JP7524958B2 - TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE - Google Patents

TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE Download PDF

Info

Publication number
JP7524958B2
JP7524958B2 JP2022551459A JP2022551459A JP7524958B2 JP 7524958 B2 JP7524958 B2 JP 7524958B2 JP 2022551459 A JP2022551459 A JP 2022551459A JP 2022551459 A JP2022551459 A JP 2022551459A JP 7524958 B2 JP7524958 B2 JP 7524958B2
Authority
JP
Japan
Prior art keywords
temperature
insulating material
specimen
contact
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022551459A
Other languages
Japanese (ja)
Other versions
JPWO2022064553A1 (en
Inventor
雄次郎 田中
大地 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2022064553A1 publication Critical patent/JPWO2022064553A1/ja
Application granted granted Critical
Publication of JP7524958B2 publication Critical patent/JP7524958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は、生体等の被検体の内部温度を推定する温度推定方法、温度推定プログラムおよび温度推定装置に関するものである。 The present invention relates to a temperature estimation method, a temperature estimation program, and a temperature estimation device for estimating the internal temperature of a subject such as a living body.

生体の深部体温を推定する方法として、特許文献1に開示された生体内温度推定方法が知られている。特許文献1に開示された方法は、図10に示すように生体100とセンサ101の熱等価回路モデルを用いて、生体100の深部体温TCBTを推定するものである。センサ101は、生体100の皮膚表面の温度Tskinと皮膚表面の熱流束HSとを計測する。Ttopは生体100の皮膚と接する面と反対側のセンサ101の上面の温度、TAirは外気温度、RBは生体100の熱抵抗、RSはセンサ101の熱抵抗、RAは外気の熱抵抗である。深部体温TCBTを推定する式は、次式のようになる。
CBT=Tskin+AHS ・・・(1)
A method for estimating the deep body temperature of a living body is known, as disclosed in Patent Document 1. The method disclosed in Patent Document 1 estimates the deep body temperature T CBT of the living body 100 using a thermal equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG. 10. The sensor 101 measures the temperature T skin of the skin surface of the living body 100 and the heat flux H S of the skin surface. T top is the temperature of the top surface of the sensor 101 opposite to the surface in contact with the skin of the living body 100, T Air is the outside air temperature, R B is the thermal resistance of the living body 100, R S is the thermal resistance of the sensor 101, and R A is the thermal resistance of the outside air. The equation for estimating the deep body temperature T CBT is as follows.
T CBT = T skin + AH S ... (1)

式(1)の比例係数Aは、生体100の熱物性値によって決まる。比例係数Aは、一般に、初期校正時に別のセンサを用いて計測された直腸温や鼓膜温を深部体温TCBTとして、この深部体温TCBTとセンサ101によって計測された温度Tskinと熱流束HSとを用いることにより求めることができる。 The proportionality coefficient A in formula (1) is determined by the thermal property value of the living body 100. In general, the proportionality coefficient A can be calculated by using the deep body temperature T CBT , which is the rectal temperature or tympanic membrane temperature measured using a different sensor during initial calibration, and this deep body temperature T CBT , the temperature T skin measured by the sensor 101, and the heat flux H S .

従来の方法では、生体100の熱物性値を一定とし、比例係数Aも一定としていた。しかしながら、熱物性値は、個人差があり、また深部体温TCBTの計測中に生体100の血流が増減すると変動する。この熱物性値の変動により、従来の方法では、深部体温TCBTの推定に誤差が生じるという課題があった。 In the conventional method, the thermal property values of the living body 100 are constant, and the proportionality coefficient A is also constant. However, the thermal property values vary from person to person, and also fluctuate if the blood flow of the living body 100 increases or decreases during measurement of the deep body temperature T CBT . Due to this fluctuation in the thermal property values, the conventional method has a problem in that errors occur in the estimation of the deep body temperature T CBT .

特開2020-3291号公報JP 2020-3291 A

本発明は、上記課題を解決するためになされたもので、生体等の被検体の内部温度の推定誤差を低減することができる温度推定方法、温度推定プログラムおよび温度推定装置を提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and aims to provide a temperature estimation method, a temperature estimation program, and a temperature estimation device that can reduce the estimation error of the internal temperature of a subject such as a living body.

本発明の温度推定方法は、両面にそれぞれ第1の温度センサ、第2の温度センサが設けられた断熱材が被検体と接触する前に、前記被検体の表面の温度を第3の温度センサによって計測する第1のステップと、前記断熱材と前記被検体との接触前に前記断熱材の温度を、前記断熱材の被検体側の面と反対側の面に設けられた前記第2の温度センサによって計測する第2のステップと、前記断熱材と前記被検体との接触後に前記被検体の表面の温度を、前記断熱材の被検体の面に設けられた前記第1の温度センサによって計測する第3のステップと、前記断熱材と前記被検体との接触後に、前記被検体から遠ざかる位置の温度を前記第2の温度センサによって計測する第4のステップと、前記断熱材と前記被検体との接触前の前記断熱材の温度と、前記断熱材と前記被検体との接触前の前記被検体の表面の温度と、前記断熱材と前記被検体との接触後の前記被検体の表面の温度とに基づいて、前記被検体の熱拡散率を算出する第5のステップと、前記熱拡散率に基づいて前記被検体の熱物性値に依存する比例係数を導出する第6のステップと、前記被検体の表面の温度を前記第1の温度センサによって計測する第7のステップと、前記被検体から遠ざかる位置の温度を前記第2の温度センサによって計測する第8のステップと、前記第7、第8のステップの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出する第9のステップとを含み、前記第5のステップは、前記断熱材と前記被検体との接触後に前記第3、第4のステップで計測した温度と、所定時間経過後に前記第3、第4のステップで再度計測した温度とに基づいて、前記第3のステップの計測結果を補正した温度を算出し、この補正した温度を、前記断熱材と前記被検体との接触後の前記被検体の表面の温度とするステップを含むことを特徴とするものである。
また、本発明の温度推定プログラムは、前記の第5のステップ、第6のステップ、第9のステップをコンピュータに実行させることを特徴とするものである。
The temperature estimation method of the present invention includes a first step of measuring a temperature of a surface of an object to be measured by a third temperature sensor before an insulating material having a first temperature sensor and a second temperature sensor provided on both sides thereof comes into contact with an object to be measured; a second step of measuring a temperature of the insulating material before contact between the insulating material and the object to be measured by the second temperature sensor provided on a surface of the insulating material opposite to the surface of the insulating material facing the object to be measured; a third step of measuring a temperature of the surface of the object to be measured after contact between the insulating material and the object to be measured by the first temperature sensor provided on the surface of the insulating material facing the object to be measured; a fourth step of measuring a temperature of the insulating material before contact between the insulating material and the object to be measured, the temperature of the insulating material before contact between the insulating material and the object to be measured, the temperature of the surface of the object to be measured before contact between the insulating material and the object to be measured, and the temperature of the surface of the object to be measured after contact between the insulating material and the object to be measured. a fifth step of calculating the thermal diffusivity of the specimen based on the temperature of the specimen; a sixth step of deriving a proportionality coefficient that depends on the thermal property value of the specimen based on the thermal diffusivity; a seventh step of measuring the temperature of the surface of the specimen using the first temperature sensor; an eighth step of measuring the temperature at a position away from the specimen using the second temperature sensor; and a ninth step of calculating the internal temperature of the specimen based on the measurement results of the seventh and eighth steps and the proportionality coefficient , wherein the fifth step includes a step of calculating a temperature by correcting the measurement result of the third step based on the temperatures measured in the third and fourth steps after contact between the insulating material and the specimen and the temperatures measured again in the third and fourth steps after a predetermined time has elapsed, and setting this corrected temperature as the surface temperature of the specimen after contact between the insulating material and the specimen .
A temperature estimation program according to the present invention is characterized in that it causes a computer to execute the fifth, sixth and ninth steps.

また、本発明の温度推定装置は、断熱材と、被検体と向かい合う前記断熱材の面に設けられた第1の温度センサと、前記断熱材の被検体側の面と反対側の面に設けられた第2の温度センサと、前記断熱材と前記被検体との接触前の前記被検体の表面の温度を計測するように構成された第3の温度センサと、前記断熱材と前記被検体との接触前に前記第2の温度センサによって計測された前記断熱材の温度と、前記断熱材と前記被検体との接触前に前記第3の温度センサによって計測された前記被検体の表面の温度と、前記断熱材と前記被検体との接触後に前記第1の温度センサによって計測された前記被検体の表面の温度とに基づいて、前記被検体の熱拡散率を算出するように構成された熱拡散率算出部と、前記熱拡散率に基づいて前記被検体の熱物性値に依存する比例係数を導出するように構成された比例係数導出部と、前記断熱材と前記被検体との接触後の前記第1、第2の温度センサの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とするものである。The temperature estimation device of the present invention is characterized in that it comprises an insulating material, a first temperature sensor provided on a surface of the insulating material facing the specimen, a second temperature sensor provided on a surface of the insulating material opposite to the surface facing the specimen, a third temperature sensor configured to measure the temperature of the surface of the specimen before contact between the insulating material and the specimen, a thermal diffusivity calculation unit configured to calculate the thermal diffusivity of the specimen based on the temperature of the insulating material measured by the second temperature sensor before contact between the insulating material and the specimen, the temperature of the surface of the specimen measured by the third temperature sensor before contact between the insulating material and the specimen, and the temperature of the surface of the specimen measured by the first temperature sensor after contact between the insulating material and the specimen, a proportionality coefficient derivation unit configured to derive a proportionality coefficient that depends on a thermal property value of the specimen based on the thermal diffusivity, and a temperature calculation unit configured to calculate the internal temperature of the specimen based on the measurement results of the first and second temperature sensors after contact between the insulating material and the specimen and the proportionality coefficient.

本発明によれば、断熱材と被検体との接触前の断熱材の温度と、断熱材と被検体との接触前の被検体の表面の温度と、断熱材と被検体との接触後の被検体の表面の温度とに基づいて、被検体の熱拡散率を算出し、熱拡散率に基づいて被検体の熱物性値に依存する比例係数を導出し、被検体の表面の温度と被検体から遠ざかる位置の温度と比例係数とに基づいて被検体の内部温度を算出することにより、被検体の個体差や血流によって変わる比例係数を補正することができるので、被検体の内部温度の推定誤差を低減することができる。According to the present invention, the thermal diffusivity of the specimen is calculated based on the temperature of the insulating material before contact between the insulating material and the specimen, the temperature of the surface of the specimen before contact between the insulating material and the specimen, and the temperature of the surface of the specimen after contact between the insulating material and the specimen; a proportionality coefficient that depends on the thermal property values of the specimen is derived based on the thermal diffusivity; and the internal temperature of the specimen is calculated based on the surface temperature of the specimen, the temperature at a position away from the specimen, and the proportionality coefficient. This makes it possible to correct the proportionality coefficient that varies depending on individual differences and blood flow in the specimen, thereby reducing the estimation error of the internal temperature of the specimen.

図1は、センサと生体の温度の時間変化の例を示す図である。FIG. 1 is a diagram showing an example of changes in temperature of a sensor and a living body over time. 図2は、物体と接触した後の生体の皮膚表面温度と生体の熱拡散率との関係の1例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the skin surface temperature of a living body after contact with an object and the thermal diffusivity of the living body. 図3は、本発明の実施例に係る温度推定装置の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention. 図4は、本発明の実施例に係る断熱材と温度センサと生体の熱等価回路モデルを示す図である。FIG. 4 is a diagram showing a thermal equivalent circuit model of a heat insulating material, a temperature sensor, and a living body according to an embodiment of the present invention. 図5は、本発明の実施例に係る温度推定装置の動作を説明するフローチャートである。FIG. 5 is a flowchart illustrating the operation of the temperature estimation device according to the embodiment of the present invention. 図6は、本発明の実施例に係る温度補正部の動作を説明する図である。FIG. 6 is a diagram illustrating the operation of the temperature correction unit according to the embodiment of the present invention. 図7は、比例係数と生体の熱拡散率との関係の1例を示す図である。FIG. 7 is a diagram showing an example of the relationship between the proportionality coefficient and the thermal diffusivity of a living body. 図8は、本発明の実施例に係る温度推定装置によって推定した深部体温と鼓膜温度計によって計測した鼓膜温とを示す図である。FIG. 8 is a diagram showing the deep body temperature estimated by the temperature estimation device according to the embodiment of the present invention and the tympanic membrane temperature measured by a tympanic membrane thermometer. 図9は、本発明の実施例に係る温度推定装置を実現するコンピュータの構成例を示すブロック図である。FIG. 9 is a block diagram showing an example of the configuration of a computer that realizes a temperature estimation device according to an embodiment of the present invention. 図10は、生体とセンサの熱等価回路モデルを示す図である。FIG. 10 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.

[発明の原理]
熱の伝わり方は、一般に式(2)の熱伝導方程式により記述される。
[Principle of the Invention]
The way heat is transferred is generally described by the heat conduction equation (2).

Figure 0007524958000001
Figure 0007524958000001

式(2)におけるαは物体の固有の値である熱拡散率、Tは温度、zは深さ方向の座標、tは時間である。図10に示したように1次元的な熱の伝わり方を考える。ここでは、物体が十分に厚い場合、あるいは温度の観測時間が短い場合を考える。フーリエ数F=αt/L2(Lは物体の厚さ)で表現すると、F<0.1が成立する場合が望ましい。 In formula (2), α is the thermal diffusivity, which is an inherent value of an object, T is the temperature, z is the coordinate in the depth direction, and t is time. Consider one-dimensional heat transfer as shown in Fig. 10. Here, consider the case where the object is sufficiently thick or the temperature observation time is short. When expressed as a Fourier number F = αt/ L2 (L is the thickness of the object), it is desirable for F < 0.1 to be true.

図1に示すようにセンサ101と生体100が接触すると、接触界面を介してセンサ101と生体100との間で熱の授受が生じ温度が変化する。生体100の内部の温度は時々刻々と変化する。図1の例では、時間tの経過に伴い、Taで示す温度からTbで示す温度へと変化し、さらにTcで示す温度へと変化する。一方、センサ101と生体100との接触界面の温度(図1のTd)は、接触時点から一定である。As shown in Figure 1, when the sensor 101 and the living body 100 come into contact, heat is exchanged between the sensor 101 and the living body 100 via the contact interface, causing a change in temperature. The temperature inside the living body 100 changes from moment to moment. In the example of Figure 1, as time t passes, the temperature changes from the temperature indicated by Ta to the temperature indicated by Tb, and then to the temperature indicated by Tc. Meanwhile, the temperature of the contact interface between the sensor 101 and the living body 100 (Td in Figure 1) remains constant from the time of contact.

式(2)より、生体100内の温度分布T(z,t)と接触界面での熱流束qは、センサ101との接触前の生体100の内部温度Tiを用いると、式(3)、式(4)のように求めることができる。 From equation (2), the temperature distribution T(z, t) within the living body 100 and the heat flux q at the contact interface can be calculated using the internal temperature T i of the living body 100 before contact with the sensor 101 as shown in equations (3) and (4).

Figure 0007524958000002
Figure 0007524958000002

式(3)のerf()は誤差関数である。接触界面での熱流束qはセンサ側と生体側で連続なので、式(4)より、センサ101との接触後の生体100の皮膚表面温度Tskinは、式(5)に示すように接触前のセンサ101の温度Tsensorと接触前の生体100の皮膚表面温度Tbodyで決まる。 In formula (3), erf() is an error function. Since the heat flux q at the contact interface is continuous between the sensor side and the living body side, according to formula (4), the skin surface temperature T skin of the living body 100 after contact with the sensor 101 is determined by the temperature T sensor of the sensor 101 before contact and the skin surface temperature T body of the living body 100 before contact, as shown in formula (5).

Figure 0007524958000003
Figure 0007524958000003

式(5)のαsensorはセンサ101の熱拡散率、αbodyは生体100の熱拡散率である。35℃の生体100と、生体100と同程度の熱拡散率を有する20℃の物体とを接触させた後の生体100の皮膚表面温度Tskinと生体100の熱拡散率αbodyとの関係の1例を図2に示す。 In formula (5), α sensor is the thermal diffusivity of the sensor 101, and α body is the thermal diffusivity of the living body 100. An example of the relationship between the skin surface temperature T skin of the living body 100 and the thermal diffusivity α body of the living body 100 after the living body 100 at 35° C. is brought into contact with an object at 20° C. that has a thermal diffusivity similar to that of the living body 100 is shown in FIG.

式(5)を変形すると、式(6)のように未知パラメータである生体100の熱拡散率αbodyについて解くことができる。 By modifying equation (5), the thermal diffusivity α body of the living body 100, which is an unknown parameter, can be solved as in equation (6).

Figure 0007524958000004
Figure 0007524958000004

接触前のセンサ101の温度Tsensorと接触前の生体100の皮膚表面温度Tbodyと接触後の生体100の皮膚表面温度Tskinとを測定できれば、式(6)により生体100の熱特性である熱拡散率率αbodyを求めることができる。そして、熱拡散率率αbodyから比例係数Aを導出することが可能となる。 If the temperature T sensor of the sensor 101 before contact, the skin surface temperature T body of the living body 100 before contact, and the skin surface temperature T skin of the living body 100 after contact can be measured, the thermal diffusivity coefficient α body , which is a thermal characteristic of the living body 100, can be calculated by equation (6). Then, it becomes possible to derive the proportionality coefficient A from the thermal diffusivity coefficient α body .

[実施例]
以下、本発明の実施例について図面を参照して説明する。図3は本発明の実施例に係る温度推定装置の構成を示すブロック図である。温度推定装置は、断熱材1と、生体100(被検体)と向かい合う断熱材1の面に設けられた温度センサ2と、断熱材1の生体側の面と反対側の面に設けられた温度センサ3と、断熱材1と生体100との接触前の生体100の皮膚表面温度Tbodyを計測する温度センサ4と、生体100の熱拡散率率αbodyに対応する比例係数Aが登録された校正テーブルを予め記憶する記憶部5と、断熱材1と生体100との接触後に温度センサ2によって計測された温度を補正する温度補正部6と、生体100の熱拡散率率αbodyを算出する熱拡散率算出部7と、生体100の熱拡散率率αbodyに基づいて比例係数Aを導出する比例係数導出部8と、温度センサ2,3の計測結果と比例係数Aとに基づいて生体100の深部体温TCBT(内部温度)を算出する温度算出部9と、深部体温TCBTの算出結果を外部端末11に送信する通信部10とを備えている。
[Example]
An embodiment of the present invention will now be described with reference to the accompanying drawings, in which: Fig. 3 is a block diagram showing the configuration of a temperature estimation device according to an embodiment of the present invention; The temperature estimation device comprises an insulating material 1, a temperature sensor 2 provided on the surface of the insulating material 1 facing the living body 100 (subject), a temperature sensor 3 provided on the surface of the insulating material 1 opposite the surface facing the living body, a temperature sensor 4 for measuring the skin surface temperature T body of the living body 100 before contact between the insulating material 1 and the living body 100, a memory unit 5 for pre-storing a calibration table in which a proportionality coefficient A corresponding to the thermal diffusivity coefficient α body of the living body 100 is registered, a temperature correction unit 6 for correcting the temperature measured by the temperature sensor 2 after contact between the insulating material 1 and the living body 100, a thermal diffusivity calculation unit 7 for calculating the thermal diffusivity coefficient α body of the living body 100, a proportionality coefficient derivation unit 8 for deriving the proportionality coefficient A based on the thermal diffusivity coefficient α body of the living body 100, a temperature calculation unit 9 for calculating a deep body temperature T CBT (internal temperature) of the living body 100 based on the measurement results of the temperature sensors 2 and 3 and the proportionality coefficient A, and a communication unit 10 for transmitting the calculation result of the deep body temperature T CBT to an external terminal 11.

温度推定装置は、断熱材1が生体100の皮膚と接触するように配置される。温度センサ2は、断熱材1の生体側の面に設けられる。温度センサ3は、断熱材1の生体側の面と反対側の面に、空気と触れるように設けられる。断熱材1は、温度センサ2と温度センサ3とを保持し、且つ温度センサ2に流入する熱に対する抵抗体となる。温度センサ2,3としては、例えば公知のサーミスタや、熱電対を用いたサーモパイルなどを用いることができる。The temperature estimation device is positioned so that the insulating material 1 is in contact with the skin of the living body 100. The temperature sensor 2 is provided on the surface of the insulating material 1 facing the living body. The temperature sensor 3 is provided on the surface of the insulating material 1 opposite the surface facing the living body so as to be in contact with the air. The insulating material 1 holds the temperature sensors 2 and 3, and acts as a resistor against the heat flowing into the temperature sensor 2. As the temperature sensors 2 and 3, for example, a known thermistor or a thermopile using a thermocouple can be used.

一方、温度センサ4は、断熱材1と生体100との接触前の生体100の皮膚表面温度Tbodyを計測する。温度センサ4としては、生体100の温度に与える影響を最小にして測定できるセンサが望ましい。このような温度センサ4としては、非接触式放射温度計、あるいは熱容量が小さい小型のセンサプローブがある。 On the other hand, the temperature sensor 4 measures the skin surface temperature T body of the living body 100 before contact between the insulating material 1 and the living body 100. As the temperature sensor 4, a sensor capable of measuring with minimal effect on the temperature of the living body 100 is preferable. Such a temperature sensor 4 may be a non-contact radiation thermometer or a small sensor probe with a small heat capacity.

図4は断熱材1と温度センサ2,3と生体100の熱等価回路モデルを示す図である。本実施例においても熱等価回路モデルは従来と同様であるので、図10と同じ符号を用いて説明する。 Figure 4 shows a thermal equivalent circuit model of the insulating material 1, temperature sensors 2 and 3, and the living body 100. In this embodiment, the thermal equivalent circuit model is the same as in the conventional embodiment, so it will be explained using the same symbols as in Figure 10.

図5は本実施例の温度推定装置の動作を説明するフローチャートである。最初に、温度センサ4は、断熱材1と生体100との接触前の生体100の皮膚表面温度Tbodyを計測する(図5ステップS100)。温度センサ4の計測データは記憶部5に格納される。 5 is a flow chart for explaining the operation of the temperature estimation device of this embodiment. First, the temperature sensor 4 measures the skin surface temperature T body of the living body 100 before the heat insulating material 1 comes into contact with the living body 100 (step S100 in FIG. 5). The measurement data of the temperature sensor 4 is stored in the memory unit 5.

温度センサ3は、断熱材1と生体100との接触前の断熱材1の温度Tsensorを計測する(図5ステップS101)。温度センサ3の計測データは記憶部5に格納される。
なお、生体100との接触前の状態では、温度センサ2によって計測される温度と温度3によって計測される温度とがほぼ等しくなっていることが望ましい。
The temperature sensor 3 measures the temperature T sensor of the heat insulating material 1 before the heat insulating material 1 comes into contact with the living body 100 (step S101 in FIG. 5). The measurement data of the temperature sensor 3 is stored in the storage unit 5.
It is preferable that before contact with the living body 100, the temperature measured by the temperature sensor 2 and the temperature measured by the temperature sensor 3 are substantially equal.

次に、温度推定装置のユーザは、断熱材1と生体100とを接触させる。温度センサ2は、生体100の皮膚表面温度T1を計測する(図5ステップS102)。温度センサ3は、生体100から遠ざかる位置の温度T2を計測する(図5ステップS103)。温度センサ2,3の計測データは記憶部5に格納される。 Next, the user of the temperature estimation device brings the insulating material 1 into contact with the living body 100. The temperature sensor 2 measures the skin surface temperature T1 of the living body 100 (step S102 in FIG. 5). The temperature sensor 3 measures the temperature T2 at a position away from the living body 100 (step S103 in FIG. 5). The measurement data of the temperature sensors 2 and 3 are stored in the memory unit 5.

温度T1,T2の計測は継続的に実施される。時間Δtの経過が経過したとき(図5ステップS104においてYES)、温度補正部6は、温度センサ2,3によって計測された温度T1,T2と、時間Δtの経過後に温度センサ2,3によって再度計測された温度T1,T2とに基づいて、温度T1を補正した皮膚表面温度Tskinを算出する(図5ステップS105)。 The temperatures T1 and T2 are continuously measured. When the time Δt has elapsed (YES in step S104 in FIG. 5), the temperature correction unit 6 calculates the skin surface temperature T skin by correcting the temperature T1 based on the temperatures T1 and T2 measured by the temperature sensors 2 and 3 and the temperatures T1 and T2 measured again by the temperature sensors 2 and 3 after the time Δt has elapsed (step S105 in FIG. 5).

図6は温度補正部6の動作を説明する図である。温度センサ2自体のサイズにより、温度センサ2は、生体100の皮膚表面から僅かに離れた温度を測定している可能性がある。そこで、温度センサ3によって計測された温度T2も用いて外挿により皮膚表面温度Tskinを求めることが望ましい。 6 is a diagram for explaining the operation of the temperature correction unit 6. Depending on the size of the temperature sensor 2 itself, the temperature sensor 2 may be measuring a temperature slightly distant from the skin surface of the living body 100. Therefore, it is desirable to obtain the skin surface temperature T skin by extrapolation using the temperature T2 measured by the temperature sensor 3 as well.

具体的には、温度補正部6は、断熱材1と生体100との接触後の時刻t0において温度センサ2,3によって計測された温度T1to,T2t0に基づいて外挿により温度センサ2よりも生体100に近い位置の温度データ(図6の直線L0)を位置毎に推定する。
同様に、温度補正部6は、時刻t0からΔt経過後の時刻t1(t1>t0)において温度センサ2,3によって計測された温度T1t1,T2t1に基づいて外挿により温度センサ2よりも生体100に近い位置の温度データ(図6の直線L1)を位置毎に推定する。
Specifically, the temperature correction unit 6 estimates the temperature data (straight line L0 in Figure 6) for each position by extrapolation based on the temperatures T1to , T2t0 measured by the temperature sensors 2, 3 at time t0 after contact between the insulating material 1 and the living body 100.
Similarly, the temperature correction unit 6 estimates the temperature data (straight line L1 in Figure 6) for each position by extrapolation based on the temperatures T1t1 , T2t1 measured by the temperature sensors 2, 3 at time t1 ( t1 > t0 ), which is Δt after time t0 .

そして、温度補正部6は、時刻t0の温度T1to,T2t0から推定した温度データ列の直線L0と時刻t1の温度T1t1,T2t1から推定した温度データ列の直線L1との交点を、皮膚表面温度Tskinとする。温度センサ2と温度センサ3との距離は既知なので、温度センサ2よりも生体100に近い位置の温度データを位置毎に推定することが可能である。 Then, the temperature correction unit 6 determines the intersection of a straight line L0 of the temperature data sequence estimated from the temperatures T1to and T2t0 at time t0 and a straight line L1 of the temperature data sequence estimated from the temperatures T1t1 and T2t1 at time t1 as the skin surface temperature Tskin . Since the distance between the temperature sensors 2 and 3 is known, it is possible to estimate temperature data for each position closer to the living body 100 than the temperature sensor 2.

なお、本実施例では、温度推定装置が断熱材1と生体100との接触を認識できることが必要である。例えば温度推定装置のユーザは、断熱材1と生体100とを接触させた後に計測開始指令信号を温度推定装置に入力する。この計測開始指令信号の入力により、温度推定装置の温度補正部6は、断熱材1と生体100とが接触したことを認識できる。In this embodiment, it is necessary for the temperature estimation device to be able to recognize contact between the insulating material 1 and the living body 100. For example, a user of the temperature estimation device inputs a measurement start command signal to the temperature estimation device after bringing the insulating material 1 into contact with the living body 100. By inputting this measurement start command signal, the temperature correction unit 6 of the temperature estimation device can recognize that the insulating material 1 and the living body 100 have come into contact.

続いて、熱拡散率算出部7は、断熱材1と生体100との接触前(計測開始指令信号の入力前)に温度センサ3によって計測された断熱材1の温度Tsensorと、接触前に温度センサ4によって計測された生体100の皮膚表面温度Tbodyと、接触後の生体100の皮膚表面温度Tskinとに基づいて、式(6)により生体100の熱拡散率αbodyを算出する(図5ステップS106)。断熱材1の熱拡散率αsensorは、既知の値である。 Next, the thermal diffusivity calculation unit 7 calculates the thermal diffusivity α body of the living body 100 by equation (6) based on the temperature T sensor of the insulating material 1 measured by the temperature sensor 3 before the contact between the insulating material 1 and the living body 100 (before the measurement start command signal is input), the skin surface temperature T body of the living body 100 measured by the temperature sensor 4 before the contact, and the skin surface temperature T skin of the living body 100 after the contact (step S106 in FIG. 5). The thermal diffusivity α sensor of the insulating material 1 is a known value.

なお、本実施例では、温度補正部6で求めた皮膚表面温度Tskinを用いているが、本発明において温度補正部6は必須の構成要件ではない。断熱材1と生体100との接触後に温度センサ2によって計測された温度T1をそのまま皮膚表面温度Tskinとしてもよい。 In this embodiment, the skin surface temperature T skin obtained by the temperature correction unit 6 is used, but the temperature correction unit 6 is not an essential component of the present invention. The temperature T 1 measured by the temperature sensor 2 after the heat insulating material 1 comes into contact with the living body 100 may be used as the skin surface temperature T skin as it is.

次に、記憶部5には、比例係数Aが熱拡散率αbody毎に登録された校正テーブルが予め記憶されている。
比例係数導出部8は、熱拡散率算出部7によって算出された熱拡散率αbodyに対応する比例係数Aの値を記憶部5の校正テーブルから取得することにより、比例係数Aを導出する(図5ステップS107)。
Next, the storage unit 5 stores in advance a calibration table in which the proportionality coefficient A is registered for each thermal diffusivity α body .
The proportionality coefficient derivation unit 8 obtains the value of the proportionality coefficient A corresponding to the thermal diffusivity α body calculated by the thermal diffusivity calculation unit 7 from the calibration table in the storage unit 5, thereby deriving the proportionality coefficient A (step S107 in FIG. 5).

図7は比例係数Aと熱拡散率αbodyとの関係の1例を示す図である。本実施例において、生体100の深部体温TCBTを推定する式は、次式のようになる。
CBT=Tskin+A(Tskin-Ttop) ・・・(7)
7 is a diagram showing an example of the relationship between the proportionality coefficient A and the thermal diffusivity α body . In this embodiment, the equation for estimating the core body temperature T CBT of the living body 100 is as follows.
T CBT = T skin + A (T skin - T top ) ... (7)

図7にプロットされた比例係数Aの実験値を求めるには、あらかじめ熱拡散率αが既知のポリマー等の疑似生体サンプルの表面の温度Tskinを温度センサ2によって計測し、疑似生体サンプルから遠ざかる位置の温度Ttopを温度センサ3によって計測する。さらに断熱材1の周囲の部位における疑似生体サンプルの内部温度TCBTを例えば熱流補償法によって計測すれば、式(7)により熱拡散率αに対応する比例係数Aを算出することができる。このような比例係数Aの実験値を、熱拡散率αが異なる多種の疑似生体サンプルについて求めることにより、校正テーブルを予め作成することができる。あるいは、比例係数Aと熱拡散率αbodyとの関係を数値計算により求めるようにしてもよい。 To obtain the experimental value of the proportionality coefficient A plotted in Fig. 7, the temperature T skin of the surface of a pseudo-biological sample such as a polymer whose thermal diffusivity α is known in advance is measured by the temperature sensor 2, and the temperature T top of a position away from the pseudo-biological sample is measured by the temperature sensor 3. Furthermore, if the internal temperature T CBT of the pseudo-biological sample in the area around the thermal insulation material 1 is measured by, for example, the heat flow compensation method, the proportionality coefficient A corresponding to the thermal diffusivity α can be calculated by the formula (7). By obtaining such experimental values of the proportionality coefficient A for various pseudo-biological samples with different thermal diffusivities α, a calibration table can be created in advance. Alternatively, the relationship between the proportionality coefficient A and the thermal diffusivity α body may be obtained by numerical calculation.

次に、温度センサ2は、生体100の皮膚表面温度Tskinを計測する(図5ステップS108)。温度センサ3は、生体100から遠ざかる位置の温度Ttopを計測する(図5ステップS109)。温度センサ2,3の計測データは記憶部5に格納される。 Next, the temperature sensor 2 measures the skin surface temperature T skin of the living body 100 (step S108 in FIG. 5). The temperature sensor 3 measures the temperature T top at a position away from the living body 100 (step S109 in FIG. 5). The measurement data of the temperature sensors 2 and 3 are stored in the memory unit 5.

温度算出部9は、温度センサ2,3によって計測された温度Tskin,Ttopと、比例係数導出部8によって導出された比例係数Aとに基づいて、生体100の深部体温TCBTを式(7)により算出する(図5ステップS110)。なお、式(7)のようにTskin-Ttopを算出することは、式(1)の熱流束HSを算出することに相当する。また、ステップS105の場合と同様に、温度センサ2によって計測された温度を温度補正部6によって補正した値をTskinとしてもよい。 The temperature calculation unit 9 calculates the core body temperature T CBT of the living body 100 using equation (7) based on the temperatures T skin and T top measured by the temperature sensors 2 and 3 and the proportionality coefficient A derived by the proportionality coefficient derivation unit 8 (step S110 in FIG. 5). Note that calculating T skin -T top as in equation (7) is equivalent to calculating the heat flux H S in equation (1). Also, as in step S105, the value obtained by correcting the temperature measured by the temperature sensor 2 using the temperature correction unit 6 may be set as T skin .

通信部10は、温度算出部9の算出結果を外部端末11に送信する(図5ステップS111)。PC(Personal Computer)やスマートフォン等からなる外部端末11は、温度推定装置から受信した深部体温TCBTの値を表示する。 The communication unit 10 transmits the calculation result of the temperature calculation unit 9 to the external terminal 11 (step S111 in FIG. 5). The external terminal 11, which may be a PC (Personal Computer) or a smartphone, displays the value of the core body temperature T CBT received from the temperature estimation device.

温度推定装置は、以上のステップS108~S111の処理を、例えばユーザから計測終了の指示があるまで(図5ステップS112においてYES)、一定時間毎に実施する。The temperature estimation device performs the above steps S108 to S111 at regular intervals, for example, until the user instructs the device to end measurement (YES in step S112 in Figure 5).

図8に本実施例で推定した深部体温TCBTと、比較のために鼓膜温度計によって計測した深部温度(鼓膜温)とを示す。図8の80,81,82,83は、それぞれ異なる生体100を対象とする結果を示している。図8によれば、鼓膜温に近い推定結果が本実施例によって得られていることが分かる。 Fig. 8 shows the deep body temperature T CBT estimated in this embodiment and the deep body temperature (tympanic membrane temperature) measured by a tympanic membrane thermometer for comparison. 80, 81, 82, and 83 in Fig. 8 show the results for different living bodies 100. Fig. 8 shows that the estimation result close to the tympanic membrane temperature is obtained by this embodiment.

本実施例で説明した記憶部5と温度補正部6と熱拡散率算出部7と比例係数導出部8と温度算出部9と通信部10とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図9に示す。The memory unit 5, temperature correction unit 6, thermal diffusivity calculation unit 7, proportionality coefficient derivation unit 8, temperature calculation unit 9, and communication unit 10 described in this embodiment can be realized by a computer equipped with a CPU (Central Processing Unit), a storage device, and an interface, and a program that controls these hardware resources. An example of the configuration of this computer is shown in Figure 9.

コンピュータは、CPU200と、記憶装置201と、インタフェース装置(I/F)202とを備えている。I/F202には、センサ2~4や通信部10のハードウェア等が接続される。このようなコンピュータにおいて、本発明の温度推定方法を実現させるための温度推定プログラムは記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って本実施例で説明した処理を実行する。The computer comprises a CPU 200, a storage device 201, and an interface device (I/F) 202. The I/F 202 is connected to the hardware of the sensors 2 to 4 and the communication unit 10. In such a computer, a temperature estimation program for realizing the temperature estimation method of the present invention is stored in the storage device 201. The CPU 200 executes the processing described in this embodiment in accordance with the program stored in the storage device 201.

本発明は、生体等の被検体の内部温度を推定する技術に適用することができる。 The present invention can be applied to technology for estimating the internal temperature of a subject such as a living body.

1…断熱材、2~4…温度センサ、5…記憶部、6…温度補正部、7…熱拡散率算出部、8…比例係数導出部、9…温度算出部、10…通信部、11…外部端末。 1...insulating material, 2 to 4...temperature sensors, 5...memory unit, 6...temperature correction unit, 7...thermal diffusivity calculation unit, 8...proportionality coefficient derivation unit, 9...temperature calculation unit, 10...communication unit, 11...external terminal.

Claims (6)

両面にそれぞれ第1の温度センサ、第2の温度センサが設けられた断熱材が被検体と接触する前に、前記被検体の表面の温度を第3の温度センサによって計測する第1のステップと、
前記断熱材と前記被検体との接触前に前記断熱材の温度を、前記断熱材の被検体側の面と反対側の面に設けられた前記第2の温度センサによって計測する第2のステップと、
前記断熱材と前記被検体との接触後に前記被検体の表面の温度を、前記断熱材の被検体の面に設けられた前記第1の温度センサによって計測する第3のステップと、
前記断熱材と前記被検体との接触後に、前記被検体から遠ざかる位置の温度を前記第2の温度センサによって計測する第4のステップと、
前記断熱材と前記被検体との接触前の前記断熱材の温度と、前記断熱材と前記被検体との接触前の前記被検体の表面の温度と、前記断熱材と前記被検体との接触後の前記被検体の表面の温度とに基づいて、前記被検体の熱拡散率を算出する第5のステップと、
前記熱拡散率に基づいて前記被検体の熱物性値に依存する比例係数を導出する第6のステップと、
前記被検体の表面の温度を前記第1の温度センサによって計測する第7のステップと、
前記被検体から遠ざかる位置の温度を前記第2の温度センサによって計測する第8のステップと、
前記第7、第8のステップの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出する第9のステップとを含み、
前記第5のステップは、前記断熱材と前記被検体との接触後に前記第3、第4のステップで計測した温度と、所定時間経過後に前記第3、第4のステップで再度計測した温度とに基づいて、前記第3のステップの計測結果を補正した温度を算出し、この補正した温度を、前記断熱材と前記被検体との接触後の前記被検体の表面の温度とするステップを含むことを特徴とする温度推定方法。
a first step of measuring a temperature of a surface of an object to be inspected by a third temperature sensor before an insulating material having a first temperature sensor and a second temperature sensor provided on both sides of the insulating material contacts the object;
a second step of measuring a temperature of the heat insulating material before the heat insulating material comes into contact with the test object by the second temperature sensor provided on a surface of the heat insulating material opposite to the surface of the heat insulating material facing the test object;
a third step of measuring a temperature of a surface of the test object after the heat insulating material comes into contact with the test object by the first temperature sensor provided on the surface of the test object of the heat insulating material;
a fourth step of measuring a temperature at a position away from the test object by the second temperature sensor after the heat insulating material comes into contact with the test object ;
a fifth step of calculating a thermal diffusivity of the specimen based on a temperature of the insulating material before contact between the insulating material and the specimen, a temperature of a surface of the specimen before contact between the insulating material and the specimen, and a temperature of the surface of the specimen after contact between the insulating material and the specimen;
a sixth step of deriving a proportionality coefficient that depends on a thermal property value of the object based on the thermal diffusivity;
a seventh step of measuring a temperature of the surface of the object by the first temperature sensor;
an eighth step of measuring a temperature at a position away from the subject by the second temperature sensor;
a ninth step of calculating an internal temperature of the object based on the measurement results of the seventh and eighth steps and the proportionality coefficient ;
The temperature estimation method characterized in that the fifth step includes a step of calculating a temperature by correcting the measurement result of the third step based on the temperature measured in the third and fourth steps after contact between the insulating material and the specimen and the temperature measured again in the third and fourth steps after a predetermined time has elapsed, and setting this corrected temperature as the temperature of the surface of the specimen after contact between the insulating material and the specimen .
請求項1記載の温度推定方法において、
前記第6のステップは、前記第5のステップで算出した熱拡散率に対応する比例係数の値を予め記憶された校正テーブルから取得することにより、前記比例係数を導出するステップを含むことを特徴とする温度推定方法。
2. The temperature estimation method according to claim 1,
The temperature estimation method, wherein the sixth step includes a step of deriving a proportionality coefficient by obtaining a value of the proportionality coefficient corresponding to the thermal diffusivity calculated in the fifth step from a calibration table stored in advance.
請求項1または2記載の第5のステップ、第6のステップ、第9のステップをコンピュータに実行させることを特徴とする温度推定プログラム。 3. A temperature estimation program for causing a computer to execute the fifth step, the sixth step, and the ninth step according to claim 1 or 2 . 断熱材と、
被検体と向かい合う前記断熱材の面に設けられた第1の温度センサと、
前記断熱材の被検体側の面と反対側の面に設けられた第2の温度センサと、
前記断熱材と前記被検体との接触前の前記被検体の表面の温度を計測するように構成された第3の温度センサと、
前記断熱材と前記被検体との接触前に前記第2の温度センサによって計測された前記断熱材の温度と、前記断熱材と前記被検体との接触前に前記第3の温度センサによって計測された前記被検体の表面の温度と、前記断熱材と前記被検体との接触後に前記第1の温度センサによって計測された前記被検体の表面の温度とに基づいて、前記被検体の熱拡散率を算出するように構成された熱拡散率算出部と、
前記熱拡散率に基づいて前記被検体の熱物性値に依存する比例係数を導出するように構成された比例係数導出部と、
前記断熱材と前記被検体との接触後の前記第1、第2の温度センサの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とする温度推定装置。
Insulation material;
a first temperature sensor provided on a surface of the thermal insulation material facing the subject;
a second temperature sensor provided on a surface of the heat insulating material opposite to the surface on the subject side;
a third temperature sensor configured to measure a temperature of a surface of the specimen before contact between the insulating material and the specimen;
a thermal diffusivity calculation unit configured to calculate a thermal diffusivity of the specimen based on a temperature of the insulating material measured by the second temperature sensor before contact between the insulating material and the specimen, a surface temperature of the specimen measured by the third temperature sensor before contact between the insulating material and the specimen, and a surface temperature of the specimen measured by the first temperature sensor after contact between the insulating material and the specimen;
a proportionality coefficient derivation unit configured to derive a proportionality coefficient that depends on a thermal property value of the subject based on the thermal diffusivity;
A temperature estimation device comprising: a temperature calculation unit configured to calculate the internal temperature of the subject based on the measurement results of the first and second temperature sensors after contact between the insulating material and the subject and the proportionality coefficient.
請求項記載の温度推定装置において、
前記熱拡散率に対応する前記比例係数が熱拡散率毎に登録された校正テーブルを予め記憶するように構成された記憶部をさらに備え、
前記比例係数導出部は、前記熱拡散率算出部によって算出された熱拡散率に対応する比例係数の値を前記校正テーブルから取得することにより、前記比例係数を導出することを特徴とする温度推定装置。
5. The temperature estimation device according to claim 4 ,
a storage unit configured to store in advance a calibration table in which the proportionality coefficient corresponding to the thermal diffusivity is registered for each thermal diffusivity,
The temperature estimation device, characterized in that the proportionality coefficient derivation unit derives the proportionality coefficient by obtaining a proportionality coefficient value corresponding to the thermal diffusivity calculated by the thermal diffusivity calculation unit from the calibration table.
請求項または記載の温度推定装置において、
前記断熱材と前記被検体との接触後に前記第1、第2の温度センサによって計測された温度と、所定時間経過後に前記第1、第2の温度センサによって再度計測された温度とに基づいて、前記第1の温度センサの計測結果を補正した温度を算出するように構成された温度補正部をさらに備え、
前記熱拡散率算出部は、前記温度補正部によって補正された温度を、前記断熱材と前記被検体との接触後の前記被検体の表面の温度として用いることを特徴とする温度推定装置。
6. The temperature estimation device according to claim 4 ,
a temperature correction unit configured to calculate a temperature obtained by correcting the measurement result of the first temperature sensor based on temperatures measured by the first and second temperature sensors after the heat insulating material comes into contact with the test object and temperatures measured again by the first and second temperature sensors after a predetermined time has elapsed,
The temperature estimation device, wherein the thermal diffusivity calculation unit uses the temperature corrected by the temperature correction unit as a temperature of the surface of the test object after contact between the insulating material and the test object.
JP2022551459A 2020-09-23 2020-09-23 TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE Active JP7524958B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035714 WO2022064553A1 (en) 2020-09-23 2020-09-23 Temperature estimation method, temperature estimation program, and temperature estimation device

Publications (2)

Publication Number Publication Date
JPWO2022064553A1 JPWO2022064553A1 (en) 2022-03-31
JP7524958B2 true JP7524958B2 (en) 2024-07-30

Family

ID=80844567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022551459A Active JP7524958B2 (en) 2020-09-23 2020-09-23 TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE

Country Status (2)

Country Link
JP (1) JP7524958B2 (en)
WO (1) WO2022064553A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052350A (en) 2012-09-10 2014-03-20 Terumo Corp Clinical thermometer
JP2016114467A (en) 2014-12-15 2016-06-23 ジオマテック株式会社 Deep body temperature measurement system and deep body temperature measurement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052350A (en) 2012-09-10 2014-03-20 Terumo Corp Clinical thermometer
JP2016114467A (en) 2014-12-15 2016-06-23 ジオマテック株式会社 Deep body temperature measurement system and deep body temperature measurement method

Also Published As

Publication number Publication date
WO2022064553A1 (en) 2022-03-31
JPWO2022064553A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5009374B2 (en) Detection of temperature sensor configuration in a process variable transmitter
US20220170800A1 (en) Temperature measurement device and temperature measurement method
JP2024102852A (en) Apparatus, systems, and methods for non-invasive thermal interrogation
KR101704222B1 (en) Method for temperature drift compensation of temperature measurement device using thermocouple
CA3044692C (en) Method for the in-situ calibration of a thermometer
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
US8517602B2 (en) Method and apparatus for rapid temperature measurement
CN112013978A (en) Automatic compensation method for dynamic temperature measurement of temperature sensor
CN106706165A (en) Method and device for measuring temperature
CN111141420A (en) Object deep temperature measuring method and device based on heat flow method
JP2005098982A (en) Electronic clinical thermometer
JP7524958B2 (en) TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE
US20230145806A1 (en) Temperature Measurement Device and Temperature Measurement Method
US20220260431A1 (en) Temperature Measurement Method and Program
CN106959170B (en) For measuring the sensing element of material internal temperature and based on the temperature sensor of the sensing element
US20240302224A1 (en) Temperature Estimation Method, Temperature Estimation Program and Temperature Estimation Device
JP7544135B2 (en) TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE
US20240053209A1 (en) Thermometer with a diagnostic function
CN117616257A (en) Thermometer with improved measurement accuracy
CN105043573B (en) A kind of wall pastes temp measuring method
JP3328408B2 (en) Surface temperature measurement method
JP3300110B2 (en) Gas detector
JP7473074B2 (en) TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE
RU2647504C1 (en) Method of dynamic grading of thermometers of resistance
Andreiev et al. Measuring Complex for Determination of Temperature Characteristics of Thermistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240701

R150 Certificate of patent or registration of utility model

Ref document number: 7524958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150