JP7525340B2 - How to recover precious metals - Google Patents

How to recover precious metals Download PDF

Info

Publication number
JP7525340B2
JP7525340B2 JP2020150327A JP2020150327A JP7525340B2 JP 7525340 B2 JP7525340 B2 JP 7525340B2 JP 2020150327 A JP2020150327 A JP 2020150327A JP 2020150327 A JP2020150327 A JP 2020150327A JP 7525340 B2 JP7525340 B2 JP 7525340B2
Authority
JP
Japan
Prior art keywords
leaching
precious metal
brine solution
containing compound
precious metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020150327A
Other languages
Japanese (ja)
Other versions
JP2021123791A (en
Inventor
彰悟 加藤
和也 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Publication of JP2021123791A publication Critical patent/JP2021123791A/en
Application granted granted Critical
Publication of JP7525340B2 publication Critical patent/JP7525340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、貴金属の回収方法に関する。 The present invention relates to a method for recovering precious metals.

特許文献1には、
鉛および銀の選択的な回収方法であって、
a)鉛および銀を少なくとも含む湿式冶金残渣を、硫酸、塩化物ブライン溶液および酸化剤の存在下で、酸化的浸出に付して、これにより可溶性の塩化物化合物として鉛および銀を選択的に溶解する。硫酸は、鉛を硫酸鉛の塩として、塩化ナトリウムとの反応により溶解せしめている(特許文献1の請求項1)。
In Patent Document 1,
A method for selectively recovering lead and silver, comprising the steps of:
a) A hydrometallurgical residue containing at least lead and silver is subjected to oxidative leaching in the presence of sulfuric acid, a chloride brine solution and an oxidizing agent, which selectively dissolves lead and silver as soluble chloride compounds. The sulfuric acid dissolves lead as lead sulfate salt by reaction with sodium chloride (claim 1 of JP 2003-233663).

また、特許文献1には、上記工程a)が、酸化還元電位(Ag/AgCl)を100~350mV、より好ましくは300mVとして行われ、pHが0.5~4、より好ましくはpHが4において行われることが記載されている。 Patent Document 1 also describes that the above step a) is carried out at an oxidation-reduction potential (Ag/AgCl) of 100 to 350 mV, more preferably 300 mV, and at a pH of 0.5 to 4, more preferably a pH of 4.

また、特許文献1においては、湿式性製錬残渣が硫酸塩からなり、硫酸塩をブライン溶液にて溶解する技術が開示されている。 Patent Document 1 also discloses a technology in which the hydrometallurgical residue consists of sulfates, and the sulfates are dissolved in a brine solution.

特表2016-532011号公報Special table 2016-532011 publication

特許文献1に記載のように硫酸塩を起点としての金属の浸出では、理由は不明であるが、銀の浸出も十分にできないこともあり、特に貴金属の高い浸出率の操作が困難である。 As described in Patent Document 1, when leaching metals starting from sulfates, it is sometimes difficult to sufficiently leach silver, for reasons unknown, and it is particularly difficult to control the leaching rate of precious metals.

本発明の目的は、貴金属含有化合物から貴金属(特にAu)を回収可能とする手法を提供することにある。 The object of the present invention is to provide a method for recovering precious metals (especially Au) from precious metal-containing compounds.

本発明の第1の態様は、
貴金属含有化合物から貴金属を回収する方法であって、
Clの濃度が100g/L以上であるブライン液中に貴金属含有化合物と酸化剤とを存在させ、ORP(3.3M KCl-Ag/AgCl)を700mV以上とし、貴金属含有化合物から貴金属をブライン液に浸出させる浸出工程を有する、貴金属の回収方法である。
The first aspect of the present invention is a method for producing a cellular membrane comprising the steps of:
1. A method for recovering precious metals from a precious metal-containing compound, comprising:
The method for recovering precious metals includes a leaching step of causing a precious metal-containing compound and an oxidizing agent to be present in a brine solution having a Cl concentration of 100 g/L or more, setting the ORP (3.3 M KCl-Ag/AgCl) to 700 mV or more, and leaching the precious metal from the precious metal-containing compound into the brine solution.

本発明の第2の態様は、第1の態様に記載の発明において、
前記ブライン液のpHは2を超え且つ5以下である。
A second aspect of the present invention is the invention according to the first aspect,
The pH of the brine solution is greater than 2 and less than or equal to 5.

本発明の第3の態様は、第1または第2の態様において、
前記貴金属は少なくともAuを含む。
A third aspect of the present invention is the method according to the first or second aspect,
The noble metal includes at least Au.

本発明の第4の態様は、第1~第3のいずれかの態様に記載の発明において、
浸出工程の前に、貴金属含有化合物に対して酸による浸出処理を行う前浸出工程を更に有する。
A fourth aspect of the present invention is the invention according to any one of the first to third aspects,
The method further includes a pre-leaching step of subjecting the precious metal-containing compound to an acid leaching treatment prior to the leaching step.

本発明の第5の態様は、第1~第4のいずれかの態様に記載の発明において、
浸出工程の後の残渣に対して還元性の浸出処理を行う後浸出工程を更に有する。
A fifth aspect of the present invention is the invention according to any one of the first to fourth aspects,
The method further comprises a post-leaching step in which the residue after the leaching step is subjected to a reducing leaching treatment.

本発明によれば、貴金属含有化合物から貴金属(特にAu)を回収できる。 According to the present invention, it is possible to recover precious metals (especially Au) from precious metal-containing compounds.

図1は、本実施形態に係る貴金属の回収方法のフローチャートである。FIG. 1 is a flowchart of the precious metal recovery method according to this embodiment.

本明細書における「~」は所定の数値以上かつ所定の数値以下を指す。
以下、本実施形態について説明する。図1は、本実施形態に係る貴金属の回収方法のフローチャートである。本発明は、貴金属含有化合物、特に金を含む金含有の金属化合物を、高塩素濃度下の溶液にて、酸化還元電位と、pHとにより浸出を行い、金の浸出、または他の金属の浸出を自在に制御する方法である。
In this specification, the term "to" refers to a value greater than or equal to a given value and less than or equal to a given value.
The present embodiment will be described below. Fig. 1 is a flow chart of the method for recovering precious metals according to the present embodiment. The present invention relates to a method for leaching a precious metal-containing compound, particularly a gold-containing metal compound, in a solution with a high chlorine concentration by adjusting the oxidation-reduction potential and pH, and freely controlling the leaching of gold or other metals.

本実施形態における「貴金属」は、化合物をつくりにくく希少性のある金属を指し、具体的には、金(Au)、銀(Ag)、そしてパラジウム類であるルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、そして白金類であるオスミウム(Os)、イリジウム(Ir)、白金(Pt)、のうち少なくともいずれかを指す。 In this embodiment, "precious metal" refers to a rare metal that is difficult to form a compound with, and specifically refers to at least one of gold (Au), silver (Ag), palladium elements such as ruthenium (Ru), rhodium (Rh), and palladium (Pd), and platinum elements such as osmium (Os), iridium (Ir), and platinum (Pt).

本実施形態における「貴金属含有化合物」は、貴金属を含有する化合物であれば限定は無い。本実施形態においては、金属製錬(特に亜鉛製錬)に伴い発生する残渣を例示する。また、貴金属含有化合物として該残渣には、貴金属が含まれ、且つZn(亜鉛)、Pb(鉛)、Cu(銅)、Sn(錫)、Cd(カドミウム)、ヒ素、珪素の少なくともいずれかが、金属、金属間化合物、酸化物で含まれてもよい。 In this embodiment, the "precious metal-containing compound" is not limited as long as it is a compound that contains a precious metal. In this embodiment, the residue generated in metal smelting (particularly zinc smelting) is exemplified. In addition, the residue as the precious metal-containing compound may contain a precious metal, and may also contain at least one of Zn (zinc), Pb (lead), Cu (copper), Sn (tin), Cd (cadmium), arsenic, and silicon in the form of a metal, intermetallic compound, or oxide.

貴金属含有化合物における貴金属の含有量には特に限定は無いが、例えば0.1~5000ppmである場合が例示される。 There is no particular limit to the amount of precious metal contained in the precious metal-containing compound, but it can be, for example, 0.1 to 5000 ppm.

貴金属含有化合物(dry)の組成の一例は以下のとおりである。
Au: 0.1~ 15g/t(ppm)
Si: 1~ 50質量%
Cu: 0.01~ 1質量%
Sn: 0.01~ 10質量%
Ag:0.005~0.5質量%
Pb: 0.1~ 50質量%
An example of the composition of the noble metal-containing compound (dry) is as follows.
Au: 0.1-15g/t (ppm)
Si: 1 to 50% by mass
Cu: 0.01 to 1% by mass
Sn: 0.01 to 10% by mass
Ag: 0.005 to 0.5% by mass
Pb: 0.1 to 50% by mass

本実施形態の大きな特徴の一つが、所定条件下において、貴金属含有化合物から貴金属をブライン液に浸出させる浸出工程を有することである。所定条件の詳細は以下のとおりである。
・ブライン液のClの濃度を100g/L以上とする。
・pHを1~5に調整する。
・ブライン液中に貴金属含有化合物と酸化剤とを存在させる。
・ORP(3.3M KCl(内部溶液)-Ag/AgCl(参照電極))を700mV以上とする。
One of the major features of this embodiment is that it includes a leaching step in which precious metals are leached from a precious metal-containing compound into a brine solution under predetermined conditions. The details of the predetermined conditions are as follows.
- The Cl concentration of the brine solution should be 100 g/L or more.
-Adjust the pH to 1-5.
A precious metal-containing compound and an oxidizing agent are present in the brine solution.
ORP (3.3M KCl (internal solution)-Ag/AgCl (reference electrode)) is set to 700 mV or higher.

本実施形態においては、ブライン液中のClの濃度を100g/L以上(好適には180g/L以上、より好適には200g/L以上)に設定するのが好ましい。300g/L,400g/Lとさらに高濃度でも構わない。液中に溶解する金属の飽和濃度などに応じて設定しても良い。 In this embodiment, it is preferable to set the Cl concentration in the brine solution to 100 g/L or more (preferably 180 g/L or more, more preferably 200 g/L or more). It may be even higher, such as 300 g/L or 400 g/L. It may also be set according to the saturation concentration of metals dissolved in the solution.

なお、以下のようにブライン液を設定してもよい。
ブライン液の全ハロゲン濃度が100g/L以上(好適には180g/L以上、より好適には200g/L以上)としつつも、Brの濃度が100g/L未満であり且つClの濃度が全ハロゲン濃度の1/3を超えるように設定してもよい。好ましくは、Clの濃度が全ハロゲン濃度の1/2を超えるように設定し、より好ましくは、Clの濃度が全ハロゲン濃度と等しくなるように設定する。また、好ましくは、Brの濃度が10g/L以下となるように設定し、より好ましくは、Brの濃度が1g/L以下となるように設定する。
The brine may be prepared as follows:
The total halogen concentration of the brine solution may be set to 100 g/L or more (preferably 180 g/L or more, more preferably 200 g/L or more), while the Br concentration is less than 100 g/L and the Cl concentration exceeds 1/3 of the total halogen concentration. Preferably, the Cl concentration is set to exceed 1/2 of the total halogen concentration, more preferably, the Cl concentration is set to be equal to the total halogen concentration. Also, preferably, the Br concentration is set to 10 g/L or less, more preferably, the Br concentration is set to 1 g/L or less.

ハロゲン源としては限定は無いが、例えば水に対して高い溶解度を有する塩化ナトリウム(NaCl)、塩化カルシウム(CaCl)またはその水和物、塩酸(HCl)等が挙げられる。ハロゲンとしてBrも採用する場合は臭化ナトリウム(NaBr)等が挙げられる。 The halogen source is not limited, and examples thereof include sodium chloride (NaCl), calcium chloride (CaCl 2 ) or its hydrate, hydrochloric acid (HCl), etc., which have high solubility in water. When Br is also used as the halogen, examples thereof include sodium bromide (NaBr), etc.

酸化剤としては、貴金属含有化合物から貴金属を浸出させられるのならば限定は無い。一例を挙げると、次亜塩素酸(HClO)もしくはその塩(例えばNaClO)もしくはその水和物、過マンガン酸カリウム(KMnO)、酸素(O)もしくはオゾン(O)、または過酸化水素(H)の少なくともいずれか、特にNaClOおよびKMnOの少なくともいずれかが挙げられる。 The oxidizing agent is not limited as long as it can leach precious metals from the precious metal-containing compound, and examples include hypochlorous acid (HClO) or its salts (e.g., NaClO) or its hydrates, potassium permanganate ( KMnO4 ), oxygen ( O2 ) or ozone ( O3 ), and/or hydrogen peroxide ( H2O2 ), particularly NaClO and/ or KMnO4 .

ORP(3.3M KCl-Ag/AgCl)は、本発明では標準電極に対して+199mV(vs.SHE、25℃)でいわゆる酸化還元電位(vsAg/AgCl)である。言い方を変えると、ORP値は、上記酸化剤の添加により実現してもよい。上記各条件を満たしたうえで、ORPを700mV以上(好適には800mV以上、より好適には950mV以上、更に好適には1000mV以上)とすることにより、貴金属をブライン液に浸出でき、ひいては貴金属を回収可能となる。結果的に、プライン液の主成分をClとしたハロゲンと上記酸化剤があれば、貴金属を回収可能となる。 In the present invention, ORP (3.3M KCl-Ag/AgCl) is +199 mV (vs. SHE, 25°C) against the standard electrode, which is the so-called oxidation-reduction potential (vs. Ag/AgCl). In other words, the ORP value may be achieved by adding the above-mentioned oxidizing agent. By satisfying the above conditions and setting the ORP to 700 mV or more (preferably 800 mV or more, more preferably 950 mV or more, and even more preferably 1000 mV or more), the precious metals can be leached into the brine solution, and thus the precious metals can be recovered. As a result, if there is a halogen with Cl as the main component of the brine solution and the above-mentioned oxidizing agent, the precious metals can be recovered.

ブライン液のpHは1以上5以下であるのが好ましい。ブライン液のpHが5以下であれば、より効果的に貴金属を浸出可能となる。 The pH of the brine solution is preferably between 1 and 5. If the pH of the brine solution is 5 or less, the precious metals can be leached more effectively.

ブライン液のpHの好適範囲について、より詳しく説明する。ブライン液のpHは2を超え且つ5以下であるのがより好ましい。後掲の実施例の項目にて示すように、本発明の技術的思想を採用すると、ブライン液のpHが比較的高い場合(pHは2を超え且つ5以下、より詳しく言うと3~5、更に詳しく言うと4~5)であっても、容易には浸出しないはずの貴金属も浸出可能となる。例えば貴金属のうちAu(以降、貴金属は少なくともAuを含むものを例示)であっても、後掲の実施例の項目にて示すように、pH4程度の条件で浸出可能となる。これは、コスト面においては、設備仕様の簡易化、排水処理の中和剤使用量の軽減、浸出の作業効率という点でも、極めて有利な効果である。 The preferred range of the pH of the brine solution will be explained in more detail. It is more preferable that the pH of the brine solution is greater than 2 and less than 5. As shown in the Examples section below, by adopting the technical concept of the present invention, even if the pH of the brine solution is relatively high (a pH greater than 2 and less than 5, more specifically 3 to 5, and even more specifically 4 to 5), it becomes possible to leach precious metals that would not be easily leached. For example, even Au, which is one of the precious metals (hereinafter, precious metals that contain at least Au, are exemplified), can be leached under conditions of about pH 4, as shown in the Examples section below. This is an extremely advantageous effect in terms of cost, simplification of equipment specifications, reduction in the amount of neutralizing agent used in wastewater treatment, and work efficiency of leaching.

なお、浸出工程中のブライン液の温度には特に限定は無いが、例えば60~95℃が好ましく、90~95℃がより好ましい。 There is no particular limit to the temperature of the brine during the leaching process, but a temperature of 60 to 95°C is preferred, and 90 to 95°C is more preferred.

貴金属含有化合物が金属製錬残渣である場合、貴金属(例えばAu)は、珪酸(SiO)化合物や雑多な金属化合物中に存在しており、Auの形態は不明である。それにもかかわらず、本発明の技術的思想を採用することにより、貴金属含有化合物から微量に含有のAuであっても浸出可能となる。 When the precious metal-containing compound is a metal smelting residue, the precious metal (e.g., Au) is present in a silicic acid ( SiO2 ) compound or miscellaneous metal compounds, and the form of Au is unknown. Nevertheless, by adopting the technical concept of the present invention, it is possible to leach even a small amount of Au from the precious metal-containing compound.

上記の内容は、貴金属含有化合物中にて珪酸が2質量%以上、さらには10%質量%以上である場合も、貴金属を回収可能であることを意味する。 The above means that precious metals can be recovered even when the silicate content in the precious metal-containing compound is 2% by mass or more, or even 10% by mass or more.

<処理工程の設計>
貴金属含有物の各種金属の浸出は、多段階の工程にて実施しても良い。例えば、これまでに述べてきた貴金属の浸出処理を本浸出とし、その前後に浸出を行う処理工程から、前浸出、本浸出、およびこの繰り返し等がある。各浸出後に発生する各残渣に対して浸出を行う。ろ過を中間に入れる場合は、ろ過後のろ液は、中和など液回収処理を行う、液回収処理にて固定した残渣や、濾過後の残渣を各工程の浸出対象としてもよい。
<Treatment process design>
The leaching of various metals in precious metal-containing materials may be carried out in a multi-stage process. For example, the precious metal leaching process described above is the main leaching, and there are treatment processes in which leaching is carried out before and after the main leaching, pre-leaching, main leaching, and repetition of these. Leaching is carried out on each residue generated after each leaching. If filtration is inserted between the two, the filtrate after filtration may be subjected to a liquid recovery process such as neutralization, and the residue fixed in the liquid recovery process or the residue after filtration may be the target of leaching in each process.

本実施形態において、前浸出、本浸出と段階的に設けた理由は、浸出を複数段階に分けることで、各金属の溶解性に応じた分離回収をしやすくするためである。従って、浸出にて各金属の分離回収をするか、浸出を1回とし、その後の分離処理(中和など)を行うかは、浸出対象によって設定される。 In this embodiment, the reason for providing a staged process of pre-leaching and main leaching is that by dividing the leaching into multiple stages, it becomes easier to separate and recover each metal according to its solubility. Therefore, whether to separate and recover each metal by leaching, or to perform a single leaching step followed by subsequent separation treatment (neutralization, etc.) is determined according to the leaching target.

前浸出は、酸による予備的な浸出であるため、前浸出にて浸出する金属によって電位、pHを設定してよい。浸出液としては、ブライン液の他、鉱酸(硫酸、硝酸、塩酸)を用いても良い。浸出液が前、本浸出にて相違ない場合は、本浸出中に前浸出の内容を実行しても構わない。pHは1以下の強酸であっても良い。電位を500mV以下として、銅、鉄を浸出するなどがある。前処理が強酸や低電位であっても、本浸出に条件を整えれば、効率良く貴金属の浸出が可能である。前処理によって残渣の性質が変化するが、製錬残渣の場合は、内部の化合物が再化合することは少なく、微小量の貴金属であっても、結果的には残渣中に留るからである。 Since pre-leaching is a preliminary leaching with acid, the potential and pH may be set depending on the metal to be leached in pre-leaching. In addition to brine, mineral acids (sulfuric acid, nitric acid, hydrochloric acid) may be used as the leaching solution. If the leaching solution is the same for pre-leaching and main leaching, the contents of pre-leaching may be carried out during main leaching. The pH may be a strong acid of 1 or less. For example, copper and iron may be leached with a potential of 500 mV or less. Even if the pre-treatment is a strong acid or low potential, it is possible to efficiently leach precious metals if the conditions for main leaching are met. The nature of the residue changes due to pre-treatment, but in the case of smelting residues, internal compounds rarely recombine, and even a small amount of precious metal will ultimately remain in the residue.

前浸出工程により、主に貴金属以外の金属(例えばPb)を予め浸出させておき、本浸出工程の際に目的となる貴金属(例えばAu)が、露出させるまたは反応性を高めるという役割が前浸出工程にはある。なお、前浸出工程において貴金属(例えばAg)も浸出してもよい。適応例としては、貴金属含有化合物が亜鉛製錬残渣であれば、鉛、銀、珪素他金属を含む鉛銀残渣がある。 The pre-leaching process primarily leaches out metals other than precious metals (e.g. Pb) in advance, and the role of the pre-leaching process is to expose or increase the reactivity of the target precious metal (e.g. Au) during the main leaching process. Note that precious metals (e.g. Ag) may also be leached in the pre-leaching process. An example of an application is when the precious metal-containing compound is zinc smelting residue, and there is lead-silver residue containing lead, silver, silicon and other metals.

本浸出工程の具体的な手法としては、一例を挙げると、弱酸(例えばpH=3~5、一例としては4)のブライン液中に貴金属含有化合物を存在させ、酸化剤(一例として次亜塩素酸Na、すなわちNaClO溶液)を添加してORP(3.3M KCl-Ag/AgCl)を600~1300mV(一例としては700mV)とし、本浸出工程を行う。本浸出工程では、ブライン液を使用し、酸化剤を添加してORPを上昇させることで、弱酸領域である比較的高いpHでAu(金)の浸出を可能とする。 As a specific example of the method of this leaching process, a precious metal-containing compound is placed in a weakly acidic (e.g. pH = 3-5, e.g. 4) brine solution, and an oxidizing agent (e.g. sodium hypochlorite, i.e. NaClO solution) is added to set the ORP (3.3 M KCl-Ag/AgCl) to 600-1300 mV (e.g. 700 mV), and this leaching process is carried out. In this leaching process, a brine solution is used, and an oxidizing agent is added to increase the ORP, making it possible to leach Au (gold) at a relatively high pH, which is in the weak acid range.

本実施形態の好適例だと、上記弱酸のpH範囲内にて貴金属(Au)の浸出が可能である。これは、本浸出工程でのブライン液のpHと前浸出工程での弱酸のpHとを同等にできることを意味し、わざわざ本浸出工程のために強酸対応設備を準備せずともよいことを意味し、ひいてはコスト面で有利になることを意味する。 In a preferred embodiment of the present invention, the precious metal (Au) can be leached within the pH range of the weak acid. This means that the pH of the brine in the main leaching process can be made equivalent to the pH of the weak acid in the pre-leaching process, which means that there is no need to take the trouble of preparing strong acid-compatible equipment just for the main leaching process, which in turn means that there is an advantage in terms of cost.

後掲の実施例の項目にて示すように、本浸出工程により、貴金属(Au)の浸出率は50%以上(好適には55%以上、特に酸化剤としてNaClOを使用した場合は90%以上)となる。なお、「浸出率」は、貴金属含有化合物中の貴金属(Au)が質量単位でどれだけブライン液中に浸出したかを示す値である。 As shown in the Examples section below, this leaching process results in a leaching rate of the precious metal (Au) of 50% or more (preferably 55% or more, and particularly 90% or more when NaClO is used as the oxidizing agent). The "leaching rate" is a value that indicates how much of the precious metal (Au) in the precious metal-containing compound is leached into the brine solution by mass.

本浸出工程後、依然として残る残渣に対し、後浸出工程を行うのが好ましい。その際、還元性の浸出を行うことにより、該残渣から所定の金属類(例えばSn、Pb)を更に浸出させるのに加え、残渣を安定化させるのが好ましい。 After the main leaching process, it is preferable to carry out a post-leaching process on the residue that remains. In this case, it is preferable to carry out a reductive leaching process to further leach selected metals (e.g. Sn, Pb) from the residue and to stabilize the residue.

後浸出工程の具体的な手法としては、公知の還元性浸出に係る手法を採用しても構わないが、一例を挙げると、本浸出工程後の残渣を別のブライン液に投入し、更に、該ブライン液に対してpH調整剤(HCl、NaCl等)と還元剤(公知の還元剤を使用可能、例えば鉄粉)とを添加して後浸出工程を行ってもよい。なお、ブライン液の諸条件および浸出の際の液温等の諸条件は本浸出工程と同様としてもよい。 As a specific method for the post-leaching process, a known method for reductive leaching may be adopted. As an example, the residue after the main leaching process may be put into a separate brine solution, and a pH adjuster (HCl, NaCl, etc.) and a reducing agent (known reducing agents can be used, for example iron powder) may be added to the brine solution to carry out the post-leaching process. The conditions of the brine solution and the conditions such as the liquid temperature during leaching may be the same as those for the main leaching process.

本浸出工程後、ブライン液から貴金属を回収する回収工程(例えば電解析出工程)を行ってもよい。回収工程の具体的な手法は公知の手法を採用しても構わない。一例をあげると、本浸出工程後のブライン液(Au等含有)を中和してpHを増加させ、Fe、Cu等を沈降させて分離した後、電解析出等でAuを回収してもよい。 After this leaching process, a recovery process (e.g., electrolytic deposition process) may be carried out to recover precious metals from the brine solution. The specific method of the recovery process may be any known method. For example, the brine solution (containing Au, etc.) after this leaching process may be neutralized to increase the pH, and Fe, Cu, etc. may be precipitated and separated, after which Au may be recovered by electrolytic deposition, etc.

前浸出工程後のブライン液からPb、Ag等を回収してもよい。
後浸出工程後のブライン液からSn、Pb等を回収してもよい。
前浸出工程後のブライン液および後浸出工程後のブライン液(その中でも特に前浸出工程後のブライン液)は、本浸出工程後のブライン液と合わせ、液中に存在する金属類を回収してもよいし、各ブライン液にて金属類をそれぞれ回収してもよい。
後浸出工程後の最終残渣は水洗して既存の金属製錬プロセスへ移行してもよい。
Pb, Ag, etc. may be recovered from the brine after the pre-leaching step.
Sn, Pb, etc. may be recovered from the brine after the post-leaching step.
The brine solution after the pre-leaching step and the brine solution after the post-leaching step (particularly the brine solution after the pre-leaching step) may be combined with the brine solution after the main leaching step to recover metals present in the solution, or metals may be recovered from each brine solution separately.
The final residue after the post-leaching step may be washed and transferred to existing metal smelting processes.

本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the above-described embodiments, but includes forms with various modifications and improvements within the scope that can derive specific effects obtained by the constituent elements of the invention and their combinations.

次に実施例を示し、本発明について具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、以下に記載のない内容は、本実施形態で述べた内容と同様とする。 The present invention will now be described in detail with reference to examples. The present invention is not limited to the following examples. Any content not described below is the same as that described in this embodiment.

<実施例1、2、比較例1にて使用した貴金属含有化合物>
以下の組成を有する貴金属含有化合物(金属製錬残渣で複合酸化物を含む)を用意した。以下の組成は、溶液にして化学分析法にて測定した。その結果を示すのが以下の表1である。

Figure 0007525340000001
<Noble metal-containing compounds used in Examples 1 and 2 and Comparative Example 1>
A precious metal-containing compound (metal smelting residue containing a composite oxide) having the following composition was prepared. The following composition was measured by chemical analysis in a solution. The results are shown in Table 1 below.
Figure 0007525340000001

<実施例1、2>
表2に示すハロゲン源にて形成したブライン液(ハロゲンはClのみ)中に、上記貴金属含有化合物と、表2に示す酸化剤とを存在させ、表2に示すpH値およびORP(3.3M KCl-Ag/AgCl)値にて、貴金属含有化合物からAuをブライン液に浸出させる本浸出工程を行った。上記pH値に設定するためのpH調整剤としてHClを使用した。ブライン液の温度は90℃とし、PD(スラリー濃度)は100g/Lとし、浸出時間は180分間とした。なお、攪拌羽は2段のディスクタービンを使用して撹拌した。また、表2に示したブライン液は全て水溶液である。
<Examples 1 and 2>
The above-mentioned precious metal-containing compound and the oxidizing agent shown in Table 2 were present in a brine solution (halogen was Cl only) formed from a halogen source shown in Table 2, and this leaching process was carried out to leach Au from the precious metal-containing compound into the brine solution at the pH value and ORP (3.3M KCl-Ag/AgCl) value shown in Table 2. HCl was used as a pH adjuster to set the above pH value. The temperature of the brine solution was 90°C, the PD (slurry concentration) was 100g/L, and the leaching time was 180 minutes. The stirring blade was a two-stage disk turbine. All of the brine solutions shown in Table 2 were aqueous solutions.

<比較例1>
表2に示すハロゲン源にて形成したブライン液中に、上記貴金属含有化合物を存在させ、表2に示すpH値およびORP(3.3M KCl-Ag/AgCl)値にて、貴金属含有化合物からAuをブライン液に浸出させる浸出工程を行った。上記pH値に設定するためのpH調整剤としてHClを使用した。ブライン液の温度は90℃とし、PD(スラリー濃度)は100g/Lとし、浸出時間は180分とした。なお、傾斜パドルを使用して撹拌した。
<Comparative Example 1>
The above-mentioned precious metal-containing compound was present in a brine solution formed from a halogen source shown in Table 2, and a leaching step was carried out in which Au was leached from the precious metal-containing compound into the brine solution at the pH and ORP (3.3M KCl-Ag/AgCl) values shown in Table 2. HCl was used as a pH adjuster to set the above pH value. The temperature of the brine solution was 90°C, the PD (slurry concentration) was 100g/L, and the leaching time was 180 minutes. An inclined paddle was used for stirring.

<実施例3~5>
実施例1、2、比較例1にて使用した物と同じ貴金属含有化合物に対して前浸出工程を行った。前浸出工程の内容は比較例1と同様とした。
その後、本浸出工程を表2の内容に従って行った。なお、傾斜パドルを使用して撹拌した。他の内容は実施例1と同様とした。
<Examples 3 to 5>
A pre-leaching step was carried out on the same precious metal-containing compound as that used in Examples 1 and 2 and Comparative Example 1. The details of the pre-leaching step were the same as those in Comparative Example 1.
The leaching process was then carried out according to the details in Table 2. The stirring was carried out using an inclined paddle. The other details were the same as in Example 1.

<実施例6>
実施例1、2、比較例1にて使用した物と同じ貴金属含有化合物に対して前浸出工程を行った。前浸出工程の内容は比較例1と同様とした。
その後、本浸出工程を表2の内容に従って行った。なお、傾斜パドルを使用して撹拌した。他の内容は実施例1と同様とした。
Example 6
A pre-leaching step was carried out on the same precious metal-containing compound as that used in Examples 1 and 2 and Comparative Example 1. The details of the pre-leaching step were the same as those in Comparative Example 1.
The leaching process was then carried out according to the details in Table 2. The stirring was carried out using an inclined paddle. The other details were the same as in Example 1.

<結果>
実施例1~6および比較例1における浸出結果を以下の表3に示す。浸出結果は、本浸出工程後のブライン液をICP分析装置(Thermo Scientific製のiCAP6000)にかけて分析し、得た。なお、浸出率は、上記の貴金属含有化合物の含有量を基準(100質量%)として、浸出量から計算した値である。
<Results>
The leaching results in Examples 1 to 6 and Comparative Example 1 are shown in Table 3 below. The leaching results were obtained by analyzing the brine after the leaching process using an ICP analyzer (iCAP6000 manufactured by Thermo Scientific). The leaching rate is a value calculated from the leaching amount, with the content of the above-mentioned precious metal-containing compound as the standard (100 mass%).

実施例1~5では、浸出率に関し、銀(Ag)は、72.2~97.7質量%、鉛(Pb)は0~99.1質量%、錫(Sn)は、0~63質量%、珪素(Si)は、0~4.3質量、金(Au)は、57.1~100質量%となった。各元素の中、金と銀は、条件によっては90%を超える高い浸出が可能であることがわかった。また、浸出率に関し、錫、珪素は、0%に抑制できていた。 In Examples 1 to 5, the leaching rates were 72.2 to 97.7% by mass for silver (Ag), 0 to 99.1% by mass for lead (Pb), 0 to 63% by mass for tin (Sn), 0 to 4.3% by mass for silicon (Si), and 57.1 to 100% by mass for gold (Au). Of the elements, it was found that gold and silver could be highly leached at over 90% depending on the conditions. Furthermore, the leaching rates for tin and silicon could be suppressed to 0%.

実施例1~6においては、電位、pH、酸化剤の種類を制御した高塩素濃度の溶液を用
いると各種金属の浸出率を高次元で達成できる他、各種金属の浸出を制御できることが分かった。
In Examples 1 to 6, it was found that by using a high chlorine concentration solution in which the potential, pH, and type of oxidizing agent were controlled, it was possible to achieve a high level of leaching rate of various metals and also to control the leaching of various metals.

複数の金属成分を含む原料などの処理において、各種金属の浸出を制御でき、特に、金、銀において他の金属成分と分離して回収できることが分かった。 When processing raw materials containing multiple metal components, it was found that it is possible to control the leaching of various metals, and in particular, it is possible to separate and recover gold and silver from other metal components.

表3に示すように、比較例1に比べ、実施例1~6だとAuの浸出率が高かった。また、実施例1、2の貴金属含有化合物中には珪酸が13.13質量%存在し、実施例3の貴金属含有化合物中には珪酸が23.19質量%存在したにもかかわらず、Siの浸出率は極めて低かった。また、Snの浸出率も極めて低かった。 As shown in Table 3, the Au leaching rate was higher in Examples 1 to 6 than in Comparative Example 1. In addition, even though silicic acid was present in the precious metal-containing compounds of Examples 1 and 2 at 13.13 mass%, and silicic acid was present in the precious metal-containing compound of Example 3 at 23.19 mass%, the Si leaching rate was extremely low. The Sn leaching rate was also extremely low.

実施例3、5、6では、前浸出工程と本浸出工程とでpHが4または5という比較的高い値(弱酸相当)であるが、Auを浸出させることできた。また、Auの浸出率は、高い値を示した(30%以上)。Agの浸出率は70%以上を示した。このことにより、本発明の方法を利用すれば、pHの制御による沈殿分離の操作と、浸出の処理を同時にできることで、さらに金等以外の金属との分離を簡便に処理が可能となることが明らかとなった。 In Examples 3, 5, and 6, Au could be leached even though the pH was relatively high (corresponding to a weak acid) at 4 or 5 in the pre-leaching process and main leaching process. The leaching rate of Au was high (30% or more). The leaching rate of Ag was 70% or more. This shows that by using the method of the present invention, the precipitation separation operation by controlling the pH and the leaching process can be performed simultaneously, making it possible to easily separate metals other than gold, etc.

以上のとおり、本実施例ならば、貴金属含有化合物から貴金属(特にAu)を回収できることが明らかとなった。特に、実施例3、5、6のように、pH3~5であってもAuのような貴金属を浸出可能であることが明らかとなった。 As described above, it has become clear that this embodiment can recover precious metals (especially Au) from precious metal-containing compounds. In particular, it has become clear that, as in Examples 3, 5, and 6, precious metals such as Au can be leached even at a pH of 3 to 5.

Claims (5)

貴金属含有化合物から貴金属を回収する方法であって、
Clの濃度が100g/L以上であるブライン液中に貴金属含有化合物と酸化剤とを存在させ、ORP(3.3M KCl-Ag/AgCl)を700mV以上とし、貴金属含有化合物から貴金属をブライン液に浸出させる浸出工程を有し、
前記ブライン液は、ハロゲン源として塩化ナトリウム、塩化カルシウムもしくはその水和物の少なくとも1つを含み、そのpHが1以上5以下である、
貴金属の回収方法。
1. A method for recovering precious metals from a precious metal-containing compound, comprising:
The method includes a leaching step of causing a precious metal-containing compound and an oxidizing agent to be present in a brine solution having a Cl concentration of 100 g/L or more, setting an ORP (3.3 M KCl-Ag/AgCl) to 700 mV or more, and leaching a precious metal from the precious metal-containing compound into the brine solution,
The brine solution contains at least one of sodium chloride, calcium chloride, or a hydrate thereof as a halogen source, and has a pH of 1 or more and 5 or less.
How to recover precious metals.
前記ブライン液のpHは2を超え且つ5以下である、請求項1に記載の貴金属の回収方法。 The method for recovering precious metals according to claim 1, wherein the pH of the brine solution is greater than 2 and less than or equal to 5. 前記貴金属は少なくともAuを含む、請求項1または2に記載の貴金属の回収方法。 The method for recovering precious metals according to claim 1 or 2, wherein the precious metals include at least Au. 浸出工程の前に、貴金属含有化合物に対して酸による浸出処理を行う前浸出工程を更に有する、請求項1~3のいずれかに記載の貴金属の回収方法。 The method for recovering precious metals according to any one of claims 1 to 3, further comprising a pre-leaching step in which the precious metal-containing compound is subjected to an acid leaching treatment prior to the leaching step. 浸出工程の後の残渣に対して還元性の浸出処理を行う後浸出工程を更に有する、請求項1~4のいずれかに記載の貴金属の回収方法。 The method for recovering precious metals according to any one of claims 1 to 4, further comprising a post-leaching step in which a reductive leaching treatment is performed on the residue after the leaching step.
JP2020150327A 2020-02-05 2020-09-08 How to recover precious metals Active JP7525340B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020017828 2020-02-05
JP2020017828 2020-02-05

Publications (2)

Publication Number Publication Date
JP2021123791A JP2021123791A (en) 2021-08-30
JP7525340B2 true JP7525340B2 (en) 2024-07-30

Family

ID=77458427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150327A Active JP7525340B2 (en) 2020-02-05 2020-09-08 How to recover precious metals

Country Status (1)

Country Link
JP (1) JP7525340B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120106A (en) 2005-02-16 2008-02-06 奥图泰有限公司 Method for the recovery of gold from sulphide concentrate
JP2012184462A (en) 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore
JP2016121399A (en) 2014-12-25 2016-07-07 三菱マテリアル株式会社 Leaching method of valuable metal contained in copper removal slime
JP2017218650A (en) 2016-06-09 2017-12-14 三菱マテリアル株式会社 Gold dissolution method
JP2019131838A (en) 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120106A (en) 2005-02-16 2008-02-06 奥图泰有限公司 Method for the recovery of gold from sulphide concentrate
JP2012184462A (en) 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore
JP2016121399A (en) 2014-12-25 2016-07-07 三菱マテリアル株式会社 Leaching method of valuable metal contained in copper removal slime
JP2017218650A (en) 2016-06-09 2017-12-14 三菱マテリアル株式会社 Gold dissolution method
JP2019131838A (en) 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER

Also Published As

Publication number Publication date
JP2021123791A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
RU2353684C2 (en) Method of joint separation of platinum metal
RU2494159C1 (en) Method of noble metal extraction
TW201602357A (en) Wet based formulations for the selective removal of noble metals
KR100231906B1 (en) Method for producing high-grade reduced silver
JP5825484B2 (en) Method for recovering platinum group metals
RU2693285C1 (en) METHOD OF SEPARATING METALS FROM PLATINUM, PALLADIUM, RHODIUM Pt-Pd-Rh
JP2012246198A (en) Method for purifying selenium by wet process
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7487499B2 (en) Method for separating platinum group elements from each other
JP7525340B2 (en) How to recover precious metals
JP3975901B2 (en) Iridium separation and purification method
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP7130497B2 (en) Tin recovery method
EP1577408A1 (en) Method for separating platinum group element
JP2012246197A (en) Method for purifying selenium by wet process
JP7400443B2 (en) Mutual separation method of platinum group elements
JP4281534B2 (en) Treatment method for platinum group-containing materials
JP2007231397A (en) Method for refining silver chloride
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JPH10265863A (en) Method for recovering noble metals from smelting residue
JP4269586B2 (en) Methods for separating platinum group elements
JP4821486B2 (en) Method for purifying platinum raw materials containing tin
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240718

R150 Certificate of patent or registration of utility model

Ref document number: 7525340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150