JP7518221B2 - Method for producing extraction residue from biological materials - Google Patents

Method for producing extraction residue from biological materials Download PDF

Info

Publication number
JP7518221B2
JP7518221B2 JP2023004825A JP2023004825A JP7518221B2 JP 7518221 B2 JP7518221 B2 JP 7518221B2 JP 2023004825 A JP2023004825 A JP 2023004825A JP 2023004825 A JP2023004825 A JP 2023004825A JP 7518221 B2 JP7518221 B2 JP 7518221B2
Authority
JP
Japan
Prior art keywords
extraction
dimethyl ether
raw material
extraction residue
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023004825A
Other languages
Japanese (ja)
Other versions
JP2023041718A (en
Inventor
昭吾 鳥井
悟史 篠原
章悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albion Co Ltd
Original Assignee
Albion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018155506A external-priority patent/JP7213639B2/en
Application filed by Albion Co Ltd filed Critical Albion Co Ltd
Publication of JP2023041718A publication Critical patent/JP2023041718A/en
Application granted granted Critical
Publication of JP7518221B2 publication Critical patent/JP7518221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

本発明は、生体原料の抽出残渣の製造方法に関するものである。 The present invention relates to a method for producing extraction residues from biological raw materials.

従来、抽出溶媒として液化ジメチルエーテルを用いる抽出方法が特許文献1に提案されている。かかる特許文献1では、水分及び油分を含有する対象材料に対して飽和量の水分が溶存する液化ジメチルエーテルを接触させて液化ジメチルエーテルと油分との混合物、並びに脱油された対象材料を得ることが開示されている。 Conventionally, an extraction method using liquefied dimethyl ether as an extraction solvent has been proposed in Patent Document 1. Patent Document 1 discloses that a target material containing water and oil is contacted with liquefied dimethyl ether in which a saturated amount of water is dissolved, to obtain a mixture of liquefied dimethyl ether and oil, as well as a deoiled target material.

しかしながら、特許文献1に開示された抽出方法では、飽和量の水分が溶存する液化ジメチルエーテルを用いているので、次のような問題があった。すなわち、植物原料に対して飽和量の水分が溶存する液化ジメチルエーテルを接触させることとなり、該液化ジメチルエーテルに植物原料の水分や水溶性化合物が溶解されず、植物由来の水分や水溶性化合物を抽出することができなかった。 However, the extraction method disclosed in Patent Document 1 uses liquefied dimethyl ether in which a saturated amount of water is dissolved, and so there are problems as follows. That is, the plant raw material is brought into contact with liquefied dimethyl ether in which a saturated amount of water is dissolved, and the water and water-soluble compounds in the plant raw material are not dissolved in the liquefied dimethyl ether, so that the water and water-soluble compounds derived from the plant cannot be extracted.

本発明は、上記実情に鑑みてなされたものであって、植物に限らない生体由来の水分や水溶性化合物を良好に抽出することができる生体原料の抽出物及び抽出残渣の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned circumstances, and aims to provide a method for producing an extract of a biological raw material and an extraction residue that can effectively extract water and water-soluble compounds derived from a living organism, not limited to plants.

上述した課題を解決して目的を達成するために、本発明は、生体原料の抽出物及び抽出残渣の製造方法において、前記生体原料に対し、液化ジメチルエーテルを用いて、前記生体原料中の成分を抽出し当該成分を含む液化ジメチルエーテル溶液を得る抽出工程と、前記溶液を前記生体原料から分離させる分離工程と、前記溶液から前記液化ジメチルエーテルを揮発または分離させる抽出物濃縮工程と、前記生体原料から前記ジメチルエーテルを揮発または分離させることで抽出残渣を得る抽出残渣生成工程と、を含むことを特徴とする。 In order to solve the above problems and achieve the object, the present invention provides a method for producing an extract and an extraction residue from a biological raw material, which comprises an extraction step of extracting components in the biological raw material using liquefied dimethyl ether to obtain a liquefied dimethyl ether solution containing the components, a separation step of separating the solution from the biological raw material, an extract concentration step of volatilizing or separating the liquefied dimethyl ether from the solution, and an extraction residue production step of volatilizing or separating the dimethyl ether from the biological raw material to obtain an extraction residue.

本発明によれば、抽出工程においては、生体原料に対して飽和量以下の補助溶媒を添加した液化ジメチルエーテルを接触させることで前記生体原料中の水分、水溶性化合物、脂溶性化合物といった成分が前記生体原料中から該液化ジメチルエーテルへ移行した混合液を得ることができる。分離工程においては、混合液を生体原料から分離させ、また抽出物濃縮工程においては、混合液から液化ジメチルエーテルを蒸発・分離させることで抽出物を得るため、生体由来の水分や水溶性化合物を良好に抽出することができる。抽出残渣生成工程においては、生体原料から液化ジメチルエーテルを蒸発・分離させることで抽出残渣を得るため、水分と抽出物が良好に除去された抽出残渣を得ることができる。 According to the present invention, in the extraction step, the biological raw material is contacted with liquefied dimethyl ether to which an auxiliary solvent not exceeding the saturation amount has been added, thereby obtaining a mixed liquid in which components in the biological raw material, such as water, water-soluble compounds, and fat-soluble compounds, are transferred from the biological raw material to the liquefied dimethyl ether. In the separation step, the mixed liquid is separated from the biological raw material, and in the extract concentration step, the liquefied dimethyl ether is evaporated and separated from the mixed liquid to obtain an extract, so that water and water-soluble compounds derived from the biological material can be extracted satisfactorily. In the extraction residue generation step, the extraction residue is obtained by evaporating and separating the liquefied dimethyl ether from the biological raw material, so that an extraction residue from which water and extract have been satisfactorily removed can be obtained.

図1は、本実施の形態である生体原料の抽出物及び抽出残渣の製造方法を実現するための抽出装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an extraction apparatus for implementing the method for producing an extract of a biological raw material and an extraction residue according to the present embodiment. 図2は、本実施の形態である生体原料の抽出物及び抽出残渣の製造方法の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the method for producing an extract of a biological material and an extraction residue according to the present embodiment. 図3は、実施例の抽出装置を示す模式図である。FIG. 3 is a schematic diagram showing the extraction device of the embodiment. 図4は、抽出物の抽出率と変色の有無を、抽出原料、抽出溶媒、抽出温度、抽出圧力とともに示す図である。FIG. 4 is a diagram showing the extraction rate of the extract and the presence or absence of discoloration, together with the extraction raw material, extraction solvent, extraction temperature, and extraction pressure. 図5は、抽出物の抽出率と変色の有無を、抽出原料、抽出溶媒、抽出温度、抽出圧力とともに示す図である。FIG. 5 is a diagram showing the extraction rate of the extract and the presence or absence of discoloration, together with the extraction raw material, extraction solvent, extraction temperature, and extraction pressure.

以下に添付の図面を参照して、本発明に係る生体原料の抽出物及び抽出残渣の製造方法の好適な実施の形態について詳細に説明する。なお、生体原料とは細胞が細胞壁を有する植物、菌類、古細菌、真正細菌、もしくは細胞が細胞壁を有しない動物のいずれかを由来とする原料を意味する。このとき、植物由来原料の場合は、葉、枝、樹木、花弁、茎、根、果肉、果皮及び種子の少なくとも1つを由来とする原料であり、動物由来原料の場合は、ヒトまたは異種哺乳動物由来の皮膚、血管、心臓弁膜、角膜、羊膜、硬膜等を含む軟組織またはその一部、心臓、腎臓、肝臓、膵臓、脳等を含む臓器またはその一部、骨、軟骨、腱またはその一部等の少なくとも1つである動物由来原料である。 A preferred embodiment of the method for producing an extract and an extraction residue from a biological raw material according to the present invention will be described in detail below with reference to the attached drawings. The biological raw material means a raw material derived from either a plant, fungus, archaea, or eubacteria, whose cells have a cell wall, or an animal, whose cells do not have a cell wall. In this case, the plant-derived raw material is a raw material derived from at least one of leaves, branches, trees, petals, stems, roots, pulp, skin, and seeds, and the animal-derived raw material is at least one of soft tissues or parts thereof, including skin, blood vessels, heart valves, cornea, amniotic membrane, dura mater, etc., derived from humans or different mammals, organs or parts thereof, including heart, kidney, liver, pancreas, brain, etc., bone, cartilage, tendon, or parts thereof, etc.

図1は、本実施の形態である生体原料の抽出物及び抽出残渣の製造方法を実現するための抽出装置の一例を示す。なお、図1は、抽出装置を理解することができる程度に、構成要素の形状、大きさ及び配置を概略的に示すものに過ぎない。 Figure 1 shows an example of an extraction apparatus for realizing the present embodiment of the method for producing an extract of a biological raw material and an extraction residue. Note that Figure 1 merely shows a schematic view of the shape, size, and arrangement of the components to enable an understanding of the extraction apparatus.

抽出装置100は、飽和量以下の補助溶媒が添加された液化ジメチルエーテル(以下、単に液化ジメチルエーテルとも称する)2を貯蔵する貯槽1と、生体原料7を液化ジメチルエーテル2と接触させる抽出槽6と、抽出槽6から導出された液体を分離する分離槽11と、貯槽1から抽出槽6へ液化ジメチルエーテル2を送液するポンプ3とを有している。 The extraction device 100 has a storage tank 1 for storing liquefied dimethyl ether (hereinafter simply referred to as liquefied dimethyl ether) 2 to which a co-solvent not exceeding the saturation amount has been added, an extraction tank 6 for bringing a biological raw material 7 into contact with the liquefied dimethyl ether 2, a separation tank 11 for separating the liquid extracted from the extraction tank 6, and a pump 3 for pumping the liquefied dimethyl ether 2 from the storage tank 1 to the extraction tank 6.

上記貯槽1に貯蔵される液化ジメチルエーテル2は、ジメチルエーテルを飽和蒸気圧以上にすることにより、液体状態とされるものであるが、飽和量以下の水やアルコール等の補助溶媒が添加されたものであることが好ましい。ここで補助溶媒の添加量は、液化ジメチルエーテル中への飽和量以下が好ましく、より具体的には液化ジメチルエーテル2に対して7質量%以下であることが好ましい。補助溶媒を加えることにより、液化ジメチルエーテルの溶解度や極性といった溶媒特性を変化させることができる。 The liquefied dimethyl ether 2 stored in the storage tank 1 is in a liquid state by raising the dimethyl ether to a pressure equal to or higher than the saturated vapor pressure, but it is preferable that an auxiliary solvent such as water or alcohol is added to the liquefied dimethyl ether at a pressure equal to or lower than the saturated amount. The amount of auxiliary solvent added is preferably equal to or lower than the saturated amount in the liquefied dimethyl ether, and more specifically, is preferably equal to or lower than 7% by mass of the liquefied dimethyl ether 2. By adding an auxiliary solvent, it is possible to change the solvent properties of the liquefied dimethyl ether, such as its solubility and polarity.

また抽出装置100は、液化ジメチルエーテル2を導出又は導入する導管5,10,12,14,16,19,20,23、各槽内の気圧を調節し、液化ジメチルエーテル2の導出及び導入を制御するバルブ4,9,13,15,18,21,22を有している。抽出槽6及び分離槽11は、液化ジメチルエーテル2の液体状態を維持するため、温度については1~40℃に調整することができ、圧力については0.2~5MPaに調整することができる。 The extraction device 100 also has conduits 5, 10, 12, 14, 16, 19, 20, and 23 for introducing and extracting liquefied dimethyl ether 2, and valves 4, 9, 13, 15, 18, 21, and 22 for adjusting the air pressure in each tank and controlling the introduction and extraction of liquefied dimethyl ether 2. In order to maintain the liquid state of liquefied dimethyl ether 2, the temperature of the extraction tank 6 and separation tank 11 can be adjusted to 1 to 40°C, and the pressure can be adjusted to 0.2 to 5 MPa.

上記抽出装置100において、貯槽1から抽出槽6に液化ジメチルエーテル2を導入するポンプ3、バルブ4及び導管5が、送液手段として機能する。抽出槽6は、接触手段として機能する。抽出槽6から液化ジメチルエーテル2を導出させる導管10及びバルブ9が、導出手段として機能する。また分離槽11は、分離手段として機能する。導管16に接続された凝縮器17は、凝縮手段として機能する。分離槽11に接続された導管12及びバルブ13は、気化手段として機能する。貯槽1は、貯蔵手段として機能する。導管19,20は、供給手段として機能する。 In the above extraction apparatus 100, the pump 3, valve 4, and conduit 5 that introduce liquefied dimethyl ether 2 from the storage tank 1 to the extraction tank 6 function as a liquid delivery means. The extraction tank 6 functions as a contact means. The conduit 10 and valve 9 that discharge the liquefied dimethyl ether 2 from the extraction tank 6 function as a discharge means. The separation tank 11 functions as a separation means. The condenser 17 connected to the conduit 16 functions as a condensation means. The conduit 12 and valve 13 connected to the separation tank 11 function as a vaporization means. The storage tank 1 functions as a storage means. The conduits 19 and 20 function as a supply means.

抽出装置100は、各槽内の温度及び気圧を検知する温度計及び圧力計、各槽内における撹拌を実施するための撹拌機、各槽内及び導管内における例えば酸素等の活性ガスをパージするための例えば窒素等の不活性ガスを流通させる装置等の任意の構成要素をさらに含むものである。 The extraction device 100 further includes optional components such as a thermometer and a pressure gauge for detecting the temperature and air pressure in each tank, an agitator for stirring in each tank, and a device for circulating an inert gas, such as nitrogen, in order to purge an active gas, such as oxygen, in each tank and in the conduit.

図2は、本実施の形態である生体原料の抽出物及び抽出残渣の製造方法の一例を示すフローチャートである。 Figure 2 is a flow chart showing an example of a method for producing an extract of a biological raw material and an extraction residue according to this embodiment.

生体原料の抽出物及び抽出残渣の製造方法は、図2に示すように、抽出工程(ステップS101)と、分離工程(ステップS102)と、抽出物濃縮工程(ステップS103)と、抽出残渣生成工程(ステップS104)とを含むものである。 As shown in FIG. 2, the method for producing an extract of a biological material and an extraction residue includes an extraction process (step S101), a separation process (step S102), an extract concentration process (step S103), and an extraction residue production process (step S104).

以下においては、上記抽出装置100の動作を説明しながら生体原料から抽出される抽出物及び抽出残渣の製造方法の各工程を説明する。 Below, we will explain the operation of the extraction device 100 and each step of the method for producing the extract and extraction residue extracted from the biological raw material.

まず、フィルタ8が上流側及び下流側に設置されている抽出槽6に、生体原料を導入する。このとき、バルブ4,9,13,15,18,21,22は、閉状態である。貯槽1に液化ジメチルエーテル2が十分に貯蔵されていない場合は、バルブ21を開状態とし、導管20を経由して、貯槽1に液化ジメチルエーテル2を供給した後、バルブ21を閉状態とする。 First, the biological raw material is introduced into the extraction tank 6, in which the filters 8 are installed on the upstream and downstream sides. At this time, the valves 4, 9, 13, 15, 18, 21, and 22 are in a closed state. If there is not enough liquefied dimethyl ether 2 stored in the storage tank 1, the valve 21 is opened, and the liquefied dimethyl ether 2 is supplied to the storage tank 1 via the conduit 20, after which the valve 21 is closed.

抽出工程(ステップS101)は、原料7に対し、飽和量以下の補助溶媒(水又はアルコール)を添加した液化ジメチルエーテル2を接触させ、原料7が含有する水、水溶性化合物、脂溶性化合物を該液化ジメチルエーテル2に移行させ、混合液を得るものである。なお、水とは原料が含有する水分のことを意味する。かかる抽出工程(ステップS101)は次のようにして行われる。 The extraction process (step S101) involves contacting the raw material 7 with liquefied dimethyl ether 2 to which an auxiliary solvent (water or alcohol) has been added at a level not exceeding the saturation level, transferring the water, water-soluble compounds, and fat-soluble compounds contained in the raw material 7 to the liquefied dimethyl ether 2, and obtaining a mixed liquid. Note that water refers to the moisture contained in the raw material. This extraction process (step S101) is carried out as follows.

抽出装置100におけるバルブ4を開状態とし、ポンプ3により、貯槽1内から液化ジメチルエーテル2を導出し、導管5を経由して、原料7と接触するまで抽出槽6に導入した後、バルブ4を閉状態とすることにより行われる。 The valve 4 in the extraction device 100 is opened, and the pump 3 extracts the liquefied dimethyl ether 2 from the storage tank 1, and introduces it into the extraction tank 6 via the conduit 5 until it comes into contact with the raw material 7, and then the valve 4 is closed.

その結果、原料由来成分として、主に植物原料においては、水、芳香族化合物、天然色素化合物、抗酸化化合物、抗菌化合物、及び抗ウイルス化合物といった水溶性化合物、脂溶性化合物が液化ジメチルエーテル2に移行した混合液が得られる。また、動物細胞においては、水や水溶性ビタミン、水溶性タンパク質、水溶性食物繊維といった水溶性化合物や、脂質、脂溶性ビタミンといった脂溶性化合物が液化ジメチルエーテルに移行した混合液が得られる。 As a result, a mixture is obtained in which water-soluble compounds such as water, aromatic compounds, natural coloring compounds, antioxidant compounds, antibacterial compounds, and antiviral compounds, and fat-soluble compounds, have migrated to the liquefied dimethyl ether 2 as raw material-derived components, mainly from plant raw materials. Also, from animal cells, a mixture is obtained in which water-soluble compounds such as water, water-soluble vitamins, water-soluble proteins, and water-soluble dietary fiber, and fat-soluble compounds such as lipids and fat-soluble vitamins, have migrated to the liquefied dimethyl ether.

分離工程(ステップS102)は、混合液を原料7から分離させるものである。この分離工程(ステップS102)は次のようにして行われる。 The separation process (step S102) separates the mixed liquid from the raw material 7. This separation process (step S102) is performed as follows.

抽出装置100におけるバルブ4,9を開状態とし、ポンプ3により、貯槽1から液化ジメチルエーテル2、導管5を経由して抽出槽6に導入すると、抽出槽6内の混合液は、導管10を経由して分離槽11に導入される。すなわち、貯槽1から抽出槽6に新たな液化ジメチルエーテルが導出されると、抽出槽6内の混合液は分離槽11に押し出される。その結果、抽出槽6の内部には、新たな液化ジメチルエーテルに置換される。一方、抽出槽6内の原料7は、抽出槽6には上流側及び下流側にフィルタ8があることから抽出槽6内に残留する。すなわち、抽出槽6に新たな液化ジメチルエーテルが導入されることで、混合液は、抽出槽6から押し出され原料7から分離される。 When the valves 4 and 9 in the extraction device 100 are opened and the pump 3 introduces the liquefied dimethyl ether 2 from the storage tank 1 into the extraction tank 6 via the conduit 5, the mixed liquid in the extraction tank 6 is introduced into the separation tank 11 via the conduit 10. That is, when new liquefied dimethyl ether is drawn from the storage tank 1 into the extraction tank 6, the mixed liquid in the extraction tank 6 is pushed into the separation tank 11. As a result, the inside of the extraction tank 6 is replaced with new liquefied dimethyl ether. Meanwhile, the raw material 7 in the extraction tank 6 remains in the extraction tank 6 because the extraction tank 6 has filters 8 on the upstream and downstream sides. That is, when new liquefied dimethyl ether is introduced into the extraction tank 6, the mixed liquid is pushed out of the extraction tank 6 and separated from the raw material 7.

バルブ4,9を開状態とするタイミングは、抽出槽6に液化ジメチルエーテル2が導入されてから原料7が含有する水等を液化ジメチルエーテル2に移行させるために十分な所定時間が経過した後である。このとき、液化ジメチルエーテル2が原料7と接触した状態で所定時間静置してもよいし、撹拌してもよい。 The timing for opening the valves 4 and 9 is when a predetermined time has elapsed since the liquefied dimethyl ether 2 was introduced into the extraction tank 6, allowing the water and other substances contained in the raw material 7 to be transferred to the liquefied dimethyl ether 2. At this time, the liquefied dimethyl ether 2 may be left in contact with the raw material 7 for a predetermined time, or may be stirred.

抽出物濃縮工程(ステップS103)では、混合液から液化ジメチルエーテルを蒸発・分離させることで抽出物を得る。また抽出残渣生成工程(ステップS104)では、原料7から液化ジメチルエーテルを蒸発・分離させることで抽出残渣を得る。これら抽出物濃縮工程(ステップS103)及び抽出残渣生成工程(ステップS104)は、次のようにして行われる。 In the extract concentration step (step S103), the liquefied dimethyl ether is evaporated and separated from the mixed liquid to obtain an extract. In the extraction residue generation step (step S104), the liquefied dimethyl ether is evaporated and separated from the raw material 7 to obtain an extraction residue. The extract concentration step (step S103) and the extraction residue generation step (step S104) are carried out as follows.

抽出装置100においてバルブ4を閉状態、バルブ9,13,22を開状態とすると、バルブ4からバルブ13までの経路内はジメチルエーテルの飽和蒸気圧未満の圧力になる。その結果、この経路における液化ジメチルエーテル2は気化し、導管14を経由して、導管23から排出される。このとき、必要に応じてポンプ3を用いてジメチルエーテルを排出してもよい。 In the extraction device 100, when valve 4 is closed and valves 9, 13, and 22 are open, the pressure in the path from valve 4 to valve 13 is lower than the saturated vapor pressure of dimethyl ether. As a result, the liquefied dimethyl ether 2 in this path is vaporized and is discharged from conduit 23 via conduit 14. At this time, the dimethyl ether may be discharged using pump 3 if necessary.

分離槽11には混合液から液化ジメチルエーテル2が蒸発・分離することで抽出物を含む液化ジメチルエーテル溶液は濃縮され、その結果、抽出物が生成される。また、抽出槽6には原料7の抽出残渣が生成される。 In the separation tank 11, the liquefied dimethyl ether 2 is evaporated and separated from the mixed liquid, concentrating the liquefied dimethyl ether solution containing the extract, and as a result, the extract is produced. In addition, in the extraction tank 6, the extraction residue of the raw material 7 is produced.

この液化ジメチルエーテル2の蒸発・分離操作はバルブ9を閉状態にしたまま行ってもよい。抽出槽6は液化ジメチルエーテル2と原料7が接触したままの状態で、バルブ9以降の経路のジメチルエーテルが排出される。その結果、分離槽11には混合液から液化ジメチルエーテル2が蒸発・分離した抽出物が生成される。尚、上記原料の抽出物及び抽出残渣の製造方法においては、抽出物濃縮工程(ステップS103)及び抽出残渣生成工程(ステップS104)で分離させた液化ジメチルエーテルを凝縮させる工程を含むようにしてもよい。 This evaporation and separation operation of the liquefied dimethyl ether 2 may be performed with the valve 9 closed. In the extraction tank 6, the liquefied dimethyl ether 2 and the raw material 7 remain in contact with each other, and the dimethyl ether is discharged from the path after the valve 9. As a result, an extract is produced in the separation tank 11, in which the liquefied dimethyl ether 2 is evaporated and separated from the mixed liquid. The above-mentioned method for producing the extract of the raw material and the extraction residue may include a step of condensing the liquefied dimethyl ether separated in the extract concentration step (step S103) and the extraction residue production step (step S104).

この場合には、抽出装置100においてバルブ22を閉状態としバルブ15を開状態とすることにより、気化したジメチルエーテルが導管16を経由して、凝縮器17に導入される。その結果、導入されたジメチルエーテルは、凝集機17にて凝縮され液化ジメチルエーテル2が生成する。また、バルブ18を開状態とすることにより、生成された液化ジメチルエーテル2は、導管19を経由して貯槽1に導入されるため、液化ジメチルエーテル2を再利用することができる。 In this case, by closing valve 22 and opening valve 15 in extraction device 100, vaporized dimethyl ether is introduced into condenser 17 via conduit 16. As a result, the introduced dimethyl ether is condensed in condenser 17 to produce liquefied dimethyl ether 2. By opening valve 18, the produced liquefied dimethyl ether 2 is introduced into storage tank 1 via conduit 19, allowing the liquefied dimethyl ether 2 to be reused.

以上、貯槽1内の液化ジメチルエーテル2を不連続的に導出する場合に説明したが、次のようにして貯槽1内の液化ジメチルエーテル2を連続的に導出してもよい。 The above describes the case where liquefied dimethyl ether 2 in the storage tank 1 is discharged discontinuously, but liquefied dimethyl ether 2 in the storage tank 1 may also be discharged continuously as follows.

バルブ4,9を開状態とすることで、貯槽1内の液化ジメチルエーテル2を、貯槽1から導管5を経由して抽出槽6に連続的に導入するとともに、導管10を経由して抽出槽6内の混合液を分離槽11へ連続的に導出してもよい。この場合、液化ジメチルエーテル2が原料7と連続的に接触するように、抽出槽6を構成することが好ましい。 By opening the valves 4 and 9, the liquefied dimethyl ether 2 in the storage tank 1 can be continuously introduced from the storage tank 1 to the extraction tank 6 via the conduit 5, and the mixed liquid in the extraction tank 6 can be continuously discharged to the separation tank 11 via the conduit 10. In this case, it is preferable to configure the extraction tank 6 so that the liquefied dimethyl ether 2 is continuously contacted with the raw material 7.

尚、抽出装置100は装置内の圧力を変化させることでジメチルエーテルの気液の状態変化を行っていたが、圧力ではなく、温度変化により気液の状態変化をさせてもよい。 In addition, the extraction device 100 changes the gas-liquid state of dimethyl ether by changing the pressure inside the device, but the gas-liquid state may also be changed by changing the temperature instead of the pressure.

抽出装置100により、動物由来原料から生成された抽出残渣は、核酸を除去することによって再生医療材料として利用することができる。たとえば、抽出装置100により、豚の皮膚を原料として用い、抽出した場合について説明する。まず豚の皮膚から生成された抽出残渣を液化ジメチルエーテルに接触させる。すると、細胞膜の主成分であるリン脂質は溶解される。その結果、生体組織の細胞は破壊され、細胞内に存在していた核酸は細胞外に露出された豚の皮膚が抽出残渣として生成される。この抽出残渣に対して核酸分解酵素を含む溶液を接触させることにより、細胞外に露出した核酸を分解する。その後、核酸を分解した抽出残渣を洗浄液と接触させることにより、残った核酸や分解生成物は完全に洗い流し、その結果、核酸が除去された抽出残渣を得ることができる。 Extraction residues generated from animal-derived raw materials by the extraction device 100 can be used as regenerative medical materials by removing nucleic acids. For example, the case where pig skin is used as a raw material for extraction by the extraction device 100 will be described. First, the extraction residue generated from the pig skin is brought into contact with liquefied dimethyl ether. This dissolves phospholipids, which are the main components of cell membranes. As a result, the cells of the biological tissue are destroyed, and the nucleic acids present inside the cells are exposed outside the cells, resulting in the pig skin being generated as an extraction residue. By contacting this extraction residue with a solution containing a nuclease, the nucleic acids exposed outside the cells are decomposed. After that, the extraction residue from which the nucleic acids have been decomposed is brought into contact with a cleaning solution to completely wash away the remaining nucleic acids and decomposition products, resulting in an extraction residue from which the nucleic acids have been removed.

核酸分解酵素としては、DNAを分解させることが可能であれば、特に限定されないが、DNase(例えば、DNaseI)等が挙げられる。 Nucleolytic enzymes are not particularly limited as long as they are capable of degrading DNA, but examples include DNase (e.g., DNase I).

破壊された細胞と核酸分解酵素を含む溶液を接触させる方法としては、特に限定されないが、核酸分解酵素を含む溶液と細胞が破壊された抽出残渣を混合し、撹拌する方法、核酸分解酵素を含む溶液に細胞が破壊された抽出残渣を浸漬する方法、核酸分解酵素を含む溶液を細胞が破壊された抽出残渣に接触させる方法等が挙げられる。 Methods for contacting the disrupted cells with a solution containing nuclease include, but are not limited to, a method of mixing and stirring a solution containing nuclease with an extraction residue in which cells have been disrupted, a method of immersing the extraction residue in which cells have been disrupted in a solution containing nuclease, a method of contacting a solution containing nuclease with an extraction residue in which cells have been disrupted, and the like.

破壊された細胞と核酸分解酵素を含む溶液を接触させる方法は、細胞が破壊された抽出残渣の性状に応じて、適宜選択することができる。 The method for contacting the disrupted cells with a solution containing a nuclease can be appropriately selected depending on the properties of the extraction residue from the disrupted cells.

洗浄液としては、水、生理的に適合する液体、生理的に許容し得る有機溶媒の水溶液、液化ガスを含む液体等が挙げられる。 Examples of cleaning fluids include water, physiologically compatible liquids, aqueous solutions of physiologically acceptable organic solvents, and liquids containing liquefied gases.

生理的に適合する液体としては、特に限定されないが、生理食塩水、PBS(リン酸緩衝化生理食塩水)などが挙げられ、二種以上を併用してもよい。これらの中でも、生理食塩水が好ましい。 Physiologically compatible liquids include, but are not limited to, saline and PBS (phosphate buffered saline), and two or more types may be used in combination. Of these, saline is preferred.

生理的に許容し得る有機溶媒としては、特に限定されないが、生体への毒性が低いことからエタノール等が挙げられる。 Physiologically acceptable organic solvents are not particularly limited, but examples include ethanol, etc., which has low toxicity to living organisms.

液化ガスを含む液体は、液化ジメチルエーテルを含む液体であってもよいし、異なる液化ガスを含む液体でもよい。 The liquid containing a liquefied gas may be a liquid containing liquefied dimethyl ether or a liquid containing a different liquefied gas.

核酸が分解された抽出残渣と洗浄液を接触させる方法としては、特に限定されないが、洗浄液と核酸成分が分解した抽出残渣とを混合し、撹拌する方法、洗浄液に核酸が分解された抽出残渣を浸漬する方法、洗浄液核酸成分が分解された抽出残渣に接触させる方法等が挙げられる。 The method of contacting the extraction residue in which nucleic acids have been decomposed with the washing solution is not particularly limited, but examples include a method of mixing and stirring the washing solution with the extraction residue in which nucleic acid components have been decomposed, a method of immersing the extraction residue in which nucleic acids have been decomposed in the washing solution, and a method of contacting the washing solution with the extraction residue in which nucleic acid components have been decomposed.

核酸が分解された抽出残渣を洗浄液と接触させる方法は、核酸が分解された抽出残渣の性状に応じて、適宜選択することができる。 The method for contacting the extraction residue in which the nucleic acids have been decomposed with the washing solution can be appropriately selected depending on the properties of the extraction residue in which the nucleic acids have been decomposed.

核酸が分解された抽出残渣を洗浄液で洗浄する温度は、4℃と40℃との間であることが好ましい。これは4℃より低い温度では水分の凍結により抽出残渣である細胞組織が損傷を受ける可能性があること、40℃より高い温度では抽出残渣である細胞組織のたんぱく質の変性が生じて損傷を受ける可能性がある可能性があるためである。 The temperature at which the extraction residue from which nucleic acids have been decomposed is washed with a washing solution is preferably between 4°C and 40°C. This is because at temperatures below 4°C, the water in the extraction residue may freeze, causing damage to the cell tissue, and at temperatures above 40°C, the proteins in the cell tissue may be denatured, causing damage.

なお、核酸が分解された抽出残渣を、液化ガスを含む液体により洗浄する場合は、液化ガスの液体状態を維持するため、気密状態の抽出槽内等の飽和蒸気圧以上の環境下で実施されることが望ましい。 When washing the extraction residue from which nucleic acids have been decomposed with a liquid containing liquefied gas, it is desirable to carry out the washing in an environment of saturated vapor pressure or higher, such as in an airtight extraction tank, in order to maintain the liquid state of the liquefied gas.

核酸が分解された抽出残渣を洗浄液により洗浄する時間は、核酸分解酵素、核酸、核酸分解生成物を十分に除去することが可能であれば、特に限定されない。 The time for washing the extraction residue resulting from decomposition of nucleic acids with a washing solution is not particularly limited, as long as it is possible to sufficiently remove the nuclease, nucleic acid, and nucleic acid decomposition products.

なお、核酸が分解された抽出残渣を洗浄液により洗浄する際に、洗浄液を交換して繰り返し洗浄してもよい。繰り返し洗浄を行うことで、洗浄効率を高めることができる。 When washing the extraction residue resulting from the decomposition of nucleic acids with a washing solution, the washing solution may be replaced and washing repeated. By performing repeated washing, the washing efficiency can be improved.

以上の工程により、動物由来原料の抽出残渣として、実質的に損傷がなく、乾燥質量あたりのDNA量が50ng/mg未満である脱細胞化組織が得られる。脱細胞化組織の乾燥質量あたりのDNA量が50ng/mg未満であると、生体内に移植した際の免疫反応を避けることができる(非特許文献1:Biomaterials 32(2011)3233-3243)。 By the above process, decellularized tissue is obtained as the extraction residue of the animal-derived raw material, which is substantially undamaged and has a DNA content of less than 50 ng/mg per dry mass. If the DNA content of the decellularized tissue is less than 50 ng/mg per dry mass, immune reactions can be avoided when the tissue is transplanted into a living body (Non-Patent Document 1: Biomaterials 32 (2011) 3233-3243).

以下において、実施例を参照して本発明をより具体的に説明するが、本発明は、実施例に限定されない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

<細胞壁を有する原料から生成される抽出物及び抽出残渣>
[実施例1]
図3に示す抽出装置を用いて、植物原料の抽出物及び抽出残渣の製造方法を実施し、抽出物及び抽出残渣を生成した。なお、植物原料としてちしゃとう(水分含有率10質量%)を用いた。ちしゃとうは緑色野菜である。
<Extracts and extraction residues produced from raw materials having cell walls>
[Example 1]
The method for producing an extract of a plant raw material and an extraction residue was carried out using the extraction apparatus shown in Figure 3. The extract and the extraction residue were produced. Note that, as the plant raw material, a sweet pepper (water content: 10% by mass) was used. The sweet pepper is a green vegetable.

具体的には、フィルタ55,58が上流側及び下流側に設置されている内容積10mLの抽出槽56に、ちしゃとう57を3.0g載置した。続いて、バルブ52を開状態及びバルブ53を閉状態にし、シリンジポンプ50に補助溶媒を添加したジメチルエーテル51を充填して、25℃、0.7MPaとして液化させた。分離槽62を予めジメチルエーテルで置換し、バルブ52,53,54,59,60,61を閉状態とした。なお、補助溶媒として水を用い、補助溶媒の添加量は、液化ジメチルエーテルに対して5質量%であった。 Specifically, 3.0 g of cucumber 57 was placed in extraction tank 56 with an internal volume of 10 mL, in which filters 55, 58 were installed on the upstream and downstream sides. Next, valve 52 was opened and valve 53 was closed, and dimethyl ether 51 with an auxiliary solvent was filled into syringe pump 50, and liquefied at 25°C and 0.7 MPa. Separation tank 62 was replaced with dimethyl ether in advance, and valves 52, 53, 54, 59, 60, and 61 were closed. Water was used as the auxiliary solvent, and the amount of auxiliary solvent added was 5% by mass relative to the liquefied dimethyl ether.

次に、バルブ53,54,59,60を開状態とし、シリンジポンプ50で液化ジメチルエーテルを供給した。液化ジメチルエーテルで抽出槽56が満たされたところで、シリンジポンプ50を停止させ、バルブ54,59を閉状態とすることで、ちしゃとう57を液化ジメチルエーテルに浸漬させて混合液とした。 Next, valves 53, 54, 59, and 60 were opened, and liquefied dimethyl ether was supplied by syringe pump 50. When extraction tank 56 was filled with liquefied dimethyl ether, syringe pump 50 was stopped, and valves 54 and 59 were closed, so that extractor 57 was immersed in liquefied dimethyl ether to produce a mixed liquid.

そして、バルブ54,59を開状態とし、シリンジポンプ50で液化ジメチルエーテルを再度供給し、流量を1.0mL/min(滞留時間10分)に調整して、混合液を分離槽62で60mL回収した。その後、バルブ60を閉状態とし、分離槽62を装置から取り外し、所定のドラフト内で大気圧として、液化ジメチルエーテルを揮発させて、抽出物を生成した。 Then, valves 54 and 59 were opened, liquefied dimethyl ether was again supplied by syringe pump 50, the flow rate was adjusted to 1.0 mL/min (residence time 10 minutes), and 60 mL of the mixed liquid was collected in separation tank 62. Thereafter, valve 60 was closed, separation tank 62 was removed from the apparatus, and the pressure was adjusted to atmospheric pressure in a specified draft to volatilize the liquefied dimethyl ether and produce an extract.

上述した操作を2回繰り返すことにより、飽和量以下の水が5質量%添加した液化ジメチルエーテル120mLとちしゃとう57とを接触させ、抽出を行った。その後、バルブ54を閉状態とし、バルブ59,60,61を開状態とし、抽出槽56内の圧力を大気圧とし、抽出槽56内の液化ジメチルエーテルを排気した。その後、抽出後のちしゃとう57を抽出残渣として生成した。 The above-mentioned operation was repeated twice to bring 120 mL of liquefied dimethyl ether to which 5% by mass of water was added (less than the saturated amount) into contact with the condensed ether 57, and extraction was performed. Then, valve 54 was closed, valves 59, 60, and 61 were opened, the pressure in extraction tank 56 was set to atmospheric pressure, and the liquefied dimethyl ether in extraction tank 56 was evacuated. After that, condensed ether 57 after extraction was produced as the extraction residue.

液化ジメチルエーテルを完全に揮発させることで得られた抽出物の質量測定を行うと0.123gであった。これを用いて下記式(1)により抽出率を計算した。その結果、ちしゃとう57から得られた抽出物の抽出率は、4.1質量%であった。抽出物の色は緑色であり、原料のちしゃとうの緑色の色素であるクロロフィルが含まれていることが吸光光度法によって確認できた。 The mass of the extract obtained by completely evaporating the liquefied dimethyl ether was measured to be 0.123 g. Using this, the extraction rate was calculated using the following formula (1). As a result, the extraction rate of the extract obtained from Chishatou 57 was 4.1 mass%. The extract was green in color, and it was confirmed by absorptiometry that it contained chlorophyll, the green pigment of the raw chishatou.

式(1)
抽出率[質量%]=(抽出物の質量/抽出槽に導入した原料の質量)×100
Formula (1)
Extraction rate [mass%] = (mass of extract/mass of raw material introduced into extraction tank) x 100

また得られた抽出残渣について、植物由来原料であるちしゃとうの抽出前の外観を維持しており、抽出操作における損傷や変色は生じていなかった。さらに抽出残渣は、水分含有率が約5質量%であった。 The extracted residue maintained the same appearance as the plant-derived raw material, the capsicum, before extraction, and no damage or discoloration occurred during the extraction process. Furthermore, the extracted residue had a moisture content of approximately 5% by mass.

[実施例2]
実施例1と同じ構成で、飽和量以下である5質量%の水を添加した液化ジメチルエーテルの代わりに、補助溶媒が添加されていない液化ジメチルエーテルを用いて、ちしゃとう3.0gから抽出物及び抽出残渣を生成した。抽出物が0.060g得られ、その抽出率は、上記式(1)を用いた結果、2.0質量%であった。抽出物の色は緑色であり、原料のちしゃとうの緑色の色素であるクロロフィルが含まれていることが吸光光度法によって確認できた。また得られた抽出残渣について、植物由来原料であるちしゃとうの抽出前の外観を維持しており、抽出操作における損傷や変色は生じていなかった。さらに抽出残渣は、水分含有率が約2質量%であった。
[Example 2]
In the same manner as in Example 1, an extract and an extraction residue were produced from 3.0 g of candied lettuce using liquefied dimethyl ether without the addition of an auxiliary solvent instead of liquefied dimethyl ether with 5% by mass of water, which is less than the saturation amount. 0.060 g of extract was obtained, and the extraction rate was 2.0% by mass as a result of using the above formula (1). The color of the extract was green, and it was confirmed by absorptiometry that it contained chlorophyll, the green pigment of the raw candied lettuce. Furthermore, the obtained extraction residue maintained the appearance of the plant-derived raw material candied lettuce before extraction, and no damage or discoloration occurred during the extraction operation. Furthermore, the extraction residue had a moisture content of about 2% by mass.

[比較例1]
植物由来原料としてちしゃとうを用い、ヘキサンを抽出溶媒とし、25℃、0.1MPa、8時間で抽出物及び抽出残渣を生成した。なお25℃とは室温であることを表し、0.1MPaとは常圧のことである。具体的には、三角フラスコにちしゃとう3.0gとヘキサン120mLを入れ、室温常圧下で8時間攪拌し、抽出物とヘキサンの混合液を得た。その後、ろ過によって混合液とちしゃとうを分離し、混合液をエバポレーターを用いて30℃で減圧蒸留を行い、ヘキサンを揮発させ、抽出物を生成した。また抽出後のちしゃとうから完全にヘキサンを揮発させるために、真空乾燥器を用いて30℃で真空乾燥し、抽出残渣を生成した。ちしゃとうから得られた抽出物の重量は0.04gであり、抽出率は1.3質量%であった。抽出物の色は実施例2と同じく緑色であり、クロロフィルが含まれていた。また得られた抽出残渣について、植物由来原料であるちしゃとうの抽出前の外観に比べて、撹拌による組織の損傷が確認されたが、変色は見られなかった。また抽出残渣は、水分含有率が約1質量%であった。これはヘキサンを揮発させるために真空乾燥した際に、水も揮発されたためである。
[Comparative Example 1]
The extract and the extraction residue were produced at 25°C, 0.1 MPa, and 8 hours using the hexane as the extraction solvent and the 25°C means room temperature, and 0.1 MPa means normal pressure. Specifically, 3.0 g of the cuminata and 120 mL of hexane were placed in an Erlenmeyer flask and stirred at room temperature and normal pressure for 8 hours to obtain a mixture of the extract and hexane. The mixture was then separated from the cuminata by filtration, and the mixture was distilled under reduced pressure at 30°C using an evaporator to volatilize the hexane and produce an extract. In order to completely volatilize the hexane from the cuminata after extraction, the extract was dried in a vacuum at 30°C using a vacuum dryer to produce an extraction residue. The weight of the extract obtained from the cuminata was 0.04 g, and the extraction rate was 1.3% by mass. The color of the extract was green, the same as in Example 2, and contained chlorophyll. In addition, the tissue damage due to stirring was confirmed for the obtained extraction residue compared to the appearance of the cuminata, which is the plant-derived raw material, before extraction, but no discoloration was observed. The extraction residue had a water content of about 1% by mass, because water was also evaporated during vacuum drying to volatilize the hexane.

[比較例2]
植物原料としてちしゃとうを用い、90℃に加熱したヘキサンを抽出溶媒とし、90℃、0.1MPa、8時間で抽出物及び抽出残渣を生成した。なお0.1MPaとは常圧のことである。具体的には、丸フラスコにちしゃとう3.0gとヘキサン120mLを入れ、オイルバスでヘキサンを90℃に加熱した。揮発するヘキサンを還流しながら、常圧下で8時間抽出し、抽出物とヘキサンの混合液を得た。その後、ろ過によって混合液とちしゃとうを分離し、混合液はエバポレーターを用いて30℃で減圧蒸留を行い、ヘキサンを揮発させて抽出物を生成した。抽出後のちしゃとうは真空乾燥器を用いて30℃で真空乾燥し、ヘキサンを完全に揮発させることで抽出残渣を得た。ちしゃとうから得られた抽出物の重量は0.08gであり、抽出率は2.7質量%であった。抽出液の色は茶色であり、クロロフィルが比較例1よりも減少していた。これはクロロフィルが抽出時の熱によって変化したためと考えられる。また得られた抽出残渣について、植物由来原料であるちしゃとうの抽出前の外観に比べて、緑色から茶色に変色していた。これはクロロフィルが熱分解によって変化したためと考えられる。水分含有率については約1質量%であった。これはヘキサンを揮発させるために真空乾燥した際に、水も揮発されたためである。
[Comparative Example 2]
The plant raw material was quercus, and hexane heated to 90°C was used as the extraction solvent. Extract and extraction residue were produced at 90°C, 0.1 MPa, and 8 hours. 0.1 MPa refers to normal pressure. Specifically, 3.0 g of quercus and 120 mL of hexane were placed in a round flask, and the hexane was heated to 90°C in an oil bath. Extraction was performed for 8 hours under normal pressure while refluxing the volatile hexane, to obtain a mixture of the extract and hexane. The mixture was then separated from the quercus by filtration, and the mixture was distilled under reduced pressure at 30°C using an evaporator to volatilize the hexane and produce an extract. The quercus after extraction was vacuum-dried at 30°C using a vacuum dryer, and the hexane was completely volatilized to obtain an extraction residue. The weight of the extract obtained from the quercus was 0.08 g, and the extraction rate was 2.7% by mass. The color of the extract was brown, and the chlorophyll was reduced compared to Comparative Example 1. This is thought to be due to the change in chlorophyll caused by the heat during extraction. In addition, the color of the extracted residue had changed from green to brown compared to the appearance before extraction of the plant-derived raw material, the capsicum. This is thought to be due to the change in chlorophyll caused by thermal decomposition. The moisture content was about 1% by mass. This is due to the water also volatilizing during vacuum drying to volatilize the hexane.

実施例1、実施例2及び比較例1、比較例2により生成した抽出物の抽出率と変色の有無を、抽出原料、抽出溶媒、抽出温度、抽出圧力とともに図4に示した。かかる図4により、実施例1と実施例2の抽出物は、変色がないことが理解される。 The extraction rate and the presence or absence of discoloration of the extracts produced in Example 1, Example 2, and Comparative Example 1 and Comparative Example 2 are shown in Figure 4 together with the extraction raw material, extraction solvent, extraction temperature, and extraction pressure. From Figure 4, it can be seen that the extracts of Example 1 and Example 2 do not discolor.

本実施形態では、細胞壁を有する原料として、植物を由来とする原料である場合について説明したが、植物の他にも植物同様に細胞壁を有するきのこやかびなどといった菌類や古細菌、真正細菌由来の原料も用いることができる。 In this embodiment, the case where a raw material having a cell wall is derived from a plant has been described, but in addition to plants, raw materials derived from fungi such as mushrooms and molds, archaea, and eubacteria, which also have cell walls like plants, can also be used.

<細胞壁を有しない原料から生成される抽出物及び抽出残渣>
[実施例3]
ちしゃとう57の代わりにブタ大動脈を用いる点以外は実施例1と同様の条件で抽出物及び抽出残渣の生成を行った。具体的には、まず、抽出槽56に、動物由来原料としてブタ大動脈57(水分含有率70重量%)を3.0g載置した。続いて、バルブ52を閉状態及びバルブ53を開状態にし、シリンジポンプ50に補助溶媒を添加したジメチルエーテル51を充填して、25℃、0.7MPaとして液化させた。分離槽62を予めジメチルエーテルで置換し、バルブ52,53,54,59,60,61を閉状態とした。なお、補助溶媒として水を用い、補助溶媒の添加量は、液化ジメチルエーテルに対して5質量%であった。
<Extracts and extraction residues produced from raw materials without cell walls>
[Example 3]
The extract and extraction residue were produced under the same conditions as in Example 1, except that porcine aorta was used instead of the aorta 57. Specifically, 3.0 g of porcine aorta 57 (water content: 70% by weight) was placed in the extraction tank 56 as an animal-derived raw material. Then, valve 52 was closed and valve 53 was opened, and dimethyl ether 51 to which a co-solvent had been added was filled into the syringe pump 50, and liquefied at 25°C and 0.7 MPa. The separation tank 62 was replaced with dimethyl ether in advance, and valves 52, 53, 54, 59, 60, and 61 were closed. Water was used as the co-solvent, and the amount of the co-solvent added was 5% by mass relative to the liquefied dimethyl ether.

次にバルブ53,54,59,60を開状態とし、シリンジポンプ50で液化ジメチルエーテルを供給した。液化ジメチルエーテルで抽出槽56が満たされたところで、シリンジポンプ50を停止させ、バルブ54,59を閉状態とし、ブタ大動脈57を液化ジメチルエーテルで浸漬させ、混合液とした。 Next, valves 53, 54, 59, and 60 were opened, and liquefied dimethyl ether was supplied by syringe pump 50. When extraction tank 56 was filled with liquefied dimethyl ether, syringe pump 50 was stopped, valves 54 and 59 were closed, and porcine aorta 57 was immersed in the liquefied dimethyl ether to obtain a mixed liquid.

バルブ54,59を開状態とし、シリンジポンプ50で液化ジメチルエーテルを再度供給し、流量を1.0mL/min(滞留時間10分)に調整し、混合液を分離槽62で60mL回収した。その後、バルブ60を閉状態とし、分離槽62を装置から取り外し、所定のドラフト内で大気圧として、液化ジメチルエーテルを揮発させて、抽出物を生成した。 Valves 54 and 59 were opened, liquefied dimethyl ether was again supplied by syringe pump 50, the flow rate was adjusted to 1.0 mL/min (residence time 10 minutes), and 60 mL of the mixed liquid was collected in separation tank 62. Valve 60 was then closed, separation tank 62 was removed from the apparatus, and the pressure was adjusted to atmospheric pressure in a specified draft to volatilize the liquefied dimethyl ether and produce an extract.

上述した操作を10回繰り返すことにより、液化ジメチルエーテル600mLとブタ大動脈57とを接触させ、抽出を行った。その後、バルブ54を閉状態、バルブ59,60,61を開状態とし、抽出槽56内の圧力を大気圧とすることで、抽出槽56内の液化ジメチルエーテルを排気した。その後、抽出後のブタ大動脈57を抽出残渣として生成した。 The above-mentioned operation was repeated 10 times to bring 600 mL of liquefied dimethyl ether into contact with the porcine aorta 57 and perform extraction. After that, valve 54 was closed and valves 59, 60, and 61 were opened, and the pressure in the extraction tank 56 was set to atmospheric pressure, thereby discharging the liquefied dimethyl ether from the extraction tank 56. After that, the extracted porcine aorta 57 was produced as the extraction residue.

得られた抽出物について、液化ジメチルエーテルを完全に揮発させた状態で質量測定を行った結果、ブタ大動脈57から得られた抽出物の重量は0.090gであり、抽出率は3.0質量%であった。抽出物の色は透明であり、リン脂質が含まれていることがガスクロマトグラフによって確認できた。細胞膜の主成分であるリン脂質が検出されたことから細胞が破壊され、細胞外に核酸が露出していると考えられる。 The mass of the extract obtained was measured after the liquefied dimethyl ether had completely evaporated. The weight of the extract obtained from the porcine aorta 57 was 0.090 g, and the extraction rate was 3.0 mass %. The extract was transparent, and gas chromatography confirmed that it contained phospholipids. Phospholipids, the main component of cell membranes, were detected, suggesting that the cells had been destroyed and nucleic acids had been exposed outside the cells.

また得られた抽出残渣について、動物由来原料であるブタ大動脈の抽出前の外観を維持しており、抽出操作における変色は生じていなかった。さらに抽出残渣は、水分含有率が約5質量%であった。 The extracted residue maintained the same appearance as the animal-derived raw material, the porcine aorta, before extraction, and no discoloration occurred during the extraction process. Furthermore, the extracted residue had a moisture content of approximately 5% by mass.

細胞が破壊された抽出残渣をDNaseI(ロシュ・ダイアグノスティックス社製)0.2mg/mL、MgCl2(和光純薬工業社製)0.05Mを含む生理食塩水に入れ、4℃の雰囲気で7日間振とうし、核酸を分解させた。 The extracted residue from the disrupted cells was placed in physiological saline containing 0.2 mg/mL DNase I (Roche Diagnostics) and 0.05 M MgCl2 (Wako Pure Chemical Industries), and shaken at 4°C for 7 days to decompose the nucleic acids.

次に、核酸が分解した抽出残渣を、エタノール80体積%を含む生理食塩水に入れ、4℃の雰囲気で3日間振とうさせた後、生理食塩水に入れ、4℃の雰囲気で1日間振とうさせ、脱細胞化組織を得た。 Next, the extraction residue with decomposed nucleic acids was placed in physiological saline containing 80% by volume of ethanol and shaken at 4°C for 3 days, then placed in physiological saline and shaken at 4°C for 1 day to obtain decellularized tissue.

[評価]
脱細胞化組織の評価として、生成した脱細胞化組織に含まれる核酸の量を測定した。PureLink Genomic DNA Kits(Thermo Fisher Scientific社製)を用いて、脱細胞化組織から核酸を抽出し、超微量分光光度計Nano Drop 2000c(Thermo Fisher Scientific社製)で測定した。
[evaluation]
The amount of nucleic acid contained in the decellularized tissue was measured to evaluate the decellularized tissue. Nucleic acid was extracted from the decellularized tissue using PureLink Genomic DNA Kits (manufactured by Thermo Fisher Scientific) and measured with an ultra-microspectrophotometer Nano Drop 2000c (manufactured by Thermo Fisher Scientific).

脱細胞化組織に含まれる乾燥重量当たりの核酸の量は2ng/mgであり、非特許文献1に記載されている目標値50ng/mg未満となっており、本発明により製造された抽出残渣から再生医療材料である脱細胞化組織を生成することができることがわかる。 The amount of nucleic acid contained in the decellularized tissue per dry weight was 2 ng/mg, which is less than the target value of 50 ng/mg described in Non-Patent Document 1, and it is clear that decellularized tissue, which is a regenerative medical material, can be produced from the extraction residue produced by the present invention.

[実施例4]
実施例3と同じ構成で、飽和量以下である5質量%の水を添加した液化ジメチルエーテルの代わりに、補助溶媒が添加されていない液化ジメチルエーテルを用いて、ブタ大動脈3.0gから抽出物及び抽出残渣を生成した。抽出物が0.084g得られ、その抽出率は2.8質量%であった。抽出物の色は透明であった。また得られた抽出残渣について、動物由来原料であるブタ大動脈の抽出前の外観を維持しており、抽出操作における変色は生じていなかった。さらに抽出残渣は、水分含有率が約2質量%であった。
[Example 4]
In the same manner as in Example 3, liquefied dimethyl ether to which no auxiliary solvent was added was used instead of liquefied dimethyl ether to which 5% by mass of water, which is less than the saturation amount, was added, and an extract and an extraction residue were produced from 3.0 g of porcine aorta. 0.084 g of extract was obtained, and the extraction rate was 2.8% by mass. The color of the extract was transparent. Furthermore, the obtained extraction residue maintained the appearance of the porcine aorta, which is the animal-derived raw material, before extraction, and no discoloration occurred during the extraction operation. Furthermore, the extraction residue had a water content of about 2% by mass.

[比較例3]
動物由来原料としてブタ大動脈を用い、ヘキサンを抽出溶媒とし、25℃、0.1MPa、8時間で抽出物及び抽出残渣を生成した。なお25℃とは室温であることを表し、0.1MPaとは常圧のことである。具体的には、三角フラスコにブタ大動脈3.0gとヘキサン120mLを入れ、室温常圧下で8時間攪拌し、抽出物とヘキサンの混合液を得た。その後、混合液からブタ大動脈を取り出し、混合液をエバポレーターを用いて30℃で減圧蒸留を行い、ヘキサンを揮発させ、抽出物を生成した。また抽出後のブタ大動脈から完全にヘキサンを揮発させるために、真空乾燥器を用いて30℃で真空乾燥し、抽出残渣を生成した。ブタ大動脈から得られた抽出物の重量は0.03gであり、抽出率は1.0質量%であった。抽出物の色は実施例3と同じく透明だった。また得られた抽出残渣について、動物由来原料であるブタ大動脈の抽出前の外観に比べて、変色は見られなかった。また抽出残渣は、水分含有率が約1質量%であった。これはヘキサンを揮発させるために真空乾燥した際に、水も揮発されたためである。
[Comparative Example 3]
Using porcine aorta as an animal-derived raw material, and hexane as an extraction solvent, an extract and an extraction residue were produced at 25°C, 0.1 MPa, and 8 hours. 25°C refers to room temperature, and 0.1 MPa refers to normal pressure. Specifically, 3.0 g of porcine aorta and 120 mL of hexane were placed in an Erlenmeyer flask and stirred at room temperature and normal pressure for 8 hours to obtain a mixture of the extract and hexane. Thereafter, the porcine aorta was removed from the mixture, and the mixture was subjected to reduced pressure distillation at 30°C using an evaporator to volatilize the hexane and produce an extract. In order to completely volatilize the hexane from the porcine aorta after extraction, the mixture was vacuum dried at 30°C using a vacuum dryer to produce an extraction residue. The weight of the extract obtained from the porcine aorta was 0.03 g, and the extraction rate was 1.0% by mass. The color of the extract was transparent, as in Example 3. The obtained extraction residue did not show any discoloration compared to the appearance of the porcine aorta, which is an animal-derived raw material, before extraction. The moisture content of the extraction residue was about 1% by mass. This is because water was also evaporated during vacuum drying to volatilize the hexane.

[比較例4]
動物由来原料としてブタ大動脈を用い、90℃に加熱したヘキサンを抽出溶媒とし、90℃、0.1MPa、8時間で抽出物及び抽出残渣を生成した。なお0.1MPaとは常圧のことである。具体的には、丸フラスコにブタ大動脈3.0gとヘキサン120mLを入れ、オイルバスでヘキサンを90℃に加熱した。揮発するヘキサンを還流しながら、常圧下で8時間抽出し、抽出物とヘキサンの混合液を得た。その後、混合液からブタ大動脈を取り出し、混合液をエバポレーターを用いて30℃で減圧蒸留を行い、ヘキサンを揮発させて抽出物を生成した。抽出後のブタ大動脈は真空乾燥器を用いて30℃で真空乾燥し、ヘキサンを完全に揮発させることで抽出残渣を得た。ブタ大動脈から得られた抽出物の重量は0.05gであり、抽出率は1.7質量%であった。抽出液の色は白色であり、また得られた抽出残渣について、動物由来原料であるブタ大動脈の抽出前の外観に比べて、白色から茶色に変色していた。これはたんぱく質が抽出時の熱によって熱変性したためと考えられる。水分含有率については約1質量%であった。これはヘキサンを揮発させるために真空乾燥した際に、水も揮発されたためである。
[Comparative Example 4]
Using porcine aorta as an animal-derived raw material, hexane heated to 90°C was used as an extraction solvent, and an extract and an extraction residue were produced at 90°C, 0.1 MPa, and 8 hours. Note that 0.1 MPa refers to normal pressure. Specifically, 3.0 g of porcine aorta and 120 mL of hexane were placed in a round flask, and the hexane was heated to 90°C in an oil bath. Extraction was performed for 8 hours under normal pressure while refluxing the volatile hexane, to obtain a mixture of the extract and hexane. Then, the porcine aorta was removed from the mixture, and the mixture was distilled under reduced pressure at 30°C using an evaporator to volatilize the hexane and produce an extract. The porcine aorta after extraction was vacuum-dried at 30°C using a vacuum dryer, and the hexane was completely volatilized to obtain an extraction residue. The weight of the extract obtained from the porcine aorta was 0.05 g, and the extraction rate was 1.7% by mass. The color of the extract was white, and the obtained extraction residue had changed from white to brown compared to the appearance of the porcine aorta, which is an animal-derived raw material, before extraction. This is thought to be due to the heat denaturation of the protein caused by the heat during extraction. The moisture content was about 1% by mass. This is because water was also evaporated during vacuum drying to volatilize the hexane.

実施例3、実施例4及び比較例3、比較例4により生成した抽出物の抽出率と変色の有無を、抽出原料、抽出溶媒、抽出温度、抽出圧力とともに図5に示した。かかる図5により、実施例3の抽出物は、変色がないことが理解される。またヘキサンは人体に有害な溶媒であるため、ヘキサン抽出によって生成された抽出残渣を再生医療材料として用いることは不可能である。 The extraction rate and discoloration of the extracts produced in Examples 3 and 4 and Comparative Examples 3 and 4 are shown in Figure 5 together with the extraction raw material, extraction solvent, extraction temperature, and extraction pressure. From Figure 5, it can be seen that the extract of Example 3 does not discolor. Furthermore, since hexane is a solvent that is harmful to the human body, it is impossible to use the extraction residue produced by hexane extraction as a regenerative medical material.

以上説明したように、上記生体原料の抽出物及び抽出残渣の製造方法によれば、抽出工程において、生体原料に対し、液化ジメチルエーテルを用いて、生体原料中の成分を抽出することで、当該成分を含む液化ジメチルエテール溶液を得ることができる。これにより、生体由来の水分や水溶性化合物を良好に抽出することができる。しかも、水分と抽出物が良好に除去された抽出残渣を得ることができる。 As described above, according to the above-mentioned method for producing an extract and an extraction residue from a biological raw material, in the extraction step, liquefied dimethyl ether is used to extract components in the biological raw material, thereby obtaining a liquefied dimethyl ether solution containing the components. This allows water and water-soluble compounds derived from the living organism to be extracted satisfactorily. Moreover, an extraction residue can be obtained from which water and extract have been satisfactorily removed.

1 貯槽
2 液化ジメチルエーテル
6 抽出槽
11 分離槽
100 抽出装置
Reference Signs List 1 Storage tank 2 Liquefied dimethyl ether 6 Extraction tank 11 Separation tank 100 Extraction device

特開2010-240609号公報JP 2010-240609 A

Biomaterials 32(2011)3233-3243Biomaterials 32 (2011) 3233-3243

Claims (5)

生体原料の抽出残渣の製造方法において、前記生体原料は動物由来原料であり、
前記生体原料に液化ジメチルエーテルを接触させて当該生体原料中の成分を抽出し、当該成分を含む液化ジメチルエーテル溶液を得る抽出工程と、
前記抽出工程後、前記生体原料からジメチルエーテルを揮発または分離させることで抽出残渣を得る抽出残渣生成工程と、
核酸分解酵素を用いて前記抽出残渣に含まれる核酸成分を分解させる工程と、
前記抽出残渣から前記核酸成分を取り除く洗浄工程を含む
生体原料の抽出残渣の製造方法。
In the method for producing an extraction residue of a biological raw material, the biological raw material is an animal-derived raw material,
an extraction step of contacting the biological raw material with liquefied dimethyl ether to extract components in the biological raw material and obtain a liquefied dimethyl ether solution containing the components;
After the extraction step, an extraction residue generating step of obtaining an extraction residue by volatilizing or separating dimethyl ether from the biological raw material ;
a step of decomposing nucleic acid components contained in the extraction residue using a nuclease;
A method for producing an extraction residue from a biological material, comprising a washing step for removing the nucleic acid components from the extraction residue .
前記液化ジメチルエーテルには、飽和量以下の補助溶媒が添加されている
請求項に記載の生体原料の抽出残渣の製造方法。
The method for producing an extraction residue of a biological material according to claim 1 , wherein the liquefied dimethyl ether contains an auxiliary solvent in an amount equal to or less than saturation.
前記補助溶媒は水またはアルコールである
請求項に記載の生体原料の抽出残渣の製造方法。
The method for producing an extraction residue of a biological material according to claim 2 , wherein the auxiliary solvent is water or an alcohol.
前記補助溶媒は、前記ジメチルエーテルに対して7質量%以下である
請求項に記載の生体原料の抽出残渣の製造方法。
The method for producing an extraction residue of a biological material according to claim 2 , wherein the auxiliary solvent is 7% by mass or less relative to the dimethyl ether.
前記液化ジメチルエーテルは、温度が1~40℃である
請求項1に記載の生体原料の抽出残渣の製造方法。
The method for producing extraction residue of biological raw materials according to claim 1, wherein the liquefied dimethyl ether has a temperature of 1 to 40°C.
JP2023004825A 2018-03-16 2023-01-17 Method for producing extraction residue from biological materials Active JP7518221B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018050256 2018-03-16
JP2018050256 2018-03-16
JP2018155506A JP7213639B2 (en) 2018-03-16 2018-08-22 Method for producing extract of biological material and extraction residue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018155506A Division JP7213639B2 (en) 2018-03-16 2018-08-22 Method for producing extract of biological material and extraction residue

Publications (2)

Publication Number Publication Date
JP2023041718A JP2023041718A (en) 2023-03-24
JP7518221B2 true JP7518221B2 (en) 2024-07-17

Family

ID=87884792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023004825A Active JP7518221B2 (en) 2018-03-16 2023-01-17 Method for producing extraction residue from biological materials

Country Status (1)

Country Link
JP (1) JP7518221B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106636A (en) 1999-10-04 2001-04-17 Asahi Kasei Corp Production of plant extract
WO2006058382A1 (en) 2004-12-02 2006-06-08 Bio Extracts Holdings Pty Ltd Extraction method
JP2006516404A (en) 2003-01-31 2006-07-06 フォンテラ コ−オペレイティブ グループ リミティド Extraction of compounds from dairy products
JP2009538366A (en) 2006-05-24 2009-11-05 インダストリアル リサーチ リミテッド Extraction of highly unsaturated lipids with liquid dimethyl ether
JP2010240609A (en) 2009-04-08 2010-10-28 Central Res Inst Of Electric Power Ind Oil extraction method, method of producing oily material and deoiling system
WO2015152144A1 (en) 2014-03-31 2015-10-08 日本水産株式会社 Method for fractionating lipid
WO2016053678A1 (en) 2014-09-30 2016-04-07 Noramco, Inc. Method for extraction and concentration of alkaloids using dimethyl ether

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106636A (en) 1999-10-04 2001-04-17 Asahi Kasei Corp Production of plant extract
JP2006516404A (en) 2003-01-31 2006-07-06 フォンテラ コ−オペレイティブ グループ リミティド Extraction of compounds from dairy products
WO2006058382A1 (en) 2004-12-02 2006-06-08 Bio Extracts Holdings Pty Ltd Extraction method
JP2009538366A (en) 2006-05-24 2009-11-05 インダストリアル リサーチ リミテッド Extraction of highly unsaturated lipids with liquid dimethyl ether
JP2010240609A (en) 2009-04-08 2010-10-28 Central Res Inst Of Electric Power Ind Oil extraction method, method of producing oily material and deoiling system
WO2015152144A1 (en) 2014-03-31 2015-10-08 日本水産株式会社 Method for fractionating lipid
WO2016053678A1 (en) 2014-09-30 2016-04-07 Noramco, Inc. Method for extraction and concentration of alkaloids using dimethyl ether

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Solvent Extraction Research and Development,2017年,Vol.24,P.37-45

Also Published As

Publication number Publication date
JP2023041718A (en) 2023-03-24

Similar Documents

Publication Publication Date Title
JP7031138B2 (en) Decellularized tissue manufacturing method and decellularized tissue manufacturing equipment
JP2007105081A (en) Cell removal processing of viable tissue for transplantation by supercritical carbon dioxide
JP7518221B2 (en) Method for producing extraction residue from biological materials
JP7213639B2 (en) Method for producing extract of biological material and extraction residue
CN105192484A (en) Long-acting aroma improving device and aroma improving method thereof
WO2019176958A1 (en) Method of producing extract and extraction residue of biological material, extract, and extraction residue
CZ287537B6 (en) Process for obtaining egg oil of high purity from yolks of eggs of birds or reptiles
US11547953B2 (en) Method of producing extract and extraction residue of biological material, extract, and extraction residue
KR101542579B1 (en) method of extraction for essence of Korean Dendropanax
US11642380B2 (en) Production method of nasal drop composition, and nasal drop composition
DE2944278C2 (en) Process for the gentle sterilization of biological active substances, in particular of organ tissue for therapeutic purposes against microorganisms and viruses
JP7246643B2 (en) Antioxidant, Tyrosinase Activity Inhibitor and Whitening Agent Containing Antioxidant, and Method for Producing Antioxidant and Whitening Agent
JP2020006357A (en) Liquid manufacturing method and liquid manufacturing device
US9029079B2 (en) Method of biotechnological production of bovine hemoderivative
JP7082078B2 (en) Extraction solvent removal method in extraction equipment and extraction equipment
JP7162848B2 (en) Antioxidant or hair restorer manufacturing method, and antioxidant or hair restorer manufactured by said manufacturing method
JP2019154349A (en) Animal or plant tissue, cell breaking method for animal or plant tissue, and cell breaking device for animal or plant tissue
JP2019163232A (en) Extract and extraction residue
JPH01107767A (en) Deodorant containing vegetable ingredient
US2289194A (en) Process of making histaminase preparations
UA77486C2 (en) Method for preparing biologically active lipophilic and hydrophilic fractions of porcine placenta
JP2008019206A (en) Method of purifying neem oil and insect pest repellent using product obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240704

R150 Certificate of patent or registration of utility model

Ref document number: 7518221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150