JP7524043B2 - Strut mount - Google Patents

Strut mount Download PDF

Info

Publication number
JP7524043B2
JP7524043B2 JP2020203155A JP2020203155A JP7524043B2 JP 7524043 B2 JP7524043 B2 JP 7524043B2 JP 2020203155 A JP2020203155 A JP 2020203155A JP 2020203155 A JP2020203155 A JP 2020203155A JP 7524043 B2 JP7524043 B2 JP 7524043B2
Authority
JP
Japan
Prior art keywords
vibration
protrusion
stopper surface
inner member
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020203155A
Other languages
Japanese (ja)
Other versions
JP2022090704A (en
Inventor
岳宗 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2020203155A priority Critical patent/JP7524043B2/en
Publication of JP2022090704A publication Critical patent/JP2022090704A/en
Application granted granted Critical
Publication of JP7524043B2 publication Critical patent/JP7524043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はストラットマウントに関し、特に各部が同一の弾性体から構成される防振基体において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くできるストラットマウントに関するものである。 The present invention relates to a strut mount, and in particular to a strut mount that can increase the static spring constant during large amplitude vibration while decreasing the dynamic spring constant during small amplitude vibration in a vibration-isolating base in which each part is made of the same elastic body.

自動車などの車両におけるサスペンション機構では、ストラットマウントを介して、ショックアブソーバのロッド先端が車体側に弾性的に結合することで、車輪側からの振動が車体側へ伝達されることを抑制する。例えば、特許文献1に開示されたストラットマウントは、ロッド先端が取り付けられる筒状の内側部材から径方向外側へ鍔部を張り出させ、その鍔部の両側を覆った弾性体製の環状の防振基体を、車体側に取り付けられる外側部材の一対のストッパで挟む。 In the suspension mechanism of vehicles such as automobiles, the rod tip of the shock absorber is elastically connected to the vehicle body via a strut mount, thereby preventing vibrations from the wheel side from being transmitted to the vehicle body. For example, the strut mount disclosed in Patent Document 1 has a flange that projects radially outward from a cylindrical inner member to which the rod tip is attached, and an annular vibration-proof base made of elastic material that covers both sides of the flange is sandwiched between a pair of stoppers on an outer member that is attached to the vehicle body.

さらに、このストラットマウントは、環状のゴムの周方向の一部にウレタンを重ねて防振基体を構成している。これにより、大振幅振動時(大入力時)の静ばね定数を高くして操縦安定性を確保しつつ、小振幅振動時の動ばね定数を低くして車輪側から車体側への振動伝達を抑制できる。 Furthermore, this strut mount has a vibration-isolating base formed by overlapping urethane on a portion of the circumference of the annular rubber. This increases the static spring constant during large amplitude vibrations (large input forces) to ensure steering stability, while lowering the dynamic spring constant during small amplitude vibrations to suppress the transmission of vibrations from the wheel side to the vehicle body side.

特開2010-90995号公報JP 2010-90995 A

しかしながら、上記特許文献1に開示された技術では、異なる2種類の弾性体で防振基体を構成しているため、防振基体の部品点数や製造工程が増加すると共に、異なる弾性体同士の接触摩擦による疲労が生じ易いという問題点がある。 However, in the technology disclosed in Patent Document 1, the vibration-isolating base is constructed from two different types of elastic bodies, which increases the number of parts and manufacturing steps of the vibration-isolating base, and also increases the risk of fatigue due to contact friction between the different elastic bodies.

本発明は上述した問題点を解決するためになされたものであり、各部が同一の弾性体から構成される防振基体において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くできるストラットマウントを提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and aims to provide a strut mount that can increase the static spring constant during large amplitude vibration while decreasing the dynamic spring constant during small amplitude vibration in a vibration-isolating base in which each part is composed of the same elastic body.

この目的を達成するために本発明のストラットマウントは、ショックアブソーバのロッド先端に取り付けられる内側部材と、前記内側部材の外周を取り囲み車体側に取り付けられる外側部材と、前記内側部材と前記外側部材との間に介在して各部が同一の弾性体から構成される環状の防振基体と、を備えるものであって、前記内側部材または前記外側部材の一方は、互いの対向方向に前記防振基体を周方向に亘って挟む一対のストッパ面部を備え、前記内側部材または前記外側部材の他方は、一対の前記ストッパ面部の間に前記防振基体を介して挟まれる板部を備え、前記防振基体は、前記板部側から前記ストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備え、前記第1突出部は、前記板部と前記ストッパ面部との間で予圧縮され、前記第2突出部と前記ストッパ面部との間に0.05~0.5mmの隙間がある。 To achieve this objective, the strut mount of the present invention comprises an inner member attached to the tip of the rod of a shock absorber, an outer member that surrounds the outer periphery of the inner member and is attached to the vehicle body, and an annular vibration-proof base that is interposed between the inner member and the outer member and is composed of the same elastic body in each part. One of the inner member or the outer member has a pair of stopper surface parts that sandwich the vibration-proof base in the circumferential direction in the opposing direction, and the other of the inner member or the outer member has a plate part that is sandwiched between the pair of stopper surface parts via the vibration-proof base. The vibration-proof base has a plurality of first and second protrusions that protrude from the plate part side to the stopper surface part side and are distributed in the circumferential direction. The first protrusions are pre-compressed between the plate part and the stopper surface part, and there is a gap of 0.05 to 0.5 mm between the second protrusions and the stopper surface part.

また、本発明のストラットマウントは、ショックアブソーバのロッド先端に取り付けられる内側部材と、前記内側部材の外周を取り囲み車体側に取り付けられる外側部材と、前記内側部材と前記外側部材との間に介在して各部が同一の弾性体から構成される環状の防振基体と、を備えるものであって、前記内側部材または前記外側部材の一方は、互いの対向方向に前記防振基体を周方向に亘って挟む一対のストッパ面部を備え、前記内側部材または前記外側部材の他方は、一対の前記ストッパ面部の間に前記防振基体を介して挟まれる板部を備え、前記防振基体は、前記板部側から前記ストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備え、前記第1突出部および前記第2突出部は、前記板部と前記ストッパ面部との間で予圧縮され、前記第1突出部の予圧縮量よりも前記第2突出部の予圧縮量が少ない。 The strut mount of the present invention comprises an inner member attached to the rod tip of a shock absorber, an outer member surrounding the outer periphery of the inner member and attached to the vehicle body, and an annular vibration-proof base interposed between the inner member and the outer member and each part made of the same elastic body, wherein one of the inner member or the outer member comprises a pair of stopper surface parts that sandwich the vibration-proof base in the circumferential direction in the opposing direction, and the other of the inner member or the outer member comprises a plate part sandwiched between the pair of stopper surface parts via the vibration-proof base, and the vibration-proof base comprises a plurality of first and second protrusions that protrude from the plate part side to the stopper surface part side and are distributed in the circumferential direction, and the first and second protrusions are pre-compressed between the plate part and the stopper surface part, and the pre-compression amount of the second protrusion is less than the pre-compression amount of the first protrusion.

請求項1記載のストラットマウントによれば、各部が同一の弾性体から構成される環状の防振基体は、板部側からストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備える。この第1突出部が板部とストッパ面部との間で予圧縮されるので、板部とストッパ面部との間隔が安定化する。第2突出部とストッパ面部との間に0.05~0.5mmの隙間があるので、この隙間よりも小さい振幅の振動が防振基体に入力された場合(以下「小振幅振動時」と称す)には、第2突出部がストッパ面部に当たらず、防振基体の動ばね定数を低くできる。 According to the strut mount of claim 1, the annular vibration-isolating base, each part of which is made of the same elastic body, has a plurality of first and second protrusions that protrude from the plate part side to the stopper surface part side and are distributed in the circumferential direction. Since the first protrusions are pre-compressed between the plate part and the stopper surface part, the distance between the plate part and the stopper surface part is stabilized. Since there is a gap of 0.05 to 0.5 mm between the second protrusions and the stopper surface part, when vibrations with an amplitude smaller than this gap are input to the vibration-isolating base (hereinafter referred to as "small amplitude vibration"), the second protrusions do not come into contact with the stopper surface part, and the dynamic spring constant of the vibration-isolating base can be reduced.

一方、第2突出部とストッパ面部との隙間以上の振幅の振動が防振基体に入力された場合(以下「大振幅振動時」と称す)には、第2突出部がストッパ面部に当たるので、防振基体の静ばね定数を高くできる。これらの結果、各部が同一の弾性体から構成される防振基体において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くでき、即ち防振基体の静動比を小さくできる。 On the other hand, when vibrations with an amplitude equal to or greater than the gap between the second protrusion and the stopper surface are input to the vibration-isolating base (hereinafter referred to as "large amplitude vibration"), the second protrusion comes into contact with the stopper surface, and the static spring constant of the vibration-isolating base can be increased. As a result, in a vibration-isolating base in which each part is made of the same elastic body, it is possible to increase the static spring constant during large amplitude vibration while decreasing the dynamic spring constant during small amplitude vibration, i.e., the static-dynamic ratio of the vibration-isolating base can be reduced.

また、大振幅振動のうち、第2突出部とストッパ面部との隙間の2倍以下の振幅の振動が防振基体に入力された場合(以下「中振幅振動時」と称す)には、ストッパ面部に当たった第2突出部の圧縮量が小さいため、中振幅振動時の静ばね定数や動ばね定数を低く保つことができる。これにより、中振幅振動時の衝撃や振動をストラットマウントから車体側へ伝達し難くできる。
第1突出部の板部側における基端の周方向寸法は、第2突出部の板部側における基端の周方向寸法よりも小さい。これにより、小振幅振動時の防振基体の動ばね定数をより一層低くできると共に、大振幅振動時の防振基体の静ばね定数をより一層高くできる。
Furthermore, when large amplitude vibrations with amplitudes less than twice the gap between the second protrusion and the stopper surface are input to the vibration-isolating base (hereinafter referred to as "medium amplitude vibrations"), the amount of compression of the second protrusion that comes into contact with the stopper surface is small, so the static spring constant and dynamic spring constant during medium amplitude vibrations can be kept low. This makes it difficult for shocks and vibrations during medium amplitude vibrations to be transmitted from the strut mount to the vehicle body.
The circumferential dimension of the base end of the first protrusion on the plate side is smaller than the circumferential dimension of the base end of the second protrusion on the plate side, thereby making it possible to further reduce the dynamic spring constant of the vibration-isolating base during small amplitude vibration and to further increase the static spring constant of the vibration-isolating base during large amplitude vibration.

請求項2記載のストラットマウントによれば、各部が同一の弾性体から構成される環状の防振基体は、板部側からストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備える。この第1突出部および第2突出部が板部とストッパ面部との間で予圧縮されるので、板部とストッパ面部との間隔が安定化する。第1突出部の予圧縮量よりも第2突出部の予圧縮量が少ない。これにより、比較的小さい振幅の振動が防振基体に入力された場合(以下「小振幅振動時」と称す)には、第1突出部および第2突出部の圧縮量が予圧縮量から殆ど変わらない。そのため、小振幅振動時には、予圧縮量の多い第1突出部の特性が支配的になって防振基体の動ばね定数が決まり、防振基体の動ばね定数を低くできる。 According to the strut mount of claim 2, the annular vibration-proof base, each part of which is made of the same elastic body, has a plurality of first and second protrusions that protrude from the plate part side to the stopper surface part side and are distributed in the circumferential direction. Since the first and second protrusions are precompressed between the plate part and the stopper surface part, the distance between the plate part and the stopper surface part is stabilized. The precompression amount of the second protrusion is less than the precompression amount of the first protrusion. As a result, when a vibration of a relatively small amplitude is input to the vibration-proof base (hereinafter referred to as "when there is a small amplitude vibration"), the compression amount of the first and second protrusions is almost the same as the precompression amount. Therefore, when there is a small amplitude vibration, the characteristics of the first protrusion, which has a large amount of precompression, become dominant and determine the dynamic spring constant of the vibration-proof base, and the dynamic spring constant of the vibration-proof base can be reduced.

一方、比較的大きい振幅の振動が防振基体に入力された場合(以下「大振幅振動時」と称す)には、第1突出部だけではなく第2突出部の圧縮量も多くなり、第1突出部および第2突出部の両方の静ばね定数を高くでき、防振基体の静ばね定数を高くできる。これらの結果、各部が同一の弾性体から構成される防振基体において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くでき、即ち防振基体の静動比を小さくできる。
請求項3記載のストラットマウントによれば、請求項1記載のストラットマウントと同様に、第2突出部とストッパ面部との間に0.05~0.5mmの隙間があるので、小振幅振動時には防振基体の動ばね定数を低くしつつ、大振幅振動時には防振基体の静ばね定数を高くできると共に、中振幅振動時の静ばね定数や動ばね定数を低く保つことができる。
第1突出部の板部側における基端の径方向寸法は、第2突出部の板部側における基端の径方向寸法よりも小さい。これにより、第1突出部とストッパ面部との接触面積を小さくし易く、第2突出部とストッパ面部との接触面積を大きくし易い。その結果、第1突出部の特性が支配的となる小振幅振動時の動ばね定数をより一層低くできると共に、第1突出部の特性だけでなく第2突出部の特性も大きく影響する大振幅振動時の静ばね定数をより一層高くできる。
On the other hand, when a vibration of a relatively large amplitude is input to the vibration-isolating base (hereinafter referred to as "during large amplitude vibration"), the compression amount of not only the first protrusion but also the second protrusion increases, and the static spring constants of both the first protrusion and the second protrusion can be increased, thereby increasing the static spring constant of the vibration-isolating base. As a result, in a vibration-isolating base in which each part is composed of the same elastic body, it is possible to increase the static spring constant during large amplitude vibration while decreasing the dynamic spring constant during small amplitude vibration, i.e., it is possible to reduce the static-dynamic ratio of the vibration-isolating base.
According to the strut mount of claim 3, as with the strut mount of claim 1, there is a gap of 0.05 to 0.5 mm between the second protrusion and the stopper surface portion, so that the dynamic spring constant of the vibration-isolating base can be lowered during small amplitude vibration while the static spring constant of the vibration-isolating base can be increased during large amplitude vibration, and the static spring constant and dynamic spring constant can be kept low during medium amplitude vibration.
The radial dimension of the base end of the first protrusion on the plate side is smaller than the radial dimension of the base end of the second protrusion on the plate side. This makes it easier to reduce the contact area between the first protrusion and the stopper surface and to increase the contact area between the second protrusion and the stopper surface. As a result, the dynamic spring constant during small amplitude vibration, in which the characteristics of the first protrusion dominate, can be further reduced, and the static spring constant during large amplitude vibration, in which the characteristics of the second protrusion as well as the characteristics of the first protrusion have a large effect, can be further increased.

請求項記載のストラットマウントによれば、第1突出部は、ストッパ面部側の先端へ向かうにつれて径方向寸法が小さくなる。これにより、大振幅振動時における第1突出部とストッパ面部との接触面積を大きくしつつ、小振幅振動時における第1突出部とストッパ面部との接触面積を小さくできる。よって、請求項1から3のいずれかの効果に加え、大振幅振動時の静ばね定数をより高くしつつ、小振幅振動時の動ばね定数をより低くできる。 According to the strut mount of claim 4 , the radial dimension of the first protrusion decreases toward the tip on the stopper surface side. This makes it possible to increase the contact area between the first protrusion and the stopper surface during large amplitude vibration, while decreasing the contact area between the first protrusion and the stopper surface during small amplitude vibration. Therefore, in addition to the effects of any of claims 1 to 3 , it is possible to increase the static spring constant during large amplitude vibration, while decreasing the dynamic spring constant during small amplitude vibration.

請求項記載のストラットマウントによれば、第1突出部と第2突出部とが周方向に離れるので、第1突出部および第2突出部の圧縮時の応力を分散でき、防振基体に亀裂などを生じ難くできる。さらに、第1突出部の変形に伴う第2突出部の変形を抑制できるので、請求項1からのいずれかの効果に加え、第2突出部の圧縮量に応じた静ばね定数の増加量を安定化でき、入力振動に応じた防振基体の静ばね定数を安定化できる。 According to the strut mount of claim 5 , the first protrusion and the second protrusion are separated in the circumferential direction, so that the stress when the first protrusion and the second protrusion are compressed can be dispersed, making it difficult for the vibration-isolating base to crack, etc. Furthermore, because deformation of the second protrusion accompanying deformation of the first protrusion can be suppressed, in addition to the effects of any of claims 1 to 4 , the increase in the static spring constant according to the amount of compression of the second protrusion can be stabilized, and the static spring constant of the vibration-isolating base according to the input vibration can be stabilized.

第1実施形態におけるストラットマウントの断面図である。FIG. 2 is a cross-sectional view of the strut mount according to the first embodiment. 防振基体および内側部材の平面図である。FIG. 2 is a plan view of the vibration-isolating base and the inner member. 図2のIII-III線における防振基体および内側部材の切断部端面図である。3 is a cut-away end view of the vibration-isolating base and the inner member taken along line III-III in FIG. 2. 第2実施形態におけるストラットマウントの断面図である。FIG. 11 is a cross-sectional view of a strut mount according to a second embodiment.

以下、好ましい実施形態について、添付図面を参照して説明する。図1は、第1実施形態におけるストラットマウント10の断面図である。ストラットマウント10は、自動車のサスペンション機構(懸架機構、図示せず)において、ショックアブソーバのロッド(図示せず)と車体側(図示せず)との間に介設されることで、車輪側から車体側へ伝達される振動を低減する防振装置である。 Preferred embodiments will now be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a strut mount 10 in a first embodiment. The strut mount 10 is an anti-vibration device that is installed between a shock absorber rod (not shown) and the vehicle body (not shown) in an automobile suspension mechanism (suspension mechanism, not shown) to reduce vibrations transmitted from the wheel side to the vehicle body side.

ストラットマウント10は、ショックアブソーバのロッド先端が締結固定される円筒状の内側部材11と、車体側に締結固定される外側部材14と、それら内側部材11及び外側部材14を連結する防振基体30と、を備える。なお、図1におけるストラットマウント10の断面図は、内側部材11の軸心C(ショックアブソーバのロッドの軸心)を含む断面を示す。 The strut mount 10 comprises a cylindrical inner member 11 to which the tip of the shock absorber rod is fastened, an outer member 14 which is fastened to the vehicle body, and a vibration-isolating base 30 which connects the inner member 11 and the outer member 14. Note that the cross-sectional view of the strut mount 10 in Figure 1 shows a cross section including the axis C of the inner member 11 (the axis of the shock absorber rod).

内側部材11は、鉄鋼やアルミニウム合金などの金属製の円筒状の部材であり、上端から径方向外側へ張り出す円環状の板部12を備える。板部12は、軸心Cに垂直な平板である。内側部材11の内周側にショックアブソーバのロッド先端が挿入されて締結固定されることで、ロッド先端に内側部材11が取り付けられる。 The inner member 11 is a cylindrical member made of a metal such as steel or aluminum alloy, and has an annular plate portion 12 that extends radially outward from the upper end. The plate portion 12 is a flat plate perpendicular to the axis C. The tip of the shock absorber rod is inserted into the inner periphery of the inner member 11 and fastened to the rod tip, thereby attaching the inner member 11 to the rod tip.

防振基体30は、板部12の上面、下面および外周面を覆うように各部が同一の弾性体から構成される環状の部材である。なお、本実施形態における弾性体はゴムであるが、その弾性体を熱可塑性エラストマや発泡合成樹脂などから構成しても良い。防振基体30は、板部12に加硫接着される。 The vibration-isolating base 30 is an annular member made of the same elastic material so as to cover the upper, lower and outer peripheral surfaces of the plate portion 12. In this embodiment, the elastic material is rubber, but the elastic material may be made of a thermoplastic elastomer, a foamed synthetic resin or the like. The vibration-isolating base 30 is vulcanization-bonded to the plate portion 12.

外側部材14は、内周側に防振基体30が収容される筒壁部15と、筒壁部15の下端から径方向内側へ張り出す下壁部16と、筒壁部15の下端から下壁部16よりも下方へ延びる筒状の保持部17と、筒壁部15の周方向の一部から径方向外側へ張り出す固定部18と、筒壁部15の上端を塞ぐ鉄鋼などの金属製の蓋体19と、を備える。筒壁部15、下壁部16、保持部17及び固定部18が鉄鋼などの金属により一体成形される。 The outer member 14 includes a tube wall portion 15 on whose inner circumferential side the vibration-isolating base 30 is housed, a lower wall portion 16 that protrudes radially inward from the lower end of the tube wall portion 15, a cylindrical retaining portion 17 that extends from the lower end of the tube wall portion 15 below the lower wall portion 16, a fixing portion 18 that protrudes radially outward from a portion of the circumference of the tube wall portion 15, and a cover body 19 made of a metal such as steel that covers the upper end of the tube wall portion 15. The tube wall portion 15, the lower wall portion 16, the retaining portion 17, and the fixing portion 18 are integrally formed from a metal such as steel.

筒壁部15は、軸心Cを中心とした円筒状の部位であり、内周面15aによって防振基体30の径方向への移動を規制する。筒壁部15の上端部には、内周面15aを段差状に凹ませた開口部15bが形成されている。筒壁部15内に防振基体30を収容した後、この開口部15bに蓋体19を嵌め、蓋体19と筒壁部15とを溶接や溶着することで、蓋体19が筒壁部15に固定される。 The tube wall portion 15 is a cylindrical portion centered on the axis C, and the inner peripheral surface 15a restricts the radial movement of the vibration-isolating base 30. At the upper end of the tube wall portion 15, an opening 15b is formed by recessing the inner peripheral surface 15a in a stepped shape. After the vibration-isolating base 30 is housed inside the tube wall portion 15, the lid body 19 is fitted into this opening 15b, and the lid body 19 and the tube wall portion 15 are welded or fused together, thereby fixing the lid body 19 to the tube wall portion 15.

下壁部16は、軸心Cを中心とした円環状の部位であり、防振基体30を下方から支える。下壁部16の内周側を内側部材11の一部が通る。下壁部16は、防振基体30を間に挟んで内側部材11の板部12と上下方向(軸心C方向)に対向する環状のストッパ面部16aを備える。 The lower wall portion 16 is an annular portion centered on the axis C, and supports the vibration-isolating base 30 from below. A part of the inner member 11 passes along the inner periphery of the lower wall portion 16. The lower wall portion 16 has an annular stopper surface portion 16a that faces the plate portion 12 of the inner member 11 in the vertical direction (the direction of the axis C) with the vibration-isolating base 30 sandwiched therebetween.

保持部17は、ショックアブソーバの圧縮時にストッパとして作用するバウンドバンパ(図示せず)が組付けられるカップ状の部位である。固定部18は、ボルト等によって車体に組み付けられる部位である。 The holding portion 17 is a cup-shaped portion to which a bound bumper (not shown) that acts as a stopper when the shock absorber is compressed is attached. The fixing portion 18 is a portion that is attached to the vehicle body by bolts or the like.

蓋体19は、筒壁部15に固定した状態において、下壁部16のストッパ面部16aとの間に防振基体30を挟んで保持する部位である。この蓋体19のうちストッパ面部16aと上下方向に対向する部位が環状のストッパ面部19aである。よって、ストッパ面部16a,19aは、防振基体30を上下方向(対向方向)に挟み、防振基体30を介して内側部材11の板部12を上下方向に挟んでいる。 When the lid 19 is fixed to the tube wall 15, it is the part that holds the vibration-isolating base 30 by sandwiching it between the stopper surface 16a of the bottom wall 16. The part of the lid 19 that faces the stopper surface 16a in the vertical direction is the annular stopper surface 19a. Therefore, the stopper surfaces 16a and 19a sandwich the vibration-isolating base 30 in the vertical direction (opposing direction), and sandwich the plate portion 12 of the inner member 11 in the vertical direction via the vibration-isolating base 30.

次に図1に加え図2,3を参照して防振基体30の詳細構成について説明する。図2は、防振基体30及び内側部材11の平面図である。図3は、図2のIII-III線における防振基体30及び内側部材11の切断部端面図である。 Next, the detailed configuration of the vibration-isolating base 30 will be described with reference to Figures 2 and 3 in addition to Figure 1. Figure 2 is a plan view of the vibration-isolating base 30 and the inner member 11. Figure 3 is a cut-away end view of the vibration-isolating base 30 and the inner member 11 taken along line III-III in Figure 2.

図1及び図2に示すように、防振基体30は、板部12の上面、下面および外周面を覆う所定厚の環状のベース30aと、ベース30a(板部12側)からストッパ面部16a,19aそれぞれへ向けて突出する複数の第1突出部31及び第2突出部32と、を備える。これらベース30a、複数の第1突出部31及び第2突出部32が同一の弾性体によって一体成形されている。 As shown in Figures 1 and 2, the vibration-isolating base 30 comprises an annular base 30a of a predetermined thickness that covers the upper, lower and outer peripheral surfaces of the plate portion 12, and a plurality of first protrusions 31 and second protrusions 32 that protrude from the base 30a (on the plate portion 12 side) toward the stopper surface portions 16a and 19a, respectively. The base 30a, the plurality of first protrusions 31 and the second protrusions 32 are integrally molded from the same elastic body.

複数の第1突出部31及び第2突出部32は、防振基体30の周方向に分散配置される。具体的には、第1突出部31と第2突出部32とが周方向に交互に並び、板部12の片面側に第1突出部31及び第2突出部32が3個ずつ回転対称に配置される。また、板部12の上面側と下面側とで第1突出部31が同位置にあり、第2突出部32が同位置にある。なお、例えば、第1突出部31に対し板部12を挟んだ反対側に第2突出部32が位置するように、板部12の上面側と下面側とで第1突出部31及び第2突出部32の位置をずらしても良い。 The multiple first protrusions 31 and second protrusions 32 are distributed around the circumferential direction of the vibration-proof base 30. Specifically, the first protrusions 31 and the second protrusions 32 are arranged alternately around the circumferential direction, and three each of the first protrusions 31 and the second protrusions 32 are arranged rotationally symmetrically on one side of the plate portion 12. The first protrusions 31 and the second protrusions 32 are also located at the same position on the upper and lower sides of the plate portion 12. Note that the positions of the first protrusions 31 and the second protrusions 32 may be shifted between the upper and lower sides of the plate portion 12, for example, so that the second protrusions 32 are located on the opposite side of the plate portion 12 to the first protrusions 31.

第1突出部31は、板部12とストッパ面部16a,19aとの間で予圧縮される高さに形成されている。なお、図1には、予圧縮される前の第1突出部31が二点鎖線で示され、予圧縮された第1突出部31が実線で示される。この予圧縮前後の第1突出部31の高さの差が予圧縮量である。周方向に分散配置された第1突出部31が板部12とストッパ面部16a,19aとの間で予圧縮されるので、防振基体30を挟んだ板部12とストッパ面部16a,19aとの間隔が安定する。 The first protrusions 31 are formed at a height that allows them to be pre-compressed between the plate portion 12 and the stopper surface portions 16a, 19a. In FIG. 1, the first protrusions 31 before pre-compression are shown by two-dot chain lines, and the pre-compressed first protrusions 31 are shown by solid lines. The difference in height of the first protrusions 31 before and after pre-compression is the amount of pre-compression. The first protrusions 31, which are distributed in the circumferential direction, are pre-compressed between the plate portion 12 and the stopper surface portions 16a, 19a, so that the distance between the plate portion 12 and the stopper surface portions 16a, 19a sandwiching the vibration-isolating base 30 is stable.

第1突出部31は、ベース30a側(板部12側)の基端からストッパ面部16a,19a側の先端へ向かうにつれて径方向寸法が徐々に小さくなり、軸方向断面(図1の断面)が略三角形状に形成されている。また、図3に示すように、第1突出部31は、基端から先端へ向かうにつれて周方向寸法が徐々に小さくなり、周方向断面(図3の断面)も略三角形状に形成されている。 The first protrusion 31 has a radial dimension that gradually decreases from the base end on the base 30a side (plate portion 12 side) toward the tip end on the stopper surface portions 16a, 19a side, and the axial cross section (cross section in FIG. 1) is formed in a substantially triangular shape. As shown in FIG. 3, the first protrusion 31 has a circumferential dimension that gradually decreases from the base end toward the tip end, and the circumferential cross section (cross section in FIG. 3) is also formed in a substantially triangular shape.

図1に示すように、第2突出部32は、防振基体30に振動が入力されておらず車体の荷重が付与された静置状態において、ストッパ面部16a,19aに接触しない高さに形成されている。静置状態において、この第2突出部32とストッパ面部16a,19aとの間の最小の隙間Gは0.05~0.5mmである。 As shown in FIG. 1, the second protrusion 32 is formed at a height that does not contact the stopper surface portions 16a, 19a when the vibration-isolating base 30 is not subjected to vibration and the load of the vehicle body is applied to the resting state. In the resting state, the minimum gap G between the second protrusion 32 and the stopper surface portions 16a, 19a is 0.05 to 0.5 mm.

第2突出部32は、ベース30a側の基端からストッパ面部16a,19a側の先端へ向かうにつれて径方向寸法が徐々に小さくなり、軸方向断面(図1の断面)が略台形状に形成されている。第2突出部32の先端は、径方向の中央が若干盛り上がった略平坦面によって形成されている。また、図3に示すように、第2突出部32の先端は、周方向端面において板部12と略平行(高さが周方向に略一定)である。 The radial dimension of the second protrusion 32 gradually decreases from the base end on the base 30a side to the tip on the stopper surface portions 16a, 19a side, and the axial cross section (cross section in FIG. 1) is formed to be approximately trapezoidal. The tip of the second protrusion 32 is formed by a substantially flat surface with a slightly raised radial center. Also, as shown in FIG. 3, the tip of the second protrusion 32 is approximately parallel to the plate portion 12 at the circumferential end face (the height is approximately constant in the circumferential direction).

図2及び図3に示すように、第1突出部31と第2突出部32とは、周方向に離れる。この第1突出部31と第2突出部32との間の凹部33の底面によってベース30aの上下面が露出する。この板部12から凹部33の底面までの厚さが環状のベース30aの厚さであり、凹部33の底面からの高さが第1突出部31及び第2突出部32の高さである。また、板部12から凹部33の底面までの厚さのベース30aとの境界部分が第1突出部31及び第2突出部32の基端である。 As shown in Figures 2 and 3, the first protrusion 31 and the second protrusion 32 are separated in the circumferential direction. The top and bottom surfaces of the base 30a are exposed by the bottom surface of the recess 33 between the first protrusion 31 and the second protrusion 32. The thickness from the plate portion 12 to the bottom surface of the recess 33 is the thickness of the annular base 30a, and the height from the bottom surface of the recess 33 is the height of the first protrusion 31 and the second protrusion 32. In addition, the boundary portion of the thickness from the plate portion 12 to the bottom surface of the recess 33 with the base 30a is the base end of the first protrusion 31 and the second protrusion 32.

第1突出部31の基端の径方向寸法L1は、第2突出部32の基端の径方向寸法L2よりも小さい。また、第1突出部31の基端の周方向寸法L3は、第2突出部32の基端の周方向寸法L4よりも小さい。 The radial dimension L1 of the base end of the first protrusion 31 is smaller than the radial dimension L2 of the base end of the second protrusion 32. In addition, the circumferential dimension L3 of the base end of the first protrusion 31 is smaller than the circumferential dimension L4 of the base end of the second protrusion 32.

以上のようなストラットマウント10によれば、第1突出部31が板部12とストッパ面部16a,19aとの間で予圧縮されるのに対し、静置状態で第2突出部32とストッパ面部16a,19aとの間に0.05~0.5mmの隙間Gがある。そのため、この隙間Gよりも小さい振幅の振動が防振基体30に入力された場合(以下「小振幅振動時」と称す)には、第2突出部32がストッパ面部16a,19aに当たらず、第1突出部31の特性により防振基体30の動ばね定数が決まる。そのため、小振幅振動時の防振基体30の動ばね定数を低くできるので、車輪側から車体側への振動伝達を抑制できる。 According to the strut mount 10 described above, the first protrusion 31 is pre-compressed between the plate portion 12 and the stopper surface portions 16a, 19a, while in a stationary state, there is a gap G of 0.05 to 0.5 mm between the second protrusion 32 and the stopper surface portions 16a, 19a. Therefore, when vibrations with an amplitude smaller than this gap G are input to the vibration-isolating base 30 (hereinafter referred to as "small amplitude vibration"), the second protrusion 32 does not come into contact with the stopper surface portions 16a, 19a, and the dynamic spring constant of the vibration-isolating base 30 is determined by the characteristics of the first protrusion 31. Therefore, the dynamic spring constant of the vibration-isolating base 30 during small amplitude vibration can be reduced, thereby suppressing the transmission of vibration from the wheel side to the vehicle body side.

一方、第2突出部32とストッパ面部16a,19aとの隙間G以上の振幅の振動が防振基体30に入力された場合(以下「大振幅振動時」と称す)には、第1突出部31だけでなく第2突出部32がストッパ面部16a,19aに当たる。そのため、大振幅振動時の防振基体30の静ばね定数を高くできるので、ストラットマウント10を用いた車両の操縦安定性を確保できる。これらの結果、各部が同一の弾性体から構成される防振基体30において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くできる。即ち、防振基体30の静動比を小さくでき、車体側への振動伝達の抑制と操縦安定性とを両立できる。 On the other hand, when vibrations of an amplitude equal to or greater than the gap G between the second protrusion 32 and the stopper surface portions 16a, 19a are input to the vibration-isolating base 30 (hereinafter referred to as "large amplitude vibration"), not only the first protrusion 31 but also the second protrusion 32 hits the stopper surface portions 16a, 19a. Therefore, the static spring constant of the vibration-isolating base 30 during large amplitude vibration can be increased, and the handling stability of the vehicle using the strut mount 10 can be ensured. As a result, the static spring constant during large amplitude vibration can be increased in the vibration-isolating base 30, each of which is composed of the same elastic body, while the dynamic spring constant during small amplitude vibration can be reduced. In other words, the static-dynamic ratio of the vibration-isolating base 30 can be reduced, and both the suppression of vibration transmission to the vehicle body and handling stability can be achieved.

さらに、大振幅振動のうち、第2突出部32とストッパ面部16a,19aとの隙間Gの2倍以下の振幅(1mm以下)の振動が防振基体30に入力された場合(以下「中振幅振動時」と称す)には、ストッパ面部16a,19aに当たった第2突出部32の圧縮量が小さい。これにより、中振幅振動時の防振基体30の静ばね定数や動ばね定数を低く保つことができるので、中振幅振動時の衝撃や振動をストラットマウント10から車体側へ伝達し難くできる。 Furthermore, when large amplitude vibrations with an amplitude (1 mm or less) of less than twice the gap G between the second protrusion 32 and the stopper surface portions 16a, 19a are input to the vibration-proof base 30 (hereinafter referred to as "medium amplitude vibrations"), the amount of compression of the second protrusion 32 that hits the stopper surface portions 16a, 19a is small. This allows the static spring constant and dynamic spring constant of the vibration-proof base 30 to be kept low during medium amplitude vibrations, making it difficult for shocks and vibrations during medium amplitude vibrations to be transmitted from the strut mount 10 to the vehicle body.

第1突出部31は、先端へ向かうにつれて径方向寸法が小さくなるので、大振幅振動時における第1突出部31とストッパ面部16a,19aとの接触面積を大きくしつつ、小振幅振動時における第1突出部31とストッパ面部16a,19aとの接触面積を小さくできる。これにより、大振幅振動時の防振基体30の静ばね定数をより高くしつつ、小振幅振動時の防振基体30の動ばね定数をより低くできる。 The radial dimension of the first protrusion 31 decreases toward the tip, so that the contact area between the first protrusion 31 and the stopper surface portions 16a, 19a during large amplitude vibration can be increased while the contact area between the first protrusion 31 and the stopper surface portions 16a, 19a during small amplitude vibration can be reduced. This allows the static spring constant of the vibration-isolating base 30 to be increased during large amplitude vibration while the dynamic spring constant of the vibration-isolating base 30 to be decreased during small amplitude vibration.

第2突出部32の先端は略平坦面であり、周方向断面における第2突出部32の高さは略一定である。これにより、第2突出部32がストッパ面部16a,19aに接触する大振幅振動時には、防振基体30の静ばね定数を急増させることができる。これにより、ストラットマウント10を用いた車両の操縦安定性を向上できる。 The tip of the second protrusion 32 is a substantially flat surface, and the height of the second protrusion 32 in the circumferential cross section is substantially constant. This allows the static spring constant of the vibration-isolating base 30 to increase rapidly during large amplitude vibration when the second protrusion 32 comes into contact with the stopper surface portions 16a, 19a. This improves the handling stability of a vehicle using the strut mount 10.

但し、第2突出部32の先端の略平坦面は、径方向の中央が若干盛り上がっているので(最先端へ向かうにつれて第2突出部32の先端の径方向寸法が小さくなるので)、第2突出部32とストッパ面部16a,19aとの接触の初期段階では、防振基体30の静ばね定数を緩やかに増加させることができる。これにより、第2突出部32とストッパ面部16a,19aとの接触時の衝撃を車体側へ伝達し難くできる。 However, since the generally flat surface at the tip of the second protrusion 32 is slightly raised in the radial center (the radial dimension of the tip of the second protrusion 32 becomes smaller toward the very tip), the static spring constant of the vibration-isolating base 30 can be increased gradually in the initial stage of contact between the second protrusion 32 and the stopper surface portions 16a, 19a. This makes it difficult for the impact generated when the second protrusion 32 comes into contact with the stopper surface portions 16a, 19a to be transmitted to the vehicle body.

第1突出部31と第2突出部32とが周方向に離れ、その間に凹部33があるので、第1突出部31及び第2突出部32の圧縮時の応力を凹部33によって分散でき、防振基体30に亀裂などを生じ難くできる。さらに、第1突出部31の変形に伴う第2突出部32の変形を凹部33によって抑制できるので、小振幅振動時の第2突出部32とストッパ面部16a,19aとの隙間Gの大きさや、大振幅振動時の第2突出部32の圧縮量に応じた防振基体30の静ばね定数の増加量を安定化できる。 The first protrusion 31 and the second protrusion 32 are separated in the circumferential direction, and the recess 33 is provided between them, so that the stress generated when the first protrusion 31 and the second protrusion 32 are compressed can be dispersed by the recess 33, making it difficult for cracks to occur in the vibration-proof base 30. Furthermore, the deformation of the second protrusion 32 accompanying the deformation of the first protrusion 31 can be suppressed by the recess 33, so that the size of the gap G between the second protrusion 32 and the stopper surface portions 16a, 19a during small amplitude vibration and the increase in the static spring constant of the vibration-proof base 30 according to the amount of compression of the second protrusion 32 during large amplitude vibration can be stabilized.

第1突出部31の基端の径方向寸法L1は、第2突出部32の基端の径方向寸法L2よりも小さい。これにより、第1突出部31とストッパ面部16a,19aとの接触面積を小さくし易いので、第1突出部31の特性が支配的となる小振幅振動時の防振基体30の動ばね定数をより一層低くできる。さらに、径方向寸法L1よりも径方向寸法L2が大きいので、第2突出部32とストッパ面部16a,19aとの接触面積を大きくし易いので、第1突出部31の特性だけでなく第2突出部32の特性も大きく影響する大振幅振動時の防振基体30の静ばね定数をより一層高くできる。 The radial dimension L1 of the base end of the first protrusion 31 is smaller than the radial dimension L2 of the base end of the second protrusion 32. This makes it easier to reduce the contact area between the first protrusion 31 and the stopper surface portions 16a, 19a, and therefore the dynamic spring constant of the vibration-proof base 30 during small amplitude vibration, when the characteristics of the first protrusion 31 are dominant, can be further reduced. Furthermore, since the radial dimension L2 is larger than the radial dimension L1, it is easier to increase the contact area between the second protrusion 32 and the stopper surface portions 16a, 19a, and therefore the static spring constant of the vibration-proof base 30 during large amplitude vibration, when not only the characteristics of the first protrusion 31 but also the characteristics of the second protrusion 32 have a large effect, can be further increased.

同様に、第1突出部31の基端の周方向寸法L3が第2突出部32の基端の周方向寸法L4よりも小さいので、小振幅振動時の防振基体30の動ばね定数をより一層低くできると共に、大振幅振動時の防振基体30の静ばね定数をより一層高くできる。これらの結果、ストラットマウント10によって車体側への振動伝達をより抑制できると共に、操縦安定性をより向上できる。 Similarly, the circumferential dimension L3 of the base end of the first protrusion 31 is smaller than the circumferential dimension L4 of the base end of the second protrusion 32, so that the dynamic spring constant of the vibration-isolating base 30 during small amplitude vibration can be further reduced, and the static spring constant of the vibration-isolating base 30 during large amplitude vibration can be further increased. As a result, the strut mount 10 can further suppress the transmission of vibration to the vehicle body, and can further improve steering stability.

次に図4を参照して第2実施形態について説明する。第1実施形態では、静置状態で第2突出部32とストッパ面部16a,19aとの間に隙間Gがある場合について説明した。これに対して第2実施形態では、静置状態でも第2突出部42がストッパ面部16a,19aに当たる場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。図4は、第2実施形態におけるストラットマウント40の断面図である。 Next, the second embodiment will be described with reference to FIG. 4. In the first embodiment, a case where there is a gap G between the second protrusion 32 and the stopper surface portions 16a, 19a in a stationary state is described. In contrast, in the second embodiment, a case where the second protrusion 42 abuts against the stopper surface portions 16a, 19a even in a stationary state is described. Note that the same parts as in the first embodiment are given the same reference numerals and the following description will be omitted. FIG. 4 is a cross-sectional view of a strut mount 40 in the second embodiment.

ストラットマウント40の防振基体41は、板部12の上面、下面および外周面を覆う所定厚のベース30aと、ベース30a(板部12側)からストッパ面部16a,19aそれぞれへ向けて突出する複数の第1突出部31及び第2突出部42と、を備える。これらベース30a、複数の第1突出部31及び第2突出部42が同一の弾性体(例えばゴム)によって一体成形されている。 The vibration-isolating base 41 of the strut mount 40 comprises a base 30a of a predetermined thickness that covers the upper, lower and outer peripheral surfaces of the plate portion 12, and a plurality of first protrusions 31 and second protrusions 42 that protrude from the base 30a (on the plate portion 12 side) toward the stopper surface portions 16a and 19a, respectively. The base 30a, the plurality of first protrusions 31 and the second protrusions 42 are integrally molded from the same elastic body (e.g. rubber).

なお、複数の第1突出部31及び第2突出部42の位置関係は、第1実施形態における複数の第1突出部31及び第2突出部32の位置関係と同一である。また、第2突出部42は、第1実施形態における第2突出部32と高さが異なるだけで、第2突出部32と形状や径方向寸法L2、周方向寸法L4は略同一である。 The positional relationship between the multiple first protrusions 31 and the second protrusions 42 is the same as the positional relationship between the multiple first protrusions 31 and the second protrusions 32 in the first embodiment. The second protrusions 42 are different from the second protrusions 32 in the first embodiment only in height, but are substantially the same in shape, radial dimension L2, and circumferential dimension L4 as the second protrusions 32.

第2突出部42は、板部12とストッパ面部16a,19aとの間で予圧縮される高さに形成されている。なお、図4には、予圧縮される前の第2突出部42が二点鎖線で示され、予圧縮された第2突出部42が実線で示される。この予圧縮前後の第2突出部42の高さの差が予圧縮量である。周方向に分散配置された複数の第1突出部31及び第2突出部42が板部12とストッパ面部16a,19aとの間で予圧縮されるので、防振基体41を挟んだ板部12とストッパ面部16a,19aとの間隔が安定する。 The second protrusion 42 is formed at a height that allows it to be pre-compressed between the plate portion 12 and the stopper surface portions 16a, 19a. In FIG. 4, the second protrusion 42 before pre-compression is shown by a two-dot chain line, and the pre-compressed second protrusion 42 is shown by a solid line. The difference in height of the second protrusion 42 before and after pre-compression is the amount of pre-compression. Since the multiple first protrusions 31 and second protrusions 42 that are distributed in the circumferential direction are pre-compressed between the plate portion 12 and the stopper surface portions 16a, 19a, the distance between the plate portion 12 and the stopper surface portions 16a, 19a sandwiching the vibration-isolating base 41 is stabilized.

第2突出部42の予圧縮前の高さは、第1突出部31の予圧縮前の高さよりも低いため、第2突出部42の予圧縮量は、第1突出部31の予圧縮量よりも少ない。これにより、比較的小さい振幅(例えば0.5mm未満)の振動が防振基体41に入力された場合(以下「小振幅振動時」と称す)には、第1突出部31及び第2突出部42の圧縮量が予圧縮量から殆ど変わらない。そのため、小振幅振動時には、予圧縮量の多い第1突出部31の特性が支配的になって防振基体41の動ばね定数が決まり、防振基体41の動ばね定数を低くできる。 The height of the second protrusion 42 before pre-compression is lower than the height of the first protrusion 31 before pre-compression, so the amount of pre-compression of the second protrusion 42 is less than the amount of pre-compression of the first protrusion 31. As a result, when vibration of a relatively small amplitude (e.g., less than 0.5 mm) is input to the vibration-proof base 41 (hereinafter referred to as "small amplitude vibration"), the compression amount of the first protrusion 31 and the second protrusion 42 is almost the same as the amount of pre-compression. Therefore, during small amplitude vibration, the characteristics of the first protrusion 31, which has a large amount of pre-compression, become dominant and determine the dynamic spring constant of the vibration-proof base 41, and the dynamic spring constant of the vibration-proof base 41 can be reduced.

一方、比較的大きい振幅(例えば0.5mm以上)の振動が防振基体41に入力された場合(以下「大振幅振動時」と称す)には、第1突出部31だけではなく第2突出部42の圧縮量も多くなる。そのため、大振幅振動時には、第1突出部31及び第2突出部42の両方の静ばね定数を高くでき、防振基体41の静ばね定数を高くできる。これらの結果、各部が同一の弾性体から構成される防振基体41において大振幅振動時の静ばね定数を高くしつつ、小振幅振動時の動ばね定数を低くできる。 On the other hand, when vibrations of a relatively large amplitude (e.g., 0.5 mm or more) are input to the vibration-isolating base 41 (hereinafter referred to as "large amplitude vibration"), the compression amount of not only the first protrusion 31 but also the second protrusion 42 increases. Therefore, during large amplitude vibration, the static spring constants of both the first protrusion 31 and the second protrusion 42 can be increased, and the static spring constant of the vibration-isolating base 41 can be increased. As a result, in the vibration-isolating base 41, each part of which is composed of the same elastic body, it is possible to increase the static spring constant during large amplitude vibration while decreasing the dynamic spring constant during small amplitude vibration.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。内側部材11や外側部材14、防振基体30,41の各部形状や寸法は適宜変更しても良い。例えば、互いの対向方向に防振基体30,41を挟む一対の環状のストッパ面部を内側部材に設け、その一対のストッパ面部の間に防振基体30,41を介して挟まれる板部を外側部材に設けても良い。 The present invention has been described above based on the embodiments, but the present invention is not limited to the above embodiments, and it can be easily imagined that various improvements and modifications are possible within the scope of the present invention. The shapes and dimensions of the inner member 11, outer member 14, and vibration-isolating bases 30, 41 may be modified as appropriate. For example, a pair of annular stopper surface portions that sandwich the vibration-isolating bases 30, 41 in opposing directions may be provided on the inner member, and a plate portion that is sandwiched between the pair of stopper surface portions via the vibration-isolating bases 30, 41 may be provided on the outer member.

上記形態では、第1突出部31と第2突出部32,42とが周方向に離れる場合について説明したが、必ずしもこれに限られるものではない。第1突出部31と第2突出部32,42とを周方向に連続させても良い。また、第1突出部31と第2突出部32,42との間の凹部33の底面がベース30aである場合に限らず、凹部33の底面が板部12になるようにベース30aを省略しても良い。この場合、第1突出部31及び第2突出部32,42は、板部12から突出する。さらに、この場合、第1突出部31及び第2突出部32,42を一体成形せずに、別体である第1突出部31と第2突出部32,42とを同一(同種)の弾性体から構成しても良い。 In the above embodiment, the first protrusion 31 and the second protrusions 32, 42 are separated in the circumferential direction, but this is not necessarily limited to this. The first protrusion 31 and the second protrusions 32, 42 may be continuous in the circumferential direction. In addition, the bottom surface of the recess 33 between the first protrusion 31 and the second protrusions 32, 42 is not limited to the base 30a, and the base 30a may be omitted so that the bottom surface of the recess 33 becomes the plate portion 12. In this case, the first protrusion 31 and the second protrusions 32, 42 protrude from the plate portion 12. Furthermore, in this case, the first protrusion 31 and the second protrusions 32, 42 may not be integrally molded, and the first protrusion 31 and the second protrusions 32, 42, which are separate bodies, may be made of the same (same type) elastic body.

上記形態では、第2突出部32,42の先端が略平坦面である場合について説明したが、必ずしもこれに限られるものではない。第2突出部32,42の先端に周方向に亘って延びる突起や、複数の凹凸などを設けたり、その先端の軸方向断面をV字状や逆V字状、破線形状にしても良い。これにより、第2突出部32,42とストッパ面部16a,19aとが接触するときの衝撃を低減できる。 In the above embodiment, the tip of the second protrusion 32, 42 is described as being substantially flat, but this is not necessarily limited to this. The tip of the second protrusion 32, 42 may be provided with a circumferentially extending protrusion or multiple projections and recesses, or the axial cross section of the tip may be V-shaped, inverted V-shaped, or broken line shaped. This can reduce the impact when the second protrusion 32, 42 comes into contact with the stopper surface 16a, 19a.

10,40 ストラットマウント
11 内側部材
12 板部
14 外側部材
16a,19a ストッパ面部
30,41 防振基体
31 第1突出部
32,42 第2突出部
REFERENCE SIGNS LIST 10, 40 Strut mount 11 Inner member 12 Plate portion 14 Outer member 16a, 19a Stopper surface portion 30, 41 Vibration-isolating base 31 First protruding portion 32, 42 Second protruding portion

Claims (5)

ショックアブソーバのロッド先端に取り付けられる内側部材と、前記内側部材の外周を取り囲み車体側に取り付けられる外側部材と、前記内側部材と前記外側部材との間に介在して各部が同一の弾性体から構成される環状の防振基体と、を備えるストラットマウントであって、
前記内側部材または前記外側部材の一方は、互いの対向方向に前記防振基体を周方向に亘って挟む一対のストッパ面部を備え、
前記内側部材または前記外側部材の他方は、一対の前記ストッパ面部の間に前記防振基体を介して挟まれる板部を備え、
前記防振基体は、前記板部側から前記ストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備え、
前記第1突出部は、前記板部と前記ストッパ面部との間で予圧縮され、
前記第2突出部と前記ストッパ面部との間に0.05~0.5mmの隙間があり、
前記第1突出部の前記板部側における基端の周方向寸法は、前記第2突出部の前記板部側における基端の周方向寸法よりも小さいことを特徴とするストラットマウント。
A strut mount comprising: an inner member attached to a rod tip of a shock absorber; an outer member surrounding an outer periphery of the inner member and attached to a vehicle body; and an annular vibration-isolating base interposed between the inner member and the outer member, each portion of which is made of the same elastic body,
one of the inner member and the outer member includes a pair of stopper surface portions that sandwich the vibration-isolating base in a circumferential direction in opposing directions,
the other of the inner member and the outer member includes a plate portion sandwiched between a pair of the stopper surface portions via the vibration-isolating base,
the vibration-isolating base includes a plurality of first protruding portions and a plurality of second protruding portions that protrude from the plate portion side toward the stopper surface portion side and are distributed in a circumferential direction,
the first protrusion is pre-compressed between the plate portion and the stopper surface portion,
There is a gap of 0.05 to 0.5 mm between the second protrusion and the stopper surface,
A strut mount, characterized in that a circumferential dimension of a base end of the first protrusion on the plate portion side is smaller than a circumferential dimension of a base end of the second protrusion on the plate portion side .
ショックアブソーバのロッド先端に取り付けられる内側部材と、前記内側部材の外周を取り囲み車体側に取り付けられる外側部材と、前記内側部材と前記外側部材との間に介在して各部が同一の弾性体から構成される環状の防振基体と、を備えるストラットマウントであって、
前記内側部材または前記外側部材の一方は、互いの対向方向に前記防振基体を周方向に亘って挟む一対のストッパ面部を備え、
前記内側部材または前記外側部材の他方は、一対の前記ストッパ面部の間に前記防振基体を介して挟まれる板部を備え、
前記防振基体は、前記板部側から前記ストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備え、
前記第1突出部および前記第2突出部は、前記板部と前記ストッパ面部との間で予圧縮され、
前記第1突出部の予圧縮量よりも前記第2突出部の予圧縮量が少ないことを特徴とするストラットマウント。
A strut mount comprising: an inner member attached to a rod tip of a shock absorber; an outer member surrounding an outer periphery of the inner member and attached to a vehicle body; and an annular vibration-isolating base interposed between the inner member and the outer member, each portion of which is made of the same elastic body,
one of the inner member and the outer member includes a pair of stopper surface portions that sandwich the vibration-isolating base in a circumferential direction in opposing directions,
the other of the inner member and the outer member includes a plate portion sandwiched between a pair of the stopper surface portions via the vibration-isolating base,
the vibration-isolating base includes a plurality of first protruding portions and a plurality of second protruding portions that protrude from the plate portion side toward the stopper surface portion side and are distributed in a circumferential direction,
the first protruding portion and the second protruding portion are pre-compressed between the plate portion and the stopper surface portion,
A strut mount, comprising: a first protrusion having a lower pre-compression amount than a second protrusion having a lower pre-compression amount.
ショックアブソーバのロッド先端に取り付けられる内側部材と、前記内側部材の外周を取り囲み車体側に取り付けられる外側部材と、前記内側部材と前記外側部材との間に介在して各部が同一の弾性体から構成される環状の防振基体と、を備えるストラットマウントであって、
前記内側部材または前記外側部材の一方は、互いの対向方向に前記防振基体を周方向に亘って挟む一対のストッパ面部を備え、
前記内側部材または前記外側部材の他方は、一対の前記ストッパ面部の間に前記防振基体を介して挟まれる板部を備え、
前記防振基体は、前記板部側から前記ストッパ面部側へ突出して周方向に分散配置される複数の第1突出部および第2突出部を備え、
前記第1突出部は、前記板部と前記ストッパ面部との間で予圧縮され、
前記第2突出部と前記ストッパ面部との間に0.05~0.5mmの隙間があり、
前記第1突出部の前記板部側における基端の径方向寸法は、前記第2突出部の前記板部側における基端の径方向寸法よりも小さいことを特徴とするストラットマウント。
A strut mount comprising: an inner member attached to a rod tip of a shock absorber; an outer member surrounding an outer periphery of the inner member and attached to a vehicle body; and an annular vibration-isolating base interposed between the inner member and the outer member, each portion of which is made of the same elastic body,
one of the inner member and the outer member includes a pair of stopper surface portions that sandwich the vibration-isolating base in a circumferential direction in opposing directions,
the other of the inner member and the outer member includes a plate portion sandwiched between a pair of the stopper surface portions via the vibration-isolating base,
the vibration-isolating base includes a plurality of first protruding portions and a plurality of second protruding portions that protrude from the plate portion side toward the stopper surface portion side and are distributed in a circumferential direction,
the first protrusion is pre-compressed between the plate portion and the stopper surface portion,
There is a gap of 0.05 to 0.5 mm between the second protrusion and the stopper surface,
A strut mount, characterized in that a radial dimension of a base end of the first protrusion on the plate portion side is smaller than a radial dimension of a base end of the second protrusion on the plate portion side.
前記第1突出部は、前記ストッパ面部側の先端へ向かうにつれて径方向寸法が小さくなることを特徴とする請求項1から3のいずれかに記載のストラットマウント。 4. The strut mount according to claim 1 , wherein the first protrusion has a radial dimension that decreases toward a tip end on the stopper surface side. 前記第1突出部と前記第2突出部とが周方向に離れることを特徴とする請求項1からのいずれかに記載のストラットマウント。 5. The strut mount according to claim 1, wherein the first protrusion and the second protrusion are spaced apart in the circumferential direction.
JP2020203155A 2020-12-08 Strut mount Active JP7524043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020203155A JP7524043B2 (en) 2020-12-08 Strut mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020203155A JP7524043B2 (en) 2020-12-08 Strut mount

Publications (2)

Publication Number Publication Date
JP2022090704A JP2022090704A (en) 2022-06-20
JP7524043B2 true JP7524043B2 (en) 2024-07-29

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081503A (en) 2000-09-06 2002-03-22 Bridgestone Corp Strut mount

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081503A (en) 2000-09-06 2002-03-22 Bridgestone Corp Strut mount

Similar Documents

Publication Publication Date Title
JP4622979B2 (en) Cylindrical anti-vibration device stopper and cylindrical anti-vibration assembly
US4667943A (en) Resilient bushing
US6616160B2 (en) Strut mount
JP2593400Y2 (en) Suspension support
KR20080104281A (en) Wheel-guiding strut for an active chassis
JP3704032B2 (en) Strut mount
EP0091552B1 (en) Shock absorber assembly for automotive vehicle suspension
JP2002254911A (en) Vibration isolating sleeve, and car having the sleeve
JPH02275130A (en) Upper support for suspension
JP2001280400A (en) Upper support for suspension
JP7524043B2 (en) Strut mount
JP3517549B2 (en) Anti-vibration support device
JP2018071602A (en) Lower cushion rubber for upper support
JPH07127683A (en) Liquid-seal type mount device
JP4963401B2 (en) Strut mount
JP2011133080A (en) Dust cover
JP5490566B2 (en) Suspension support
JP2022090704A (en) Strut mount
JP5662795B2 (en) Cylindrical vibration isolator
JP5060994B2 (en) Upper support
JP2662164B2 (en) Strut mount insulator
JP5889692B2 (en) Suspension support
JP2002317843A (en) Vibration isolating mount
JPH02231208A (en) Upper support for suspension
JP5461227B2 (en) Suspension support