JP3480156B2 - Precision feeder - Google Patents

Precision feeder

Info

Publication number
JP3480156B2
JP3480156B2 JP29902195A JP29902195A JP3480156B2 JP 3480156 B2 JP3480156 B2 JP 3480156B2 JP 29902195 A JP29902195 A JP 29902195A JP 29902195 A JP29902195 A JP 29902195A JP 3480156 B2 JP3480156 B2 JP 3480156B2
Authority
JP
Japan
Prior art keywords
rotor
phase
stator
output shaft
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29902195A
Other languages
Japanese (ja)
Other versions
JPH09121565A (en
Inventor
修司 茂呂
敏 坂本
英治 宮垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29902195A priority Critical patent/JP3480156B2/en
Publication of JPH09121565A publication Critical patent/JPH09121565A/en
Application granted granted Critical
Publication of JP3480156B2 publication Critical patent/JP3480156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、送りの対象物を
高精度に送ることができる精密送り装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision feeding device capable of feeding an object to be fed with high accuracy.

【0002】[0002]

【従来の技術】従来の送り装置としては、回転型の動力
発生装置にボールネジを組み合わせたものが通常用いら
れている。この回転型の動力発生装置には、一般的に磁
気モータが用いられる。ところが、送り装置の送り精度
を高めるには、磁気モータのマグネットの着磁やヨーク
の極数を上げる必要があり、送り精度の向上には一定の
限界があった。また、磁気モータは、外装ケース、ボビ
ン、コイル、マグネット、軸受け等から成る比較的多部
品の装置であって、一定の厚みを持つ金属製の装置であ
ることから、送り装置自体が重くなる傾向にある。この
ため、磁気モータを高速回転させたときに、送り装置が
慣性力で目標位置を越えることがあり、再現性の高い送
りが困難であるという欠点があった。
2. Description of the Related Art As a conventional feeder, a rotary power generator combined with a ball screw is usually used. A magnetic motor is generally used for this rotary power generation device. However, in order to improve the feeding accuracy of the feeding device, it is necessary to magnetize the magnet of the magnetic motor and increase the number of poles of the yoke, and there is a certain limit in improving the feeding accuracy. Further, since the magnetic motor is a device having a relatively large number of parts including an outer case, a bobbin, a coil, a magnet, a bearing, etc., and is a metal device having a certain thickness, the feeding device itself tends to be heavy. It is in. For this reason, when the magnetic motor is rotated at a high speed, the feeding device may exceed the target position due to inertial force, which makes it difficult to perform highly reproducible feeding.

【0003】そこで、近年、静電アクチュエータを直進
運動させて送り装置としたものが考案されている。図2
0(a)は、静電アクチュエータを用いた送り装置の概
略を示す図である。この送り装置は、電気的に高抵抗体
の材料で成るか、高抵抗膜で覆われた移動子2を、3相
の電極3a,3b,3cが表面部分に所定の間隔で配設
された絶縁体で成る固定子1上に載置した構成となって
いる。
Therefore, in recent years, a device in which an electrostatic actuator is linearly moved to form a feeding device has been devised. Figure 2
0 (a) is a diagram schematically showing a feeding device using an electrostatic actuator. In this feeder, a moving element 2 electrically made of a high resistance material or covered with a high resistance film is provided with three-phase electrodes 3a, 3b and 3c on a surface portion at a predetermined interval. It is mounted on a stator 1 made of an insulator.

【0004】このような構成において、その動作例を説
明する。先ず、図20(a)に示すように、固定子1の
各電極1a,1b,1cに電圧+V,−V,0を印加す
る。すると、移動子2内で電荷が移動し、同図(b)に
示すように、移動子2が正負に帯状に帯電する。ここ
で、固定子1の各電極1a,1b,1cへの印加電圧
を、同図(c)に示すように−V,+V,−Vに切り替
えると、固定子1の各電極1a,1b,1cの電荷は瞬
時に入れ替わるが、移動子2の電荷は高い抵抗に妨げら
れ、暫く元の位置に留まる。従って、固定子1の各電極
1a,1b,1cの電荷と、移動子2の電荷との間の作
用により、移動子2に垂直の反発力と右向きの駆動力が
発生する。そして、同図(d)に示すように、移動子2
は、電極1ピッチ程度動く。以上の操作を繰り返すこと
により、移動子2を連続移動させることができる。この
送り装置によれば、磁気モータを用いた送り装置よりも
精度が高く、再現性の高い送りが可能である。
An example of the operation in such a configuration will be described. First, as shown in FIG. 20A, voltages + V, −V, 0 are applied to the electrodes 1 a, 1 b, 1 c of the stator 1. Then, the charges move inside the mover 2, and the mover 2 is charged in a positive and negative band shape as shown in FIG. Here, when the applied voltage to each electrode 1a, 1b, 1c of the stator 1 is switched to -V, + V, -V as shown in FIG. 4C, each electrode 1a, 1b, The electric charge of 1c is replaced instantly, but the electric charge of the moving element 2 is hindered by the high resistance and stays at the original position for a while. Therefore, due to the action between the electric charge of each electrode 1a, 1b, 1c of the stator 1 and the electric charge of the moving element 2, a repulsive force perpendicular to the moving element 2 and a rightward driving force are generated. Then, as shown in FIG.
Moves about one electrode pitch. By repeating the above operation, the mover 2 can be continuously moved. According to this feeding device, it is possible to perform feeding with higher accuracy and reproducibility than that of a feeding device using a magnetic motor.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の静電ア
クチュエータを用いた送り装置では、移動子2の最小移
動距離は、固定子1の各電極1a,1b,1cのピッチ
で決まる。ところが、このピッチを小さくすることには
限界があるため、より高精度の送りを実現することが困
難であった。また、ピッチより小さな距離で移動子2の
送りを制御することが困難であるため、再現性のさらに
高い送りが困難であるという欠点があった。
In the above-mentioned conventional feeder using the electrostatic actuator, the minimum moving distance of the moving element 2 is determined by the pitch of the electrodes 1a, 1b, 1c of the stator 1. However, since there is a limit to reducing this pitch, it has been difficult to realize more accurate feed. Further, since it is difficult to control the feed of the moving element 2 at a distance smaller than the pitch, there is a drawback that it is difficult to feed with a higher reproducibility.

【0006】この発明は、上記課題を解消するためにな
されたものであり、精度や再現性が非常に高い精密送り
装置を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a precision feeding device having extremely high accuracy and reproducibility.

【0007】[0007]

【課題を解決するための手段】かかる課題を解決するた
め本発明の精密送り装置は、円柱状であって、端面に出
力軸を有し、出力軸に固定され該出力軸と共に回転可能
な回転子と、回転子を収納可能な円筒状であって、内周
面の周方向に少なくとも3相の電極パターンを有する固
定子とを備え、電極パターンに電圧を印加することによ
り、回転子と共に出力軸を回転させて送りの対象物を軸
方向に送る精密送り装置であって、出力軸にはおねじが
形成され、固定子の出力軸を支持する軸受けの内周面に
はめねじが形成されており、出力軸の回転運動を出力軸
の軸方向の直線方向に変換させる様にして、出力軸が回
転子と共に直線運動するように構成したものである。ま
た、本発明の精密送り装置は、円柱状であって、端面に
出力軸を有し、出力軸に固定され出力軸と共に回転可能
であり、外周面の周方向に少なくとも2相の電極パター
ンを有する回転子と、回転子を収納可能な円筒状であっ
て、内周面の周方向に電極パターンを有する固定子とを
備え、各電極パターンに電圧を印加することにより、回
転子と共に出力軸を回転させて送りの対象物を軸方向に
送る精密送り装置であって、出力軸にはおねじが形成さ
れ、固定子の出力軸を支持する軸受けの内周面にはめね
じが形成されており、出力軸の回転運動を出力軸の軸方
向の直線方向に変換させる様にして、出力軸が回転子と
共に直線運動するように構成したものである。
In order to solve the above-mentioned problems, a precision feeding device of the present invention has a cylindrical shape, has an output shaft on an end face, is fixed to the output shaft, and is rotatable with the output shaft. A rotor and a stator having a cylindrical shape capable of accommodating the rotor and having at least three-phase electrode patterns in the circumferential direction of the inner peripheral surface are provided, and the voltage is applied to the electrode patterns to output together with the rotor. A precision feed device that rotates a shaft to feed an object to be fed in the axial direction.A male screw is formed on the output shaft, and a female screw is formed on the inner peripheral surface of the bearing that supports the output shaft of the stator. The output shaft rotates by converting the rotational movement of the output shaft to the linear direction of the output shaft.
It is configured to move linearly with the trochanter . Further, the precision feeding device of the present invention has a cylindrical shape, has an output shaft on the end face, is fixed to the output shaft and is rotatable with the output shaft , and has an electrode pattern of at least two phases in the circumferential direction of the outer peripheral surface. The rotor having the rotor and the stator having a cylindrical shape capable of accommodating the rotor and having an electrode pattern in the circumferential direction of the inner peripheral surface, and applying a voltage to each electrode pattern, together with the rotor, output shaft. It is a precision feed device that feeds the object to be fed in the axial direction by rotating the.The output shaft has a male thread, and the bearing that supports the output shaft of the stator has a female thread formed on the inner peripheral surface. , The output shaft and the rotor are converted by converting the rotational motion of the output shaft to the linear direction of the output shaft.
Both are configured to move linearly .

【0008】上記構成によれば、電極パターンに+,−
あるいは0の電圧を印加することにより、静電力を発生
させて回転子及びこの回転子に連結された出力軸を回転
させ、その動力を送りの対象物に伝達するようにしてお
り、電極パターンのピッチを細かくすることにより、高
精度の送りを行うことができる。
According to the above structure, the electrode pattern is +,-
Alternatively, by applying a voltage of 0, an electrostatic force is generated to rotate the rotor and the output shaft connected to the rotor, and the power thereof is transmitted to the object to be fed. By making the pitch fine, it is possible to perform highly accurate feeding.

【0009】[0009]

【発明の実施の形態】以下、この発明の好適な実施の形
態を添付図面に基づいて詳細に説明する。なお、以下に
述べる実施の形態は、この発明の好適な具体例であるか
ら、技術的に好ましい種々の限定が付されているが、こ
の発明の範囲は、以下の説明において特にこの発明を限
定する旨の記載がない限り、これらの形態に限られるも
のではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The embodiments described below are preferred specific examples of the present invention, and therefore, various technically preferable limitations are given, but the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, it is not limited to these forms.

【0010】図1は、この発明の精密送り装置の一実施
形態である出力軸送り装置の概略を示す一部断面斜視図
である。この出力軸送り装置10は、円筒状の固定子1
1及び円柱状の回転子12が収納された円筒状の外装ケ
ース13並びに回転子12に固定された出力軸14を備
えている。固定子11は、絶縁体の基板で成り、その内
周面には図2の一部断面斜視図に示すように、所定の間
隔のピッチで3相(A相、B相、C相)の電極11a,
11b,11cが形成されている。
FIG. 1 is a partial cross-sectional perspective view showing an outline of an output shaft feeding device which is one embodiment of the precision feeding device of the present invention. The output shaft feeding device 10 includes a cylindrical stator 1
1 and a cylindrical outer case 13 accommodating a cylindrical rotor 12 and an output shaft 14 fixed to the rotor 12. The stator 11 is made of an insulating substrate, and has three phases (A phase, B phase, C phase) on its inner peripheral surface at a pitch of a predetermined interval as shown in the partial sectional perspective view of FIG. Electrode 11a,
11b and 11c are formed.

【0011】A相及びB相の電極11a,11bは、そ
れぞれ一端部が結線され、各結線部111a,111b
から固定子11の各端面に向かって引出し線112a,
112bが形成されている。そして、A相の電極11a
の引出し線112aは、図3に示すように、固定子11
の一端面から外周面に回り込んで他端面まで形成されて
いる。B相の電極11bの引出し線112bは、固定子
11の他端面から外周面に回り込んで形成されている。
C相の電極11cは、A相及びB相の電極11a,11
bに囲まれているので、C相の各電極11cの一端にて
固定子11の内周面から外周面に貫く穴が設けられ、各
穴を介して固定子11の外周面上で結線され、この結線
部111cから固定子11の他端面に向かって引出し線
112cが形成されている。そして、固定子11は、外
装ケース13の内周面に固定され、固定子11の他端面
に集められた各引出し線112a,112b,112c
の端部に電圧が印加されるようになっている。尚、電極
を形成した薄膜基板を絶縁体で成る固定子の表面に貼り
付けるようにしても良い。
One ends of the A-phase and B-phase electrodes 11a and 11b are respectively connected, and the connection parts 111a and 111b are connected.
To the respective end faces of the stator 11 from the lead wire 112a,
112b is formed. Then, the A-phase electrode 11a
The lead-out line 112a of the stator 11 is, as shown in FIG.
From one end face to the outer peripheral face and is formed to the other end face. The lead wire 112b of the B-phase electrode 11b is formed so as to extend from the other end surface of the stator 11 to the outer peripheral surface.
The C-phase electrodes 11c are the A-phase and B-phase electrodes 11a, 11
Since it is surrounded by b, a hole penetrating from the inner peripheral surface to the outer peripheral surface of the stator 11 is provided at one end of each C-phase electrode 11c, and is connected on the outer peripheral surface of the stator 11 through each hole. A lead wire 112c is formed from the connection portion 111c toward the other end surface of the stator 11. The stator 11 is fixed to the inner peripheral surface of the outer case 13, and the lead wires 112a, 112b, 112c gathered on the other end surface of the stator 11.
A voltage is applied to the end of the. The thin film substrate on which the electrodes are formed may be attached to the surface of the stator made of an insulator.

【0012】回転子12は、高抵抗体で成り、固定子1
1の内周側に所定の間隔を開けて配置されている。尚、
高抵抗体で成る材料を絶縁体で成る回転子に貼り付ける
ようにしても良い。また、回転子と出力軸を一体で成形
しても良い。外装ケース13の一端面は蓋131により
塞がれている。他端面には、出力軸14が突き出る穴が
設けられ、さらに出力軸14を支持する軸受け15が固
定されている。そして、出力軸14と軸受け15とが噛
み合うように、出力軸14の外周面には、おねじ(リー
ド・スクリュウ)が形成され、軸受け15の内周面に
は、めねじが形成されている。尚、出力軸14の開放端
部に連結部141を設け、移動台等の移動体に連結でき
るようにしても良い。
The rotor 12 is made of a high resistance material, and the stator 1
It is arranged at a predetermined interval on the inner peripheral side of 1. still,
A material made of a high resistance material may be attached to the rotor made of an insulator. Further, the rotor and the output shaft may be integrally formed. One end surface of the outer case 13 is closed by a lid 131. A hole through which the output shaft 14 projects is provided in the other end surface, and a bearing 15 that supports the output shaft 14 is fixed. A male screw (lead screw) is formed on the outer peripheral surface of the output shaft 14 so that the output shaft 14 and the bearing 15 mesh with each other, and a female screw is formed on the inner peripheral surface of the bearing 15. . A connecting portion 141 may be provided at the open end of the output shaft 14 so that it can be connected to a moving body such as a moving table.

【0013】このような構成において、その動作例を説
明する。先ず、固定子11の各電極11a,11b,1
1cに電圧+V,−V,0を印加する。すると、回転子
12内で電荷が移動し、回転子12が正負に帯状に帯電
する。ここで、固定子11の各電極11a,11b,1
1cへの印加電圧を、−V,+V,−Vに切り替える
と、固定子11の各電極11a,11b,11cの電荷
は瞬時に入れ替わるが、回転子12の電荷は高い抵抗に
妨げられ、暫く元の位置に留まる。従って、固定子11
の各電極11a,11b,11cの電荷と、回転子12
の電荷との間の作用により、回転子12に垂直の反発力
と回転の駆動力が発生する。そして、回転子12は、電
極1ピッチ程度動く。以上の操作を繰り返すことによ
り、回転子12を連続回転させることができる。この回
転子12の回転運動は、そのまま出力軸14の回転運動
となるが、軸受け15のリードにより直線運動に変換さ
れる。従って、出力軸14は軸方向に連続移動する。
尚、固定子11の各電極11a,11b,11cへの印
加電圧を上述とは逆方向に掛ければ、回転子12の回転
運動は逆方向となるので、出力軸14の移動も逆方向と
なる。
An example of the operation of such a configuration will be described. First, each electrode 11a, 11b, 1 of the stator 11 is
The voltage + V, -V, 0 is applied to 1c. Then, the electric charges move inside the rotor 12, and the rotor 12 is positively and negatively charged in a band shape. Here, each electrode 11a, 11b, 1 of the stator 11
When the voltage applied to 1c is switched to -V, + V, -V, the electric charges of the electrodes 11a, 11b, 11c of the stator 11 are instantly replaced, but the electric charge of the rotor 12 is hindered by the high resistance, and for a while. Stay in the original position. Therefore, the stator 11
Of the respective electrodes 11a, 11b, 11c of the
Due to the interaction between the electric charge and the electric charge of, a repulsive force perpendicular to the rotor 12 and a rotational driving force are generated. Then, the rotor 12 moves about one electrode pitch. By repeating the above operation, the rotor 12 can be continuously rotated. The rotary motion of the rotor 12 becomes the rotary motion of the output shaft 14 as it is, but is converted into a linear motion by the lead of the bearing 15. Therefore, the output shaft 14 continuously moves in the axial direction.
If the voltage applied to each electrode 11a, 11b, 11c of the stator 11 is applied in the opposite direction to the above, the rotational movement of the rotor 12 will be in the opposite direction, and the movement of the output shaft 14 will also be in the opposite direction. .

【0014】図4は、この発明の精密送り装置の別の実
施形態であるナット送り装置の概略を示す斜視図であ
る。このナット送り装置20は、円筒状の固定子21及
び円柱状の回転子22が収納された円筒状の外装ケース
23並びに外装ケース23の一端面に固定された送り機
構24を備えている。固定子21及び回転子22は、上
述した実施形態と同一構成である。外装ケース23の他
端面は蓋231により塞がれている。外装ケース23の
一端面には、送り機構24を構成する出力軸241が突
き出る穴が設けられている。
FIG. 4 is a perspective view schematically showing a nut feeding device which is another embodiment of the precision feeding device of the present invention. The nut feeding device 20 includes a cylindrical outer case 23 in which a cylindrical stator 21 and a cylindrical rotor 22 are housed, and a feeding mechanism 24 fixed to one end surface of the outer case 23. The stator 21 and the rotor 22 have the same structure as the above-mentioned embodiment. The other end surface of the outer case 23 is closed by a lid 231. A hole through which the output shaft 241 forming the feed mechanism 24 projects is provided on one end surface of the outer case 23.

【0015】送り機構24は、次のような構成となって
いる。断面がU字状の固定台242の一端面が外装ケー
ス23の他端面に固定されている。固定台242の他端
面には出力軸241を支持する軸受け243が固定され
ており、固定台242の両端面間で出力軸241が回転
可能に支持されるようになっている。尚、固定台242
の一端面にも出力軸241を支持する軸受けを固定すれ
ば、出力軸241の回転をよりスムースに行うことがで
きる。出力軸241の外周面には、おねじ(リード・ス
クリュウ)が形成されており、出力軸241の軸方向に
移動する移動ナット244がおねじに噛み合わされてい
る。そして、移動ナット244の回転を防止するための
棒状のナット回転止め245が、移動ナット244の張
出部244aを貫通して固定台242の両端面間に固定
支持されている。尚、移動ナット244の上部に連結部
244bを設け、移動台等の移動体に連結できるように
しても良い。
The feed mechanism 24 has the following structure. One end surface of the fixing base 242 having a U-shaped cross section is fixed to the other end surface of the outer case 23. A bearing 243 that supports the output shaft 241 is fixed to the other end surface of the fixed base 242, and the output shaft 241 is rotatably supported between both end faces of the fixed base 242. The fixed base 242
If the bearing that supports the output shaft 241 is fixed to one end surface of the output shaft 241 as well, the rotation of the output shaft 241 can be performed more smoothly. A male screw (lead screw) is formed on the outer peripheral surface of the output shaft 241, and a moving nut 244 that moves in the axial direction of the output shaft 241 is meshed with the male screw. Then, a rod-shaped nut rotation stopper 245 for preventing the rotation of the moving nut 244 penetrates the overhanging portion 244 a of the moving nut 244 and is fixedly supported between both end surfaces of the fixed base 242. A connecting portion 244b may be provided above the moving nut 244 so that it can be connected to a moving body such as a moving table.

【0016】このような構成において、その動作例を説
明する。先ず、固定子21の各電極に電圧+V,−V,
0を印加する。すると、回転子22内で電荷が移動し、
回転子22が正負に帯状に帯電する。ここで、固定子2
1の各電極への印加電圧を、−V,+V,−Vに切り替
えると、固定子21の各電極の電荷は瞬時に入れ替わる
が、回転子22の電荷は高い抵抗に妨げられ、暫く元の
位置に留まる。従って、固定子21の各電極の電荷と、
回転子22の電荷との間の作用により、回転子22に垂
直の反発力と回転の駆動力が発生する。そして、回転子
22は、電極1ピッチ程度動く。以上の操作を繰り返す
ことにより、回転子22を連続回転させることができ
る。この回転子22の回転運動は、そのまま出力軸24
1の回転運動となるが、移動ナット244のリードによ
り直線運動に変換される。従って、移動ナット244は
出力軸241の軸方向に連続移動する。尚、固定子21
の各電極への印加電圧を上述とは逆方向に掛ければ、回
転子22の回転運動は逆方向となるので、移動ナット2
44の移動も逆方向となる。
An example of the operation in such a configuration will be described. First, voltage + V, -V, is applied to each electrode of the stator 21.
0 is applied. Then, the charge moves inside the rotor 22,
The rotor 22 is positively and negatively charged in a strip shape. Where the stator 2
When the voltage applied to each electrode of No. 1 is switched to -V, + V, -V, the electric charge of each electrode of the stator 21 is instantly replaced, but the electric charge of the rotor 22 is hindered by the high resistance, and the original charge is temporarily lost. Stay in position. Therefore, the charge of each electrode of the stator 21
Due to the interaction between the electric charge of the rotor 22 and the rotor 22, a vertical repulsive force and a rotational driving force are generated. Then, the rotor 22 moves about one electrode pitch. By repeating the above operation, the rotor 22 can be continuously rotated. The rotary motion of the rotor 22 is directly applied to the output shaft 24.
Although the rotation movement is 1, the movement of the movement nut 244 is converted into a linear movement. Therefore, the moving nut 244 continuously moves in the axial direction of the output shaft 241. The stator 21
If the voltage applied to each of the electrodes is applied in the opposite direction to the above, the rotational movement of the rotor 22 will be in the opposite direction.
The movement of 44 is also in the opposite direction.

【0017】以上の精密送り装置は、固定子側にのみ電
極を形成する片側電極方式のものであるが、固定子側及
び回転子側の両方に電極を形成する両側電極方式のもの
も上記出力軸送り装置及びナット送り装置に適用できる
ので、以下にその構成を説明する。
The above precision feeding device is of the one-sided electrode type in which the electrodes are formed only on the stator side, but the one of the double-sided electrode type in which the electrodes are formed on both the stator side and the rotor side is also the above output. Since it can be applied to a shaft feeding device and a nut feeding device, the configuration will be described below.

【0018】図5及び図6は、図1及び図4に示す出力
軸送り装置10及びナット送り装置20の回転子12
(22)及び固定子11(21)と同様の回転子及び固
定子における電極の形成例を示す斜視図及び一部断面斜
視図である。回転子32の外周面には、所定の間隔のピ
ッチで電極32aが形成されている。電極32aは、出
力軸34側の一端部が結線されている。さらに、出力軸
34の外周面全体及び回転子32の出力軸34側の一端
面全体にも電極321aが形成され、結線部321bと
接続されている。
5 and 6 show the rotor 12 of the output shaft feeding device 10 and the nut feeding device 20 shown in FIGS.
(22) It is a perspective view and a partial sectional perspective view showing an example of forming electrodes in a rotor and a stator similar to the stator 11 (21). Electrodes 32a are formed on the outer peripheral surface of the rotor 32 at a pitch of a predetermined interval. One end of the electrode 32a on the output shaft 34 side is connected. Further, an electrode 321a is also formed on the entire outer peripheral surface of the output shaft 34 and the entire one end surface of the rotor 32 on the output shaft 34 side, and is connected to the connection portion 321b.

【0019】固定子31の内周面には、回転子32の電
極32aのピッチと同一の所定の間隔のピッチで2相
(A相、B相)の電極31a,31bが交互に形成され
ている。A相及びB相の電極31a,31bは、それぞ
れ一端部が結線され、各結線部311a,311bから
固定子31の各端面に向かって引出し線312a,31
2bが形成されている。そして、A相の電極31aの引
出し線312aは、図3と同様に、固定子31の一端面
から外周面に回り込んで他端面まで形成されている。B
相の電極31bの引出し線312bは、固定子31の他
端面から外周面に回り込んで形成されている。そして、
例えば出力軸34の開放端部及び固定子31の他端面に
集められた各引出し線312a,312bの端部に電圧
が印加されるようになっている。尚、電極を形成した薄
膜基板を絶縁体で成る回転子及び固定子の表面に貼り付
けるようにしても良い。
Two-phase (A-phase, B-phase) electrodes 31a and 31b are alternately formed on the inner peripheral surface of the stator 31 at a pitch of a predetermined interval which is the same as the pitch of the electrodes 32a of the rotor 32. There is. One ends of the A-phase and B-phase electrodes 31a and 31b are respectively connected, and lead wires 312a and 31b extend from the connection parts 311a and 311b toward the end faces of the stator 31, respectively.
2b is formed. The lead wire 312a of the A-phase electrode 31a extends from one end surface of the stator 31 to the outer peripheral surface and extends to the other end surface, as in FIG. B
The lead wire 312b of the phase electrode 31b is formed so as to extend from the other end surface of the stator 31 to the outer peripheral surface. And
For example, a voltage is applied to the open end of the output shaft 34 and the ends of the lead wires 312a and 312b gathered on the other end surface of the stator 31. The thin film substrate on which the electrodes are formed may be attached to the surfaces of the rotor and the stator made of an insulator.

【0020】このような構成において、各電極の配線パ
ターンの第1の実施形態の動作例を図7〜図9を用いて
説明する。図7は、回転子32側の電極32aと固定子
31側のA相及びB相の電極31a,31bを展開した
ときの配線パターンを示す図である。回転子32側の電
極32aと固定子31側のA相の電極31aは同位相に
形成され、固定子31側のB相の電極31bは、上記電
極に対して1/4波長ずれて形成されている。図8は、
固定子31側のA相及びB相の電極31a,31bに通
電する電圧波形を示す図であり、各時点a〜fにおける
回転子32の位置関係を図9で説明する。尚、図9の2
つ分の枡目が印加する電圧の1波長に相当する。
An example of the operation of the wiring pattern of each electrode in the first embodiment having such a configuration will be described with reference to FIGS. FIG. 7 is a diagram showing a wiring pattern when the electrode 32a on the rotor 32 side and the A-phase and B-phase electrodes 31a, 31b on the stator 31 side are expanded. The rotor 32 side electrode 32a and the stator 31 side A-phase electrode 31a are formed in the same phase, and the stator 31 side B-phase electrode 31b is formed with a 1/4 wavelength shift with respect to the above electrodes. ing. Figure 8
It is a figure which shows the voltage waveform which energizes A-phase and B-phase electrodes 31a and 31b by the side of the stator 31, and demonstrates the positional relationship of the rotor 32 in each time af. In addition, 2 in FIG.
One square corresponds to one wavelength of the applied voltage.

【0021】初期状態において、回転子32側の電極3
2aに正の電圧を印加し、回転子32側の電極32aを
正の電荷で帯電させておくと共に、固定子31側のA相
及びB相の電極31a,31bに電圧−V,0を印加
し、固定子31側のA相の電極31aを負の電荷で帯電
させておく(図9(a))。先ず、固定子31側のA相
及びB相の電極31a,31bへの印加電圧を、0,−
Vに切り替えると、固定子31側のA相及びB相の電極
31a,31bの電荷は瞬時に入れ替わる(図9
(b))。ここで、回転子32側の電極32aの正の電
荷と、固定子31側のB相の電極31bの負の電荷との
間の作用により、回転子32に垂直の吸引力と回転の駆
動力が発生する。そして、回転子32は、電極1/2ピ
ッチ程度動く。
In the initial state, the electrode 3 on the rotor 32 side
2a is applied with a positive voltage to charge the rotor 32 side electrode 32a with positive charges, and a voltage -V, 0 is applied to the A-phase and B-phase electrodes 31a, 31b on the stator 31 side. Then, the A-phase electrode 31a on the side of the stator 31 is charged with a negative charge (FIG. 9A). First, the applied voltages to the A-phase and B-phase electrodes 31a and 31b on the side of the stator 31 are 0,-
When switched to V, the electric charges of the A-phase and B-phase electrodes 31a and 31b on the side of the stator 31 are exchanged instantaneously (FIG. 9).
(B)). Here, due to the action between the positive charge of the electrode 32a on the rotor 32 side and the negative charge of the B-phase electrode 31b on the stator 31 side, the attraction force and the rotation driving force perpendicular to the rotor 32 are exerted. Occurs. Then, the rotor 32 moves about 1/2 pitch of the electrodes.

【0022】次に、固定子31側のA相及びB相の電極
31a,31bへの印加電圧を、+V,0に切り替える
と、固定子31側のA相及びB相の電極31a,31b
の電荷は瞬時に入れ替わる(図9(c))。ここで、回
転子32側の電極32aの正の電荷と、固定子31側の
A相の電極31aの正の電荷との間の作用により、回転
子32に垂直の反発力と回転の駆動力が発生する。そし
て、回転子32は、電極1/2ピッチ程度動く。次に、
固定子31側のA相及びB相の電極31a,31bへの
印加電圧を、0,+Vに切り替えると、固定子31側の
A相及びB相の電極31a,31bの電荷は瞬時に入れ
替わる(図9(d))。ここで、回転子32側の電極3
2aの正の電荷と、固定子31側のB相の電極31bの
正の電荷との間の作用により、回転子32に垂直の反発
力と回転の駆動力が発生する。そして、回転子32は、
電極1/2ピッチ程度動く。
Next, when the applied voltage to the A-phase and B-phase electrodes 31a and 31b on the stator 31 side is switched to + V, 0, the A-phase and B-phase electrodes 31a and 31b on the stator 31 side.
The electric charges of are instantly exchanged (FIG. 9C). Here, due to the action between the positive charge of the electrode 32a on the rotor 32 side and the positive charge of the A-phase electrode 31a on the stator 31 side, a repulsive force perpendicular to the rotor 32 and a rotational driving force are exerted. Occurs. Then, the rotor 32 moves about 1/2 pitch of the electrodes. next,
When the voltages applied to the A-phase and B-phase electrodes 31a and 31b on the stator 31 side are switched to 0 and + V, the charges on the A-phase and B-phase electrodes 31a and 31b on the stator 31 side are instantly exchanged ( FIG. 9D). Here, the electrode 3 on the rotor 32 side
Due to the action between the positive charge of 2a and the positive charge of the B-phase electrode 31b on the side of the stator 31, a vertical repulsive force and a rotational driving force are generated in the rotor 32. Then, the rotor 32 is
The electrode moves about 1/2 pitch.

【0023】次に、固定子31側のA相及びB相の電極
31a,31bへの印加電圧を、−V,0に切り替える
と、固定子31側のA相及びB相の電極31a,31b
の電荷は瞬時に入れ替わる(図9(e))。ここで、回
転子32側の電極32aの正の電荷と、固定子31側の
A相の電極31aの負の電荷との間の作用により、回転
子32に垂直の吸引力と回転の駆動力が発生する。そし
て、回転子32は、電極1/2ピッチ程度動く。
Next, when the applied voltage to the A-phase and B-phase electrodes 31a, 31b on the stator 31 side is switched to -V, 0, the A-phase and B-phase electrodes 31a, 31b on the stator 31 side.
The electric charges of are instantly exchanged (FIG. 9 (e)). Here, due to the action between the positive charge of the electrode 32a on the rotor 32 side and the negative charge of the A-phase electrode 31a on the stator 31 side, the attraction force and the rotation driving force perpendicular to the rotor 32 are exerted. Occurs. Then, the rotor 32 moves about 1/2 pitch of the electrodes.

【0024】さらに、固定子31側のA相及びB相の電
極31a,31bへの印加電圧を、0,−Vに切り替え
ると、固定子31側のA相及びB相の電極31a,31
bの電荷は瞬時に入れ替わる(図9(f))。この状態
で図9(b)の位置関係に戻ることになる。ここで、回
転子32側の電極32aの正の電荷と、固定子31側の
A相の電極31aの負の電荷との間の作用により、回転
子32に垂直の吸引力と回転の駆動力が発生する。そし
て、回転子32は、電極1/2ピッチ程度動く。以上の
操作を繰り返すことにより、回転子32を連続回転させ
ることができる。尚、固定子31側のA相及びB相の電
極31a,31bへの印加電圧を上述とは逆方向に掛け
るか、あるいは回転子32側の電極32aに負の電圧を
掛けることにより、回転子32の回転運動を逆方向とす
ることができる。
Further, when the voltage applied to the A-phase and B-phase electrodes 31a and 31b on the stator 31 side is switched to 0 and -V, the A-phase and B-phase electrodes 31a and 31 on the stator 31 side.
The charges of b are exchanged instantly (FIG. 9 (f)). In this state, the positional relationship shown in FIG. 9B is restored. Here, due to the action between the positive charge of the electrode 32a on the rotor 32 side and the negative charge of the A-phase electrode 31a on the stator 31 side, the attraction force and the rotation driving force perpendicular to the rotor 32 are exerted. Occurs. Then, the rotor 32 moves about 1/2 pitch of the electrodes. By repeating the above operation, the rotor 32 can be continuously rotated. Incidentally, by applying a voltage applied to the A-phase and B-phase electrodes 31a, 31b on the stator 31 side in the opposite direction to the above, or by applying a negative voltage to the electrode 32a on the rotor 32 side, The rotational movement of 32 can be reversed.

【0025】次に、各電極の配線パターンの第2の実施
形態の動作例を図10〜図12を用いて説明する。図1
0は、回転子32側の電極32aと固定子31側のA相
及びB相の電極31a,31bを展開したときの配線パ
ターンを示す図である。回転子32側の電極32aと固
定子31側のA相の一方の電極31a1は同位相に形成
され、固定子31側のA相の他方の電極31a1及びB
相の各電極31b1,31b2は、上記電極に対して順
次1/4波長ずれて形成されている。図11は、固定子
31側のA相及びB相の一方の電極31a1,31b1
に通電する電圧波形を示す図であり、各時点a〜fにお
ける回転子32の位置関係を図12で説明する。尚、図
12の回転子32側の電極32aは、2つ分の枡目が印
加する電圧の1波長に相当し、固定子31側のA相及び
B相の各電極31a1,31a2,31b1,31b2
は、4つ分の枡目が印加する電圧の1波長に相当する。
Next, an operation example of the wiring pattern of each electrode of the second embodiment will be described with reference to FIGS. Figure 1
0 is a diagram showing a wiring pattern when the electrode 32a on the rotor 32 side and the A-phase and B-phase electrodes 31a and 31b on the stator 31 side are expanded. The rotor 32 side electrode 32a and the stator 31 side A-phase one electrode 31a1 are formed in the same phase, and the stator 31 side A-phase other electrode 31a1 and B are formed.
The electrodes 31b1 and 31b2 of the phase are formed so as to be sequentially deviated from each other by 1/4 wavelength. FIG. 11 shows one of the A-phase and B-phase electrodes 31a1 and 31b1 on the side of the stator 31.
It is a figure which shows the voltage waveform which energizes to FIG. 12, and the positional relationship of the rotor 32 in each time af is demonstrated with FIG. The electrode 32a on the rotor 32 side in FIG. 12 corresponds to one wavelength of the voltage applied by the two meshes, and the A-phase and B-phase electrodes 31a1, 31a2, 31b1, on the stator 31 side. 31b2
Corresponds to one wavelength of the voltage applied by the four cells.

【0026】初期状態において、回転子32側の電極3
2aに正の電圧を印加し、回転子32側の電極32aを
正の電荷で帯電させておくと共に、固定子31側のA相
の電極31a1,31a2に電圧−V,+Vを印加し、
B相31b1,31b2に電圧0,0を印加し、固定子
31側のA相の電極31a1,31a2を負及び正の電
荷で帯電させておく(図12(a))。先ず、固定子3
1側のA相の電極31a1,31a2への印加電圧を、
0,0に切り替えると同時に、B相の電極31b1,3
1b2への印加電圧を、−V,+Vに切り替えると、固
定子31側のA相及びB相の電極31a1,31a2,
31b1,31b2の電荷は瞬時に入れ替わる(図12
(b))。ここで、回転子32側の電極32aの正の電
荷と、固定子31側のB相の一方の電極31b1の負の
電荷との間の作用により、回転子32に垂直の吸引力と
回転の駆動力が発生する。そして、回転子32は、電極
1/2ピッチ程度動く。
In the initial state, the electrode 3 on the rotor 32 side
2a is applied with a positive voltage to charge the rotor 32 side electrode 32a with a positive charge, and voltages -V, + V are applied to the A phase electrodes 31a1 and 31a2 on the stator 31 side,
Voltages 0 and 0 are applied to the B phases 31b1 and 31b2, and the A phase electrodes 31a1 and 31a2 on the stator 31 side are charged with negative and positive charges (FIG. 12A). First, the stator 3
The voltage applied to the A-phase electrodes 31a1 and 31a2 on the first side is
At the same time as switching to 0, 0, the B-phase electrodes 31b1, 3
When the applied voltage to 1b2 is switched to -V and + V, the A-phase and B-phase electrodes 31a1, 31a2 on the side of the stator 31.
The charges of 31b1 and 31b2 are exchanged instantaneously (FIG. 12).
(B)). Here, due to the action between the positive charge of the electrode 32a on the rotor 32 side and the negative charge of the one electrode 31b1 of the B phase on the stator 31 side, the attraction force and rotation perpendicular to the rotor 32 are generated. Driving force is generated. Then, the rotor 32 moves about 1/2 pitch of the electrodes.

【0027】次に、固定子31側のA相の電極31a
1,31a2への印加電圧を、+V,−Vに切り替える
と同時に、B相の電極31b1,31b2への印加電圧
を、0,0に切り替えると、固定子31側のA相及びB
相の電極31a1,31a2,31b1,31b2の電
荷は瞬時に入れ替わる(図12(c))。ここで、回転
子32側の電極32aの正の電荷と、固定子31側のA
相の一方の電極31a1の正の電荷及び他方の電極31
a2の負の電荷との間の作用により、回転子32に垂直
の反発力及び吸引力と回転の駆動力が発生する。そし
て、回転子32は、電極1/2ピッチ程度動く。次に、
固定子31側のA相の電極31a1,31a2への印加
電圧を、0,0に切り替えると同時に、B相の電極31
b1,31b2への印加電圧を、+V,−Vに切り替え
ると、固定子31側のA相及びB相の電極31a1,3
1a2,31b1,31b2の電荷は瞬時に入れ替わる
(図12(d))。ここで、回転子32側の電極32a
の正の電荷と、固定子31側のB相の一方の電極31b
1の正の電荷及び他方の電極31b2の負の電荷との間
の作用により、回転子32に垂直の反発力及び吸引力と
回転の駆動力が発生する。そして、回転子32は、電極
1/2ピッチ程度動く。
Next, the A-phase electrode 31a on the stator 31 side
When the applied voltage to the electrodes 31b1 and 31b2 is switched to + V and -V and the applied voltage to the B-phase electrodes 31b1 and 31b2 is switched to 0 and 0 at the same time, the A-phase and B-phase on the stator 31 side.
The electric charges of the phase electrodes 31a1, 31a2, 31b1, 31b2 are exchanged instantaneously (FIG. 12 (c)). Here, the positive charge of the electrode 32a on the rotor 32 side and A on the stator 31 side
Positive charge of one electrode 31a1 of the phase and the other electrode 31
Due to the action between a2 and the negative charge, a repulsive force and an attracting force perpendicular to the rotor 32 and a rotational driving force are generated. Then, the rotor 32 moves about 1/2 pitch of the electrodes. next,
The voltage applied to the A-phase electrodes 31a1 and 31a2 on the side of the stator 31 is switched to 0, 0, and at the same time, the B-phase electrodes 31a1 and 31a2 are switched.
When the applied voltage to b1 and 31b2 is switched to + V and −V, the A-phase and B-phase electrodes 31a1 and 3 on the side of the stator 31 are formed.
The charges of 1a2, 31b1 and 31b2 are exchanged instantaneously (FIG. 12 (d)). Here, the electrode 32a on the rotor 32 side
Positive charge and one of the B-phase electrodes 31b on the side of the stator 31
Due to the action between the positive charge of 1 and the negative charge of the other electrode 31b2, a repulsive force and an attracting force perpendicular to the rotor 32 and a rotational driving force are generated. Then, the rotor 32 moves about 1/2 pitch of the electrodes.

【0028】次に、固定子31側のA相の電極31a
1,31a2への印加電圧を、−V,+Vに切り替える
と同時に、B相の電極31b1,31b2への印加電圧
を、0,0に切り替えると、固定子31側のA相及びB
相の電極31a1,31a2,31b1,31b2の電
荷は瞬時に入れ替わる(図12(e))。ここで、回転
子32側の電極32aの正の電荷と、固定子31側のA
相の一方の電極31a1の負の電荷及び他方の電極31
a2の正の電荷との間の作用により、回転子32に垂直
の吸引力及び反発力と回転の駆動力が発生する。そし
て、回転子32は、電極1/2ピッチ程度動く。
Next, the A-phase electrode 31a on the stator 31 side
If the applied voltage to the electrodes 31b1 and 31b2 of the B phase is switched to 0 and 0 at the same time as the applied voltage to the 1, 31a2 is switched to -V and + V, the A phase and the B phase of the stator 31 side.
The electric charges of the phase electrodes 31a1, 31a2, 31b1, 31b2 are exchanged instantaneously (FIG. 12 (e)). Here, the positive charge of the electrode 32a on the rotor 32 side and A on the stator 31 side
Negative charge of one electrode 31a1 of the phase and the other electrode 31
Due to the action between a2 and the positive charge, a vertical attraction force and repulsion force and a rotation driving force are generated in the rotor 32. Then, the rotor 32 moves about 1/2 pitch of the electrodes.

【0029】さらに、固定子31側のA相の電極31a
1,31a2への印加電圧を、0,0に切り替えると同
時に、B相の電極31b1,31b2への印加電圧を、
−V,+Vに切り替えると、固定子31側のA相及びB
相の電極31a1,31a2,31b1,31b2の電
荷は瞬時に入れ替わる(図12(f))。この状態で図
12(b)の位置関係に戻ることになる。ここで、回転
子32側の電極32aの正の電荷と、固定子31側のB
相の一方の電極31b1の負の電荷との間の作用によ
り、回転子32に垂直の吸引力と回転の駆動力が発生す
る。そして、回転子32は、電極1/2ピッチ程度動
く。以上の操作を繰り返すことにより、回転子32を連
続回転させることができる。尚、固定子31側のA相及
びB相の電極31a1,31a2,31b1,31b2
への印加電圧を上述とは逆方向に掛けるか、あるいは回
転子32側の電極32aに負の電圧を掛けることによ
り、回転子32の回転運動を逆方向とすることができ
る。
Further, the A-phase electrode 31a on the stator 31 side
At the same time as switching the applied voltage to 1, 31a2 to 0, 0, the applied voltage to the B-phase electrodes 31b1 and 31b2 is changed to
When switched to −V and + V, A phase and B on the stator 31 side
The electric charges of the phase electrodes 31a1, 31a2, 31b1, 31b2 are exchanged instantaneously (FIG. 12 (f)). In this state, the positional relationship shown in FIG. 12B is restored. Here, the positive charge of the electrode 32a on the rotor 32 side and B on the stator 31 side
Due to the action between the negative charge of the one electrode 31b1 of the phase, a vertical attraction force and a rotation driving force are generated in the rotor 32. Then, the rotor 32 moves about 1/2 pitch of the electrodes. By repeating the above operation, the rotor 32 can be continuously rotated. Incidentally, the A-phase and B-phase electrodes 31a1, 31a2, 31b1, 31b2 on the side of the stator 31
The rotational motion of the rotor 32 can be reversed by applying the voltage applied to the rotor 32 in the opposite direction or by applying a negative voltage to the electrode 32a on the rotor 32 side.

【0030】次に、各電極の配線パターンの第3の実施
形態の動作例を図13、図14、図16及び図17を用
いて説明する。図13は、回転子32側の電極32aと
固定子31側のA相,B相及びC相の電極31a,31
b,31cを展開したときの配線パターンを示す図であ
る。固定子31側のA相,B相及びC相の電極31a,
31b,31cが1波長分に形成され、回転子32側の
電極32aが上記1波長分に相当するように形成されて
いる。図14は、固定子31側のA相,B相及びC相の
電極31a,31b,31cに通電する電圧波形、即ち
1波長内で順次120°づつオンとなる波形を示す図で
あり、各時点a〜gにおける回転子32の位置関係を図
16及び図17で説明する。
Next, an operation example of the third embodiment of the wiring pattern of each electrode will be described with reference to FIGS. 13, 14, 16 and 17. FIG. 13 shows the electrodes 32a on the rotor 32 side and the electrodes 31a, 31 for the A phase, B phase and C phase on the stator 31 side.
It is a figure which shows the wiring pattern when b and 31c are expanded. A-phase, B-phase and C-phase electrodes 31a on the side of the stator 31,
31b and 31c are formed for one wavelength, and the electrode 32a on the rotor 32 side is formed for one wavelength. FIG. 14 is a diagram showing voltage waveforms applied to the A-phase, B-phase, and C-phase electrodes 31a, 31b, 31c on the side of the stator 31, that is, waveforms that are sequentially turned on by 120 ° within one wavelength. The positional relationship of the rotor 32 at time points a to g will be described with reference to FIGS. 16 and 17.

【0031】初期状態において、回転子32側の電極3
2aに負の電圧を印加し、回転子32側の電極32aを
負の電荷で帯電させておくと共に、固定子31側のA
相,B相及びC相の電極31a,31b,31cへの印
加電圧を、オン、オフ、オンにして、固定子31側のA
相及びC相の電極31a,31cを正の電荷で帯電させ
ておく(図16(a))。先ず、固定子31側のC相の
電極31cへの印加電圧を、オフからオンに切り替える
と、固定子31側のC相の電極31cの電荷は瞬時に入
れ替わる(図16(b))。ここで、回転子32側の電
極32aの負の電荷と固定子31側のA相の電極31a
の正の電荷との間の作用により、回転子32に垂直の吸
引力と回転の駆動力が発生する。そして、回転子32
は、電極1/4ピッチ程度動く。
In the initial state, the electrode 3 on the rotor 32 side
A negative voltage is applied to 2a to charge the electrode 32a on the rotor 32 side with a negative charge, and A on the stator 31 side is charged.
The voltages applied to the electrodes 31a, 31b, and 31c of the B-phase, B-phase, and C-phase are turned on, off, and turned on, and
The phase-phase and C-phase electrodes 31a and 31c are charged with positive charges (FIG. 16A). First, when the voltage applied to the C-phase electrode 31c on the side of the stator 31 is switched from OFF to ON, the electric charges of the C-phase electrode 31c on the side of the stator 31 are switched instantaneously (FIG. 16 (b)). Here, the negative charge of the electrode 32a on the rotor 32 side and the A-phase electrode 31a on the stator 31 side
Between the positive charge and the positive charge of the rotor 32, a vertical attraction force and a rotation driving force are generated in the rotor 32. And the rotor 32
Moves about 1/4 pitch of the electrode.

【0032】次に、固定子31側のB相の電極31bへ
の印加電圧を、オフからオンに切り替えると、固定子3
1側のB相の電極31bの電荷は瞬時に入れ替わる(図
16(c))。ここで、回転子32側の電極32aの負
の電荷と、固定子31側のA相及びB相の電極31a,
31bの正の電荷との間の作用により、回転子32に垂
直の吸引力と回転の駆動力が発生する。そして、回転子
32は、電極1/4ピッチ程度動く。次に、固定子31
側のA相の電極31aへの印加電圧を、オンからオフに
切り替えると、固定子31側のA相の電極31aの電荷
は瞬時に入れ替わる(図16(d))。ここで、回転子
32側の電極32aの負の電荷と、固定子31側のB相
の電極31bの正の電荷との間の作用により、回転子3
2に垂直の吸引力と回転の駆動力が発生する。そして、
回転子32は、電極1/4ピッチ程度動く。
Next, when the voltage applied to the B-phase electrode 31b on the side of the stator 31 is switched from off to on, the stator 3
The charges of the B-phase electrode 31b on the first side are exchanged instantaneously (FIG. 16C). Here, the negative charge of the electrode 32a on the rotor 32 side and the A-phase and B-phase electrodes 31a on the stator 31 side,
By the action between the positive charge of 31b, a vertical attraction force and a rotation driving force are generated in the rotor 32. Then, the rotor 32 moves about 1/4 pitch of the electrodes. Next, the stator 31
When the voltage applied to the A-phase electrode 31a on the side is switched from on to off, the electric charge of the A-phase electrode 31a on the stator 31 side is instantaneously replaced (FIG. 16 (d)). Here, due to the action between the negative charge of the electrode 32a on the rotor 32 side and the positive charge of the B-phase electrode 31b on the stator 31 side, the rotor 3
A suction force perpendicular to 2 and a driving force for rotation are generated. And
The rotor 32 moves about 1/4 pitch of the electrodes.

【0033】次に、固定子31側のC相の電極31cへ
の印加電圧を、オフからオンに切り替えると、固定子3
1側のC相の電極31cの電荷は瞬時に入れ替わる(図
17(e))。ここで、回転子32側の電極32aの負
の電荷と、固定子31側のA相及びC相の電極31a,
31cの正の電荷との間の作用により、回転子32に垂
直の吸引力と回転の駆動力が発生する。そして、回転子
32は、電極1/4ピッチ程度動く。次に、固定子31
側のB相の電極31bへの印加電圧を、オンからオフに
切り替えると、固定子31側のB相の電極31bの電荷
は瞬時に入れ替わる(図17(f))。ここで、回転子
32側の電極32aの負の電荷と、固定子31側のC相
の電極31cの正の電荷との間の作用により、回転子3
2に垂直の吸引力と回転の駆動力が発生する。そして、
回転子32は、電極1/4ピッチ程度動く。
Next, when the voltage applied to the C-phase electrode 31c on the stator 31 side is switched from off to on, the stator 3
The charges of the C-phase electrode 31c on the first side are exchanged instantaneously (FIG. 17 (e)). Here, the negative charge of the electrode 32a on the rotor 32 side and the A-phase and C-phase electrodes 31a on the stator 31 side,
By the action between the positive charge of 31c, a vertical attraction force and a rotation driving force are generated in the rotor 32. Then, the rotor 32 moves about 1/4 pitch of the electrodes. Next, the stator 31
When the voltage applied to the B-phase electrode 31b on the side is switched from ON to OFF, the electric charge of the B-phase electrode 31b on the side of the stator 31 is switched instantaneously (FIG. 17 (f)). Here, due to the action between the negative charge of the electrode 32a on the rotor 32 side and the positive charge of the C-phase electrode 31c on the stator 31 side, the rotor 3
A suction force perpendicular to 2 and a driving force for rotation are generated. And
The rotor 32 moves about 1/4 pitch of the electrodes.

【0034】さらに、固定子31側のA相の電極31a
への印加電圧を、オフからオンに切り替えると、固定子
31側のA相の電極31aの電荷は瞬時に入れ替わる
(図17(g))。この状態で図16(a)の位置関係
に戻ることになる。ここで、回転子32側の電極32a
の負の電荷と、固定子31側のA相及びC相の電極31
a,31cの正の電荷との間の作用により、回転子32
に垂直の吸引力と回転の駆動力が発生する。そして、回
転子32は、電極1/4ピッチ程度動く。以上の操作を
繰り返すことにより、回転子32を連続回転させること
ができる。尚、固定子31側のA相,B相及びC相の電
極31a,31b,31cへの印加電圧を上述とは逆方
向に掛けるか、あるいは回転子32側の電極32aに正
の電圧を掛けることにより、回転子32の回転運動を逆
方向とすることができる。
Further, the A-phase electrode 31a on the stator 31 side
When the voltage applied to is switched from off to on, the electric charge of the A-phase electrode 31a on the side of the stator 31 is instantaneously replaced (FIG. 17 (g)). In this state, the positional relationship shown in FIG. Here, the electrode 32a on the rotor 32 side
Negative charge and the A-phase and C-phase electrodes 31 on the side of the stator 31
By the action between the positive charges of a and 31c, the rotor 32
A vertical suction force and rotation driving force are generated. Then, the rotor 32 moves about 1/4 pitch of the electrodes. By repeating the above operation, the rotor 32 can be continuously rotated. The voltage applied to the A-phase, B-phase and C-phase electrodes 31a, 31b, 31c on the side of the stator 31 is applied in the opposite direction to the above, or a positive voltage is applied to the electrode 32a on the side of the rotor 32. As a result, the rotational movement of the rotor 32 can be reversed.

【0035】次に、各電極の配線パターンの第4の実施
形態の動作例を図13、図15、図18及び図19を用
いて説明する。図13は、回転子32側の電極32aと
固定子31側のA相,B相及びC相の電極31a,31
b,31cを展開したときの配線パターンを示す図であ
る。固定子31側のA相,B相及びC相の電極31a,
31b,31cが1波長分に形成され、回転子32側の
電極32aが上記1波長分に相当するように形成されて
いる。図15は、固定子31側のA相,B相及びC相の
電極31a,31b,31cに通電する電圧波形、即ち
1波長内で順次120°づつずれ、かつ180°分正負
となる波形を示す図であり、各時点a〜gにおける回転
子32の位置関係を図18及び図19で説明する。
Next, an operation example of the wiring pattern of each electrode of the fourth embodiment will be described with reference to FIGS. 13, 15, 18, and 19. FIG. 13 shows the electrodes 32a on the rotor 32 side and the electrodes 31a, 31 for the A phase, B phase and C phase on the stator 31 side.
It is a figure which shows the wiring pattern when b and 31c are expanded. A-phase, B-phase and C-phase electrodes 31a on the side of the stator 31,
31b and 31c are formed for one wavelength, and the electrode 32a on the rotor 32 side is formed for one wavelength. FIG. 15 shows voltage waveforms applied to the A-phase, B-phase, and C-phase electrodes 31a, 31b, 31c on the stator 31 side, that is, waveforms that are sequentially shifted by 120 ° within one wavelength and are positive and negative by 180 °. It is a figure which shows, and the positional relationship of the rotor 32 in each time ag is demonstrated with FIG. 18 and FIG.

【0036】初期状態において、回転子32側の電極3
2aに負の電圧を印加し、回転子32側の電極32aを
負の電荷で帯電させておくと共に、固定子31側のA
相,B相及びC相の電極31a,31b,31cへの印
加電圧を、0,−V,+Vにして、固定子31側のB相
及びC相の電極31b,31cを負及び正の電荷で帯電
させておく(図18(a))。先ず、固定子31側のA
相及びC相の電極31a,31cへの印加電圧を、+
V,0に切り替えると、固定子31側のA相及びC相の
電極31a,31cの電荷は瞬時に入れ替わる(図18
(b))。ここで、回転子32側の電極32aの負の電
荷と、固定子31側のA相及びB相の電極31a,31
bの正及び負の電荷との間の作用により、回転子32に
垂直の吸引力及び反発力と回転の駆動力が発生する。そ
して、回転子32は、電極1/4ピッチ程度動く。
In the initial state, the electrode 3 on the rotor 32 side
A negative voltage is applied to 2a to charge the electrode 32a on the rotor 32 side with a negative charge, and A on the stator 31 side is charged.
The applied voltages to the phase, B-phase, and C-phase electrodes 31a, 31b, and 31c are set to 0, −V, and + V, and the B-phase and C-phase electrodes 31b and 31c on the stator 31 side are charged with negative and positive charges. Then, it is charged (FIG. 18A). First, A on the side of the stator 31
The voltage applied to the phase-phase and C-phase electrodes 31a and 31c is +
When switched to V, 0, the electric charges of the A-phase and C-phase electrodes 31a, 31c on the side of the stator 31 are switched instantaneously (FIG. 18).
(B)). Here, the negative charge of the electrode 32a on the rotor 32 side and the A-phase and B-phase electrodes 31a, 31 on the stator 31 side
By the action between the positive and negative charges of b, a vertical attraction force and repulsion force and a rotation driving force are generated in the rotor 32. Then, the rotor 32 moves about 1/4 pitch of the electrodes.

【0037】次に、固定子31側のB相及びC相の電極
31b,31cへの印加電圧を、0,−Vに切り替える
と、固定子31側のB相及びC相の電極31b,31c
の電荷は瞬時に入れ替わる(図18(c))。ここで、
回転子32側の電極32aの負の電荷と、固定子31側
のA相及びC相の電極31a,31cの正及び負の電荷
との間の作用により、回転子32に垂直の吸引力及び反
発力と回転の駆動力が発生する。そして、回転子32
は、電極1/4ピッチ程度動く。次に、固定子31側の
A相及びB相の電極31a,31bへの印加電圧を、
0,+Vに切り替えると、固定子31側のA相及びB相
の電極31a,31bの電荷は瞬時に入れ替わる(図1
8(d))。ここで、回転子32側の電極32aの負の
電荷と、固定子31側のB相及びC相の電極31b,3
1cの正及び負の電荷との間の作用により、回転子32
に垂直の吸引力及び反発力と回転の駆動力が発生する。
そして、回転子32は、電極1/4ピッチ程度動く。
Next, when the applied voltages to the B-phase and C-phase electrodes 31b and 31c on the stator 31 side are switched to 0 and -V, the B-phase and C-phase electrodes 31b and 31c on the stator 31 side.
The electric charges of are instantly exchanged (FIG. 18C). here,
Due to the action between the negative charge of the electrode 32a on the rotor 32 side and the positive and negative charge of the A-phase and C-phase electrodes 31a, 31c on the stator 31 side, the attraction force perpendicular to the rotor 32 and Repulsive force and rotational driving force are generated. And the rotor 32
Moves about 1/4 pitch of the electrode. Next, the voltages applied to the A-phase and B-phase electrodes 31a and 31b on the stator 31 side are
When switched to 0 and + V, the electric charges of the A-phase and B-phase electrodes 31a and 31b on the side of the stator 31 are switched instantaneously (see FIG. 1).
8 (d)). Here, the negative charge of the electrode 32a on the rotor 32 side and the B-phase and C-phase electrodes 31b, 3 on the stator 31 side
Due to the action between the positive and negative charges of 1c, the rotor 32
The vertical suction force, repulsion force, and rotation driving force are generated.
Then, the rotor 32 moves about 1/4 pitch of the electrodes.

【0038】次に、固定子31側のA相及びC相の電極
31a,31cへの印加電圧を、−V,0に切り替える
と、固定子31側のA相及びC相の電極31a,31c
の電荷は瞬時に入れ替わる(図19(e))。ここで、
回転子32側の電極32aの負の電荷と、固定子31側
のA相及びB相の電極31a,31bの負及び正の電荷
との間の作用により、回転子32に垂直の反発力及び吸
引力と回転の駆動力が発生する。そして、回転子32
は、電極1/4ピッチ程度動く。次に、固定子31側の
B相及びC相の電極31b,31cへの印加電圧を、
0,+Vに切り替えると、固定子31側のB相及びC相
の電極31b,31cの電荷は瞬時に入れ替わる(図1
9(f))。ここで、回転子32側の電極32aの負の
電荷と、固定子31側のA相及びC相の電極31a,3
1cの負及び正の電荷との間の作用により、回転子32
に垂直の反発力及び吸引力と回転の駆動力が発生する。
そして、回転子32は、電極1/4ピッチ程度動く。
Next, when the applied voltage to the A-phase and C-phase electrodes 31a and 31c on the stator 31 side is switched to -V, 0, the A-phase and C-phase electrodes 31a and 31c on the stator 31 side.
The electric charges of are instantly exchanged (FIG. 19 (e)). here,
Due to the action between the negative charge of the rotor 32 side electrode 32a and the negative and positive charge of the stator 31 side A-phase and B-phase electrodes 31a, 31b, a repulsive force perpendicular to the rotor 32 and A suction force and a driving force for rotation are generated. And the rotor 32
Moves about 1/4 pitch of the electrode. Next, the applied voltage to the B-phase and C-phase electrodes 31b and 31c on the stator 31 side is
When switched to 0 and + V, the electric charges of the B-phase and C-phase electrodes 31b and 31c on the side of the stator 31 are switched instantaneously (see FIG. 1).
9 (f)). Here, the negative charge of the electrode 32a on the rotor 32 side and the A-phase and C-phase electrodes 31a, 3 on the stator 31 side
Due to the action between the negative and positive charges of 1c, the rotor 32
A repulsive force, a suction force, and a driving force for rotation are generated.
Then, the rotor 32 moves about 1/4 pitch of the electrodes.

【0039】さらに、固定子31側のA相の電極31a
への印加電圧を、オフからオンに切り替えると、固定子
31側のA相及びB相の電極31a,31bの電荷は瞬
時に入れ替わる(図19(g))。この状態で図18
(a)の位置関係に戻ることになる。ここで、回転子3
2側の電極32aの負の電荷と、固定子31側のB相及
びC相の電極31b,31cの負及び正の電荷との間の
作用により、回転子32に垂直の吸引力と回転の駆動力
が発生する。そして、回転子32は、電極1/4ピッチ
程度動く。以上の操作を繰り返すことにより、回転子3
2を連続回転させることができる。尚、固定子31側の
A相,B相及びC相の電極31a,31b,31cへの
印加電圧を上述とは逆方向に掛けるか、あるいは回転子
32側の電極32aに正の電圧を掛けることにより、回
転子32の回転運動を逆方向とすることができる。尚、
上述した各実施形態における配線パターンに通電する各
電圧の変位点をそれぞれ短時間重なるようにすれば、変
位点において回転子の回転が停止するような事態を防止
することができる。
Further, the A-phase electrode 31a on the stator 31 side
When the voltage applied to is switched from OFF to ON, the electric charges of the A-phase and B-phase electrodes 31a and 31b on the side of the stator 31 are switched instantaneously (FIG. 19 (g)). Fig. 18 in this state
It returns to the positional relationship of (a). Where the rotor 3
Due to the action between the negative charge of the electrode 32a on the second side and the negative and positive charges of the B-phase and C-phase electrodes 31b and 31c on the side of the stator 31, attraction force and rotation perpendicular to the rotor 32 are generated. Driving force is generated. Then, the rotor 32 moves about 1/4 pitch of the electrodes. By repeating the above operation, the rotor 3
2 can be continuously rotated. The voltage applied to the A-phase, B-phase, and C-phase electrodes 31a, 31b, 31c on the stator 31 side is applied in the opposite direction to the above, or a positive voltage is applied to the electrode 32a on the rotor 32 side. As a result, the rotational movement of the rotor 32 can be reversed. still,
By making the displacement points of the voltages applied to the wiring pattern in each of the above-described embodiments overlap each other for a short time, it is possible to prevent the rotation of the rotor from stopping at the displacement points.

【0040】[0040]

【発明の効果】以上説明したようにこの発明によれば、
部品点数が少なく機構が簡単なため、小型・軽量化、組
み立て工数の低減及び低価格化を図ることが可能とな
る。また、制御の容易化及び消費電力の低減も達成する
ことが可能となる。
As described above, according to the present invention,
Since the number of parts is small and the mechanism is simple, it is possible to reduce the size and weight, reduce the number of assembly steps, and reduce the cost. In addition, it becomes possible to facilitate control and reduce power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の精密送り装置の一実施形態である出
力軸送り装置の概略を示す一部断面斜視図。
FIG. 1 is a partial cross-sectional perspective view showing an outline of an output shaft feeding device which is an embodiment of a precision feeding device of the present invention.

【図2】図1に示す精密送り装置の主要部を示す一部断
面斜視図。
FIG. 2 is a partial cross-sectional perspective view showing a main part of the precision feeding device shown in FIG.

【図3】図1に示す精密送り装置の主要部を示す斜視
図。
FIG. 3 is a perspective view showing a main part of the precision feeding device shown in FIG.

【図4】この発明の精密送り装置の別の実施形態である
ナット送り装置の概略を示す一部断面斜視図。
FIG. 4 is a partial cross-sectional perspective view schematically showing a nut feeding device which is another embodiment of the precision feeding device of the present invention.

【図5】この発明の精密送り装置の別の方式による主要
部を示す斜視図。
FIG. 5 is a perspective view showing a main part of another type of the precision feeding device of the present invention.

【図6】この発明の精密送り装置の別の方式による主要
部を示す一部断面斜視図。
FIG. 6 is a partial cross-sectional perspective view showing a main part of the precision feeding device according to another system of the present invention.

【図7】図5及び図6に示す精密送り装置の電極パター
ンの第1の実施形態を示す図。
7 is a view showing a first embodiment of an electrode pattern of the precision feeding device shown in FIGS. 5 and 6. FIG.

【図8】図7に示す電極パターンに印加する電圧波形を
示す図。
8 is a diagram showing a voltage waveform applied to the electrode pattern shown in FIG.

【図9】図7に示す精密送り装置の動作例を示す図。9 is a diagram showing an operation example of the precision feeding device shown in FIG.

【図10】図5及び図6に示す精密送り装置の電極パタ
ーンの第2の実施形態を示す図。
FIG. 10 is a view showing a second embodiment of the electrode pattern of the precision feeding device shown in FIGS. 5 and 6.

【図11】図10に示す電極パターンに印加する電圧波
形を示す図。
11 is a diagram showing a voltage waveform applied to the electrode pattern shown in FIG.

【図12】図10に示す精密送り装置の動作例を示す
図。
12 is a diagram showing an operation example of the precision feeding device shown in FIG.

【図13】図5及び図6に示す精密送り装置の電極パタ
ーンの第3及び第4の実施形態を示す図。
FIG. 13 is a view showing third and fourth embodiments of electrode patterns of the precision feeding device shown in FIGS. 5 and 6;

【図14】図13に示す電極パターンに印加する電圧波
形を示す図。
14 is a diagram showing a voltage waveform applied to the electrode pattern shown in FIG.

【図15】図13に示す電極パターンに印加する別の電
圧波形を示す図。
FIG. 15 is a diagram showing another voltage waveform applied to the electrode pattern shown in FIG.

【図16】図10に示す精密送り装置の第3の実施形態
の動作例を示す第1の図。
16 is a first diagram showing an operation example of the third embodiment of the precision feeding device shown in FIG.

【図17】図10に示す精密送り装置の第3の実施形態
の動作例を示す第2の図。
17 is a second diagram showing an operation example of the third embodiment of the precision feeding device shown in FIG.

【図18】図10に示す精密送り装置の第4の実施形態
の動作例を示す第1の図。
FIG. 18 is a first diagram showing an operation example of the fourth exemplary embodiment of the precision feeding device shown in FIG. 10;

【図19】図10に示す精密送り装置の第4の実施形態
の動作例を示す第2の図。
FIG. 19 is a second diagram showing an operation example of the fourth embodiment of the precision feeding device shown in FIG. 10.

【図20】従来の精密送り装置の一例を示す図。FIG. 20 is a diagram showing an example of a conventional precision feeding device.

【符号の説明】[Explanation of symbols]

10 出力軸送り装置 11、21 固定子 12、22 回転子 13、23 外装ケース 14、241 出力軸 15、243 軸受け 20 ナット送り装置 11a,11b,11c,31a,31b,31c,3
2a電極
10 Output Shaft Feeding Device 11, 21 Stator 12, 22 Rotor 13, 23 Exterior Case 14, 241 Output Shaft 15, 243 Bearing 20 Nut Feeding Device 11a, 11b, 11c, 31a, 31b, 31c, 3
2a electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−51977(JP,A) 特開 平7−143764(JP,A) 特開 平5−115182(JP,A) 特開 平6−105532(JP,A) 特開 平7−75350(JP,A) 特開 平6−341506(JP,A) 特開 平7−7972(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02N 1/00 H02N 11/00 F16H 25/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-51977 (JP, A) JP-A-7-143764 (JP, A) JP-A-5-115182 (JP, A) JP-A-6- 105532 (JP, A) JP 7-75350 (JP, A) JP 6-341506 (JP, A) JP 7-7972 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02N 1/00 H02N 11/00 F16H 25/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円柱状であって、端面に出力軸を有し、
前記出力軸に固定され該出力軸と共に回転可能な回転子
と、前記回転子を収納可能な円筒状であって、内周面の
周方向に少なくとも3相の電極パターンを有する固定子
とを備え、前記電極パターンに電圧を印加することによ
り、前記回転子と共に前記出力軸を回転させて送りの対
象物を軸方向に送る精密送り装置であって、 前記出力軸にはおねじが形成され、前記固定子の前記出
力軸を支持する軸受けの内周面にはめねじが形成されて
おり、 前記出力軸の回転運動を該出力軸の軸方向の直線方向に
変換させる様にして、該出力軸が上記回転子と共に直線
運動するように構成したことを特徴とする精密送り装
置。
1. A cylinder having an output shaft on an end face,
A rotor fixed to the output shaft and rotatable with the output shaft , and a cylindrical stator capable of accommodating the rotor and having at least three-phase electrode patterns in the circumferential direction of the inner peripheral surface. A precision feeding device that feeds an object to be fed in the axial direction by rotating the output shaft together with the rotor by applying a voltage to the electrode pattern, wherein an external thread is formed on the output shaft, A female screw is formed on the inner peripheral surface of the bearing that supports the output shaft of the stator, and the output shaft is converted so that the rotational movement of the output shaft is converted into a linear direction of the axial direction of the output shaft. Straight line with the above rotor
A precision feeding device characterized by being configured to move .
【請求項2】 円柱状であって、端面に出力軸を有し、
前記出力軸に固定され該出力軸と共に回転可能であり、
外周面の周方向に少なくとも2相の電極パターンを有す
る回転子と、前記回転子を収納可能な円筒状であって、
内周面の周方向に電極パターンを有する固定子とを備
え、前記各電極パターンに電圧を印加することにより、
前記回転子と共に前記出力軸を回転させて送りの対象物
を軸方向に送る精密送り装置であって、 前記出力軸にはおねじが形成され、前記固定子の前記出
力軸を支持する軸受けの内周面にはめねじが形成されて
おり、 前記出力軸の回転運動を該出力軸の軸方向の直
線方向に変換させる様にして、該出力軸が上記回転子と
共に直線運動するように構成したことを特徴とする精密
送り装置。
2. A cylindrical shape having an output shaft on an end surface,
Fixed to the output shaft and rotatable with the output shaft;
A rotor having an electrode pattern of at least two phases in the circumferential direction of the outer peripheral surface, and a cylindrical shape capable of accommodating the rotor,
A stator having an electrode pattern in the circumferential direction of the inner peripheral surface is provided, and by applying a voltage to each of the electrode patterns,
A precision feeding device for feeding an object to be fed in an axial direction by rotating the output shaft together with the rotor, wherein a male screw is formed on the output shaft, and a bearing for supporting the output shaft of the stator is provided. the peripheral surface are internally threaded formed, in the manner to convert the rotational motion of the output shaft in a linear direction in the axial direction of said output shaft, and the output shaft is the rotor
A precision feeding device characterized by being configured to move linearly together .
JP29902195A 1995-10-24 1995-10-24 Precision feeder Expired - Lifetime JP3480156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29902195A JP3480156B2 (en) 1995-10-24 1995-10-24 Precision feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29902195A JP3480156B2 (en) 1995-10-24 1995-10-24 Precision feeder

Publications (2)

Publication Number Publication Date
JPH09121565A JPH09121565A (en) 1997-05-06
JP3480156B2 true JP3480156B2 (en) 2003-12-15

Family

ID=17867205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29902195A Expired - Lifetime JP3480156B2 (en) 1995-10-24 1995-10-24 Precision feeder

Country Status (1)

Country Link
JP (1) JP3480156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497588B2 (en) * 1999-08-27 2010-07-07 株式会社タムラ製作所 Soldering equipment
JP6470993B2 (en) * 2015-02-13 2019-02-13 学校法人 関西大学 Rotating device

Also Published As

Publication number Publication date
JPH09121565A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
US4714855A (en) Piezo-electric actuator and stepping device using same
JPS62221856A (en) Spherical motor
JP3480156B2 (en) Precision feeder
EP0682403A1 (en) Micromotor
US6809439B2 (en) Stepping motor
JPH04168968A (en) Stepping motor
JPH06225513A (en) Linear motor
JP3872519B2 (en) Piezoelectric stepping motor
JP3872522B2 (en) Piezoelectric step motor
US4888515A (en) Rotary power unit
CN214480332U (en) Differential inertia type piezoelectric rotary driver
JPH0440952B2 (en)
JP2675586B2 (en) Electrostatic actuator
JPS6022477A (en) Step motor
JP3172104B2 (en) Two-phase frequency generator
JP2693510B2 (en) Electrostatic actuator
JP3872520B2 (en) Piezoelectric step motor
JP3173261B2 (en) Electrostatic actuator
JPS6289470A (en) Roller type motor
JPS63110966A (en) Surface surge motor
JPH07322650A (en) Rotary motor
JP3872518B2 (en) Piezoelectric stepping motor
JPH08308204A (en) Stepping motor
JPH0446574A (en) Piezoelectric actuator
JPH0287979A (en) Piezoelectric rotary actuator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9