target position in the movement direction as a reference, the polarity variable element 22 in the 1st row, 1st column will be described as the polarity variable element S11 , the polarity variable element 22 in the 1st row, 2nd column will be described as the polarity variable element S12 , the polarity variable element 22 in the 1st row, 3rd column will be described as the polarity variable element S13 , the polarity variable element 22 in the 2nd row, 1st column will be described as the polarity variable element S21 , the polarity variable element 22 in the 2nd row, 2nd column will be described as the polarity variable element S22 , the polarity variable element 22 in the 2nd row, 3rd column will be described as the polarity variable element S23 , the polarity variable element 22 in the 3rd row, 1st column will be described as the polarity variable element S31 , the polarity variable element 22 in the 3rd row, 2nd column will be described as the polarity variable element S32 , and the polarity variable element 22 in the 3rd row, 3rd column will be described as the polarity variable element S33 .
並進回転動作第1パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向(軸方向X1と周方向C1との両方向に傾斜した斜め方向)に移動させる際の注目領域ER2での励磁方式が、当該注目領域ER2の極性可変素子22のうち、軸方向X1及び周方向C1にそれぞれ並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを励磁する2相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、2相励磁方式の並進回転動作第1パターンについて説明するが、本発明はこれに限らない。並進回転動作第1パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成(注目領域ER2であり、(N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式はN相励磁方式(第1方式とも称する)となる。
In the first translational rotational motion pattern, the excitation method in the attention area ER2 when moving four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in a diagonal direction (diagonal directions inclined in both the axial direction X1 and the circumferential direction C1) is a two-phase excitation method that excites only two phases of the polarity-variable elements 22 in the attention area ER2, among the predetermined first phase, second phase, and third phase that are aligned in the axial direction X1 and the circumferential direction C1, respectively. Note that, in order to simplify the explanation of the operation of the mover 3, the first translational rotational motion pattern of the two-phase excitation method will be explained here, but the present invention is not limited to this. In the first translational rotational movement pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (attention area ER2, configuration in which polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving magnetic pole portions 32 arranged in N rows and N columns in a diagonal direction is the N-phase excitation method (also referred to as the first method).
始めに、図22の並進回転動作第1パターン1に示すように、可動子3の第1領域MC1の移動方向に位置する、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21を、無極性とする。そして、可動子3の第1領域MC1と対向する、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、第1領域MC1と異なる極性として、可動子3の第1領域MC1を磁力により固定子2の2行2列目及び3行2列目の極性可変素子S22,S32に引き寄せる。これにより、可動子3の第1領域MC1部分を膨張(拡径)させ、可動子3の第1領域MC1を固定子2の内周面に接触させる(第1極性変更)。
First, as shown in the first translational rotational operation pattern 1 in Fig. 22, the polarity variable elements S11, S21 in the first row, first column and the second row, first column of the stator 2, which are located in the moving direction of the first region MC1 of the mover 3, are set to non-polar. Then, the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2, which face the first region MC1 of the mover 3, are set to a polarity different from that of the first region MC1, and the first region MC1 of the mover 3 is attracted to the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to expand (expand in diameter), and the first region MC1 of the mover 3 to contact the inner circumferential surface of the stator 2 (first polarity change).
また、可動子3の第2領域MC2と対向する、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、第2領域MC2と異なる極性として、可動子3の第2領域MC2を磁力により固定子2の2行3列目及び3行3列目の極性可変素子S23,S33に引き寄せる。これにより、可動子3の第2領域MC2部分を膨張(拡径)させ、可動子3の第2領域MC2を固定子2の内周面に接触させる(第1極性変更)。
Furthermore, the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2, which face the second region MC2 of the mover 3, are set to a polarity different from that of the second region MC2, and the second region MC2 of the mover 3 is attracted by magnetic force to the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2. This causes the second region MC2 of the mover 3 to expand (expand in diameter), and the second region MC2 of the mover 3 to contact the inner circumferential surface of the stator 2 (first polarity change).
次に、図22の並進回転動作第1パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を固定子2の当該極性可変素子S22,S32から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
22 , polarity switching 1 is performed in the stator 2, the polarity variable elements S22, S32 in the second row, second column and the third row, second column of the stator 2, which face the first region MC1 of the mover 3, are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is separated from the polarity variable elements S22, S32 of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図22の並進回転動作第1パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を無極性とするとともに、可動子3の第1領域MC1の移動方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に位置する、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21を、第1領域MC1と異なる極性とする。
Next, as shown in the first translational rotation operation pattern 3 in Figure 22, polarity switching 2 is performed on the stator 2, and the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2 are made non-polar, and the polarity variable elements S11, S21 in the first row, first column and the second row, first column of the stator 2, which are located in the movement direction of the first region MC1 of the movable element 3 (here, a right diagonal direction inclined with respect to both the axial direction X1 and the circumferential direction C1 ), are made to have a polarity different from that of the first region MC1.
これにより、可動子3の第1領域MC1は、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21に引き寄せられる磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)により、固定子2の当該極性可変素子S11,S21に引き寄せられ、斜め方向に移動する。これにより、可動子3の第1領域MC1部分を、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
As a result, the first region MC1 of the mover 3 is attracted to the polarity variable elements S11 , S21 of the stator 2 by a magnetic force (and, if the variable element 31 is an elastic member, a restoring force (propulsion force) in the direction of movement caused by the extension of the variable part 35 on the direction of movement side) which attracts the polarity variable elements S11 , S21 of the stator 2 in the first row, first column and the second row, first column of the stator 2, and moves in a diagonal direction. As a result, the first region MC1 of the mover 3 expands (increases in diameter) at the polarity variable elements S11 , S21 of the first row, first column and the second row, first column of the stator 2, and comes into contact with the inner circumferential surface of the stator 2 (second polarity change).
可変素子31が弾性部材である場合、可動子3では、第1領域MC1が周方向C1に移動することで、第1領域MC1と第2領域MC2とが離れ、これら第1領域MC1と第2領域MC2との間の可変部35が移動方向である周方向C1に伸長し、移動方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that in the movable member 3, as the first region MC1 moves in the circumferential direction C1, the first region MC1 and the second region MC2 move apart, and the variable portion 35 between the first region MC1 and the second region MC2 stretches in the circumferential direction C1, which is the direction of movement, and a propulsive force is generated in the direction of movement.
次に、図23の並進回転動作第1パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
23 , polarity switching 3 is performed in the stator 2 to set the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 to the same polarity as the second region MC2 of the mover 3, and separate the second region MC2 of the mover 3 from the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 to be out of contact with the inner circumferential surface of the stator 2.
次に、図23の並進回転動作第1パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を無極性とし、可動子3の第2領域MC2の移動方向である斜め方向に位置する、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22を、第2領域MC2と異なる極性とする。
Next, as shown in the first translational rotation operation pattern 5 of Figure 23, polarity switching 4 is performed on the stator 2, so that the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 are made non-polar, and the polarity variable elements S12, S22 in the first row, second column and the second row, second column of the stator 2, which are located in the diagonal direction that is the movement direction of the second region MC2 of the movable element 3 , are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2は、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22に引き寄せられる磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)により、固定子2の当該極性可変素子S12,S22に引き寄せられ、斜め方向に移動する。そして、可動子3の第2領域MC2部分を、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22部分で膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。
As a result, the second region MC2 of the mover 3 is attracted to the polarity variable elements S12 , S22 of the stator 2 by a magnetic force (and, if the variable element 31 is an elastic member, a restoring force in the direction of movement due to the extension of the variable part 35 of the mover 3) that is attracted to the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2, and moves in a diagonal direction. Then, the second region MC2 of the mover 3 is expanded (increased in diameter) at the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2, and is brought into contact with the inner circumferential surface of the stator 2 (third polarity change).
このようにして、ソフトアクチュエータ1は、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MC1を斜め方向に移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように斜め方向に移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に向けて並進回転させてゆくことができる。
In this way, the soft actuator 1 switches the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 for each region of interest ER2 of the stator 2, and then moves the first region MC1 of the mover 3 in an oblique direction to contact the surface of the stator 2, and then moves the second region MC2 in an oblique direction so as to approach the first region MC1 without contacting the surface of the stator 2, and brings the second region MC2 into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
(4-2)並進回転動作第2パターン
次に、上述した並進回転動作第1パターンとは異なる、可動子3の並進回転動作の第2パターン(並進回転動作第2パターン)について説明する。図24、図25及び図26は、固定子2の筒内空間において斜め方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に移動する可動子3の並進回転動作第2パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(4-1)並進回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(4-2) Second Translational Rotational Movement Pattern Next, a second translational rotational movement pattern (second translational rotational movement pattern) of the mover 3, which is different from the first translational rotational movement pattern described above, will be described. Figures 24, 25, and 26 are schematic diagrams for explaining the second translational rotational movement pattern of the mover 3, which moves in an oblique direction (here, a right oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1) in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(4-1) First Translational Rotational Movement Pattern", so their description will be omitted here.
並進回転動作第2パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向に移動させる際の注目領域ER2での励磁方式が、軸方向X1への移動時に2相励磁方式となっており、かつ、周方向C1への移動時に2-3相励磁方式となっている。すなわち、軸方向X1への移動時は、注目領域ER2の極性可変素子22のうち、軸方向X1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式となっている。周方向C1への移動時は、注目領域ER2の極性可変素子22のうち、周方向C1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、周方向C1に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。
In the second translational rotational motion pattern, the excitation method in the attention area ER2 when the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern are moved diagonally is a two-phase excitation method when moving in the axial direction X1, and a two-phase excitation method when moving in the circumferential direction C1. That is, when moving in the axial direction X1, the two-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases aligned in the axial direction X1 among the polarity variable elements 22 in the attention area ER2. When moving in the circumferential direction C1, the two-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases aligned in the circumferential direction C1 among the polarity variable elements 22 in the attention area ER2, and a three-phase excitation method is used to simultaneously excite three of the predetermined first, second, and third phases aligned in the circumferential direction C1, which is repeated in a two-phase excitation method.
なお、ここでは、可動子3の動作説明を簡単にするために、軸方向X1への移動時に2相励磁方式とし周方向C1への移動時に2-3相励磁方式の並進回転動作第2パターンについて説明するが、本発明はこれに限らない。並進回転動作第2パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成((N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式は、軸方向X1への移動時にN相励磁方式となり、周方向C1への移動時にN相励磁方式と(N+1)相励磁方式とが繰り返されるN-(N+1)相励磁方式(第2方式とも称する)となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In order to simplify the explanation of the operation of the mover 3, the second translational rotational operation pattern will be explained, in which the 2-phase excitation method is used when moving in the axial direction X1 and the 2-3-phase excitation method is used when moving in the circumferential direction C1, but the present invention is not limited to this. In the second translational rotational operation pattern, when N is a positive number of 2 or more, the excitation method in the basic configuration (configuration in which the polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving the magnetic pole parts 32 arranged in N rows and N columns in a diagonal direction is the N-phase excitation method when moving in the axial direction X1, and the N-(N+1)-phase excitation method (also referred to as the second method) in which the N-phase excitation method and the (N+1)-phase excitation method are repeated when moving in the circumferential direction C1 (- is a hyphen indicating that the N-phase excitation and the (N+1)-phase excitation are repeated).
図24の並進回転動作第2パターン1は、上述した図22の並進回転動作第1パターン1と同様の状態であり、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、可動子3の第1領域MC1と異なる極性とし、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、第2領域MC2と異なる極性として、可動子3の第1領域MC1及び第2領域MC2を、磁力により膨張(拡径)させて固定子2の内周面に接触させる(第1極性変更)。
The second pattern 1 of translational rotation operation in Figure 24 is in the same state as the first pattern 1 of translational rotation operation in Figure 22 described above, where the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2 are set to a polarity different from that of the first region MC1 of the movable member 3, and the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 are set to a polarity different from that of the second region MC2, and the first region MC1 and second region MC2 of the movable member 3 are expanded (increased in diameter) by magnetic force to contact the inner surface of the stator 2 (first polarity change).
次に、図24の並進回転動作第2パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を固定子2の当該極性可変素子S22,S32から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
24 , polarity switching 1 is performed in the stator 2, the polarity variable elements S22, S32 in the second row, second column and the third row, second column of the stator 2, which face the first region MC1 of the mover 3, are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is separated from the polarity variable elements S22, S32 of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図24の並進回転動作第2パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2行2列目の極性可変素子S22を無極性とし、可動子3の第1領域MC1の移動方向に位置する、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12と、固定子2の3行1列目及び3行2列目の極性可変素子S31,S32とを、第1領域MC1と異なる極性とする。
Next, as shown in the second translational rotation operation pattern 3 in Figure 24, polarity switching 2 is performed on the stator 2, the polarity variable element S22 in the second row, second column of the stator 2 is made non-polar, and the polarity variable elements S11 , S12 in the first row, first column and the first row, second column of the stator 2, and the polarity variable elements S31 , S32 in the third row, first column and the third row, second column of the stator 2, which are located in the movement direction of the first region MC1 of the movable element 3, are made to have a polarity different from that of the first region MC1.
これにより、可動子3の第1領域MC1における一方の磁極部32(ここでは、N極部33n)は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)によって、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12を跨いだ中間領域ER15に引き寄せられ、可動子3の第1領域MC1における他方の磁極部32(ここでは、S極部34s)も、固定子2の3行1列目及び3行2列目の極性可変素子S31,S32を跨いだ中間領域ER16に引き寄せられる。
As a result, one of the magnetic pole portions 32 (here, the N-pole portion 33n) in the first region MC1 of the movable member 3 is attracted to an intermediate region ER15 straddling the polarity variable elements S11, S12 in the first row, first column and the second row, first column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic member, also by a restoring force (propulsion force) in the direction of movement due to the extension of the variable portion 35 on the direction of movement side), and the other magnetic pole portion 32 (here, the S-pole portion 34s) in the first region MC1 of the movable member 3 is attracted to an intermediate region ER16 straddling the polarity variable elements S31 , S32 in the first row, first column and the second row, third column of the stator 2.
このようにして、可動子3の第1領域MC1部分を、斜め方向に位置する固定子2の中間領域ER15,ER16部分まで移動させ、中間領域ER15,ER16部分で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
In this way, the first region MC1 of the mover 3 is moved to the intermediate regions ER15, ER16 of the stator 2 located diagonally, and expanded (diameter enlarged) in the intermediate regions ER15, ER16 to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MC1が斜め方向に移動した際に、第1領域MC1と第2領域MC2との間を離して可変部35を伸長させ、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MC1 of the movable element 3 moves in an oblique direction, the first region MC1 and the second region MC2 are separated and the variable portion 35 is extended, generating a propulsive force in the oblique direction, which is the direction of movement.
次に、図25の並進回転動作第2パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、磁力により固定子2の2行3列目及び3行3列目の極性可変素子S23,S33から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
25 , polarity switching 3 is performed in the stator 2, the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 are made to have the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 by magnetic force. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図25の並進回転動作第2パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を無極性とし、可動子3の第2領域MC2の移動方向に位置する、固定子2の1行2列目及び3行2列目の極性可変素子S12,S32を、第2領域MC2と異なる極性とする。
Next, as shown in the second translational rotation operation pattern 5 of Figure 25, polarity switching 4 is performed on the stator 2, so that the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 are made non-polar, and the polarity variable elements S12 , S32 in the first row, second column and the third row, second column of the stator 2, which are located in the movement direction of the second region MC2 of the movable element 3, are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2における一方の磁極部32(ここでは、S極部34s)は、伸長していた可変部35の移動方向側への復元力と磁力とによって、極性が異なる1行2列目の極性可変素子S12に引き寄せられる。この際、固定子2の1行2列目の極性可変素子S12の一部領域には、可動子3の第1領域MC1の一部領域が位置していることから、可動子3の第2領域MC2は、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13を跨いだ中間領域ER17に位置する。
As a result, one of the magnetic pole portions 32 (here, the S-pole portion 34s) in the second region MC2 of the mover 3 is attracted to the polarity variable element S12 in the first row and second column, which has a different polarity, by the magnetic force and the restoring force toward the moving direction of the extended variable portion 35. At this time, since a partial region of the first region MC1 of the mover 3 is located in a partial region of the polarity variable element S12 in the first row and second column of the stator 2, the second region MC2 of the mover 3 is located in an intermediate region ER17 that straddles the polarity variable elements S12 and S13 in the first row, second column and the first row, third column of the stator 2.
同様に、可動子3の第2領域MC2における他方の磁極部32(ここでは、N極部33n)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、極性が異なる3行2列目の極性可変素子S32に引き寄せられる。この際、固定子2の3行2列目の極性可変素子S32の一部領域には、可動子3の第1領域MC1の一部領域が位置していることから、可動子3の第2領域MC2は、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を跨いだ中間領域ER18に位置する。
Similarly, the other magnetic pole portion 32 (here, the N-pole portion 33n) in the second region MC2 of the mover 3 is attracted to the polarity variable element S32 in the 3rd row and 2nd column, which has a different polarity, by a magnetic force (and also by a restoring force in the moving direction caused by the extension of the variable portion 35 of the mover 3, if the variable element 31 is an elastic member). At this time, since a partial region of the first region MC1 of the mover 3 is located in a partial region of the polarity variable element S32 in the 3rd row and 2nd column of the stator 2, the second region MC2 of the mover 3 is located in an intermediate region ER18 that straddles the polarity variable elements S32 and S33 in the 3rd row and 2nd column and the 3rd row and 3rd column of the stator 2.
これにより、可動子3の第2領域MC2部分を、磁力によって固定子2の1行2列目及び3行2列目の極性可変素子S12,S32の一部領域でそれぞれ膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。なお、このとき、可動子3の第1領域MC1は、極性が同じ、固定子2の1行2列目及び3行2列目の極性可変素子S12,S32にも位置するが、極性が異なる、固定子2の1行1列目及び3行1列目の極性可変素子S11,S31にも磁力により引き寄せられているため、固定子2の内周面と接触した状態を維持する。
As a result, the second region MC2 of the mover 3 is expanded (increased in diameter) by the magnetic force in a partial region of the polarity variable elements S12 , S32 in the first row, second column and the third row, second column of the stator 2, respectively, and brought into contact with the inner peripheral surface of the stator 2 (third polarity change). Note that at this time, the first region MC1 of the mover 3 is also located in the polarity variable elements S12 , S32 in the first row, second column and the third row, second column of the stator 2, which have the same polarity, but is also attracted by the magnetic force to the polarity variable elements S11 , S31 in the first row, first column and the third row, first column of the stator 2, which have different polarity, and therefore maintains a state of contact with the inner peripheral surface of the stator 2.
次に、図25の並進回転動作第2パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第1領域MC1が位置する中間領域ER15,ER16内にある、固定子2の1行1列目及び3行1列目の極性可変素子S11,S31を、可動子3の第1領域MC1と同じ極性とする。また、極性切り替え5では、固定子2の1行2列目及び3行2列目の極性可変素子S12,S32を無極性とする。さらに、極性切り替え5では、可動子3の第2領域MC2が位置する中間領域ER17,ER18内にある、固定子2の1行3列目及び3行3列目の極性可変素子S13,S33を、可動子3の第2領域MC2と異なる極性とする。
25, polarity switching 5 is performed on the stator 2, and the polarity variable elements S11, S31 in the first row, first column and the third row, first column of the stator 2, which are located in the intermediate regions ER15, ER16 where the first region MC1 of the mover 3 is located, are set to the same polarity as the first region MC1 of the mover 3. Also, in polarity switching 5, the polarity variable elements S12 , S32 in the first row, second column and the third row, second column of the stator 2 are set to non-polar. Furthermore, in polarity switching 5, the polarity variable elements S13 , S33 in the first row, third column and the third row, third column of the stator 2, which are located in the intermediate regions ER17 , ER18 where the second region MC2 of the mover 3 is located, are set to a polarity different from that of the second region MC2 of the mover 3.
これにより、可動子3の第1領域MC1を、固定子2の1行1列目及び3行1列目の極性可変素子S11,S31の一部領域から引き離すことで、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
As a result, the first region MC1 of the mover 3 is separated from a portion of the polarity variable elements S11 and S31 in the first row, first column and the third row, first column of the stator 2, thereby causing the first region MC1 of the mover 3 to shrink (reduced in diameter) and bringing the first region MC1 of the mover 3 out of contact with the inner surface of the stator 2.
また、可動子3の第2領域MC2を、固定子2の1行3列目及び3行3列目の極性可変素子S13,S33の一部領域に引き寄せ、可動子3の第2領域MC2部分を膨張(拡径)させ、可動子3の第2領域MC2を固定子2の内周面と接触させる。
In addition, the second region MC2 of the mover 3 is attracted to a portion of the polarity variable elements S13 and S33 in the first row, third column and the third row, third column of the stator 2, causing the second region MC2 of the mover 3 to expand (increase in diameter), and bringing the second region MC2 of the mover 3 into contact with the inner surface of the stator 2.
次に、図26の並進回転動作第2パターン7に示すように、固定子2において極性切り替え6を行い、固定子2の1行2列目及び3行2列目の極性可変素子S12,S32を、可動子3の第2領域MC2と異なる極性とし、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21を、可動子3の第1領域MC1と異なる極性とする。
Next, as shown in the second translational rotation operation pattern 7 of Figure 26, polarity switching 6 is performed in the stator 2, and the polarity variable elements S12 , S32 in the 1st row, 2nd column and the 3rd row, 2nd column of the stator 2 are set to have a polarity different from that of the second region MC2 of the mover 3, and the polarity variable elements S11 , S21 in the 1st row, 1st column and the 2nd row, 1st column of the stator 2 are set to have a polarity different from that of the first region MC1 of the mover 3.
これにより、可動子3の第2領域MC2は、固定子2の中間領域ER17,ER18で磁力により膨張(拡径)され、固定子2の内周面と接触する。また、可動子3の第1領域MC1は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21に引き寄せられ、右斜め方向に移動する。これにより、可動子3の第1領域MC1部分を、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21部分で膨張(拡径)させて固定子2の内周面に接触させる。
As a result, the second region MC2 of the mover 3 is expanded (expanded in diameter) by the magnetic force in the intermediate regions ER17, ER18 of the stator 2, and comes into contact with the inner peripheral surface of the stator 2. Also, the first region MC1 of the mover 3 is attracted to the polarity variable elements S11, S21 in the first row, first column and the second row, first column of the stator 2 by the magnetic force (and the restoring force in the moving direction due to the extension of the variable part 35 of the mover 3, if the variable element 31 is an elastic member), and moves in a rightward diagonal direction. As a result, the first region MC1 of the mover 3 is expanded (expanded in diameter) in the polarity variable elements S11 , S21 in the first row, first column and the second row, first column of the stator 2, and comes into contact with the inner peripheral surface of the stator 2.
次に、図26の並進回転動作第2パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13と、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33と、を可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の中間領域ER17,ER18から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
26 , polarity switching 7 is performed in the stator 2 to set the polarity variable elements S12 , S13 in the 1st row, 2nd column and the 1st row, 3rd column of the stator 2 and the polarity variable elements S32, S33 in the 3rd row, 2nd column and the 3rd row, 3rd column of the stator 2 to the same polarity as the second region MC2 of the mover 3, and separate the second region MC2 of the mover 3 from the intermediate regions ER17, ER18 of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図26の回転動作第2パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22を、可動子3の第2領域MC2と異なる極性とし、固定子2の1行3列目及び3行3列目の極性可変素子S13,S33を無極性とする。これにより、可動子3の第2領域MC2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22に引き寄せられ、右斜め方向に移動する。このようにして、可動子3の第2領域MC2部分を、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22部分まで移動させて、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22で膨張(拡径)させ、固定子2の内周面に接触させる。
26, polarity switching 8 is performed in the stator 2, the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2 are set to a polarity different from that of the second region MC2 of the mover 3, and the polarity variable elements S13, S33 in the first row, third column and the third row, third column of the stator 2 are set to a non-polarity. As a result, the second region MC2 of the mover 3 is attracted to the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2 by a magnetic force (and a restoring force in the moving direction due to the extension of the variable part 35 of the mover 3 in the case where the variable element 31 is an elastic member), and moves in a right diagonal direction. In this manner, the second region MC2 portion of the movable member 3 is moved to the polarity variable elements S12 , S22 portions in the first row, second column and the second row, second column of the stator 2, and is expanded (increased in diameter) by the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2, and is brought into contact with the inner circumferential surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MC1を斜め方向に移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように斜め方向に移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に並進回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MC1 of the mover 3 is moved in an oblique direction to contact the surface of the stator 2, and then the second region MC2 is moved in an oblique direction so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MC2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
また、この並進回転動作第2パターンでは、可動子3の第1領域MC1及び第2領域MC2を斜め方向へ移動させる移動量を並進回転動作第1パターンよりも小さくすることができる。
In addition, in this second translational-rotational motion pattern, the amount of diagonal movement of the first region MC1 and the second region MC2 of the mover 3 can be made smaller than in the first translational-rotational motion pattern.
(4-3)並進回転動作第3パターン
次に、上述した並進回転動作第1パターン及び並進回転動作第2パターンとは異なる、可動子3の並進回転動作の第3パターン(並進回転動作第3パターン)について説明する。図27、図28及び図29は、固定子2の筒内空間において斜め方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に移動する可動子3の並進回転動作第3パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(4-1)並進回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(4-3) Third Translational Rotational Movement Pattern Next, a third translational rotational movement pattern (third translational rotational movement pattern) of the mover 3, which is different from the first translational rotational movement pattern and the second translational rotational movement pattern described above, will be described. Figures 27, 28, and 29 are schematic diagrams for explaining the third translational rotational movement pattern of the mover 3, which moves in an oblique direction (here, a right oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1) in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(4-1) First Translational Rotational Movement Pattern", so their description will be omitted here.
並進回転動作第3パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向に移動させる際の注目領域ER2での励磁方式が、軸方向X1への移動時に2相励磁方式となっており、かつ、周方向C1への移動時に2-3相励磁方式となっている。すなわち、軸方向X1への移動時は、注目領域ER2の極性可変素子22のうち、軸方向X1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式となっている。周方向C1への移動時は、注目領域ER2の極性可変素子22のうち、周方向C1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、周方向C1に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。
In the third translational rotational motion pattern, the excitation method in the attention area ER2 when the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern are moved diagonally is a two-phase excitation method when moving in the axial direction X1, and a two-phase excitation method when moving in the circumferential direction C1. That is, when moving in the axial direction X1, the two-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases aligned in the axial direction X1 among the polarity variable elements 22 in the attention area ER2. When moving in the circumferential direction C1, the two-phase excitation method is used to simultaneously excite only two of the predetermined first, second, and third phases aligned in the circumferential direction C1 among the polarity variable elements 22 in the attention area ER2, and a three-phase excitation method is used to simultaneously excite three of the predetermined first, second, and third phases aligned in the circumferential direction C1, in a two-phase excitation method that is repeated.
なお、ここでは、可動子3の動作説明を簡単にするために、軸方向X1への移動時に2相励磁方式とし、周方向C1への移動時に2-3相励磁方式とする並進回転動作第3パターンについて説明するが、本発明はこれに限らない。並進回転動作第3パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成((N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式は、軸方向X1への移動時にN相励磁方式となり、かつ、周方向C1への移動時にN相励磁方式と(N+1)相励磁方式とが繰り返されるN-(N+1)相励磁方式(第2方式)となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
Here, in order to simplify the explanation of the operation of the mover 3, a third translational rotational operation pattern will be explained in which a two-phase excitation method is used when moving in the axial direction X1, and a 2-3-phase excitation method is used when moving in the circumferential direction C1, but the present invention is not limited to this. In the third translational rotational operation pattern, when N is a positive number of 2 or more, the excitation method in the basic configuration (configuration in which polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving the magnetic pole parts 32 arranged in N rows and N columns in a diagonal direction is the N-phase excitation method when moving in the axial direction X1, and the N-(N+1)-phase excitation method (second method) in which the N-phase excitation method and the (N+1)-phase excitation method are repeated when moving in the circumferential direction C1 (- is a hyphen indicating that the N-phase excitation and the (N+1)-phase excitation are repeated).
図27の並進回転動作第3パターン1は、上述した図22の並進回転動作第1パターン1と同様の状態であり、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、可動子3の第1領域MC1と異なる極性とし、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、第2領域MC2と異なる極性として、可動子3の第1領域MC1及び第2領域MC2を、磁力により膨張(拡径)させて固定子2の内周面に接触させる(第1極性変更)。
The third pattern 1 of translational rotation operation in Figure 27 is in the same state as the first pattern 1 of translational rotation operation in Figure 22 described above, where the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2 have a polarity different from that of the first region MC1 of the movable member 3, and the polarity variable elements S23 , S33 in the second row, third column and the third row, third column of the stator 2 have a polarity different from that of the second region MC2, and the first region MC1 and second region MC2 of the movable member 3 are expanded (increased in diameter) by magnetic force to contact the inner surface of the stator 2 (first polarity change).
次に、図27の並進回転動作第3パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MC1と対向する、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32を、第1領域MC1と同じ極性とし、磁力により可動子3の第1領域MC1を固定子2の当該極性可変素子S22,S32から引き離して、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
Next, as shown in the third translational rotation operation pattern 2 in Figure 27, polarity switching 1 is performed in the stator 2, and the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2, which face the first region MC1 of the mover 3, are set to the same polarity as the first region MC1, and the first region MC1 of the mover 3 is pulled away from the polarity variable elements S22 , S32 of the stator 2 by magnetic force, causing the first region MC1 portion of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner surface of the stator 2.
次に、図27の並進回転動作第3パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2行2列目の極性可変素子S22を無極性とし、可動子3の第1領域MC1の移動方向に位置する、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12と、固定子2の3行1列目及び3行2列目の極性可変素子S31,S32とを、第1領域MC1と異なる極性とする。
Next, as shown in the third translational rotation operation pattern 3 in Figure 27, polarity switching 2 is performed on the stator 2, the polarity variable element S22 in the second row, second column of the stator 2 is made non-polar, and the polarity variable elements S11 , S12 in the first row, first column and the first row, second column of the stator 2, and the polarity variable elements S31 , S32 in the third row, first column and the third row, second column of the stator 2, which are located in the movement direction of the first region MC1 of the movable element 3, are made to have a polarity different from that of the first region MC1.
これにより、可動子3の第1領域MC1における一方の磁極部32(ここでは、N極部33n)は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)によって、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12を跨いだ中間領域ER15に引き寄せられ、可動子3の第1領域MC1における他方の磁極部32(ここでは、S極部34s)も、固定子2の3行1列目及び3行2列目の極性可変素子S31,S32を跨いだ中間領域ER16に引き寄せられる。
As a result, one of the magnetic pole portions 32 (here, the N-pole portion 33n) in the first region MC1 of the movable member 3 is attracted to an intermediate region ER15 straddling the polarity variable elements S11, S12 in the first row, first column and the second row, first column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic member, also by a restoring force (propulsion force) in the direction of movement due to the extension of the variable portion 35 on the direction of movement side), and the other magnetic pole portion 32 (here, the S-pole portion 34s) in the first region MC1 of the movable member 3 is attracted to an intermediate region ER16 straddling the polarity variable elements S31 , S32 in the first row, first column and the second row, third column of the stator 2.
このようにして、可動子3の第1領域MC1部分を、斜め方向に位置する固定子2の中間領域ER15,ER16部分まで移動させ、中間領域ER15,ER16の一部領域で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
In this way, the first region MC1 of the mover 3 is moved to the intermediate regions ER15, ER16 of the stator 2 located diagonally, and some of the intermediate regions ER15, ER16 are expanded (widened) to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MC1が斜め方向に移動した際に、第1領域MC1と第2領域MC2との間を離して可変部35を伸長させ、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MC1 of the movable element 3 moves in an oblique direction, the first region MC1 and the second region MC2 are separated and the variable portion 35 is extended, generating a propulsive force in the oblique direction, which is the direction of movement.
次に、図28の並進回転動作第3パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12と、固定子2の3行1列目及び3行2列目の極性可変素子S31,S32と、をそれぞれ可動子3の第1領域MC1と同じ極性とし、可動子3の第1領域MC1を、磁力により固定子2の中間領域ER15,ER16から引き離す。これにより、可動子3の第1領域MC1部分を収縮(縮径)させ、可動子3の第1領域MC1を固定子2の内周面と非接触にさせる。
28 , polarity switching 3 is performed in the stator 2, and the polarity variable elements S11 , S12 in the 1st row, 1st column and the 1st row, 2nd column of the stator 2 and the polarity variable elements S31 , S32 in the 3rd row, 1st column and the 3rd row, 2nd column of the stator 2 are respectively set to the same polarity as the first region MC1 of the mover 3, and the first region MC1 of the mover 3 is separated from the intermediate regions ER15, ER16 of the stator 2 by magnetic force. This causes the first region MC1 of the mover 3 to contract (reduced in diameter), and the first region MC1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図28の並進回転動作第3パターン5に示すように、固定子2において極性切り替え4を行い、固定子2の1行2列目、3行1列目及び3行2列目の極性可変素子S12,S31,S32を無極性とし、可動子3の第1領域MC1の移動方向に位置する、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21を、第1領域MC1と異なる極性とする。
Next, as shown in the third translational rotation operation pattern 5 of Figure 28, polarity switching 4 is performed on the stator 2, and the polarity variable elements S12 , S31 , and S32 in the first row, second column, the third row, first column, and the third row, second column of the stator 2 are made non-polar, and the polarity variable elements S11, S21 in the first row, first column, and the second row, first column of the stator 2, which are located in the movement direction of the first region MC1 of the movable element 3 , are made to have a polarity different from that of the first region MC1.
これにより、可動子3の第1領域MC1は、磁力によって、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21に引き寄せられ、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21まで移動する。可動子3は、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the first region MC1 of the mover 3 is attracted by the magnetic force to the polarity variable elements S11 , S21 in the first row, first column and the second row, first column of the stator 2 , and moves to the polarity variable elements S11 , S21 in the first row, first column and the second row, first column of the stator 2. The mover 3 expands (increases in diameter) at the polarity variable elements S11 , S21 in the first row, first column and the second row, first column of the stator 2, and comes into contact with the inner circumferential surface of the stator 2.
次に、図28の並進回転動作第3パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第2領域MC2が位置している、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33を、可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の2行3列目及び3行3列目の極性可変素子S23,S33から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
28 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S23, S33 in the second row, third column and the third row, third column of the stator 2, where the second region MC2 of the mover 3 is located, are set to the same polarity as the second region MC2 of the mover 3, and the second region MC2 of the mover 3 is separated from the polarity variable elements S23 , S33 in the second row, third column and the third row , third column of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図29の並進回転動作第3パターン7に示すように、固定子2において極性切り替え6を行い、固定子2の2行3列目の極性可変素子S23を無極性とし、可動子3の第2領域MC2の移動方向に位置する、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13と、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33とを、第2領域MC2と異なる極性とする。
Next, as shown in the third translational rotation operation pattern 7 of Figure 29, polarity switching 6 is performed on the stator 2, the polarity variable element S23 in the second row, third column of the stator 2 is made non-polar, and the polarity variable elements S12 , S13 in the first row, second column and the first row, third column of the stator 2, and the polarity variable elements S32 , S33 in the third row, second column and the third row, third column of the stator 2, which are located in the movement direction of the second region MC2 of the movable element 3, are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2における一方の磁極部32(ここでは、S極部34s)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13を跨いだ中間領域ER17に引き寄せられ、可動子3の第2領域MC2における他方の磁極部32(ここでは、N極部33n)も、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を跨いだ中間領域ER18に引き寄せられる。
As a result, one of the magnetic pole portions 32 (here, the S-pole portion 34s) in the second region MC2 of the mover 3 is attracted to an intermediate region ER17 straddling the polarity variable elements S12, S13 in the first row, second column and the first row, third column of the stator 2 by magnetic force (if the variable element 31 is an elastic member, also by the restoring force in the direction of movement due to the extension of the variable portion 35 of the mover 3 ) , and the other magnetic pole portion 32 (here, the N-pole portion 33n) in the second region MC2 of the mover 3 is attracted to an intermediate region ER18 straddling the polarity variable elements S32 , S33 in the third row, second column and the third row, third column of the stator 2.
このようにして、可動子3の第2領域MC2部分を、斜め方向に位置する固定子2の中間領域ER17,ER18部分まで移動させ、中間領域ER17,ER18の一部領域で膨張(拡径)させて固定子2の内周面に接触させる(第3極性変更)。
In this way, the second region MC2 of the mover 3 is moved to the intermediate regions ER17 and ER18 of the stator 2 located diagonally, and some of the intermediate regions ER17 and ER18 are expanded (widened) to come into contact with the inner circumferential surface of the stator 2 (third polarity change).
次に、図29の並進回転動作第3パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13と、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33と、を可動子3の第2領域MC2と同じ極性とし、可動子3の第2領域MC2を、固定子2の中間領域ER17,ER18から引き離す。これにより、可動子3の第2領域MC2部分を収縮(縮径)させ、可動子3の第2領域MC2を固定子2の内周面と非接触にさせる。
29 , polarity switching 7 is performed in the stator 2 to set the polarity variable elements S12 , S13 in the 1st row, 2nd column and the 1st row, 3rd column of the stator 2 and the polarity variable elements S32, S33 in the 3rd row, 2nd column and the 3rd row, 3rd column of the stator 2 to the same polarity as the second region MC2 of the mover 3, and separate the second region MC2 of the mover 3 from the intermediate regions ER17, ER18 of the stator 2. This causes the second region MC2 of the mover 3 to contract (reduced in diameter), and the second region MC2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図29の並進回転動作第3パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の1行3列目、3行2列目及び3行3列目の極性可変素子S13,S32,S33を無極性とし、可動子3の第2領域MC2の移動方向に位置する、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22を、第2領域MC2と異なる極性とする。
Next, as shown in the third translational rotation operation pattern 9 in Figure 29, polarity switching 8 is performed on the stator 2, and the polarity variable elements S13 , S32 , and S33 in the first row, third column, the third row, second column, and the third row, third column of the stator 2 are made non-polar, and the polarity variable elements S12, S22 in the first row, second column, and the second row, second column of the stator 2, which are located in the movement direction of the second region MC2 of the movable element 3 , are made to have a polarity different from that of the second region MC2.
これにより、可動子3の第2領域MC2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22に引き寄せられ、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22まで移動する。可動子3は、固定子2の1行2列目及び2行2列目の極性可変素子S12,S22部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the second region MC2 of the mover 3 is attracted to the polarity variable elements S12, S22 in the first row, second column and the second row, second column of the stator 2 by magnetic force (and by the restoring force in the direction of movement due to the extension of the variable part 35 of the mover 3 if the variable element 31 is an elastic member), and moves to the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2. The mover 3 expands (increases in diameter) at the polarity variable elements S12 , S22 in the first row, second column and the second row, second column of the stator 2, and comes into contact with the inner peripheral surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MC1を斜め方向に移動させて固定子2の面に接触させた後に、第2領域MC2を固定子2の面と非接触にして第1領域MC1に近づけるように斜め方向に移動させ、第2領域MC2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に並進回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MC1 of the mover 3 is moved in an oblique direction to contact the surface of the stator 2, and then the second region MC2 is moved in an oblique direction so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MC2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
また、この並進回転動作第3パターンでは、可動子3の第1領域MC1を2段階で斜め方向へ移動させた後、第2領域MC2を2段階で斜め方向へ移動させ、第1領域MC1及び第2領域MC2を段階的に小刻みに回転させてゆくことができる。すなわち、並進回転動作第3パターンは、上述したように、1ピッチ(1つの極性可変素子22の領域単位)で伸長と短縮を繰り返す並進回転動作第1パターンや、ハーフピッチ(1つの極性可変素子22の半領域単位)で伸長と短縮を繰り返す並進回転動作第2パターンと異なり、ハーフピッチで2回伸長した後、ハーフピッチで2回短縮する。
In addition, in this third translational rotational motion pattern, the first region MC1 of the movable element 3 is moved diagonally in two stages, and then the second region MC2 is moved diagonally in two stages, allowing the first region MC1 and the second region MC2 to rotate stepwise in small increments. That is, unlike the first translational rotational motion pattern in which expansion and contraction are repeated in one pitch (the area unit of one polarity variable element 22) and the second translational rotational motion pattern in which expansion and contraction are repeated in half pitches (the half area unit of one polarity variable element 22), as described above, the third translational rotational motion pattern expands twice in a half pitch and then contracts twice in a half pitch.
可変素子31が弾性部材である場合、この並進回転動作第3パターンでは、始めに可動子3の第1領域MC1を2段階で斜め方向へ移動させることから、第1領域MC1及び第2領域MC2の間にある可変部35を一段と伸長させることができるため、当該可変部35による推進力により第2領域MC2を斜め方向に一段と確実に移動させることができる。
When the variable element 31 is an elastic member, in this third translational rotational motion pattern, the first region MC1 of the movable element 3 is first moved diagonally in two stages, so that the variable portion 35 between the first region MC1 and the second region MC2 can be further extended, and the second region MC2 can be moved diagonally more reliably by the driving force of the variable portion 35.
(4-4)並進回転動作第4パターン
次に、上述した並進回転動作第1パターンから並進回転動作第3パターンとは異なる、可動子3の並進回転動作の第4パターン(並進回転動作第4パターン)について説明する。図30、図31及び図32は、固定子2の筒内空間において斜め方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に移動する可動子3の並進回転動作第4パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(4-1)並進回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(4-4) Fourth Translational Rotational Movement Pattern Next, a fourth translational rotational movement pattern (fourth translational rotational movement pattern) of the mover 3, which is different from the above-mentioned first to third translational rotational movement patterns, will be described. Figures 30, 31, and 32 are schematic diagrams for explaining the fourth translational rotational movement pattern of the mover 3, which moves in an oblique direction (here, a right oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1) in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(4-1) First Translational Rotational Movement Pattern", so their description will be omitted here.
並進回転動作第4パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向に移動させる際の注目領域ER2での励磁方式が、軸方向X1への移動時に2-3相励磁方式となっており、かつ、周方向C1への移動時に2相励磁方式となっている。すなわち、軸方向X1への移動時は、注目領域ER2の極性可変素子22のうち、軸方向X1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、軸方向X1に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。周方向C1への移動時は、注目領域ER2の極性可変素子22のうち、周方向C1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式となっている。
In the fourth translational rotational motion pattern, the excitation method in the attention area ER2 when the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern are moved diagonally is a 2-3 phase excitation method when moving in the axial direction X1, and a 2-phase excitation method when moving in the circumferential direction C1. That is, when moving in the axial direction X1, the 2-phase excitation method in which only two of the predetermined first, second, and third phases aligned in the axial direction X1 are excited simultaneously among the polarity variable elements 22 in the attention area ER2, and a 3-phase excitation method in which the predetermined first, second, and third phases aligned in the axial direction X1 are excited simultaneously are repeated. When moving in the circumferential direction C1, the 2-phase excitation method in which only two of the predetermined first, second, and third phases aligned in the circumferential direction C1 are excited simultaneously among the polarity variable elements 22 in the attention area ER2 is used.
なお、ここでは、可動子3の動作説明を簡単にするために、軸方向X1への移動時に2-3相励磁方式とし周方向C1への移動時に2相励磁方式の並進回転動作第4パターンについて説明するが、本発明はこれに限らない。並進回転動作第4パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成((N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式は、軸方向X1への移動時にN相励磁方式と(N+1)相励磁方式とが繰り返されるN-(N+1)相励磁方式となり、周方向C1への移動時にN相励磁方式(第3方式とも称する)となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In order to simplify the explanation of the operation of the mover 3, the fourth translational rotational operation pattern will be explained, in which the 2-3 phase excitation method is used when moving in the axial direction X1, and the 2 phase excitation method is used when moving in the circumferential direction C1, but the present invention is not limited to this. In the fourth translational rotational operation pattern, when N is a positive number of 2 or more, the excitation method in the basic configuration (configuration in which the polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving the magnetic pole parts 32 arranged in N rows and N columns in a diagonal direction is an N-(N+1) phase excitation method in which the N phase excitation method and the (N+1) phase excitation method are repeated when moving in the axial direction X1, and the N phase excitation method (also referred to as the third method) is used when moving in the circumferential direction C1 (- is a hyphen indicating that N phase excitation and (N+1) phase excitation are repeated).
図30の並進回転動作第4パターン1は、上述した図22の並進回転動作第1パターン1と同様の状態であり、固定子2の2行2列目及び2行2列目の極性可変素子S22,S23を、可動子3の第1領域MR1と異なる極性とし、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を、第2領域MR2と異なる極性として、可動子3の第1領域MR1及び第2領域MR2を、磁力により膨張(拡径)させて固定子2の内周面に接触させる(第1極性変更)。
The fourth translational rotation operation pattern 1 in Figure 30 is in the same state as the first translational rotation operation pattern 1 in Figure 22 described above, where the polarity variable elements S22 , S23 in the second row, second column and the second row, second column of the stator 2 are set to a polarity different from that of the first region MR1 of the mover 3, and the polarity variable elements S32 , S33 in the third row, second column and the third row, third column of the stator 2 are set to a polarity different from that of the second region MR2, and the first region MR1 and the second region MR2 of the mover 3 are expanded (increased in diameter) by magnetic force to contact the inner surface of the stator 2 (first polarity change).
次に、図30の並進回転動作第4パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MR1と対向する、固定子2の2行2列目及び2行3列目の極性可変素子S22,S23を、第1領域MR1と同じ極性とし、磁力により可動子3の第1領域MR1を固定子2の当該極性可変素子S22,S23から引き離して、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
Next, as shown in the fourth translational rotation operation pattern 2 in Figure 30, polarity switching 1 is performed in the stator 2, and the polarity variable elements S22 , S23 in the second row, second column and the second row, third column of the stator 2, which face the first region MR1 of the mover 3, are set to the same polarity as the first region MR1, and the first region MR1 of the mover 3 is pulled away from the polarity variable elements S22 , S23 of the stator 2 by magnetic force, causing the first region MR1 portion of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner surface of the stator 2.
次に、図30の並進回転動作第4パターン3に示すように、固定子2において極性切り替え2を行い、固定子2の2行2列目の極性可変素子S22を無極性とし、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21と、固定子2の1行3列目及び2行3列目の極性可変素子S13,S23とを、第1領域MR1と異なる極性とする。
Next, as shown in the fourth translational rotation operation pattern 3 in Figure 30, polarity switching 2 is performed on the stator 2, the polarity variable element S22 in the second row, second column of the stator 2 is made non-polar, and the polarity variable elements S11 , S21 in the first row, first column and the second row, first column of the stator 2, and the polarity variable elements S13 , S23 in the first row, third column and the second row, third column of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, are made to have a polarity different from that of the first region MR1.
これにより、可動子3の第1領域MR1における一方の磁極部32(ここでは、N極部33n)は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)によって、固定子2の1行1列目及び2行1列目の極性可変素子S11,S21を跨いだ中間領域ER21に引き寄せられ、可動子3の第1領域MR1における他方の磁極部32(ここでは、S極部34s)も、固定子2の1行3列目及び2行3列目の極性可変素子S13,S23を跨いだ中間領域ER20に引き寄せられる。
As a result, one of the magnetic pole portions 32 (here, the N-pole portion 33n) in the first region MR1 of the movable member 3 is attracted to an intermediate region ER21 straddling the polarity variable elements S11, S21 in the first row, first column and the second row, first column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic member, also by a restoring force (propulsion force) toward the movement direction due to the extension of the variable portion 35 on the movement direction side), and the other magnetic pole portion 32 (here, the S-pole portion 34s) in the first region MR1 of the movable member 3 is attracted to an intermediate region ER20 straddling the polarity variable elements S13 , S23 in the first row, third column and the second row, third column of the stator 2.
このようにして、可動子3の第1領域MR1部分を、斜め方向に位置する固定子2の中間領域ER20,ER21部分まで移動させ、中間領域ER20,ER21で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
In this way, the first region MR1 of the mover 3 is moved to the intermediate regions ER20, ER21 of the stator 2 located diagonally, and expanded (diameter enlarged) in the intermediate regions ER20, ER21 to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、このとき、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、固定子2の1行1列目、2行1列目、1行2列目及び2行2列目の極性可変素子S11,S21,S12,S22を跨るように配置される。また、可動子3の第2領域MR2における他方の磁極部32(S極部34s)は、固定子2の1行2列目、2行2列目、1行3列目及び2行3列目の極性可変素子S12,S22,S13,S23を跨るように配置される。
At this time, one magnetic pole portion 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is disposed so as to straddle the polarity variable elements S11 , S21 , S12 , and S22 in the first row, first column, second row, first column, first row, second column, and second row, second column of the stator 2. Meanwhile, the other magnetic pole portion 32 (S-pole portion 34s) in the second region MR2 of the mover 3 is disposed so as to straddle the polarity variable elements S12 , S22 , S13 , and S23 in the first row, second column, second row, first row, third column, and second row, third column of the stator 2.
第1領域MR1の一方のN極部33nは、周方向C1における一端側半領域が、極性可変素子S11,S21を跨いだ中間領域ER21に引き寄せられて接触し、また、第1領域MR1の他方のS極部34sは、周方向C1における他端側半領域が、極性可変素子S13,S23を跨いだ中間領域ER20に引き寄せられ接触する。
One N-pole portion 33n of the first region MR1 has one end half region in the circumferential direction C1 attracted to and in contact with an intermediate region ER21 that straddles the polarity variable elements S11 and S21 , and the other S-pole portion 34s of the first region MR1 has the other end half region in the circumferential direction C1 attracted to and in contact with an intermediate region ER20 that straddles the polarity variable elements S13 and S23 .
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1が斜め方向に移動した際に、第1領域MR1と第2領域MR2との間を離して可変部35を伸長させ、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MR1 of the mover 3 moves in a diagonal direction, the first region MR1 and the second region MR2 are separated and the variable section 35 is extended, generating a propulsive force in the diagonal direction, which is the direction of movement.
次に、図31の並進回転動作第4パターン4に示すように、固定子2において極性切り替え3を行い、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33をそれぞれ可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、磁力により固定子2の極性可変素子S32,S33から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
31 , polarity switching 3 is performed in the stator 2, the polarity variable elements S32 , S33 in the 3rd row, 2nd column and the 3rd row, 3rd column of the stator 2 are respectively set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S32 , S33 of the stator 2 by magnetic force. This causes the second region MR2 of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図31の並進回転動作第4パターン5に示すように、固定子2において極性切り替え4を行い、可動子3の第2領域MR2が対向配置されていた、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を無極性とし、可動子3の第2領域MR2の移動方向に位置する、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23を、第2領域MR2と異なる極性とする。
Next, as shown in the fourth translational rotation operation pattern 5 of Figure 31, polarity switching 4 is performed on the stator 2, and the polarity variable elements S32 , S33 in the third row, second column and the third row, third column of the stator 2, which were arranged opposite the second region MR2 of the mover 3, are made non-polar, and the polarity variable elements S21 , S23 in the second row, first column and the second row, third column of the stator 2, which are located in the movement direction of the second region MR2 of the mover 3, are made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23に引き寄せられ、当該極性可変素子S21,S23の一部領域ER23,ER22まで移動し、第1領域MR1に近づいた状態となる。可動子3は、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23の一部領域ER23,ER22で膨張(拡径)して固定子2の内周面に接触する。
As a result, the second region MR2 of the mover 3 is attracted to the polarity variable elements S21, S23 in the first and third columns of the second row of the stator 2 by magnetic force (and also by the restoring force in the direction of movement due to the expansion of the variable part 35 of the mover 3 if the variable element 31 is an elastic member), and moves to the partial regions ER23, ER22 of the polarity variable elements S21 , S23 , approaching the first region MR1. The mover 3 expands (increases in diameter) in the partial regions ER23 , ER22 of the polarity variable elements S21 , S23 in the first and third columns of the second row of the stator 2, and comes into contact with the inner circumferential surface of the stator 2.
なお、このとき、可動子3の第2領域MR2における一方の磁極部32(ここでは、S極部34s)は、固定子2の2行1列目、3行1列目、2行2列目及び3行2列目の極性可変素子S21,S31,S22,S32を跨るように配置される。これにより、固定子2の2行1列目の極性可変素子S21には、当該極性可変素子S21と極性が同じ、可動子3の第1領域MR1における磁極部32(N極部33n)の一部領域が配置されるとともに、当該極性可変素子S21と極性が異なる、可動子3の第2領域MR2における磁極部32(ここでは、S極部34s)の一部領域が配置される。
At this time, one of the magnetic pole portions 32 (here, the S-pole portion 34s) in the second region MR2 of the mover 3 is disposed so as to straddle the polarity variable elements S21 , S31 , S22 , S32 in the second row, first column, the third row, first column, the second row, second column, and the third row, second column of the stator 2. As a result, in the polarity variable element S21 in the second row, first column of the stator 2, a partial region of the magnetic pole portion 32 (N-pole portion 33n ) in the first region MR1 of the mover 3, which has the same polarity as the polarity variable element S21 , is disposed, and a partial region of the magnetic pole portion 32 (here, the S-pole portion 34s) in the second region MR2 of the mover 3, which has a polarity different from that of the polarity variable element S21 , is disposed.
可動子3の第1領域MR1におけるN極部33nは、対向配置されている2行1列目の極性可変素子S21の極性と同じであるものの、当該の極性可変素子S21の上部に位置する1行1列目の極性可変素子S11の極性と異なることから、当該極性可変素子S11に引き寄せられた状態となり得る。
The N-pole portion 33n in the first region MR1 of the movable element 3 has the same polarity as the polarity variable element S21 in the second row and first column that is arranged opposite it, but has a different polarity from the polarity variable element S11 in the first row and first column that is located above the polarity variable element S21 , and therefore may be attracted to the polarity variable element S11 .
また、このとき、可動子3の第2領域MR2における他方の磁極部32(ここでは、N極部33n)は、固定子2の2行2列目、3行2列目、2行3列目及び3行3列目の極性可変素子S22,S32,S23,S33を跨るように配置される。このように、固定子2の2行3列目の極性可変素子S23には、当該極性可変素子S23と極性が同じ、可動子3の第1領域MR1における磁極部32(S極部34s)の一部領域が配置されるとともに、当該極性可変素子S23と極性が異なる、可動子3の第2領域MR2における磁極部32(N極部33n)の一部領域が配置される。
Also, at this time, the other magnetic pole portion 32 (here, N-pole portion 33n) in the second region MR2 of the mover 3 is arranged so as to straddle the polarity variable elements S22 , S32 , S23, S33 in the second row, second column, the third row, second column, the second row, third column , and the third row, third column of the stator 2. In this manner, in the polarity variable element S23 in the second row, third column of the stator 2, a partial region of the magnetic pole portion 32 (S-pole portion 34s) in the first region MR1 of the mover 3, which has the same polarity as the polarity variable element S23 , is arranged, and a partial region of the magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3, which has a different polarity from the polarity variable element S23 , is arranged.
可動子3の第1領域MR1におけるS極部34sは、対向配置されている2行3列目の極性可変素子S23の極性と同じであるものの、当該の極性可変素子S23の上部に位置する1行3列目の極性可変素子S13の極性と異なることから、当該極性可変素子S13に引き寄せられた状態となり得る。
The S-pole portion 34s in the first region MR1 of the movable element 3 has the same polarity as the polarity variable element S23 in the second row and third column that is arranged opposite it, but has a different polarity from the polarity variable element S13 in the first row and third column that is located above the polarity variable element S23 , and therefore may be attracted to the polarity variable element S13 .
次に、図31の並進回転動作第4パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第1領域MR1の一部領域と第2領域MR2の一部領域とがそれぞれ位置している、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23を無極性とする。また、並進回転動作第4パターン6では、極性切り替え5を行い、可動子3の第2領域MR2の一部領域が位置している、固定子2の3行1列目及び3行3列目の極性可変素子S31,S33を、可動子3の第2領域MR2と異なる極性とする。これにより、可動子3の第2領域MR2は、磁力によって固定子2の3行1列目及び3行3列目の極性可変素子S31,S33の一部領域ER25,ER24にそれぞれ引き寄せられ、当該極性可変素子S31,S33の一部領域ER25,ER24で膨張(拡径)して固定子2の内周面に接触する。
31 , polarity switching 5 is performed in the stator 2, and polarity variable elements S21, S23 in the second row, first column and the second row, third column of the stator 2, where a partial region of the first region MR1 and a partial region of the second region MR2 of the mover 3 are respectively located, are set to non-polar. Also, in the fourth translational rotational operation pattern 6, polarity switching 5 is performed, and polarity variable elements S31 , S33 in the third row, first column and the third row, third column of the stator 2, where a partial region of the second region MR2 of the mover 3 is located, are set to a polarity different from that of the second region MR2 of the mover 3. As a result, the second region MR2 of the movable member 3 is attracted by magnetic force to partial regions ER25, ER24 of the polarity variable elements S31 , S33 in the first column of the third row and the third column of the stator 2, respectively, and expands (increases in diameter) in the partial regions ER25, ER24 of the polarity variable elements S31 , S33 to come into contact with the inner surface of the stator 2.
また、並進回転動作第4パターン6では、極性切り替え5を行い、可動子3の第1領域MR1の一部領域が位置している、固定子2の1行1列目及び1行3列目の極性可変素子S11,S13を、可動子3の第1領域MR1と同じ極性とし、可動子3の第1領域MR1を、固定子2の1行1列目及び1行3列目の極性可変素子S11,S13から引き離す。これにより、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
In addition, in the fourth translational rotation operation pattern 6, polarity switching 5 is performed to set the polarity variable elements S11, S13 in the first row, first column and the first row, third column of the stator 2, where a portion of the first region MR1 of the mover 3 is located, to the same polarity as the first region MR1 of the mover 3, and to separate the first region MR1 of the mover 3 from the polarity variable elements S11 , S13 in the first row, first column and the first row, third column of the stator 2. This causes the first region MR1 of the mover 3 to contract (reduced in diameter), and the first region MR1 of the mover 3 to be out of contact with the inner circumferential surface of the stator 2.
次に、図32の並進回転動作第4パターン7に示すように、固定子2において極性切り替え6を行い、可動子3の第2領域MR2の一部領域が位置している、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23を、可動子3の第2領域MR2と異なる極性とする。極性可変素子S31,S33の磁力により極性可変素子S31,S33の一部領域ER25,ER24に引き寄せられている可動子3の第2領域MR2は、磁力によって固定子2の2行1列目及び2行3列目の極性可変素子S21,S23の一部領域ER27,ER26にも引き寄せられ、膨張(拡径)して固定子2の内周面に接触する。
32 , polarity switching 6 is performed in the stator 2, and the polarity variable elements S21, S23 in the second row, first column and the second row, third column of the stator 2, where a partial region of the second region MR2 of the mover 3 is located, are made to have a polarity different from that of the second region MR2 of the mover 3. The second region MR2 of the mover 3, which is attracted to the partial regions ER25 , ER24 of the polarity variable elements S31 , S33 by the magnetic force of the polarity variable elements S31 , S33 , is also attracted by the magnetic force to the partial regions ER27, ER26 of the polarity variable elements S21 , S23 in the second row, first column and the second row, third column of the stator 2, and expands (increases in diameter) to come into contact with the inner circumferential surface of the stator 2.
また、この際、可動子3の第1領域MR1は、固定子2の2行1列目及び2行3列目の極性可変素子S21,S23とは極性が同じになることから、磁力によって極性可変素子S21,S23から引き離され、収縮(縮径)して固定子2の内周面から離れる。
In addition, at this time, since the first region MR1 of the movable member 3 has the same polarity as the polarity variable elements S21 , S23 in the first column of the second row and the third column of the second row of the stator 2, the first region MR1 of the movable member 3 is pulled away from the polarity variable elements S21 , S23 by the magnetic force, contracts (reduced in diameter), and moves away from the inner surface of the stator 2.
これに加えて、並進回転動作第4パターン7では、固定子2の極性切り替え6として、固定子2の1行3列目の極性可変素子S13を無極性とし、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12を、第1領域MR1と異なる極性とする。
In addition, in the fourth translational rotation operation pattern 7, the polarity switching 6 of the stator 2 is performed by making the polarity variable element S13 in the first row and third column of the stator 2 non-polar, and making the polarity variable elements S11 and S12 in the first row and first column and the second row of the stator 2, which are located in the movement direction of the first region MR1 of the movable element 3, have a polarity different from that of the first region MR1.
これにより、可動子3の第1領域MR1は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12に引き寄せられる。可動子3の第1領域MR1は、斜め方向に位置する固定子2の極性可変素子S11,S12部分まで移動して第2領域MR2から遠ざかり、当該極性可変素子S11,S12で膨張(拡径)して固定子2の内周面に接触する(第3極性変更)。
As a result, the first region MR1 of the mover 3 is attracted by a magnetic force (and by a restoring force in the direction of movement caused by the extension of the variable part 35 on the direction of movement, if the variable element 31 is an elastic member) to the polarity variable elements S11 , S12 in the first row, first column and the first row, second column of the stator 2. The first region MR1 of the mover 3 moves to the polarity variable elements S11 , S12 of the stator 2 located in the diagonal direction, and moves away from the second region MR2, and expands (increases in diameter) at the polarity variable elements S11 , S12 and comes into contact with the inner circumferential surface of the stator 2 (third polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1が斜め方向に移動した際に、第1領域MR1と第2領域MR2との間を離して可変部35を伸長させることから、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MR1 of the mover 3 moves in a diagonal direction, the first region MR1 and the second region MR2 are separated and the variable section 35 is extended, generating a propulsive force in the diagonal direction, which is the direction of movement.
次に、図32の並進回転動作第4パターン8に示すように、固定子2において極性切り替え7を行い、固定子2の2行1列目、3行1列目、2行3列目、及び3行3列目の極性可変素子S21,S31,S23,S33をそれぞれ可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の極性可変素子S21,S31,S23,S33から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
32 , polarity switching 7 is performed in the stator 2, and the polarity variable elements S21, S31, S23, and S33 in the second row, first column, the third row, first column, the second row, third column, and the third row, third column of the stator 2 are respectively set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S21 , S31 , S23 , and S33 of the stator 2. This causes the second region MR2 portion of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図32の並進回転動作第4パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の3行1列目、2行3列目及び3行3列目の極性可変素子S31,S23,S33を無極性とし、可動子3の第2領域MR2の移動方向に位置する、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22を、第2領域MR2と異なる極性とする。
Next, as shown in the fourth translational rotation operation pattern 9 in Figure 32, polarity switching 8 is performed on the stator 2, and the polarity variable elements S31 , S23 , and S33 in the 3rd row, 1st column, the 2nd row, 3rd column, and the 3rd row, 3rd column of the stator 2 are made non-polar, and the polarity variable elements S21 and S22 in the 2nd row, 1st column, and the 2nd row, 2nd column of the stator 2, which are located in the movement direction of the second region MR2 of the movable element 3 , are made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22に引き寄せられ、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22まで移動する。可動子3は、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the second region MR2 of the mover 3 is attracted to the polarity variable elements S21, S22 in the first and second rows of the stator 2 by magnetic force (and by the restoring force in the direction of movement caused by the extension of the variable part 35 of the mover 3 if the variable element 31 is an elastic member) and moves to the polarity variable elements S21, S22 in the first and second rows of the stator 2. The mover 3 expands (increases in diameter) at the polarity variable elements S21 , S22 in the first and second rows of the stator 2 and comes into contact with the inner peripheral surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MR1を斜め方向に移動させて固定子2の面に接触させた後に、第2領域MR2を固定子2の面と非接触にして第1領域MC1に近づけるように斜め方向に移動させ、第2領域MR2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に並進回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MR1 of the mover 3 is moved in an oblique direction to contact the surface of the stator 2, and then the second region MR2 is moved in an oblique direction so as to approach the first region MC1 without contacting the surface of the stator 2, and the second region MR2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
(4-5)並進回転動作第5パターン
次に、上述した並進回転動作第1パターンから並進回転動作第4パターンとは異なる、可動子3の並進回転動作の第5パターン(並進回転動作第5パターン)について説明する。図30、図33及び図34は、固定子2の筒内空間において斜め方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に移動する可動子3の並進回転動作第5パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(4-1)並進回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(4-5) Fifth Translational Rotational Movement Pattern Next, a fifth translational rotational movement pattern (fifth translational rotational movement pattern) of the mover 3, which is different from the above-mentioned first to fourth translational rotational movement patterns, will be described. Figures 30, 33, and 34 are schematic diagrams for explaining the fifth translational rotational movement pattern of the mover 3 moving in an oblique direction (here, a right oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1) in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(4-1) First Translational Rotational Movement Pattern", so their description will be omitted here.
並進回転動作第5パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向に移動させる際の注目領域ER2での励磁方式が、軸方向X1への移動時に2-3相励磁方式となっており、かつ、周方向C1への移動時に2相励磁方式となっている。すなわち、軸方向X1への移動時は、注目領域ER2の極性可変素子22のうち、軸方向X1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式と、軸方向X1に並ぶ所定の第1相と第2相と第3相の3つの相を同時に励磁する3相励磁方式とが繰り返される2-3相励磁方式となっている。周方向C1への移動時は、注目領域ER2の極性可変素子22のうち、周方向C1に並ぶ所定の第1相と第2相と第3相のうちの2つの相だけを同時に励磁する2相励磁方式となっている。
In the fifth translational rotational motion pattern, the excitation method in the attention area ER2 when the four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern are moved diagonally is a 2-3 phase excitation method when moving in the axial direction X1, and a 2-phase excitation method when moving in the circumferential direction C1. That is, when moving in the axial direction X1, the 2-phase excitation method in which only two of the predetermined first, second, and third phases aligned in the axial direction X1 are excited simultaneously among the polarity variable elements 22 in the attention area ER2, and a 3-phase excitation method in which the predetermined first, second, and third phases aligned in the axial direction X1 are excited simultaneously are repeated. When moving in the circumferential direction C1, the 2-phase excitation method in which only two of the predetermined first, second, and third phases aligned in the circumferential direction C1 are excited simultaneously among the polarity variable elements 22 in the attention area ER2 is used.
なお、ここでは、可動子3の動作説明を簡単にするために、軸方向X1への移動時に2-3相励磁方式とし周方向C1への移動時に2相励磁方式の並進回転動作第5パターンについて説明するが、本発明はこれに限らない。並進回転動作第5パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成((N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式は、軸方向X1への移動時にN相励磁方式と(N+1)相励磁方式とが繰り返されるN-(N+1)相励磁方式となり、周方向C1への移動時にN相励磁方式(第3方式とも称する)となる(-は、N相励磁と(N+1)相励磁とを繰り返すことを示すハイフンである)。
In order to simplify the explanation of the operation of the mover 3, the fifth translational rotational operation pattern will be explained, in which the 2-3 phase excitation method is used when moving in the axial direction X1, and the 2 phase excitation method is used when moving in the circumferential direction C1, but the present invention is not limited to this. In the fifth translational rotational operation pattern, when N is a positive number of 2 or more, the excitation method in the basic configuration (configuration in which the polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving the magnetic pole parts 32 arranged in N rows and N columns in a diagonal direction is an N-(N+1) phase excitation method in which the N phase excitation method and the (N+1) phase excitation method are repeated when moving in the axial direction X1, and the N phase excitation method (also referred to as the third method) is used when moving in the circumferential direction C1 (- is a hyphen indicating that N phase excitation and (N+1) phase excitation are repeated).
この並進回転動作第5パターンでは、並進回転動作第5パターン1から並進回転動作第5パターン3までが、図30において説明した並進回転動作第4パターン1から並進回転動作第4パターン3と同じであることから、ここではその説明は省略する。この場合、並進回転動作第5パターンは、並進回転動作第5パターン1から並進回転動作第5パターン3として、上述した図30の並進回転動作第4パターン1から並進回転動作第4パターン3と同様の状態になった後、図33に示すように、極性切り替え3が行われて並進回転動作第5パターン4の状態となる。
In this fifth translational rotation movement pattern, fifth translational rotation movement pattern 1 to fifth translational rotation movement pattern 3 are the same as fourth translational rotation movement pattern 1 to fourth translational rotation movement pattern 3 described in FIG. 30, so a description thereof will be omitted here. In this case, the fifth translational rotation movement pattern is in the same state as fourth translational rotation movement pattern 1 to fourth translational rotation movement pattern 3 in FIG. 30 described above, from fifth translational rotation movement pattern 1 to fifth translational rotation movement pattern 3, and then, as shown in FIG. 33, polarity switch 3 is performed and the state becomes fifth translational rotation movement pattern 4.
図33の並進回転動作第5パターン4では、固定子2において極性切り替え3を行い、固定子2の1行1列目、2行1列目、1行3列目及び2行3列目の極性可変素子S11,S21,S13,S23をそれぞれ可動子3の第1領域MR1と同じ極性とし、可動子3の第1領域MR1を、磁力により固定子2の極性可変素子S11,S21,S13,S23から引き離す。これにより、可動子3の第1領域MR1部分を収縮(縮径)させ、可動子3の第1領域MR1を固定子2の内周面と非接触にさせる。
33, polarity switching 3 is performed in the stator 2, and the polarity variable elements S11, S21, S13, and S23 in the 1st row, 1st column, the 2nd row, 1st column, the 1st row, 3rd column, and the 2nd row , 3rd column of the stator 2 are respectively set to the same polarity as the first region MR1 of the mover 3, and the first region MR1 of the mover 3 is separated from the polarity variable elements S11 , S21 , S13 , and S23 of the stator 2 by magnetic force. This causes the first region MR1 of the mover 3 to contract ( reduced in diameter), and the first region MR1 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図33の並進回転動作第5パターン5に示すように、固定子2において極性切り替え4を行い、可動子3の第1領域MR1が対向配置されていた、固定子2の2行1列目、1行3列目及び2行3列目の極性可変素子S21,S13,S23を無極性とし、可動子3の第1領域MR1の移動方向に位置する、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12を、第1領域MR1と異なる極性とする。
Next, as shown in the fifth translational rotation operation pattern 5 of Figure 33, polarity switching 4 is performed on the stator 2, and the polarity variable elements S21 , S13, and S23 in the second row, first column, the first row, third column, and the second row, third column of the stator 2, which are arranged opposite the first region MR1 of the mover 3, are made non-polar, and the polarity variable elements S11 , S12 in the first row, first column, and the first row, second column of the stator 2, which are located in the movement direction of the first region MR1 of the mover 3 , are made to have a polarity different from that of the first region MR1.
これにより、可動子3の第1領域MR1は、磁力によって、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12に引き寄せられ、当該極性可変素子S11,S12まで移動する。可動子3は、固定子2の1行1列目及び1行2列目の極性可変素子S11,S12で膨張(拡径)して固定子2の内周面に接触する。
As a result, the first region MR1 of the mover 3 is attracted by the magnetic force to the polarity variable elements S11 , S12 in the first row, first column and the first row, second column of the stator 2, and moves to the polarity variable elements S11 , S12 . The mover 3 expands (increases in diameter) at the polarity variable elements S11 , S12 in the first row, first column and the first row, second column of the stator 2, and comes into contact with the inner circumferential surface of the stator 2.
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1が斜め方向に移動した際に、第1領域MR1と第2領域MR2との間を一段と離して可変部35をさらに伸長させることから、移動方向である斜め方向側への推進力が一段と生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the first region MR1 of the movable member 3 moves in a diagonal direction, the distance between the first region MR1 and the second region MR2 is further increased, causing the variable portion 35 to extend further, resulting in an increased propulsive force being generated in the diagonal direction, which is the direction of movement.
次に、図33の並進回転動作第5パターン6に示すように、固定子2において極性切り替え5を行い、可動子3の第2領域MR2が位置している、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を、可動子3の第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33から引き離す。これにより、可動子3の第2領域MR2は、収縮(縮径)し、可動子3の第2領域MR2を固定子2の内周面と非接触になる。
33 , polarity switching 5 is performed in the stator 2, and the polarity variable elements S32, S33 in the 3rd row, 2nd column and the 3rd row, 3rd column of the stator 2, where the second region MR2 of the mover 3 is located, are set to the same polarity as the second region MR2 of the mover 3, and the second region MR2 of the mover 3 is separated from the polarity variable elements S32 , S33 in the 3rd row, 2nd column and the 3rd row , 3rd column of the stator 2. As a result, the second region MR2 of the mover 3 contracts (reduced in diameter), and the second region MR2 of the mover 3 is no longer in contact with the inner circumferential surface of the stator 2.
次に、図34の並進回転動作第5パターン7に示すように、固定子2において極性切り替え6を行い、可動子3の第2領域MR2が位置している、固定子2の3行2列目の極性可変素子S32を無極性とし、可動子3の第2領域MR2の移動方向となる、固定子2の2行1列目、3行1列目、2行3列目及び3行3列目の極性可変素子S21,S31,S23,S33を、それぞれ第2領域MR2と異なる極性とする。
Next, as shown in the fifth translational rotation operation pattern 7 in Figure 34, polarity switching 6 is performed on the stator 2, and the polarity variable element S32 in the third row and second column of the stator 2, where the second region MR2 of the mover 3 is located, is made non-polar, and the polarity variable elements S21, S31, S23, and S33 in the second row and first column, the third row and first column, the second row and third column, and the third row and third column of the stator 2, which are in the movement direction of the second region MR2 of the mover 3, are each made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目及び3行1列目の極性可変素子S21,S23の中間領域ER31と、2行3列目及び3行3列目の極性可変素子S23,S33の中間領域ER30と、にそれぞれ引き寄せられる。
As a result, the second region MR2 of the movable element 3 is attracted by magnetic force (and, if the variable element 31 is an elastic material, by the restoring force in the direction of movement due to the extension of the variable part 35 of the movable element 3) to the intermediate region ER31 of the polarity variable elements S21 , S23 in the first column of the second row and the first column of the third row of the stator 2, and to the intermediate region ER30 of the polarity variable elements S23 , S33 in the third column of the second row and the third column of the third row.
これにより、可動子3の第2領域MR2における一方の磁極部32(S極部34s)は、固定子2の2行1列目、3行1列目、2行2列目及び3行2列目の極性可変素子S21,S31,S22,S32を跨るように配置される。また、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の2行2列目、3行2列目、2行3列目及び3行3列目の極性可変素子S22,S32,S23,S33を跨るように配置される。
As a result, one magnetic pole portion 32 (S-pole portion 34s) in the second region MR2 of the mover 3 is arranged so as to straddle the polarity variable elements S21 , S31 , S22 , and S32 in the second row, first column, the third row, first column, the second row, second column, and the third row, second column of the stator 2. In addition, the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3 is arranged so as to straddle the polarity variable elements S22 , S32 , S23 , and S33 in the second row, second column, the third row, second column, and the third row, third column of the stator 2.
このようにして、可動子3の第2領域MR2は、斜め方向に位置する第1領域MR1にハーフピッチ分だけ僅かに近づき、可動子3は、固定子2の極性可変素子S21,S31を跨いだ中間領域ER31と、極性可変素子S23,S33を跨いだ中間領域ER30とで膨張(拡径)して固定子2の内周面に接触する。
In this way, the second region MR2 of the mover 3 moves slightly closer to the first region MR1 located diagonally by half a pitch, and the mover 3 expands (increases in diameter) in the intermediate region ER31 spanning the polarity variable elements S21 and S31 of the stator 2, and in the intermediate region ER30 spanning the polarity variable elements S23 and S33 , and comes into contact with the inner surface of the stator 2.
次に、図34の並進回転動作第5パターン8に示すように、固定子2において極性切り替え7を行い、可動子3の第2領域MR2が位置している、固定子2の2行1列目、3行1列目、2行3列目及び3行3列目の極性可変素子S21,S31,S23,S33を、それぞれ第2領域MR2と同じ極性とし、可動子3の第2領域MR2を、固定子2の極性可変素子S21,S31,S23,S33から引き離す。これにより、可動子3の第2領域MR2部分を収縮(縮径)させ、可動子3の第2領域MR2を固定子2の内周面と非接触にさせる。
34 , polarity switching 7 is performed in the stator 2, and the polarity variable elements S21, S31, S23, and S33 in the second row, first column, the third row, first column, the second row, third column, and the third row, third column of the stator 2, where the second region MR2 of the mover 3 is located, are set to the same polarity as the second region MR2, and the second region MR2 of the mover 3 is separated from the polarity variable elements S21, S31, S23, and S33 of the stator 2. This causes the second region MR2 portion of the mover 3 to contract (reduced in diameter), and the second region MR2 of the mover 3 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図34の並進回転動作第5パターン9に示すように、固定子2において極性切り替え8を行い、固定子2の3行1列目、2行3列目及び3行3列目の極性可変素子S31,S23,S33を無極性とし、可動子3の第2領域MR2の移動方向に位置する、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22を、第2領域MR2と異なる極性とする。
Next, as shown in the fifth translational rotation operation pattern 9 in Figure 34, polarity switching 8 is performed on the stator 2, so that the polarity variable elements S31 , S23 , and S33 in the third row, first column, the second row, third column, and the third row, third column of the stator 2 are made non-polar, and the polarity variable elements S21 and S22 in the second row, first column, and the second row, second column of the stator 2, which are located in the movement direction of the second region MR2 of the movable element 3, are made to have a polarity different from that of the second region MR2.
これにより、可動子3の第2領域MR2は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22に引き寄せられ、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22まで移動する。可動子3は、固定子2の2行1列目及び2行2列目の極性可変素子S21,S22部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the second region MR2 of the mover 3 is attracted to the polarity variable elements S21, S22 in the first and second rows of the stator 2 by magnetic force (and by the restoring force in the direction of movement caused by the extension of the variable part 35 of the mover 3 if the variable element 31 is an elastic member) and moves to the polarity variable elements S21, S22 in the first and second rows of the stator 2. The mover 3 expands (increases in diameter) at the polarity variable elements S21 , S22 in the first and second rows of the stator 2 and comes into contact with the inner peripheral surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MR1を斜め方向に移動させて固定子2の面に接触させた後に、第2領域MR2を固定子2の面と非接触にして第1領域MR1に近づけるように斜め方向に移動させ、第2領域MR2を固定子2の面に接触させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に並進回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each region of interest ER2 of the stator 2, whereby the first region MR1 of the mover 3 is moved in an oblique direction to contact the surface of the stator 2, and then the second region MR2 is moved in an oblique direction so as to approach the first region MR1 without contacting the surface of the stator 2, and the second region MR2 is brought into contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like operation, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
また、この並進回転動作第5パターンでは、可動子3の第1領域MR1を2段階で斜め方向へ移動させた後、第2領域MR2を2段階で斜め方向へ移動させ、第1領域MR1及び第2領域MR2を段階的に小刻みに移動させてゆくことができる。すなわち、並進回転動作第5パターンは、上述したように、1ピッチ(1つの極性可変素子22の領域単位)で伸長と短縮を繰り返す並進回転動作第1パターンや、ハーフピッチ(1つの極性可変素子22の半領域単位)で伸長と短縮を繰り返す並進回転動作第2パターンと異なり、ハーフピッチで2回伸長した後、ハーフピッチで2回短縮する。
In addition, in this fifth translational rotational motion pattern, the first region MR1 of the movable element 3 is moved diagonally in two stages, and then the second region MR2 is moved diagonally in two stages, so that the first region MR1 and the second region MR2 can be moved stepwise in small increments. That is, unlike the first translational rotational motion pattern in which expansion and contraction are repeated in one pitch (the area unit of one polarity variable element 22) and the second translational rotational motion pattern in which expansion and contraction are repeated in half pitches (the half area unit of one polarity variable element 22), as described above, the fifth translational rotational motion pattern expands twice in a half pitch and then contracts twice in a half pitch.
さらに、可変素子31が弾性部材である場合、この並進回転動作第5パターンでは、始めに可動子3の第1領域MR1を2段階で斜め方向へ移動させることから、第1領域MR1及び第2領域MR2の間にある可変部35を一段と伸長させることができるため、当該可変部35による推進力により第2領域MR2を斜め方向に一段と確実に移動させることができる。
Furthermore, when the variable element 31 is an elastic member, in this fifth translational rotational motion pattern, the first region MR1 of the mover 3 is first moved diagonally in two stages, so that the variable part 35 between the first region MR1 and the second region MR2 can be further extended, and the second region MR2 can be moved diagonally more reliably by the driving force of the variable part 35.
(4-6)並進回転動作第6パターン
次に、上述した並進回転動作第1パターンから並進回転動作第5パターンとは異なる、可動子3の並進回転動作の第6パターン(並進回転動作第6パターン)について説明する。図35、図36、図37、図38及び図39は、固定子2の筒内空間において斜め方向(ここでは、軸方向X1と周方向C1との両方向に対して傾斜した右斜め方向)に移動する可動子3の並進回転動作第6パターンを説明するための概略図である。なお、固定子磁極配列、可動子磁極配列、注目領域ER2、極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33などについては上述した「(4-1)並進回転動作第1パターン」と同じであるため、ここではその説明は省略する。
(4-6) Sixth Translational Rotational Movement Pattern Next, a sixth translational rotational movement pattern (sixth translational rotational movement pattern) of the mover 3, which is different from the above-mentioned first to fifth translational rotational movement patterns, will be described. Figures 35, 36, 37, 38, and 39 are schematic diagrams for explaining the sixth translational rotational movement pattern of the mover 3 moving in an oblique direction (here, a right oblique direction inclined with respect to both the axial direction X1 and the circumferential direction C1) in the cylinder space of the stator 2. Note that the stator magnetic pole arrangement, the mover magnetic pole arrangement, the attention area ER2, the polarity variable elements S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 , etc. are the same as those in the above-mentioned "(4-1) First Translational Rotational Movement Pattern", so their description will be omitted here.
並進回転動作第6パターンでは、チェッカーボード・パターン状に極性が異なる磁極部32が2行2列に配置された4つの磁極部32を斜め方向(軸方向X1と周方向C1との両方向に傾斜した斜め方向)に移動させる際の注目領域ER2での励磁方式が、当該注目領域ER2の極性可変素子22のうち、軸方向X1及び周方向C1への移動時に所定の第1相と第2相と第3相とを励磁する3相励磁方式となっている。なお、ここでは、可動子3の動作説明を簡単にするために、3相励磁方式の並進回転動作第6パターンについて説明するが、本発明はこれに限らない。並進回転動作第6パターンでは、Nを2以上の正の数とした場合、N行N列に配置された磁極部32を斜め方向に移動させる際の基本構成(注目領域ER2であり、(N+1)行(N+1)列に極性可変素子22を配置した構成)での励磁方式は(N+1)相励磁方式(第4方式とも称する)となる。
In the sixth translational rotational motion pattern, the excitation method in the attention area ER2 when moving four magnetic pole parts 32 arranged in two rows and two columns with different polarities in a checkerboard pattern in a diagonal direction (diagonal directions inclined in both the axial direction X1 and the circumferential direction C1) is a three-phase excitation method in which a predetermined first phase, second phase, and third phase are excited among the polarity variable elements 22 in the attention area ER2 when moving in the axial direction X1 and the circumferential direction C1. Note that, in order to simplify the explanation of the operation of the mover 3, the sixth translational rotational motion pattern of the three-phase excitation method will be explained here, but the present invention is not limited to this. In the sixth translational rotational movement pattern, when N is a positive number equal to or greater than 2, the excitation method in the basic configuration (attention area ER2, configuration in which polarity variable elements 22 are arranged in (N+1) rows and (N+1) columns) when moving magnetic pole portions 32 arranged in N rows and N columns in a diagonal direction is the (N+1)-phase excitation method (also called the fourth method).
始めに、図35の並進回転動作第6パターン1に示すように、可動子3の第1領域MR1と対向する、固定子2の2行2列目及び2行3列目の極性可変素子S22,S23を、第1領域MR1と異なる極性として、可動子3の第1領域MR1を磁力により固定子2の2行2列目及び2行3列目の極性可変素子S22,S23に引き寄せる。これにより、可動子3の第1領域MR1部分を膨張(拡径)させ、可動子3の第1領域MR1を固定子2の内周面に接触させる(第1極性変更)。
35, the polarity variable elements S22 , S23 in the second row, second column and the second row, third column of the stator 2, which face the first region MR1 of the mover 3, are set to a polarity different from that of the first region MR1, and the first region MR1 of the mover 3 is attracted by magnetic force to the polarity variable elements S22 , S23 in the second row, second column and the second row, third column of the stator 2. This causes the first region MR1 of the mover 3 to expand (expand in diameter), and the first region MR1 of the mover 3 is brought into contact with the inner circumferential surface of the stator 2 (first polarity change).
可動子3の第2領域MR2と対向する、固定子2の3行2列目及び3行3列目の極性可変素子S32,S33を、第2領域MR2と異なる極性として、可動子3の第2領域MR2を磁力により固定子2の3行2列目及び3行3列目の極性可変素子S32,S33に引き寄せる。これにより、可動子3の第2領域MR2部分を膨張(拡径)させ、可動子3の第2領域MR2を固定子2の内周面に接触させる(第1極性変更)。
The polarity variable elements S32 , S33 in the second row, third column and the third row, third column of the stator 2, which face the second region MR2 of the mover 3, are set to a polarity different from that of the second region MR2, and the second region MR2 of the mover 3 is attracted by magnetic force to the polarity variable elements S32 , S33 in the second row, third column and the third row, third column of the stator 2. This causes the second region MR2 of the mover 3 to expand (expand in diameter), and the second region MR2 of the mover 3 to contact the inner circumferential surface of the stator 2 (first polarity change).
また、固定子2の注目領域ER2内において、可動子3の第1領域MR1における一方のN極部33nと隣接する、固定子2の1行1列目、2行1列目及び1行2列目の極性可変素子S11,S21,S12は、当該第1領域MR1のN極部33nと同じ極性とする。固定子2の注目領域ER2内において、可動子3の第1領域MR1における他方のS極部34sと隣接する、固定子2の1行3列目の極性可変素子S13は、当該第1領域MR1のS極部34sと同じ極性とする。さらに、固定子2の注目領域ER2内において、可動子3の第2領域MR2における一方のS極部34sと隣接する、固定子2の3行1列目の極性可変素子S31は、当該第2領域MR2のS極部34sと同じ極性とする。
In addition, in the region of interest ER2 of the stator 2, the polarity variable elements S11, S21, and S12 in the first row , first column, second row, first column, and first row , second column of the stator 2 adjacent to one N-pole portion 33n in the first region MR1 of the mover 3 have the same polarity as the N-pole portion 33n in the first region MR1. In the region of interest ER2 of the stator 2, the polarity variable element S13 in the first row, third column of the stator 2 adjacent to the other S-pole portion 34s in the first region MR1 of the mover 3 has the same polarity as the S-pole portion 34s in the first region MR1. In addition, in the region of interest ER2 of the stator 2, the polarity variable element S31 in the third row, first column of the stator 2 adjacent to one S-pole portion 34s in the second region MR2 of the mover 3 has the same polarity as the S-pole portion 34s in the second region MR2.
次に、図35の並進回転動作第6パターン2に示すように、固定子2において極性切り替え1を行い、可動子3の第1領域MR1の一方の磁極部32(N極部33n)と対向する、固定子2の2行2列目の極性可変素子S22を、当該第1領域MR1の一方の磁極部32と同じ極性とし、磁力により第1領域MR1の一方の磁極部32を固定子2の当該極性可変素子S22から引き離す。可動子3の第1領域MR1におけるN極部33nを収縮(縮径)させ、当該第1領域MR1のN極部33nを固定子2の内周面と非接触にさせる。
35 , polarity switch 1 is performed in the stator 2, the polarity variable element S22 in the second row and second column of the stator 2, which faces one magnetic pole portion 32 (N-pole portion 33n) of the first region MR1 of the mover 3, is set to the same polarity as one magnetic pole portion 32 of the first region MR1, and the one magnetic pole portion 32 of the first region MR1 is separated from the polarity variable element S22 of the stator 2 by magnetic force. The N-pole portion 33n in the first region MR1 of the mover 3 is contracted (reduced in diameter) so that the N-pole portion 33n of the first region MR1 is brought out of contact with the inner circumferential surface of the stator 2.
次に、図35の並進回転動作第6パターン3に示すように、固定子2において極性切り替え2を行い、可動子3の第1領域MR1における一方の磁極部32(N極部33n)の移動方向に位置する、固定子2の1行1列目、2行1列目、1行2列目及び2行2列目の極性可変素子S11,S21,S12,S22を、第1領域MR1のN極部33nと異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 3 in Figure 35, polarity switching 2 is performed on the stator 2, and the polarity variable elements S11, S21, S12, and S22 in the first row, first column, second row, first column, and second row, second column of the stator 2, which are located in the movement direction of one of the magnetic pole portions 32 (N- pole portion 33n ) in the first region MR1 of the movable member 3, are set to have a polarity different from that of the N-pole portion 33n of the first region MR1.
これにより、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、磁力(可変素子31が弾性部材である場合には、移動方向側の可変部35が伸長していたことによる移動方向側への復元力(推進力)も)によって、固定子2の1行1列目、2行1列目、1行2列目及び2行2列目の極性可変素子S11,S21,S12,S22を跨いだ中間領域ER35に引き寄せられる。
As a result, one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 of the movable element 3 is attracted to an intermediate region ER35 straddling the polar variable elements S11, S21, S12, S22 in the first row, first column, second row, first column, and second row, second column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic material, by a restoring force (propulsion force) toward the direction of movement due to the extension of the variable portion 35 on the direction of movement side).
このようにして、可動子3の第1領域MR1における一方の磁極部32部分のみを、斜め方向に位置する固定子2の中間領域ER35まで移動させ、当該中間領域ER35で膨張(拡径)させて固定子2の内周面に接触させる(第2極性変更)。
In this way, only one of the magnetic pole portions 32 in the first region MR1 of the mover 3 is moved to the intermediate region ER35 of the stator 2 located in the diagonal direction, and is expanded (increased in diameter) in the intermediate region ER35 to come into contact with the inner circumferential surface of the stator 2 (second polarity change).
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1のN極部33nが斜め方向に移動した際に、第1領域MR1のN極部33n及びS極部34sとの間、第1領域MR1のN極部33nと第2領域MR2との間、をそれぞれ離して可変部35を伸長させ、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the N-pole portion 33n of the first region MR1 of the mover 3 moves in an oblique direction, the N-pole portion 33n of the first region MR1 and the S-pole portion 34s, and the N-pole portion 33n of the first region MR1 and the second region MR2 are separated from each other, thereby extending the variable portion 35, and generating a propulsive force in the oblique direction, which is the direction of movement.
次に、図36の並進回転動作第6パターン4に示すように、固定子2において極性切り替え3を行い、注目領域ER2内の全ての極性可変素子22をS極とする。すなわち、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)と、に対応する、固定子2の2行3列目及び3行2列目の極性可変素子S23,S32をそれぞれ可動子3の当該S極部34sと同じ極性とする。
36, polarity switching 3 is performed on the stator 2, and all the polarity variable elements 22 in the region of interest ER2 are set to S poles. That is, the polarity variable elements S23 and S32 in the second row, third column and the third row, second column of the stator 2, which correspond to the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the mover 3 and one magnetic pole portion 32 (S pole portion 34s) in the second region MR2 , are set to the same polarity as the S pole portion 34s of the mover 3.
また、並進回転動作第6パターン4では、極性切り替え3を行い、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)との移動方向に位置する、固定子2の1行3列目及び3行1列目の極性可変素子S13,S31をそれぞれ可動子3の当該S極部34sと同じ極性とする。
In addition, in the sixth translational rotation operation pattern 4, polarity switching 3 is performed, and the polarity variable elements S13, S31 in the first row, third column and the third row, first column of the stator 2, which are located in the movement direction of the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the movable member 3 and one magnetic pole portion 32 (S pole portion 34s ) in the second region MR2, are each set to the same polarity as the S pole portion 34s of the movable member 3.
これにより、可動子3は、第1領域MR1及び第2領域MR2のN極部33nが、磁力により固定子2の中間領域ER35及び極性可変素子S33に引き寄せられて膨張(拡径)し、固定子2の内周面と接触した状態になり、一方、第1領域MR1及び第2領域MR2のS極部34sが、磁力により固定子2の極性可変素子S23,S32から引き離されて収縮(縮径)し、固定子2の内周面と非接触した状態になる。
As a result, the N-pole portions 33n of the first region MR1 and the second region MR2 of the mover 3 are attracted to the intermediate region ER35 and the polarity variable element S33 of the stator 2 by magnetic force, expanding (widening in diameter) and coming into contact with the inner surface of the stator 2, while the S-pole portions 34s of the first region MR1 and the second region MR2 are pulled away from the polarity variable elements S23 , S32 of the stator 2 by magnetic force, contracting (reducing in diameter) and coming out of contact with the inner surface of the stator 2.
次に、図36の並進回転動作第6パターン5に示すように、固定子2において極性切り替え4を行い、可動子3の第1領域MR1における一方の磁極部32(N極部33n)と、第2領域MR2における他方の磁極部32(N極部33n)と接触している、固定子2の極性可変素子S11,S33以外の極性可変素子S21,S31,S12,S32,S23,S13,S23を、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)と異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 5 of Figure 36, polarity switching 4 is performed in the stator 2, and the polarity variable elements S21, S31, S12, S32, S23, S13, and S23 of the stator 2 other than the polarity variable elements S11 and S33 , which are in contact with one magnetic pole portion 32 (N pole portion 33n) in the first region MR1 of the movable member 3 and the other magnetic pole portion 32 (N pole portion 33n ) in the second region MR2 , are set to have a polarity different from the polarity of the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the movable member 3 and one magnetic pole portion 32 (S pole portion 34s) in the second region MR2.
これにより、可動子3の第2領域MR2における一方の磁極部32(S極部34s)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目、3行1列目、2行2列目及び3行2列目の極性可変素子S21,S31,S22,S32に跨る中間領域ER39に引き寄せられ、第1領域MR1における一方の磁極部32(N極部33n)に近づいた状態となる。
As a result, one of the magnetic pole portions 32 (S pole portion 34s) in the second region MR2 of the movable member 3 is attracted to the intermediate region ER39 spanning the polar variable elements S21, S31, S22, and S32 in the first column of the second row, the first column of the third row, the second column of the second row, and the second column of the third row of the stator 2 by magnetic force (and, if the variable element 31 is an elastic member, the restoring force in the direction of movement due to the extension of the variable portion 35 of the movable member 3 ), and is brought into a state of approaching one of the magnetic pole portions 32 (N pole portion 33n) in the first region MR1.
また、可動子3の第1領域MR1における他方の磁極部32(S極部34s)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の1行2列目、2行2列目、1行3列目及び2行3列目の極性可変素子S12,S22,S13,S23に跨る中間領域ER37に引き寄せられ、第1領域MR1における一方の磁極部32(N極部33n)に近づいた状態となる。
In addition, the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the mover 3 is attracted to the intermediate region ER37 spanning the polarity variable elements S12, S22, S13, and S23 in the first row, second column, second row, second column, first row, third column, and second row, third column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic member, by the restoring force in the direction of movement due to the extension of the variable portion 35 of the mover 3 ) , and is brought into a state of approaching one of the magnetic pole portions 32 (N pole portion 33n) in the first region MR1.
なお、このとき、第1領域MR1における一方の磁極部32(N極部33n)は、定子2の1行1列目の極性可変素子S11の一部領域ER38に引き寄せられて膨張(拡径)し、固定子2の内周面に接触した状態を維持し得る。
At this time, one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 is attracted to a partial region ER38 of the polarity variable element S11 in the first row and first column of the stator 2, and expands (increases in diameter), and can maintain a state of contact with the inner surface of the stator 2.
なお、可変素子31が弾性部材である場合、可動子3では、第2領域MR2の他方の磁極部32(N極部33n)と第1領域MR1との間、第2領域MR2の他方の磁極部32(N極部33n)と第2領域MR2の一方の磁極部32(S極部34s)との間を離し、可変部35を伸長させることから、当該可変部35において移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, the movable member 3 separates the other magnetic pole portion 32 (N pole portion 33n) of the second region MR2 from the first region MR1, and the other magnetic pole portion 32 (N pole portion 33n) of the second region MR2 from one magnetic pole portion 32 (S pole portion 34s) of the second region MR2, and extends the variable portion 35, so that it is desirable that a propulsive force is generated in the variable portion 35 in the diagonal direction, which is the direction of movement.
次に、図36の並進回転動作第6パターン6に示すように、固定子2において極性切り替え5を行い、第2領域MR2の他方の磁極部32(N極部33n)が位置している、固定子2の3行3列目の極性可変素子S33を、当該第2領域MR2の他方の磁極部32(N極部33n)と同じ極性とする。これにより、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の極性可変素子S33から引き離されて収縮(縮径)し、固定子2の内周面と非接触になる。
36, polarity switching 5 is performed in the stator 2, and the polarity variable element S33 in the third row and third column of the stator 2, where the other magnetic pole portion 32 (N-pole portion 33n) of the second region MR2 is located, is set to the same polarity as the other magnetic pole portion 32 (N-pole portion 33n) of the second region MR2. As a result, the other magnetic pole portion 32 (N-pole portion 33n) of the mover 3 in the second region MR2 is pulled away from the polarity variable element S33 of the stator 2 and contracts (reduced in diameter), and comes out of contact with the inner circumferential surface of the stator 2.
次に、図37の並進回転動作第6パターン7に示すように、固定子2において極性切り替え6を行い、可動子3の第2領域MR2における他方の磁極部32(N極部33n)の移動方向に位置する、固定子2の2行2列目、3行2列目、2行3列目及び3行3列目の極性可変素子S22,S32,S23,S33を、第2領域MR2における他方の磁極部32(N極部33n)と異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 7 of Figure 37, polarity switching 6 is performed in the stator 2, and the polarity variable elements S22, S32, S23, and S33 in the second row, second column, third row, second column, and third row, third column of the stator 2, which are located in the movement direction of the other magnetic pole portion 32 (N pole portion 33n ) in the second region MR2 of the movable member 3, are set to have a polarity different from that of the other magnetic pole portion 32 (N pole portion 33n) in the second region MR2.
これにより、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行2列目、3行2列目、2行3列目及び3行3列目の極性可変素子S22,S32,S23,S33を跨る中間領域ER43に引き寄せられる。可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の中間領域ER43部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3 is attracted to an intermediate region ER43 spanning the polarity variable elements S22, S32, S23, and S33 in the second row, second column, the third row, second column, the second row, third column, and the third row, third column of the stator 2 by a magnetic force (and a restoring force in the movement direction due to the extension of the variable portion 35 of the mover 3 if the variable element 31 is an elastic member). The other magnetic pole portion 32 (N - pole portion 33n ) in the second region MR2 of the mover 3 expands (increases in diameter) in the intermediate region ER43 of the stator 2 and comes into contact with the inner circumferential surface of the stator 2.
なお、このとき、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、固定子2の2行2列目の極性可変素子S22が当該磁極部32と異なる極性に変わることで、当該極性可変素子S22の一部領域ER41にも引き寄せられて膨張(拡径)し、固定子2の内周面に接触する。また、可動子3の第1領域MR1における他方の磁極部32(S極部34s)は、固定子2の2行2列目及び2行3列目の極性可変素子S22,S23が当該磁極部32と同じ極性に変わることで、固定子2の1行2列目及び1行3列目の極性可変素子S12,S13を跨る中間領域ER42部分に引き寄せられて膨張(拡径)し、固定子2の内周面に接触する。さらに、可動子3の第2領域MR2における一方の磁極部32(S極部34s)は、固定子2の2行2列目及び3行2列目の極性可変素子S22,S32が当該磁極部32と同じ極性に変わることで、固定子2の2行1列目及び3行1列目の極性可変素子S21,S31を跨る中間領域ER40部分に引き寄せられて膨張(拡径)し、固定子2の内周面に接触する。
At this time, one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is attracted to a partial region ER41 of the polarity variable element S22 because the polarity variable element S22 in the second row, second column of the stator 2 changes to a polarity different from that of the magnetic pole portion 32 , and expands (expands in diameter) and comes into contact with the inner circumferential surface of the stator 2. Also, the other magnetic pole portion 32 (S-pole portion 34s) in the first region MR1 of the mover 3 is attracted to an intermediate region ER42 straddling the polarity variable elements S12 , S13 in the first row, second column and first row, third column of the stator 2 because the polarity variable elements S22 , S23 in the second row, second column and second row, third column of the stator 2 change to the same polarity as the magnetic pole portion 32, and expands (expands in diameter) and comes into contact with the inner circumferential surface of the stator 2. Furthermore, as the polarity variable elements S22 , S32 in the second row, second column and the third row, second column of the stator 2 change to the same polarity as the magnetic pole portion 32, one of the magnetic pole portions 32 (S pole portion 34s ) in the second region MR2 of the mover 3 is attracted to the intermediate region ER40 spanning the polarity variable elements S21 , S31 in the second row, first column and the third row, first column of the stator 2, and expands (increases in diameter) and comes into contact with the inner surface of the stator 2.
次に、図37の並進回転動作第6パターン8に示すように、固定子2において極性切り替え7を行い、可動子3の第1領域MR1における一方の磁極部32(N極部33n)が位置する、固定子2の2行2列目の極性可変素子S22と、当該磁極部32の移動方向に位置する、固定子2の1行1列目の極性可変素子S11と、を当該磁極部32と同じ極性とする。これにより、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、固定子2の極性可変素子S11,S22から引き離されて収縮(縮径)し、固定子2の内周面と非接触になる。
37 , polarity switching 7 is performed in the stator 2, and the polarity variable element S22 in the second row, second column of the stator 2, where one magnetic pole portion 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is located, and the polarity variable element S11 in the first row, first column of the stator 2, where the one magnetic pole portion 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is located, are set to the same polarity as the magnetic pole portion 32. As a result, the one magnetic pole portion 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is pulled away from the polarity variable elements S11 , S22 of the stator 2 and contracts (reduced in diameter), and comes out of contact with the inner circumferential surface of the stator 2.
なお、このとき、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、可動子3の第2領域MR2における一方の磁極部32(S極部34s)は、固定子2の2行2列目の極性可変素子S22が当該磁極部32と異なる極性に変わることで、当該極性可変素子S22の一部領域ER45にも引き寄せられて膨張(拡径)し、固定子2の内周面に接触する。また、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の2行2列目の極性可変素子S22が当該磁極部32と同じ極性に変わることで、当該極性可変素子S22から離れて収縮(縮径)し、固定子2の極性可変素子S22部分の内周面と非接触となる。
At this time, the other magnetic pole portion 32 (S-pole portion 34s) in the first region MR1 of the mover 3 and one magnetic pole portion 32 (S-pole portion 34s) in the second region MR2 of the mover 3 are also attracted to a partial region ER45 of the polarity variable element S22 by the polarity variable element S22 in the second row and second column of the stator 2 changing to a polarity different from that of the magnetic pole portion 32, and expand (increase in diameter), and come into contact with the inner circumferential surface of the stator 2. Also, the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3 is moved away from the polarity variable element S22 by the polarity variable element S22 in the second row and second column of the stator 2 changing to the same polarity as that of the magnetic pole portion 32, and contracts (reduced in diameter), and comes out of contact with the inner circumferential surface of the polarity variable element S22 portion of the stator 2.
次に、図37の並進回転動作第6パターン9に示すように、固定子2において極性切り替え8を行い、可動子3の第1領域MR1における一方の磁極部32(N極部33n)の移動方向(斜め方向)に位置する、固定子2の1行1列目の極性可変素子S11を、当該磁極部32と異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 9 in Figure 37, polarity switching 8 is performed in the stator 2, and the polarity-variable element S11 in the first row and first column of the stator 2, which is located in the movement direction (diagonal direction) of one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 of the movable member 3, is set to a polarity different from that of the magnetic pole portion 32.
これにより、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、磁力によって、固定子2の1行1列目の極性可変素子S11に引き寄せられる。これにより、可動子3の第1領域MR1における一方の磁極部32(N極部33n)は、固定子2の極性可変素子S11部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 of the mover 3 is attracted by magnetic force to the polarity variable element S11 in the first row and first column of the stator 2. As a result, the one of the magnetic pole portions 32 (N-pole portion 33n) in the first region MR1 of the mover 3 expands (increases in diameter) at the polarity variable element S11 portion of the stator 2 and comes into contact with the inner circumferential surface of the stator 2.
なお、可変素子31が弾性部材である場合、可動子3では、第1領域MR1のN極部33nが斜め方向に移動した際に、第1領域MR1のN極部33n及びS極部34sとの間、第1領域MR1のN極部33nと第2領域MR2との間、をそれぞれ離して可変部35を伸長させ、移動方向である斜め方向側への推進力が生じた状態になることが望ましい。
When the variable element 31 is an elastic member, it is desirable that when the N-pole portion 33n of the first region MR1 of the mover 3 moves in an oblique direction, the N-pole portion 33n of the first region MR1 and the S-pole portion 34s, and the N-pole portion 33n of the first region MR1 and the second region MR2 are separated from each other, thereby extending the variable portion 35, and generating a propulsive force in the oblique direction, which is the direction of movement.
次に、図38の並進回転動作第6パターン10に示すように、固定子2において極性切り替え9を行い、注目領域ER2内の全ての極性可変素子22をS極とする。すなわち、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)と、に対応する、固定子2の2行1列目、3行1列目、1行2列目、2行2列目及び1行3列目の極性可変素子S21,S31,S12,S22,S13をそれぞれ可動子3の当該S極部34sと同じ極性とする。これにより、可動子3は、第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)とが、磁力により固定子2の極性可変素子S21,S31,S12,S22,S13から引き離されて収縮(縮径)し、固定子2の内周面と非接触した状態になる。
38, polarity switching 9 is performed in the stator 2, and all the polarity variable elements 22 in the region of interest ER2 are set to S poles. That is, the polarity variable elements S21, S31, S12, S22, S13 in the second row and first column, the third row and first column, the first row and second column, the second row and second column, and the first row and third column of the stator 2, which correspond to the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the mover 3 and one magnetic pole portion 32 (S pole portion 34s ) in the second region MR2, are set to the same polarity as the S pole portion 34s of the mover 3. As a result, the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 and one magnetic pole portion 32 (S pole portion 34s) in the second region MR2 are pulled away from the polarity variable elements S21 , S31 , S12 , S22 , and S13 of the stator 2 by magnetic force, contracting (reducing in diameter) and becoming non-contact with the inner surface of the stator 2.
次に、図38の並進回転動作第6パターン11に示すように、固定子2において極性切り替え10を行い、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)との移動方向に位置する、固定子2の2行1列目及び1行2列目の極性可変素子S21,S12を、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)と異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 11 in Figure 38, polarity switching 10 is performed in the stator 2, and the polarity variable elements S21, S12 in the second row, first column and the first row, second column of the stator 2, which are located in the movement direction of the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the movable member 3 and one magnetic pole portion 32 (S pole portion 34s) in the second region MR2, are set to have a polarity different from that of the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the movable member 3 and one magnetic pole portion 32 (S pole portion 34s) in the second region MR2.
これにより、可動子3の第1領域MR1における他方の磁極部32(S極部34s)と、第2領域MR2における一方の磁極部32(S極部34s)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行1列目及び1行2列目の極性可変素子S21,S12に引き寄せられ、第1領域MR1における一方の磁極部32(N極部33n)に近づいた状態となる。
As a result, the other magnetic pole portion 32 (S pole portion 34s) in the first region MR1 of the movable member 3 and one of the magnetic pole portions 32 (S pole portion 34s) in the second region MR2 are attracted to the polarity variable elements S21, S12 in the second row, first column and the first row, second column of the stator 2 by magnetic force (and, if the variable element 31 is an elastic material, also by the restoring force in the direction of movement due to the extension of the variable portion 35 of the movable member 3 ) , and are brought into a state of approaching the one of the magnetic pole portions 32 (N pole portion 33n) in the first region MR1.
次に、図38の並進回転動作第6パターン12に示すように、固定子2において極性切り替え11を行い、第2領域MR2の他方の磁極部32(N極部33n)が位置している、固定子2の2行2列目、3行2列目、2行3列目及び3行3列目の極性可変素子S22,S32,S23,S33を、当該第2領域MR2の他方の磁極部32(N極部33n)と同じ極性とする。これにより、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の極性可変素子S22,S32,S23,S33を跨る中間領域から引き離されて収縮(縮径)し、固定子2の内周面と非接触になる。
38, polarity switching 11 is performed in the stator 2, and the polarity variable elements S22, S32, S23, and S33 in the second row, second column, the third row, second column, and the third row, third column of the stator 2, where the other magnetic pole portion 32 (N-pole portion 33n ) of the second region MR2 is located, are set to the same polarity as the other magnetic pole portion 32 (N-pole portion 33n ) of the second region MR2. As a result , the other magnetic pole portion 32 (N-pole portion 33n) of the second region MR2 of the mover 3 is pulled away from the intermediate region spanning the polarity variable elements S22 , S32 , S23 , and S33 of the stator 2, contracts (reduced in diameter), and comes out of contact with the inner circumferential surface of the stator 2.
次に、図39の並進回転動作第6パターン13に示すように、固定子2において極性切り替え12を行い、可動子3の第2領域MR2における他方の磁極部32(N極部33n)の移動方向に位置する、固定子2の2行2列目の極性可変素子S22を、第2領域MR2における他方の磁極部32(N極部33n)と異なる極性とする。
Next, as shown in the sixth translational rotation operation pattern 13 of Figure 39, polarity switching 12 is performed in the stator 2, and the polarity-variable element S22 in the second row and second column of the stator 2, which is located in the movement direction of the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the movable member 3, is set to a polarity different from that of the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2.
これにより、可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、磁力(可変素子31が弾性部材である場合には、可動子3の可変部35が伸長していたことによる移動方向側への復元力も)によって、固定子2の2行2列目の極性可変素子S22に引き寄せられる。可動子3の第2領域MR2における他方の磁極部32(N極部33n)は、固定子2の極性可変素子S22部分で膨張(拡径)して固定子2の内周面に接触する。
As a result, the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3 is attracted to the polarity variable element S22 in the second row and second column of the stator 2 by magnetic force (and by a restoring force in the movement direction caused by the extension of the variable portion 35 of the mover 3, if the variable element 31 is an elastic member). The other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 of the mover 3 expands (increases in diameter) at the polarity variable element S22 portion of the stator 2 and comes into contact with the inner circumferential surface of the stator 2.
以上、ソフトアクチュエータ1では、固定子2の注目領域ER2毎にそれぞれ極性可変素子S11,S12,S13,S21,S22,S23,S31,S32,S33の極性切り替えが行われることで、可動子3の第1領域MR1の一方の磁極部32(N極部33n)を斜め方向に移動させて固定子2の面に接触させた後に、第1領域MR1の他方の磁極部32(S極部34s)と、第2領域MR2の一方の磁極部32(S極部34s)とを固定子2の面と非接触にして、第1領域MR1の一方の磁極部32(N極部33n)に近づけるように斜め方向に移動させる。さらに、ソフトアクチュエータ1では、第2領域MR2の他方の磁極部32(N極部33n)を固定子2の面と非接触にして、第1領域MR1の一方の磁極部32(N極部33n)に近づけるように斜め方向に移動させる。これにより、ソフトアクチュエータ1では、可動子3がこのような尺取虫状の動作を繰り返し行い、固定子2の面に沿って可動子3を斜め方向に並進回転させてゆくことができる。
As described above, in the soft actuator 1, the polarity of the polarity-variable elements S11 , S12 , S13 , S21 , S22 , S23 , S31 , S32 , and S33 is switched for each focus region ER2 of the stator 2, so that one of the magnetic pole portions 32 (N-pole portion 33n) of the first region MR1 of the mover 3 is moved diagonally to contact the surface of the stator 2, and then the other magnetic pole portion 32 (S-pole portion 34s) of the first region MR1 and one of the magnetic pole portions 32 (S-pole portion 34s) of the second region MR2 are brought out of contact with the surface of the stator 2 and moved diagonally toward the one of the magnetic pole portions 32 (N-pole portion 33n) of the first region MR1. Furthermore, in the soft actuator 1, the other magnetic pole portion 32 (N-pole portion 33n) in the second region MR2 is moved in an oblique direction so as to approach one magnetic pole portion 32 (N-pole portion 33n) in the first region MR1 without being in contact with the surface of the stator 2. As a result, in the soft actuator 1, the mover 3 repeats such an inchworm-like movement, and the mover 3 can be translated and rotated in an oblique direction along the surface of the stator 2.
(5)作用及び効果
以上の構成において、ソフトアクチュエータ1では、電流に基づいて異なる極性に変更可能な極性可変素子22が行列状に配置された固定子2と、固定子2と対向配置された曲折可能な可変素子31を有した可動子3とを備える。可動子3は、可変素子31の面に、極性が異なる磁極部32が交互に配置されており、固定子2における極性可変素子22の極性の切り替えに応じて、可変素子31が、固定子2の面に接触及び非接触を繰り返して固定子2の面に沿って移動する。従って、ソフトアクチュエータ1では、車輪や駆動装置などを可動子3に設けることがなく、その分、簡易な構成とし得、固定子2に極性可変素子22を設けることで、様々な固定子2に対して可動子3を自由に移動させることができる。
(5) Actions and Effects In the above configuration, the soft actuator 1 includes a stator 2 in which the polarity variable elements 22 that can be changed to different polarities based on a current are arranged in a matrix, and a mover 3 having a bendable variable element 31 arranged opposite the stator 2. The mover 3 has magnetic pole portions 32 of different polarities arranged alternately on the surface of the variable element 31, and the variable element 31 moves along the surface of the stator 2 by repeatedly coming into and out of contact with the surface of the stator 2 in response to switching of the polarity of the polarity variable elements 22 in the stator 2. Therefore, in the soft actuator 1, wheels, a driving device, etc. are not provided on the mover 3, and the configuration can be simplified accordingly, and by providing the polarity variable elements 22 on the stator 2, the mover 3 can be freely moved relative to various stators 2.
また、本実施形態に係る可動子3は、固定子2の面方向内における軸方向X1(一方向)、面方向内で軸方向X1と直交する周方向C1(他方向)、及び、面方向内で軸方向X1と周方向C1との両方向に対して傾斜した斜め方向のうち、少なくともいずれかの方向に伸長と収縮(縮径)とを繰り返すことによって、固定子2の表面に沿って尺取虫状に移動することができる。
The mover 3 according to this embodiment can move like an inchworm along the surface of the stator 2 by repeatedly expanding and contracting (reducing its diameter) in at least one of the following directions: the axial direction X1 (one direction) in the plane direction of the stator 2, the circumferential direction C1 (the other direction) perpendicular to the axial direction X1 in the plane direction, and the diagonal direction inclined with respect to both the axial direction X1 and the circumferential direction C1 in the plane direction.
本実施形態に係る固定子2は、可動子3の第1領域MR1(MC1)の磁極部32と、第1領域MR1(MC1)と隣接した第2領域MR2(MC2)の磁極部32と、を極性可変素子22の極性を変えて固定子2に接触させる(第1極性変更)。
In the stator 2 according to this embodiment, the magnetic pole portion 32 of the first region MR1 (MC1) of the mover 3 and the magnetic pole portion 32 of the second region MR2 (MC2) adjacent to the first region MR1 (MC1) are brought into contact with the stator 2 by changing the polarity of the polarity variable element 22 (first polarity change).
また、固定子2は、可動子3の第2領域MR2(MC2)の磁極部32を固定子2に接触させたまま、可動子3の第1領域MR1(MC1)の磁極部32が接触している位置の極性可変素子22と、可動子3の移動方向に位置する極性可変素子22の極性と、を変え、当該移動方向に位置する極性可変素子22に第1領域MR1(MC1)の磁極部32を引き寄せて、当該移動方向に位置する、極性を変えた極性可変素子22の位置に、第1領域MR1(MC1)の磁極部32を接触させる(第2極性変更)。
The stator 2 also changes the polarity of the polarity variable element 22 located in the moving direction of the mover 3 with the polarity variable element 22 at the position where the magnetic pole portion 32 of the second region MR2 (MC2) of the mover 3 is in contact with the stator 2, and attracts the magnetic pole portion 32 of the first region MR1 (MC1) to the polarity variable element 22 located in the moving direction, and brings the magnetic pole portion 32 of the first region MR1 (MC1) into contact with the position of the polarity variable element 22 with the changed polarity located in the moving direction (second polarity change).
さらに、固定子2は、可動子3の第1領域MR1(MC1)の磁極部32を固定子2の新たな位置に接触させたまま、可動子3の第2領域MR2(MC2)の磁極部32が接触している位置の極性可変素子22と、可動子3の移動方向に位置する極性可変素子22の極性と、を変え、当該移動方向に位置する極性可変素子22に、第2領域MR2(MC2)の磁極部32を引き寄せて、当該移動方向に位置する、極性を変えた極性可変素子22の位置に、第2領域MR2(MC2)の磁極部32を接触させる(第3極性変更)。
Furthermore, while keeping the magnetic pole portion 32 of the first region MR1 (MC1) of the mover 3 in contact with the new position of the stator 2, the stator 2 changes the polarity of the polarity variable element 22 located in the moving direction of the mover 3 with the polarity variable element 22 at the position where the magnetic pole portion 32 of the second region MR2 (MC2) of the mover 3 is in contact, and attracts the magnetic pole portion 32 of the second region MR2 (MC2) to the polarity variable element 22 located in the moving direction, and brings the magnetic pole portion 32 of the second region MR2 (MC2) into contact with the position of the polarity variable element 22 with the changed polarity located in the moving direction (third polarity change).
これにより、ソフトアクチュエータ1では、可動子3を固定子2の面に接触及び非接触を繰り返えさせて固定子2の面に沿って移動させることができる。
As a result, in the soft actuator 1, the mover 3 can be moved along the surface of the stator 2 by repeatedly coming into and out of contact with the surface of the stator 2.
(6)他の実施形態
なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、例えば、上述した実施形態においては、筒状体の固定子2と、固定子2の筒内空間に配置した、筒状の可動子3とを適用したが、本発明はこれに限らない。例えば、他の実施形態におけるソフトアクチュエータとしては、図40に示すように、シート状の固定子82とシート状の可動子83とを有するソフトアクチュエータ80であってもよい。
(6) Other embodiments The present invention is not limited to this embodiment, and various modifications are possible within the scope of the present invention, and for example, the above-mentioned embodiment applies a cylindrical stator 2 and a cylindrical mover 3 disposed in the cylindrical space of the stator 2, but the present invention is not limited to this. For example, a soft actuator in another embodiment may be a soft actuator 80 having a sheet-shaped stator 82 and a sheet-shaped mover 83, as shown in FIG.
この場合、ソフトアクチュエータ80の固定子82は、シート状体でなる固定子本体821を有し、固定子本体821の表面に複数の極性可変素子22が行列状に配置されている。また、可動子83は、シート状部材などの軟質な材料により形成されたシート状体の可変素子831を有しており、可変素子831の面に、チェッカーボード・パターンで、極性が異なる磁極部(N極部33n、S極部34s)32が交互に配置され、N極部33nとS極部34sとの間に可変部35をそれぞれ有する。
In this case, the stator 82 of the soft actuator 80 has a stator body 821 made of a sheet-like body, and a plurality of polarity variable elements 22 are arranged in a matrix on the surface of the stator body 821. The mover 83 has a sheet-like variable element 831 made of a soft material such as a sheet-like member, and magnetic pole parts (N pole part 33n, S pole part 34s) 32 with different polarities are alternately arranged in a checkerboard pattern on the surface of the variable element 831, and a variable part 35 is provided between each of the N pole part 33n and the S pole part 34s.
ソフトアクチュエータ80では、固定子82における極性可変素子22の極性の切り替えに応じて、可動子83が、固定子82の面に接触及び非接触を繰り返して固定子82の平面に沿って移動する。具体的には、固定子82の面方向内における一方向X2、当該面方向内で一方向X2と直交する他方向Y2、及び、面方向内で一方向X2と他方向Y2との両方向に対して傾斜した斜め方向のうち、少なくともいずれかの方向に、可動子83が伸長と収縮(縮径)とを繰り返し、固定子82の表面に沿って尺取虫状に移動する。
In the soft actuator 80, the mover 83 moves along the plane of the stator 82 by repeatedly coming into and out of contact with the surface of the stator 82 in response to switching of the polarity of the polarity variable element 22 in the stator 82. Specifically, the mover 83 repeatedly expands and contracts (reduced in diameter) in at least one of the following directions: one direction X2 within the plane direction of the stator 82, another direction Y2 perpendicular to the one direction X2 within the plane direction, and an oblique direction inclined relative to both the one direction X2 and the other direction Y2 within the plane direction, and moves like an inchworm along the surface of the stator 82.
また、他のソフトアクチュエータとしては、筒状体の固定子2にシート状の可動子83を組み合わせたソフトアクチュエータでもよく、シート状の固定子82に、筒状又は柱状の可動子3を組み合わせたソフトアクチュエータであってもよい。
Other soft actuators may be soft actuators in which a cylindrical stator 2 is combined with a sheet-shaped mover 83, or soft actuators in which a sheet-shaped stator 82 is combined with a cylindrical or columnar mover 3.
また、上述した実施形態においては、可動子3の第1領域MR1(MC1)及び第2領域MR2(MC2)を尺取虫状に動作させて固定子2の内周面(面)に沿って可動子3を移動させる動作例として、上述したように、「(2)並進動作」、「(3)回転動作」及び「(4)並進回転動作」について説明したが、本発明はこれに限らない。例えば、上述した「(2)並進動作」、「(3)回転動作」及び「(4)並進回転動作」を組み合わせた動作としてもよい。また、「(4)並進回転動作」においては、可動子3の並進回転動作を説明するために、軸方向X1に磁極部32が並んだ第1領域MC1と第2領域MC2を適用して説明したが、本発明はこれに限らず、周方向C1に磁極部32が並んだ第1領域MR1と第2領域MR2を適用して説明できることは言うまでもない。
In the above-mentioned embodiment, the first region MR1 (MC1) and the second region MR2 (MC2) of the mover 3 are moved in an inchworm-like manner to move the mover 3 along the inner circumferential surface (face) of the stator 2. As an example, the above-mentioned "(2) translational motion", "(3) rotational motion" and "(4) translational rotational motion" have been described, but the present invention is not limited thereto. For example, the above-mentioned "(2) translational motion", "(3) rotational motion" and "(4) translational rotational motion" may be combined. In addition, in the "(4) translational rotational motion", the first region MC1 and the second region MC2 in which the magnetic pole parts 32 are aligned in the axial direction X1 have been described to explain the translational rotational motion of the mover 3. However, the present invention is not limited thereto, and it goes without saying that the present invention can be described by applying the first region MR1 and the second region MR2 in which the magnetic pole parts 32 are aligned in the circumferential direction C1.