JP7517480B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP7517480B2
JP7517480B2 JP2022578101A JP2022578101A JP7517480B2 JP 7517480 B2 JP7517480 B2 JP 7517480B2 JP 2022578101 A JP2022578101 A JP 2022578101A JP 2022578101 A JP2022578101 A JP 2022578101A JP 7517480 B2 JP7517480 B2 JP 7517480B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrolyte layer
layer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022578101A
Other languages
Japanese (ja)
Other versions
JPWO2022163139A1 (en
Inventor
崇人 横地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2022163139A1 publication Critical patent/JPWO2022163139A1/ja
Application granted granted Critical
Publication of JP7517480B2 publication Critical patent/JP7517480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

本技術は、二次電池に関する。 This technology relates to secondary batteries.

携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を有する電源として二次電池の開発が進められている。この二次電池は、正極および負極と共に電解質層を備えており、その電解質層は、電解液および高分子化合物を含んでいる。 As various electronic devices such as mobile phones become widespread, secondary batteries are being developed as power sources that are small, lightweight, and have high energy density. These secondary batteries have a positive electrode and a negative electrode as well as an electrolyte layer, and the electrolyte layer contains an electrolyte solution and a polymer compound.

電解質層を備えた二次電池の構成に関しては、様々な検討がなされている。具体的には、高温信頼性を向上させるために、正極とセパレータとの間にゲル状の電解質膜が設けられていると共に、負極とセパレータとの間にゲル状の電解質膜が設けられている(例えば、特許文献1参照。)。Various studies have been conducted on the configuration of secondary batteries with electrolyte layers. Specifically, in order to improve high-temperature reliability, a gel electrolyte membrane is provided between the positive electrode and the separator, and a gel electrolyte membrane is provided between the negative electrode and the separator (see, for example, Patent Document 1).

特開平11-283674号公報Japanese Patent Application Publication No. 11-283674

二次電池の電池特性に関する様々な検討がなされているが、その二次電池のサイクル特性は未だ十分でないため、改善の余地がある。 Various studies have been conducted on the battery characteristics of secondary batteries, but the cycle characteristics of these batteries are still insufficient and there is room for improvement.

よって、優れたサイクル特性を得ることが可能である二次電池が望まれている。Therefore, there is a demand for secondary batteries that can achieve excellent cycle characteristics.

本技術の一実施形態の二次電池は、第1電解液および第1高分子化合物を含む第1電解質層と、その第1電解質層を介して互いに対向する電極およびセパレータと、その電極およびセパレータが第1電解質層を介して互いに対向する方向と交差する方向において第1電解質層に隣接され、第2電解液および第2高分子化合物を含む第2電解質層とを備えたものである。第2高分子化合物の重量に対する第2電解液の重量の比は、第1高分子化合物の重量に対する第1電解液の重量の比よりも大きい。A secondary battery according to an embodiment of the present technology includes a first electrolyte layer containing a first electrolytic solution and a first polymer compound, an electrode and a separator that face each other via the first electrolyte layer, and a second electrolyte layer that is adjacent to the first electrolyte layer in a direction intersecting the direction in which the electrode and the separator face each other via the first electrolyte layer and contains a second electrolytic solution and a second polymer compound. The ratio of the weight of the second electrolytic solution to the weight of the second polymer compound is greater than the ratio of the weight of the first electrolytic solution to the weight of the first polymer compound.

本技術の一実施形態の二次電池によれば、電極およびセパレータが第1電解質層(第1電解液および第1高分子化合物)を介して互いに対向しており、その電極およびセパレータが第1電解質層を介して互いに対向する方向と交差する方向において第1電解質層に第2電解質層(第2電解液および第2高分子化合物)が隣接されており、その第2高分子化合物の重量に対する第2電解液の重量の比が第1高分子化合物の重量に対する第1電解液の重量の比よりも大きいので、優れたサイクル特性を得ることができる。In a secondary battery according to one embodiment of the present technology, the electrode and the separator face each other via a first electrolyte layer (first electrolytic solution and first polymer compound), and a second electrolyte layer (second electrolytic solution and second polymer compound) is adjacent to the first electrolyte layer in a direction intersecting the direction in which the electrode and the separator face each other via the first electrolyte layer, and the ratio of the weight of the second electrolytic solution to the weight of the second polymer compound is greater than the ratio of the weight of the first electrolytic solution to the weight of the first polymer compound, thereby achieving excellent cycle characteristics.

なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 Note that the effects of this technology are not necessarily limited to the effects described here, but may be any of a series of effects related to this technology described below.

本技術の一実施形態における二次電池の構成を表す斜視図である。1 is a perspective view illustrating a configuration of a secondary battery according to an embodiment of the present technology. 図1に示した電池素子(巻回電極体)の構成を拡大して表す断面図である。2 is an enlarged cross-sectional view showing the configuration of the battery element (wound electrode body) shown in FIG. 1. 変形例5における二次電池の構成を表す断面図である。FIG. 13 is a cross-sectional view illustrating a configuration of a secondary battery according to Modification 5. 図3に示した電池素子(積層電極体)の構成を拡大して表す断面図である。4 is an enlarged cross-sectional view showing the configuration of the battery element (laminated electrode body) shown in FIG. 3. 二次電池の適用例の構成を表すブロック図である。FIG. 1 is a block diagram showing a configuration of an application example of a secondary battery.

以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

1.二次電池
1-1.構成
1-2.動作
1-3.製造方法
1-4.作用および効果
2.変形例
3.二次電池の用途
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.

1. Secondary battery 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Actions and effects 2. Modifications 3. Uses of secondary batteries

<1.二次電池>
まず、本技術の一実施形態の二次電池に関して説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described.

ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に、液状の電解質である電解液を備えている。The secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with a positive electrode, a negative electrode, and an electrolyte solution, which is a liquid electrolyte.

この二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。In this secondary battery, the charge capacity of the negative electrode is greater than the discharge capacity of the positive electrode. In other words, the electrochemical capacity per unit area of the negative electrode is set to be greater than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.

電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。The type of electrode reactant is not particularly limited, but specifically, it is a light metal such as an alkali metal or an alkaline earth metal. The alkali metals are lithium, sodium, potassium, etc., and the alkaline earth metals are beryllium, magnesium, calcium, etc.

以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。In the following, we will use an example in which the electrode reactant is lithium. A secondary battery that obtains battery capacity by utilizing the absorption and release of lithium is known as a lithium-ion secondary battery. In this lithium-ion secondary battery, lithium is absorbed and released in an ionic state.

<1-1.構成>
図1は、二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を拡大して表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、XZ面に沿った電池素子20の断面を破線で示している。図2では、YZ面に沿った電池素子20の断面を示している。
<1-1. Configuration>
Fig. 1 shows a perspective view of a secondary battery, and Fig. 2 shows an enlarged cross-sectional view of the battery element 20 shown in Fig. 1. However, Fig. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other, and shows a cross section of the battery element 20 along the XZ plane by a broken line. Fig. 2 shows a cross section of the battery element 20 along the YZ plane.

この二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、正極リード31および負極リード32と、封止フィルム41,42とを備えている。ここで説明する二次電池は、可撓性(または柔軟性)を有する外装フィルム10を用いたラミネートフィルム型の二次電池である。 As shown in Figures 1 and 2, this secondary battery includes an exterior film 10, a battery element 20, a positive electrode lead 31, a negative electrode lead 32, and sealing films 41 and 42. The secondary battery described here is a laminate film type secondary battery that uses a flexible exterior film 10.

なお、後述する「厚さ」は、図2中の上下方向(Z軸方向)の寸法であると共に、後述する「幅」は、図2中の左右方向(Y軸方向)の寸法である。Note that the "thickness" described below is the dimension in the vertical direction (Z-axis direction) in Figure 2, and the "width" described below is the dimension in the horizontal direction (Y-axis direction) in Figure 2.

[外装フィルムおよび封止フィルム]
外装フィルム10は、図1に示したように、電池素子20を収納する可撓性の外装部材であり、その電池素子20が内部に収納された状態において封止された袋状の構造を有している。
[Exterior film and sealing film]
As shown in FIG. 1, the exterior film 10 is a flexible exterior member that houses the battery element 20, and has a bag-like structure that is sealed with the battery element 20 housed therein.

ここでは、外装フィルム10は、1枚のフィルム状の部材であり、折り畳み方向Fに折り畳まれている。この外装フィルム10には、電池素子20を収容するための窪み部10U(いわゆる深絞り部)が設けられている。Here, the exterior film 10 is a single film-like member that is folded in a folding direction F. This exterior film 10 is provided with a recessed portion 10U (a so-called deep drawn portion) for accommodating the battery element 20.

具体的には、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム10が折り畳まれた状態では、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。Specifically, the exterior film 10 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the exterior film 10 is folded, the outer peripheral edges of the opposing fusion layers are fused to each other. The fusion layer contains a polymer compound such as polypropylene. The metal layer contains a metal material such as aluminum. The surface protection layer contains a polymer compound such as nylon.

ただし、外装フィルム10の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。However, the configuration (number of layers) of the exterior film 10 is not particularly limited and may be one or two layers, or four or more layers.

封止フィルム41は、外装フィルム10と正極リード31との間に挿入されていると共に、封止フィルム42は、外装フィルム10と負極リード32との間に挿入されている。ただし、封止フィルム41,42のうちの一方または双方は、省略されてもよい。The sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31, and the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32. However, one or both of the sealing films 41 and 42 may be omitted.

この封止フィルム41は、外装フィルム10の内部に外気などが侵入することを防止する封止部材である。また、封止フィルム41は、正極リード31に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、そのポリオレフィンは、ポリプロピレンなどである。The sealing film 41 is a sealing member that prevents outside air from entering the inside of the exterior film 10. The sealing film 41 also contains a polymer compound such as polyolefin that has adhesion to the positive electrode lead 31, and the polyolefin is polypropylene or the like.

封止フィルム42の構成は、負極リード32に対して密着性を有する封止部材であることを除いて、封止フィルム41の構成と同様である。すなわち、封止フィルム42は、負極リード32に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。The configuration of the sealing film 42 is the same as that of the sealing film 41, except that the sealing film 42 is a sealing member that has adhesion to the negative electrode lead 32. That is, the sealing film 42 contains a polymer compound such as polyolefin that has adhesion to the negative electrode lead 32.

[電池素子]
電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、正極電解質層24と、負極電解質層25と、正極保液層26と、負極保液層27とを含む発電素子であり、外装フィルム10の内部に収納されている。
[Battery element]
As shown in FIGS. 1 and 2 , the battery element 20 is a power generating element including a positive electrode 21, a negative electrode 22, a separator 23, a positive electrode electrolyte layer 24, a negative electrode electrolyte layer 25, a positive electrode liquid retaining layer 26, and a negative electrode liquid retaining layer 27, and is housed inside the exterior film 10.

この電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、主に、正極21および負極22がセパレータ23、正極電解質層24および負極電解質層25を介して互いに積層されていると共に、Y軸方向に延在する仮想軸である巻回軸Pを中心として正極21、負極22、セパレータ23、正極電解質層24および負極電解質層25が巻回されている。正極保液層26は、正極電解質層24の隣に配置されているため、その正極電解質層24に隣接されていると共に、負極保液層27は、負極電解質層25の隣に配置されているため、その負極電解質層25に隣接されている。これにより、正極21および負極22は、セパレータ23、正極電解質層24および負極電解質層25を介して互いに対向しながら巻回されている。This battery element 20 is a so-called wound electrode body. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are mainly stacked on each other via the separator 23, the positive electrode electrolyte layer 24, and the negative electrode electrolyte layer 25, and the positive electrode 21, the negative electrode 22, the separator 23, the positive electrode electrolyte layer 24, and the negative electrode electrolyte layer 25 are wound around the winding axis P, which is a virtual axis extending in the Y-axis direction. The positive electrode electrolyte layer 26 is disposed next to the positive electrode electrolyte layer 24, and is adjacent to the positive electrode electrolyte layer 24, and the negative electrode electrolyte layer 27 is disposed next to the negative electrode electrolyte layer 25, and is adjacent to the negative electrode electrolyte layer 25. As a result, the positive electrode 21 and the negative electrode 22 are wound while facing each other via the separator 23, the positive electrode electrolyte layer 24, and the negative electrode electrolyte layer 25.

電池素子20の立体的形状は、特に限定されない。ここでは、電池素子20は、扁平状であるため、巻回軸Pと交差する電池素子20の断面(XZ面に沿った断面)は、長軸J1および短軸J2により規定される扁平形状を有している。この長軸J1は、X軸方向に延在すると共に短軸J2よりも大きい長さを有する仮想軸であると共に、短軸J2は、X軸方向と交差するZ軸方向に延在すると共に長軸J1よりも小さい長さを有する仮想軸である。ここでは、電池素子20の立体的形状は、扁平な円筒状であるため、その電池素子20の断面の形状は、扁平な略楕円形状である。The three-dimensional shape of the battery element 20 is not particularly limited. Here, since the battery element 20 is flat, the cross section (cross section along the XZ plane) of the battery element 20 intersecting with the winding axis P has a flat shape defined by the long axis J1 and the short axis J2. The long axis J1 is an imaginary axis that extends in the X-axis direction and has a length greater than the short axis J2, and the short axis J2 is an imaginary axis that extends in the Z-axis direction intersecting with the X-axis direction and has a length smaller than the long axis J1. Here, since the three-dimensional shape of the battery element 20 is a flat cylindrical shape, the cross section of the battery element 20 has a flattened, approximately elliptical shape.

(正極)
正極21は、充放電反応を進行させるための電極である。この正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
(Positive electrode)
The positive electrode 21 is an electrode for promoting charge/discharge reactions. As shown in FIG. 2, the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B.

正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。なお、正極集電体21Aの幅は、正極活物質層21Bの幅よりも大きくならないように設定されており、より具体的には、正極活物質層21Bの幅と同じである。正極集電体21Aの体積の増加が防止されるため、電池素子20の体積当たりのエネルギー密度が増加するからである。The positive electrode collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided. The positive electrode collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like. The width of the positive electrode collector 21A is set so as not to be larger than the width of the positive electrode active material layer 21B, and more specifically, is the same as the width of the positive electrode active material layer 21B. This is because the energy density per volume of the battery element 20 increases since the volume of the positive electrode collector 21A is prevented from increasing.

ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられており、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。また、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。Here, the positive electrode active material layer 21B is provided on both sides of the positive electrode collector 21A and contains one or more types of positive electrode active materials capable of absorbing and releasing lithium. However, the positive electrode active material layer 21B may be provided only on one side of the positive electrode collector 21A on the side where the positive electrode 21 faces the negative electrode 22. The positive electrode active material layer 21B may further contain one or more types of other materials such as a positive electrode binder and a positive electrode conductor. The method of forming the positive electrode active material layer 21B is not particularly limited, but specifically, it is one or more types of coating methods.

正極活物質の種類は、特に限定されないが、具体的には、リチウム含有化合物などである。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO2 、LiCoO2 、LiNi0.8 Co0.15Al0.052 、LiNi0.33Co0.33Mn0.332 およびLiMn2 4 などである。リン酸化合物の具体例は、LiFePO4 およびLiMnPO4 などである。 The type of the positive electrode active material is not particularly limited, but specifically, it is a lithium-containing compound. The lithium-containing compound is a compound containing one or more transition metal elements as constituent elements together with lithium, and may further contain one or more other elements as constituent elements. The type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long periodic table. The type of the lithium-containing compound is not particularly limited, but specifically, it is an oxide, a phosphate compound, a silicate compound, a borate compound, etc. Specific examples of oxides are LiNiO 2 , LiCoO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 and LiMn 2 O 4 . Specific examples of phosphate compounds include LiFePO4 and LiMnPO4 .

正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。The positive electrode binder contains one or more of synthetic rubbers and polymeric compounds. Synthetic rubbers include styrene-butadiene rubbers, fluororubbers, and ethylene-propylene-diene. Polymeric compounds include polyvinylidene fluoride, polyimide, and carboxymethyl cellulose.

正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。The positive electrode conductive agent contains one or more conductive materials such as carbon materials, and the carbon materials include graphite, carbon black, acetylene black, and ketjen black. However, the conductive material may also be a metal material or a polymer compound.

(負極)
負極22は、充放電反応を進行させるための他の電極である。この負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
(Negative electrode)
The negative electrode 22 is another electrode for promoting charge/discharge reactions. As shown in FIG. 2, the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B.

負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。なお、負極集電体22Aの幅は、負極活物質層22Bの幅よりも大きくならないように設定されており、より具体的には、負極活物質層22Bの幅と同じである。負極集電体22Aの体積の増加が防止されるため、電池素子20の体積当たりのエネルギー密度が増加するからである。The negative electrode collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided. The negative electrode collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like. The width of the negative electrode collector 22A is set so as not to be larger than the width of the negative electrode active material layer 22B, and more specifically, is the same as the width of the negative electrode active material layer 22B. This is because the energy density per volume of the battery element 20 increases since the volume of the negative electrode collector 22A is prevented from increasing.

ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられており、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。また、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。Here, the negative electrode active material layer 22B is provided on both sides of the negative electrode collector 22A and contains one or more types of negative electrode active materials capable of absorbing and releasing lithium. However, the negative electrode active material layer 22B may be provided only on one side of the negative electrode collector 22A on the side where the negative electrode 22 faces the positive electrode 21. The negative electrode active material layer 22B may further contain one or more types of other materials such as a negative electrode binder and a negative electrode conductive agent. The method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, it is one or more types of a coating method, a gas phase method, a liquid phase method, a thermal spraying method, and a sintering method (sintering method).

負極活物質の種類は、特に限定されないが、具体的には、炭素材料および金属系材料のうちの一方または双方などである。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズのうちの一方または双方などである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSi2 およびSiOx (0<x≦2、または0.2<x<1.4)などである。 The type of the negative electrode active material is not particularly limited, but specifically, one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained. The carbon material is graphitizable carbon, non-graphitizable carbon, graphite (natural graphite and artificial graphite), etc. The metal-based material is a material containing one or more of metal elements and metalloid elements that can form an alloy with lithium as a constituent element, and specific examples of the metal element and metalloid element are one or both of silicon and tin. This metal-based material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more phases of them. Specific examples of the metal-based material are TiSi 2 and SiO x (0<x≦2, or 0.2<x<1.4), etc.

負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。The details regarding the negative electrode binder and the negative electrode conductor are the same as the details regarding the positive electrode binder and the positive electrode conductor, respectively.

ここでは、負極活物質層22Bの幅は、正極活物質層21Bの幅よりも大きくなっている。正極21から放出されたリチウムが負極22において意図せずに析出することを防止するためである。Here, the width of the negative electrode active material layer 22B is greater than the width of the positive electrode active material layer 21B. This is to prevent lithium released from the positive electrode 21 from being unintentionally precipitated in the negative electrode 22.

(セパレータ)
セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(Separator)
2, the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass through while preventing contact (short circuit) between the positive electrode 21 and the negative electrode 22. This separator 23 contains a polymer compound such as polyethylene.

(正極電解質層)
正極電解質層24は、正極21において吸蔵放出されるリチウムの媒介として機能する第1電解質層であり、図2に示したように、正極21とセパレータ23との間に配置されている。すなわち、正極21およびセパレータ23は、正極電解質層24を介して互いに対向している。ここでは、正極電解質層24は、正極21とセパレータ23とにより挟まれており、その正極21およびセパレータ23のそれぞれに隣接されている。
(Positive Electrolyte Layer)
The positive electrode electrolyte layer 24 is a first electrolyte layer that functions as an intermediary for lithium stored and released in the positive electrode 21, and is disposed between the positive electrode 21 and the separator 23 as shown in Fig. 2. That is, the positive electrode 21 and the separator 23 face each other via the positive electrode electrolyte layer 24. Here, the positive electrode electrolyte layer 24 is sandwiched between the positive electrode 21 and the separator 23, and is adjacent to both the positive electrode 21 and the separator 23.

具体的には、正極電解質層24は、電解液および高分子化合物を含んでいるゲル状の電解質であり、その電解液は、高分子化合物により保持されている。このゲル状での電解質である正極電解質層24を用いることにより、液状の電解質である電解液をそのまま用いる場合とは異なり、その電解液の漏液が防止される。Specifically, the positive electrode electrolyte layer 24 is a gel electrolyte containing an electrolyte solution and a polymer compound, and the electrolyte solution is held by the polymer compound. By using the positive electrode electrolyte layer 24, which is an electrolyte in a gel state, leakage of the electrolyte solution is prevented, unlike when the electrolyte solution, which is a liquid electrolyte, is used as is.

ここで説明する電解液は、正極電解質層24に含まれている第1電解液である。この電解液の種類は、1種類だけでもよいし、2種類以上でもよい。具体的には、電解液は、溶媒および電解質塩を含んでいる。The electrolyte solution described here is the first electrolyte solution contained in the positive electrode electrolyte layer 24. There may be only one type of electrolyte solution, or two or more types. Specifically, the electrolyte solution contains a solvent and an electrolyte salt.

溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。この非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。炭酸エステル系化合物の具体例は、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。カルボン酸エステル系化合物の具体例は、酢酸エチル、プロピオン酸エチルおよびプロピオン酸プロピルなどである。ラクトン系化合物の具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。The solvent contains one or more of non-aqueous solvents (organic solvents), and an electrolyte containing the non-aqueous solvent is a so-called non-aqueous electrolyte. The non-aqueous solvent is an ester or ether, and more specifically, a carbonate ester compound, a carboxylate ester compound, and a lactone compound. Specific examples of carbonate ester compounds are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Specific examples of carboxylate compounds are ethyl acetate, ethyl propionate, and propyl propionate. Specific examples of lactone compounds are gamma-butyrolactone and gamma-valerolactone.

電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO2 2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 2 )、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO2 3 )およびビス(オキサラト)ホウ酸リチウム(LiB(C2 4 2 )などである。電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。 The electrolyte salt contains one or more of light metal salts such as lithium salts. Specific examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 ), lithium tris(trifluoromethanesulfonyl)methide (LiC(CF 3 SO 2 ) 3 ), and lithium bis(oxalato)borate (LiB(C 2 O 4 ) 2 ). The content of the electrolyte salt is not particularly limited, but is specifically 0.3 mol/kg to 3.0 mol/kg relative to the solvent. This is because high ionic conductivity can be obtained.

なお、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。具体的には、添加剤は、不飽和環状炭酸エステル、ハロゲン化環状炭酸エステル、スルホン酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。The electrolyte may further contain one or more of the additives. Specifically, the additives include unsaturated cyclic carbonates, halogenated cyclic carbonates, sulfonates, phosphates, acid anhydrides, nitrile compounds, and isocyanate compounds.

不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化環状炭酸エステルの具体例は、モノフルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルの具体例は、プロパンスルトンおよびプロペンスルトンなどである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。酸無水物の具体例は、コハク酸無水物、1,2-エタンジスルホン酸無水物および2-スルホ安息香酸無水物などである。ニトリル化合物の具体例は、スクシノニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。 Specific examples of unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate, and methyleneethylene carbonate. Specific examples of halogenated cyclic carbonates include monofluoroethylene carbonate and difluoroethylene carbonate. Specific examples of sulfonic acid esters include propane sultone and propene sultone. Specific examples of phosphate esters include trimethyl phosphate and triethyl phosphate. Specific examples of acid anhydrides include succinic anhydride, 1,2-ethane disulfonic anhydride, and 2-sulfobenzoic anhydride. Specific examples of nitrile compounds include succinonitrile. Specific examples of isocyanate compounds include hexamethylene diisocyanate.

ここで説明する高分子化合物は、正極電解質層24に含まれている第1高分子化合物である。この高分子化合物の種類は、1種類だけでもよいし、2種類以上でもよい。The polymer compound described here is the first polymer compound contained in the positive electrode electrolyte layer 24. There may be only one type of polymer compound, or two or more types.

具体的には、高分子化合物は、フッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの一方または双方を含んでいる。正極電解質層24において優れた物理的強度および優れた電気化学的安定性が得られるからである。フッ化ビニリデンの単独重合体は、いわゆるポリフッ化ビニリデンである。フッ化ビニリデンの共重合体は、フッ化ビニリデンと、1種類または2種類以上の重合成分(単量体)との共重合体であり、その重合成分の種類は、特に限定されない。 Specifically, the polymer compound contains one or both of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. This is because excellent physical strength and excellent electrochemical stability can be obtained in the positive electrode electrolyte layer 24. The vinylidene fluoride homopolymer is so-called polyvinylidene fluoride. The vinylidene fluoride copolymer is a copolymer of vinylidene fluoride and one or more types of polymerization components (monomers), and the types of the polymerization components are not particularly limited.

中でも、フッ化ビニリデンの共重合体は、重合成分としてヘキサフルオロプロピレンを含んでいることが好ましい。すなわち、高分子化合物は、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体であることが好ましい。正極電解質層24による電解液の保持量が増加するからである。In particular, it is preferable that the copolymer of vinylidene fluoride contains hexafluoropropylene as a polymerization component. In other words, it is preferable that the polymer compound is a copolymer of vinylidene fluoride and hexafluoropropylene. This is because the amount of electrolyte held by the positive electrode electrolyte layer 24 increases.

この場合において、フッ化ビニリデンの共重合体は、さらに、重合性分として不飽和二塩基酸および不飽和二塩基酸モノエステルのうちの一方または双方を含んでいることが好ましい。すなわち、高分子化合物は、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸との共重合体であるか、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸モノエステルとの共重合体であるか、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸と不飽和二塩基酸モノエステルとの共重合体であることが好ましい。正極電解質層24による電解液の保持量がより増加するからである。In this case, it is preferable that the copolymer of vinylidene fluoride further contains one or both of an unsaturated dibasic acid and an unsaturated dibasic acid monoester as a polymerizable component. That is, it is preferable that the polymer compound is a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid, a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid monoester, or a copolymer of vinylidene fluoride, hexafluoropropylene, an unsaturated dibasic acid, and an unsaturated dibasic acid monoester. This is because the amount of electrolyte held by the positive electrode electrolyte layer 24 is further increased.

不飽和二塩基酸の具体例は、マレイン酸、フマル酸、イタコン酸およびシトラコン酸などである。不飽和二塩基酸モノエステルの具体例は、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、フマル酸モノメチルエステル、フマル酸モノエチルエステル、イタコン酸モノメチルエステル、イタコン酸モノエチルエステル、シトラコン酸モノメチルエステルおよびシトラコン酸モノエチルエステルなどである。 Specific examples of unsaturated dibasic acids are maleic acid, fumaric acid, itaconic acid, citraconic acid, etc. Specific examples of unsaturated dibasic acid monoesters are maleic acid monomethyl ester, maleic acid monoethyl ester, fumaric acid monomethyl ester, fumaric acid monoethyl ester, itaconic acid monomethyl ester, itaconic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, etc.

なお、正極電解質層24は、さらに、複数の絶縁性粒子を含んでいることが好ましい。正極電解質層24による電解液の保持量がより増加するからである。It is preferable that the positive electrode electrolyte layer 24 further contains a plurality of insulating particles, because this increases the amount of electrolyte held by the positive electrode electrolyte layer 24.

絶縁性粒子は、無機材料および高分子化合物のうちの一方または双方を含んでいる。無機材料の具体例は、酸化アルミニウム、酸化ジルコニウム、酸化チタンおよび酸化マグネシウムなどである。高分子化合物の具体例は、アクリル樹脂およびスチレン樹脂などである。The insulating particles contain one or both of an inorganic material and a polymer compound. Specific examples of inorganic materials include aluminum oxide, zirconium oxide, titanium oxide, and magnesium oxide. Specific examples of polymer compounds include acrylic resin and styrene resin.

(負極電解質層)
負極電解質層25は、負極22において吸蔵放出されるリチウムの媒介として機能する他の第1電解質層であり、図2に示したように、負極22とセパレータ23との間に配置されている。すなわち、負極22およびセパレータ23は、負極電解質層25を介して互いに対向している。ここでは、負極電解質層25は、負極22とセパレータ23とにより挟まれており、その負極22およびセパレータ23のそれぞれに隣接されている。
(Negative Electrolyte Layer)
The negative electrode electrolyte layer 25 is another first electrolyte layer that functions as an intermediary for lithium stored and released in the negative electrode 22, and is disposed between the negative electrode 22 and the separator 23 as shown in Fig. 2. That is, the negative electrode 22 and the separator 23 face each other via the negative electrode electrolyte layer 25. Here, the negative electrode electrolyte layer 25 is sandwiched between the negative electrode 22 and the separator 23, and is adjacent to both the negative electrode 22 and the separator 23.

具体的には、負極電解質層25は、正極電解質層24の構成と同様の構成を有している。すなわち、負極電解質層25は、電解液および高分子化合物を含んでいるゲル状の電解質であり、その電解液は、高分子化合物により保持されている。負極電解質層25を用いることにより、電解液の漏液が防止される。Specifically, the negative electrode electrolyte layer 25 has a configuration similar to that of the positive electrode electrolyte layer 24. That is, the negative electrode electrolyte layer 25 is a gel electrolyte containing an electrolyte solution and a polymer compound, and the electrolyte solution is held by the polymer compound. By using the negative electrode electrolyte layer 25, leakage of the electrolyte solution is prevented.

ここで説明する電解液は、負極電解質層25に含まれている他の第1電解液であると共に、ここで説明する高分子化合物は、負極電解質層25に含まれている他の第1高分子化合物である。負極電解質層25に含まれている電解液および高分子化合物のそれぞれに関する詳細は、正極電解質層24に含まれている電解液および高分子化合物のそれぞれに関する詳細と同様である。もちろん、負極電解質層25は、複数の絶縁性粒子を含んでいてもよい。The electrolyte solution described here is another first electrolyte solution contained in the anode electrolyte layer 25, and the polymer compound described here is another first polymer compound contained in the anode electrolyte layer 25. Details regarding the electrolyte solution and polymer compound contained in the anode electrolyte layer 25 are similar to the details regarding the electrolyte solution and polymer compound contained in the cathode electrolyte layer 24. Of course, the anode electrolyte layer 25 may contain a plurality of insulating particles.

ただし、負極電解質層25に含まれている電解液の種類と正極電解質層24に含まれている電解液の種類とは、互いに同じでもよいし、互いに異なってもよい。同様に、負極電解質層25に含まれている高分子化合物の種類と正極電解質層24に含まれている高分子化合物の種類とは、互いに同じでもよいし、互いに異なってもよい。However, the type of electrolyte contained in the negative electrode electrolyte layer 25 and the type of electrolyte contained in the positive electrode electrolyte layer 24 may be the same or different. Similarly, the type of polymer compound contained in the negative electrode electrolyte layer 25 and the type of polymer compound contained in the positive electrode electrolyte layer 24 may be the same or different.

(正極保液層)
正極保液層26は、正極電解質層24に電解液を供給する第2電解質層であり、図2に示したように、その正極電解質層24に隣接されている。より具体的には、正極保液層26は、正極21およびセパレータ23が正極電解質層24を介して互いに対向する方向(Z軸方向)と交差する方向(Y軸方向)において、その正極電解質層24に隣接されている。ここでは、正極保液層26は、正極21とセパレータ23とにより挟まれておらずに、正極電解質層24の側面に接触している。
(Positive electrode electrolyte layer)
The positive electrode liquid retaining layer 26 is a second electrolyte layer that supplies an electrolytic solution to the positive electrode electrolyte layer 24, and is adjacent to the positive electrode electrolyte layer 24 as shown in Fig. 2. More specifically, the positive electrode liquid retaining layer 26 is adjacent to the positive electrode electrolyte layer 24 in a direction (Y-axis direction) that intersects with the direction (Z-axis direction) in which the positive electrode 21 and the separator 23 face each other via the positive electrode electrolyte layer 24. Here, the positive electrode liquid retaining layer 26 is not sandwiched between the positive electrode 21 and the separator 23, but is in contact with a side surface of the positive electrode electrolyte layer 24.

ここでは、正極保液層26は、正極電解質層24の両側に配置されているため、電池素子20は、2個の正極保液層26を含んでいる。すなわち、1個目の正極保液層26は、正極電解質層24の右側に配置されているため、その正極電解質層24の右側面に隣接されている。2個目の正極保液層26は、正極電解質層24の左側に配置されているため、その正極電解質層24の左側面に隣接されている。Here, the positive electrode liquid retaining layers 26 are disposed on both sides of the positive electrode electrolyte layer 24, so that the battery element 20 includes two positive electrode liquid retaining layers 26. That is, the first positive electrode liquid retaining layer 26 is disposed to the right of the positive electrode electrolyte layer 24, so that it is adjacent to the right side surface of the positive electrode electrolyte layer 24. The second positive electrode liquid retaining layer 26 is disposed to the left of the positive electrode electrolyte layer 24, so that it is adjacent to the left side surface of the positive electrode electrolyte layer 24.

なお、正極保液層26は、セパレータ23の一面に配置されているため、そのセパレータ23により支持されている。 The positive electrode liquid retaining layer 26 is disposed on one side of the separator 23 and is therefore supported by the separator 23.

具体的には、正極保液層26は、正極電解質層24の構成と同様の構成を有している。すなわち、正極保液層26は、電解液および高分子化合物を含んでいるゲル状の電解質であり、その電解液は、高分子化合物により保持されている。正極保液層26が電解液を保持可能になると共に、その正極保液層26が正極電解質層24に電解液を供給可能になるからである。Specifically, the positive electrode liquid retaining layer 26 has a configuration similar to that of the positive electrode electrolyte layer 24. That is, the positive electrode liquid retaining layer 26 is a gel electrolyte containing an electrolyte solution and a polymer compound, and the electrolyte solution is retained by the polymer compound. This is because the positive electrode liquid retaining layer 26 is capable of retaining the electrolyte solution and is also capable of supplying the electrolyte solution to the positive electrode electrolyte layer 24.

ここで説明する電解液は、正極保液層26に含まれている第2電解液であると共に、ここで説明する高分子化合物は、正極保液層26に含まれている第2高分子化合物である。正極保液層26に含まれている電解液および高分子化合物のそれぞれに関する詳細は、正極電解質層24に含まれている電解液および高分子化合物のそれぞれに関する詳細と同様である。もちろん、正極保液層26は、複数の絶縁性粒子を含んでいてもよい。The electrolyte solution described here is the second electrolyte solution contained in the positive electrode liquid retaining layer 26, and the polymer compound described here is the second polymer compound contained in the positive electrode liquid retaining layer 26. Details regarding the electrolyte solution and polymer compound contained in the positive electrode liquid retaining layer 26 are similar to the details regarding the electrolyte solution and polymer compound contained in the positive electrode electrolyte layer 24. Of course, the positive electrode liquid retaining layer 26 may contain a plurality of insulating particles.

ただし、正極保液層26に含まれている電解液の種類と正極電解質層24に含まれている電解液の種類とは、互いに同じでもよいし、互いに異なってもよい。同様に、正極保液層26に含まれている高分子化合物の種類と正極電解質層24に含まれている高分子化合物の種類とは、互いに同じでもよいし、互いに異なってもよい。However, the type of electrolyte contained in the positive electrode liquid retaining layer 26 and the type of electrolyte contained in the positive electrode electrolyte layer 24 may be the same or different. Similarly, the type of polymer compound contained in the positive electrode liquid retaining layer 26 and the type of polymer compound contained in the positive electrode electrolyte layer 24 may be the same or different.

ここで、正極保液層26において高分子化合物の重量に対する電解液の重量の比(重量比R2=電解液の重量/高分子化合物の重量)は、正極電解質層24において高分子化合物の重量に対する電解液の重量の比(重量比R1=電解液の重量/高分子化合物の重量)よりも大きくなっている。正極保液層26から正極電解質層24に十分な量の電解液が供給されるため、充放電繰り返しても放電容量の減少が抑制されるからである。これにより、正極電解質層24の厚さT1が薄くても済むため、電池素子20の体積当たりのエネルギー密度が増加する。重量比R1は、正極電解質層24における電解液の含有率を表すパラメータであると共に、重量比R2は、正極保液層26における電解液の含有率を表すパラメータである。Here, the ratio of the weight of the electrolyte to the weight of the polymer compound in the positive electrode liquid retaining layer 26 (weight ratio R2 = weight of electrolyte / weight of polymer compound) is greater than the ratio of the weight of the electrolyte to the weight of the polymer compound in the positive electrode electrolyte layer 24 (weight ratio R1 = weight of electrolyte / weight of polymer compound). This is because a sufficient amount of electrolyte is supplied from the positive electrode liquid retaining layer 26 to the positive electrode electrolyte layer 24, so that the decrease in discharge capacity is suppressed even when charging and discharging are repeated. As a result, the thickness T1 of the positive electrode electrolyte layer 24 can be thin, and the energy density per volume of the battery element 20 is increased. The weight ratio R1 is a parameter that represents the content of the electrolyte in the positive electrode electrolyte layer 24, and the weight ratio R2 is a parameter that represents the content of the electrolyte in the positive electrode liquid retaining layer 26.

重量比R1を求めるためには、二次電池を解体することにより、正極電解質層24を回収したのち、熱重量示差熱分析法(TG-DTA)を用いて正極電解質層24を分析する。これにより、電解液の重量および高分子化合物の重量のそれぞれが測定されるため、その測定結果に基づいて重量比R1を算出可能である。To determine the weight ratio R1, the secondary battery is disassembled to recover the positive electrode electrolyte layer 24, and then the positive electrode electrolyte layer 24 is analyzed using thermogravimetric differential thermal analysis (TG-DTA). This allows the weight of the electrolyte and the weight of the polymer compound to be measured, and the weight ratio R1 can be calculated based on the measurement results.

重量比R2を求める手順は、正極電解質層24の代わりに正極保液層26を回収および分析することを除いて、重量比R1を求める手順と同様である。The procedure for determining weight ratio R2 is similar to that for determining weight ratio R1, except that the positive electrode liquid retaining layer 26 is recovered and analyzed instead of the positive electrode electrolyte layer 24.

正極保液層26の厚さT2は、特に限定されないため、任意に設定可能である。中でも、正極保液層26の厚さT2は、正極電解質層24の厚さT1よりも大きいことが好ましい。正極保液層26による電解液の保持量が増加するため、その正極保液層26から正極電解質層24に供給される電解液の量が増加するからである。The thickness T2 of the positive electrode liquid retaining layer 26 is not particularly limited and can be set arbitrarily. In particular, it is preferable that the thickness T2 of the positive electrode liquid retaining layer 26 is greater than the thickness T1 of the positive electrode electrolyte layer 24. This is because the amount of electrolyte held by the positive electrode liquid retaining layer 26 increases, and therefore the amount of electrolyte supplied from the positive electrode liquid retaining layer 26 to the positive electrode electrolyte layer 24 increases.

厚さT1を求めるためには、最初に、二次電池を解体することにより、電池素子20を回収する。続いて、YZ面に沿うように電池素子20を切断することにより、その電池素子20の断面を露出させる(図2参照)。この場合には、扁平な立体的形状を有している電池素子20のうちの平坦部において、その電池素子20を切断することが好ましい。続いて、走査型電子顕微鏡(SEM)などの顕微鏡を用いて電池素子20の断面を観察することにより、正極電解質層24の厚さを測定する。この場合には、正極活物質層21Bとセパレータ23との間の距離を測定することにより、その距離を正極電解質層24の厚さとする。なお、観察倍率は、任意に設定可能である。最後に、互いに異なる30箇所において正極電解質層24の厚さを測定したのち、30個の厚さの平均値を算出することにより、厚さT1とする。To obtain the thickness T1, first, the secondary battery is disassembled to recover the battery element 20. Next, the battery element 20 is cut along the YZ plane to expose the cross section of the battery element 20 (see FIG. 2). In this case, it is preferable to cut the battery element 20 at a flat portion of the battery element 20 having a flat three-dimensional shape. Next, the thickness of the positive electrode electrolyte layer 24 is measured by observing the cross section of the battery element 20 using a microscope such as a scanning electron microscope (SEM). In this case, the distance between the positive electrode active material layer 21B and the separator 23 is measured, and the distance is taken as the thickness of the positive electrode electrolyte layer 24. The observation magnification can be set arbitrarily. Finally, the thickness of the positive electrode electrolyte layer 24 is measured at 30 different locations, and the average value of the 30 thicknesses is calculated to obtain the thickness T1.

厚さT2を求める手順は、電池素子20の断面の観察結果に基づいて正極保液層26の厚さを測定することを除いて、厚さT1を求める手順と同様である。The procedure for determining thickness T2 is similar to the procedure for determining thickness T1, except that the thickness of the positive electrode liquid retaining layer 26 is measured based on the observation of the cross section of the battery element 20.

ここでは、上記したように、正極集電体21Aの幅は、正極活物質層21Bの幅と同じである。また、正極保液層26は、図2に示したように、正極電解質層24の側面に隣接されているだけでなく、正極活物質層21Bの側面の一部にも隣接されている。これにより、正極保液層26は、正極集電体21Aに隣接されておらず、その正極集電体21Aから離隔されている。Here, as described above, the width of the positive electrode current collector 21A is the same as the width of the positive electrode active material layer 21B. Also, as shown in FIG. 2, the positive electrode liquid retaining layer 26 is adjacent not only to the side surface of the positive electrode electrolyte layer 24 but also to a part of the side surface of the positive electrode active material layer 21B. As a result, the positive electrode liquid retaining layer 26 is not adjacent to the positive electrode current collector 21A, but is separated from the positive electrode current collector 21A.

(負極保液層)
負極保液層27は、負極電解質層25に電解液を供給する他の第2電解質層であり、図2に示したように、その負極電解質層25に隣接されている。より具体的には、負極保液層27は、負極22およびセパレータ23が負極電解質層25を介して互いに対向する方向(Z軸方向)と交差する方向(Y軸方向)において、その負極電解質層25に隣接されている。ここでは、負極保液層27は、負極22とセパレータ23とにより挟まれておらずに、負極電解質層25の側面に接触している。
(Negative electrode electrolyte layer)
The negative electrode liquid retaining layer 27 is another second electrolyte layer that supplies an electrolytic solution to the negative electrode electrolyte layer 25, and is adjacent to the negative electrode electrolyte layer 25 as shown in Fig. 2. More specifically, the negative electrode liquid retaining layer 27 is adjacent to the negative electrode electrolyte layer 25 in a direction (Y-axis direction) intersecting with a direction (Z-axis direction) in which the negative electrode 22 and the separator 23 face each other via the negative electrode electrolyte layer 25. Here, the negative electrode liquid retaining layer 27 is not sandwiched between the negative electrode 22 and the separator 23, but is in contact with a side surface of the negative electrode electrolyte layer 25.

ここでは、負極保液層27は、負極電解質層25の両側に配置されているため、電池素子20は、2個の負極保液層27を含んでいる。すなわち、1個目の負極保液層27は、負極電解質層25の右側に配置されているため、その負極電解質層25の右側面に隣接されている。2個目の負極保液層27は、負極電解質層25の左側に配置されているため、その負極電解質層25の左側面に隣接されている。Here, the negative electrode liquid retaining layers 27 are disposed on both sides of the negative electrode electrolyte layer 25, so that the battery element 20 includes two negative electrode liquid retaining layers 27. That is, the first negative electrode liquid retaining layer 27 is disposed to the right of the negative electrode electrolyte layer 25, so that it is adjacent to the right side surface of the negative electrode electrolyte layer 25. The second negative electrode liquid retaining layer 27 is disposed to the left of the negative electrode electrolyte layer 25, so that it is adjacent to the left side surface of the negative electrode electrolyte layer 25.

なお、負極保液層27は、セパレータ23の一面(正極保液層26が形成されている面とは反対側の面)に配置されているため、そのセパレータ23により支持されている。The negative electrode liquid retaining layer 27 is disposed on one side of the separator 23 (the side opposite to the side on which the positive electrode liquid retaining layer 26 is formed) and is therefore supported by the separator 23.

具体的には、負極保液層27は、負極電解質層25の構成と同様の構成を有している。すなわち、負極保液層27は、電解液および高分子化合物を含んでいるゲル状の電解質であり、その電解液は、高分子化合物により保持されている。負極保液層27が電解液を保持可能になると共に、その負極保液層27が負極電解質層25に電解液を供給可能になるからである。Specifically, the negative electrode liquid retaining layer 27 has a configuration similar to that of the negative electrode electrolyte layer 25. That is, the negative electrode liquid retaining layer 27 is a gel electrolyte containing an electrolyte solution and a polymer compound, and the electrolyte solution is retained by the polymer compound. This is because the negative electrode liquid retaining layer 27 is capable of retaining the electrolyte solution and is also capable of supplying the electrolyte solution to the negative electrode electrolyte layer 25.

ここで説明する電解液は、負極保液層27に含まれている他の第2電解液であると共に、ここで説明する高分子化合物は、負極保液層27に含まれている他の第2高分子化合物である。負極保液層27に含まれている電解液および高分子化合物のそれぞれに関する詳細は、負極電解質層25に含まれている電解液および高分子化合物のそれぞれに関する詳細と同様である。もちろん、負極保液層27は、複数の絶縁性粒子を含んでいてもよい。The electrolyte solution described here is another second electrolyte solution contained in the negative electrode liquid-retaining layer 27, and the polymer compound described here is another second polymer compound contained in the negative electrode liquid-retaining layer 27. Details regarding the electrolyte solution and polymer compound contained in the negative electrode liquid-retaining layer 27 are similar to the details regarding the electrolyte solution and polymer compound contained in the negative electrode electrolyte layer 25. Of course, the negative electrode liquid-retaining layer 27 may contain multiple insulating particles.

ただし、負極保液層27に含まれている電解液の種類と負極電解質層25に含まれている電解液の種類とは、互いに同じでもよいし、互いに異なってもよい。同様に、負極保液層27に含まれている高分子化合物の種類と負極電解質層25に含まれている高分子化合物の種類とは、互いに同じでもよいし、互いに異なってもよい。However, the type of electrolyte contained in the negative electrode liquid retaining layer 27 and the type of electrolyte contained in the negative electrode electrolyte layer 25 may be the same or different. Similarly, the type of polymer compound contained in the negative electrode liquid retaining layer 27 and the type of polymer compound contained in the negative electrode electrolyte layer 25 may be the same or different.

ここで、負極保液層27において高分子化合物の重量に対する電解液の重量の比(重量比R4=電解液の重量/高分子化合物の重量)は、負極電解質層25において高分子化合物の重量に対する電解液の重量の比(重量比R3=電解液の重量/高分子化合物の重量)よりも大きくなっている。負極保液層27から負極電解質層25に十分な量の電解液が供給されるため、充放電繰り返しても放電容量の減少が抑制されるからである。これにより、負極電解質層25の厚さT3が薄くても済むため、電池素子20の体積当たりのエネルギー密度が増加する。重量比R3は、負極電解質層25における電解液の含有率を表すパラメータであると共に、重量比R4は、負極保液層27における電解液の含有率を表すパラメータである。Here, the ratio of the weight of the electrolyte to the weight of the polymer compound in the negative electrode electrolyte layer 27 (weight ratio R4 = weight of electrolyte / weight of polymer compound) is greater than the ratio of the weight of the electrolyte to the weight of the polymer compound in the negative electrode electrolyte layer 25 (weight ratio R3 = weight of electrolyte / weight of polymer compound). This is because a sufficient amount of electrolyte is supplied from the negative electrode electrolyte layer 27 to the negative electrode electrolyte layer 25, so that the decrease in discharge capacity is suppressed even when charging and discharging are repeated. As a result, the thickness T3 of the negative electrode electrolyte layer 25 can be thin, and the energy density per volume of the battery element 20 is increased. The weight ratio R3 is a parameter that represents the content of the electrolyte in the negative electrode electrolyte layer 25, and the weight ratio R4 is a parameter that represents the content of the electrolyte in the negative electrode electrolyte layer 27.

重量比R3を求める手順は、正極電解質層24の代わりに負極電解質層25を回収および分析することを除いて、重量比R1を求める手順と同様である。重量比R4を求める手順は、正極電解質層24の代わりに負極保液層27を回収および分析することを除いて、重量比R1を求める手順と同様である。The procedure for determining weight ratio R3 is similar to that for determining weight ratio R1, except that the negative electrode electrolyte layer 25 is collected and analyzed instead of the positive electrode electrolyte layer 24. The procedure for determining weight ratio R4 is similar to that for determining weight ratio R1, except that the negative electrode electrolyte layer 27 is collected and analyzed instead of the positive electrode electrolyte layer 24.

負極保液層27の厚さT4は、特に限定されないため、任意に設定可能である。中でも、負極保液層27の厚さT4は、負極電解質層25の厚さT3よりも大きいことが好ましい。負極保液層27による電解液の保持量が増加するため、その負極保液層27から負極電解質層25に供給される電解液の量が増加するからである。The thickness T4 of the negative electrode liquid retaining layer 27 is not particularly limited and can be set arbitrarily. In particular, it is preferable that the thickness T4 of the negative electrode liquid retaining layer 27 is greater than the thickness T3 of the negative electrode electrolyte layer 25. This is because the amount of electrolyte held by the negative electrode liquid retaining layer 27 increases, and therefore the amount of electrolyte supplied from the negative electrode liquid retaining layer 27 to the negative electrode electrolyte layer 25 increases.

厚さT3を求める手順は、電池素子20の断面の観察結果に基づいて負極電解質層25の厚さ(負極活物質層22Bとセパレータ23との間の距離)を測定することを除いて、厚さT1を求める手順と同様である。厚さT4を求める手順は、電池素子20の断面の観察結果に基づいて負極保液層27の厚さを測定することを除いて、厚さT1を求める手順と同様である。The procedure for determining thickness T3 is similar to that for determining thickness T1, except that the thickness of the negative electrode electrolyte layer 25 (the distance between the negative electrode active material layer 22B and the separator 23) is measured based on the observation of the cross section of the battery element 20. The procedure for determining thickness T4 is similar to that for determining thickness T1, except that the thickness of the negative electrode liquid retaining layer 27 is measured based on the observation of the cross section of the battery element 20.

ここでは、上記したように、負極集電体22Aの幅は、負極活物質層22Bの幅と同じである。また、負極保液層27は、図2に示したように、負極電解質層25の側面に隣接されているだけでなく、負極活物質層22Bの側面の一部にも隣接されている。これにより、負極保液層27は、負極集電体22Aに隣接されておらず、その負極集電体22Aから離隔されている。Here, as described above, the width of the negative electrode current collector 22A is the same as the width of the negative electrode active material layer 22B. Also, as shown in FIG. 2, the negative electrode liquid retaining layer 27 is adjacent not only to the side surface of the negative electrode electrolyte layer 25 but also to a part of the side surface of the negative electrode active material layer 22B. As a result, the negative electrode liquid retaining layer 27 is not adjacent to the negative electrode current collector 22A and is separated from the negative electrode current collector 22A.

[正極リードおよび負極リード]
正極リード31は、図1に示したように、正極21に接続された正極端子であり、より具体的には、正極集電体21Aに接続されている。この正極リード31は、外装フィルム10の内部から外部に導出されており、アルミニウムなどの導電性材料を含んでいる。正極リード31の形状は、特に限定されないが、具体的には、薄板状および網目状などのうちのいずれかである。
[Positive and negative electrode leads]
1, the positive electrode lead 31 is a positive electrode terminal connected to the positive electrode 21, and more specifically, is connected to the positive electrode current collector 21A. The positive electrode lead 31 is led out from the inside to the outside of the exterior film 10, and contains a conductive material such as aluminum. The shape of the positive electrode lead 31 is not particularly limited, and specifically, it is either a thin plate shape, a mesh shape, or the like.

負極リード32は、図1に示したように、負極22に接続された負極端子であり、より具体的には、負極集電体22Aに接続されている。この負極リード32は、外装フィルム10の内部から外部に導出されており、銅などの導電性材料を含んでいる。ここでは、負極リード32の導出方向は、正極リード31の導出方向と同様である。なお、負極リード32の形状に関する詳細は、正極リード31の形状に関する詳細と同様である。As shown in FIG. 1, the negative electrode lead 32 is a negative electrode terminal connected to the negative electrode 22, and more specifically, is connected to the negative electrode current collector 22A. This negative electrode lead 32 is led out from the inside of the exterior film 10 to the outside, and contains a conductive material such as copper. Here, the lead-out direction of the negative electrode lead 32 is the same as the lead-out direction of the positive electrode lead 31. The details of the shape of the negative electrode lead 32 are the same as the details of the shape of the positive electrode lead 31.

<1-2.動作>
二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが正極電解質層24および負極電解質層25を介して負極22に吸蔵される。一方、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが正極電解質層24および負極電解質層25を介して正極21に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-2. Operation>
When the secondary battery is charged, in the battery element 20, lithium is released from the positive electrode 21 and is absorbed in the negative electrode 22 through the positive electrode electrolyte layer 24 and the negative electrode electrolyte layer 25. On the other hand, when the secondary battery is discharged, in the battery element 20, lithium is released from the negative electrode 22 and is absorbed in the positive electrode 21 through the positive electrode electrolyte layer 24 and the negative electrode electrolyte layer 25. During these charging and discharging times, lithium is absorbed and released in an ionic state.

二次電池の充放電時には、正極電解質層24中の電解液が消費されると共に、負極電解質層25中の電解液が消費されると、正極保液層26から正極電解質層24に電解液が供給されると共に、負極保液層27から負極電解質層25に電解液が供給される。When the secondary battery is charged and discharged, the electrolyte in the positive electrode electrolyte layer 24 is consumed, and when the electrolyte in the negative electrode electrolyte layer 25 is consumed, electrolyte is supplied from the positive electrode electrolyte layer 26 to the positive electrode electrolyte layer 24, and electrolyte is supplied from the negative electrode electrolyte layer 27 to the negative electrode electrolyte layer 25.

<1-3.製造方法>
二次電池を製造する場合には、以下で説明する手順により、正極21、負極22、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれを作製したのち、それらを用いて二次電池を作製する。
<1-3. Manufacturing method>
In the case of manufacturing a secondary battery, the positive electrode 21, the negative electrode 22, the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode electrolyte layer 26, and the negative electrode electrolyte layer 27 are each produced by the procedure described below. Then, a secondary battery is produced using these.

[正極の作製]
最初に、正極活物質と、正極結着剤と、正極導電剤とが互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[Preparation of Positive Electrode]
First, a mixture (cathode mixture) in which a cathode active material, a cathode binder, and a cathode conductive agent are mixed together is put into a solvent to prepare a paste-like cathode mixture slurry. This solvent may be an aqueous solvent or an organic solvent. Next, the cathode mixture slurry is applied to both sides of the cathode current collector 21A to form the cathode active material layer 21B. After this, the cathode active material layer 21B may be compression molded using a roll press or the like. In this case, the cathode active material layer 21B may be heated, or the compression molding may be repeated multiple times. As a result, the cathode active material layer 21B is formed on both sides of the cathode current collector 21A, and thus the cathode 21 is produced.

[負極の作製]
上記した正極21の作製手順と同様の手順により、負極22を形成する。具体的には、最初に、負極活物質と、負極結着剤と、負極導電剤とが互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[Preparation of negative electrode]
The negative electrode 22 is formed by the same procedure as the procedure for producing the positive electrode 21 described above. Specifically, first, a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductive agent are mixed together is poured into a solvent to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to both sides of the negative electrode current collector 22A to form the negative electrode active material layer 22B. After this, the negative electrode active material layer 22B may be compression molded. As a result, the negative electrode active material layer 22B is formed on both sides of the negative electrode current collector 22A, and the negative electrode 22 is produced.

[正極電解質層の形成および負極電解質層の形成]
最初に、溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が溶解または分散されるため、電解液が調製される。続いて、電解液と、高分子化合物と、必要に応じて追加の溶媒とを互いに混合させることにより、前駆溶液を調製する。最後に、正極21の表面に前駆溶液を塗布することにより、正極電解質層24を形成する。
[Formation of Positive Electrolyte Layer and Formation of Negative Electrolyte Layer]
First, an electrolyte salt is added to a solvent. This dissolves or disperses the electrolyte salt in the solvent, thereby preparing an electrolyte solution. Next, a precursor solution is prepared by mixing the electrolyte solution, a polymer compound, and, if necessary, an additional solvent. Finally, the precursor solution is applied to the surface of the positive electrode 21 to form the positive electrode electrolyte layer 24.

上記した正極電解質層24の形成手順と同様の手順により、負極電解質層25を形成する。具体的には、電解液を調製すると共に、その電解液および高分子化合物を用いて前駆溶液を調製したのち、負極22の表面に前駆溶液を塗布することにより、負極電解質層25を形成する。The negative electrode electrolyte layer 25 is formed by a procedure similar to that for forming the positive electrode electrolyte layer 24 described above. Specifically, an electrolyte solution is prepared, and a precursor solution is prepared using the electrolyte solution and a polymer compound. The precursor solution is then applied to the surface of the negative electrode 22 to form the negative electrode electrolyte layer 25.

[正極保液層の形成および負極保液層の形成]
最初に、溶媒に電解質塩を投入することにより、電解液を調製する。続いて、電解液と、高分子化合物と、必要に応じて追加の溶媒とを互いに混合させることにより、前駆溶液を調製したのち、セパレータ23の一面に前駆溶液を塗布することにより、正極保液層26を形成する。この場合には、ポリプロピレンフィルムなどの高分子フィルムを用いて、セパレータ23の表面をマスキングしてもよい。
[Formation of Positive Electrode Liquid Retaining Layer and Formation of Negative Electrode Liquid Retaining Layer]
First, an electrolyte solution is prepared by adding an electrolyte salt to a solvent. Next, a precursor solution is prepared by mixing the electrolyte solution, a polymer compound, and an additional solvent, if necessary, with each other, and then the precursor solution is applied to one surface of the separator 23 to form the positive electrode liquid retaining layer 26. In this case, the surface of the separator 23 may be masked using a polymer film such as a polypropylene film.

上記した正極保液層26の形成手順と同様の手順により、負極保液層27を形成する。具体的には、電解液を調製すると共に、その電解液および高分子化合物を用いて前駆溶液を調製したのち、セパレータ23の一面(正極保液層26が形成されている面とは反対側の面)に前駆溶液を塗布することにより、負極保液層27を形成する。The negative electrode liquid retaining layer 27 is formed by the same procedure as that for forming the positive electrode liquid retaining layer 26 described above. Specifically, an electrolyte is prepared, and a precursor solution is prepared using the electrolyte and a polymer compound. The precursor solution is then applied to one side of the separator 23 (the side opposite to the side on which the positive electrode liquid retaining layer 26 is formed), thereby forming the negative electrode liquid retaining layer 27.

[二次電池の組み立て]
最初に、溶接法などを用いて正極21の正極集電体21Aに正極リード31を接続させると共に、溶接法などを用いて負極22の負極集電体22Aに負極リード32を接続させる。
[Assembly of secondary battery]
First, the positive electrode lead 31 is connected to the positive electrode current collector 21A of the positive electrode 21 by welding or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 22A of the negative electrode 22 by welding or the like.

続いて、正極保液層26および負極保液層27が形成されているセパレータ23を介して、正極電解質層24が形成されている正極21と、負極電解質層25が形成されている負極22とを互いに積層させる。これにより、正極保液層26が正極電解質層24に隣接されると共に、負極保液層27が負極電解質層25に隣接される。続いて、正極21、負極22、セパレータ23、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27を巻回させることにより、電池素子20を作製する。続いて、プレス機などを用いて電池素子20をプレスすることにより、その電池素子20を扁平形状となるように成型する。 Next, the positive electrode 21 on which the positive electrode electrolyte layer 24 is formed and the negative electrode 22 on which the negative electrode electrolyte layer 25 is formed are laminated with each other through the separator 23 on which the positive electrode electrolyte layer 26 and the negative electrode electrolyte layer 27 are formed. As a result, the positive electrode electrolyte layer 26 is adjacent to the positive electrode electrolyte layer 24, and the negative electrode electrolyte layer 27 is adjacent to the negative electrode electrolyte layer 25. Next, the positive electrode 21, the negative electrode 22, the separator 23, the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode electrolyte layer 26, and the negative electrode electrolyte layer 27 are wound to prepare the battery element 20. Next, the battery element 20 is pressed using a press or the like to mold the battery element 20 into a flat shape.

続いて、窪み部10Uの内部に電池素子20を収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させる。最後に、熱融着法などを用いて、互いに対向する外装フィルム10(融着層)のうちの3辺の外周縁部同士を互いに接合させる。この場合には、外装フィルム10と正極リード31との間に封止フィルム41を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42を挿入する。これにより、袋状の外装フィルム10の内部に電池素子20が封入されるため、二次電池が組み立てられる。Next, after the battery element 20 is accommodated inside the recessed portion 10U, the exterior film 10 (adhesive layer/metal layer/surface protection layer) is folded to make the exterior films 10 face each other. Finally, the outer peripheral edges of the three sides of the exterior films 10 (adhesive layer) facing each other are joined to each other using a heat fusion method or the like. In this case, a sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31, and a sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32. As a result, the battery element 20 is enclosed inside the bag-shaped exterior film 10, and a secondary battery is assembled.

[二次電池の安定化]
組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、外装フィルム10を用いたラミネートフィルム型の二次電池が完成する。
[Stabilization of secondary battery]
The assembled secondary battery is charged and discharged. Various conditions such as the environmental temperature, the number of charge/discharge cycles, and the charge/discharge conditions can be set arbitrarily. As a result, a coating is formed on each surface of the positive electrode 21 and the negative electrode 22, and the state of the secondary battery is electrochemically stabilized. Thus, a laminate film type secondary battery using the exterior film 10 is completed.

<1-4.作用および効果>
この二次電池によれば、正極21およびセパレータ23が正極電解質層24を介して互いに対向しており、その正極21およびセパレータ23が正極電解質層24を介して互いに対向する方向(Z軸方向)と交差する方向(Y軸方向)において正極電解質層24に正極保液層26が隣接されており、その正極保液層26の重量比R2が正極電解質層24の重量比R1よりも大きくなっている。
<1-4. Actions and Effects>
In this secondary battery, positive electrode 21 and separator 23 face each other with positive electrode electrolyte layer 24 interposed therebetween, and positive electrode liquid retaining layer 26 is adjacent to positive electrode electrolyte layer 24 in a direction (Y-axis direction) intersecting with the direction (Z-axis direction) in which positive electrode 21 and separator 23 face each other with positive electrode electrolyte layer 24 interposed therebetween, and weight ratio R2 of positive electrode liquid retaining layer 26 is greater than weight ratio R1 of positive electrode electrolyte layer 24.

これにより、上記したように、充放電時において正極電解質層24中の電解液が消費されると、正極保液層26から正極電解質層24に電解液が供給されるため、その正極電解質層24中の電解液量が減少しにくくなる。この場合には、特に、正極保液層26の重量比R2が正極電解質層24の重量比R1よりも大きいため、その正極保液層26から正極電解質層24に十分な量の電解液が供給される。よって、充放電繰り返しても放電容量の減少が抑制されるため、優れたサイクル特性を得ることができる。As a result, as described above, when the electrolyte in the positive electrode electrolyte layer 24 is consumed during charging and discharging, the electrolyte is supplied from the positive electrode electrolyte holding layer 26 to the positive electrode electrolyte layer 24, so that the amount of electrolyte in the positive electrode electrolyte layer 24 is less likely to decrease. In this case, in particular, since the weight ratio R2 of the positive electrode electrolyte holding layer 26 is greater than the weight ratio R1 of the positive electrode electrolyte layer 24, a sufficient amount of electrolyte is supplied from the positive electrode electrolyte holding layer 26 to the positive electrode electrolyte layer 24. Therefore, even if charging and discharging are repeated, the decrease in discharge capacity is suppressed, and excellent cycle characteristics can be obtained.

上記した正極電解質層24および正極保液層26に基づいて得られる効果は、負極電解質層25および負極保液層27に基づいても同様に得られる。すなわち、負極22およびセパレータ23が負極電解質層25を介して互いに対向しており、その負極22およびセパレータ23が負極電解質層25を介して互いに対向する方向(Z軸方向)と交差する方向(Y軸方向)において負極電解質層25に負極保液層27が隣接されており、その負極保液層27の重量比R4が負極電解質層25の重量比R3よりも大きくなっている。これにより、負極保液層27から負極電解質層25に十分な量の電解液が供給されるため、その負極電解質層25中の電解液量が減少しにくくなる。よって、充放電繰り返しても放電容量の減少が抑制されるため、優れたサイクル特性を得ることができる。The effects obtained based on the positive electrode electrolyte layer 24 and the positive electrode liquid retaining layer 26 described above can also be obtained based on the negative electrode electrolyte layer 25 and the negative electrode liquid retaining layer 27. That is, the negative electrode 22 and the separator 23 face each other through the negative electrode electrolyte layer 25, and the negative electrode liquid retaining layer 27 is adjacent to the negative electrode electrolyte layer 25 in a direction (Y-axis direction) intersecting with the direction (Z-axis direction) in which the negative electrode 22 and the separator 23 face each other through the negative electrode electrolyte layer 25, and the weight ratio R4 of the negative electrode liquid retaining layer 27 is greater than the weight ratio R3 of the negative electrode electrolyte layer 25. As a result, a sufficient amount of electrolyte is supplied from the negative electrode liquid retaining layer 27 to the negative electrode electrolyte layer 25, so that the amount of electrolyte in the negative electrode electrolyte layer 25 is less likely to decrease. Therefore, even if charging and discharging are repeated, the decrease in discharge capacity is suppressed, and excellent cycle characteristics can be obtained.

特に、正極保液層26の厚さT2が正極電解質層24の厚さT1よりも大きくなっていれば、その正極保液層26による電解液の保持量が増加する。よって、正極保液層26から正極電解質層24に供給される電解液の量が増加するため、より高い効果を得ることができる。In particular, if the thickness T2 of the positive electrode liquid retaining layer 26 is greater than the thickness T1 of the positive electrode electrolyte layer 24, the amount of electrolyte held by the positive electrode liquid retaining layer 26 increases. This increases the amount of electrolyte supplied from the positive electrode liquid retaining layer 26 to the positive electrode electrolyte layer 24, resulting in a higher effect.

上記した正極電解質層24の厚さT1および正極保液層26の厚さT2に基づいて得られる効果は、負極電解質層25の厚さT3および負極保液層27の厚さT4に基づいても同様に得られる。すなわち、負極保液層27の厚さT4が負極電解質層25の厚さT3よりも大きくなっていれば、その負極保液層27による電解液の保持量が増加する。よって、負極保液層27から負極電解質層25に供給される電解液の量が増加するため、より高い効果を得ることができる。The effects obtained based on the thickness T1 of the positive electrode electrolyte layer 24 and the thickness T2 of the positive electrode liquid retention layer 26 described above can also be obtained based on the thickness T3 of the negative electrode electrolyte layer 25 and the thickness T4 of the negative electrode liquid retention layer 27. That is, if the thickness T4 of the negative electrode liquid retention layer 27 is greater than the thickness T3 of the negative electrode electrolyte layer 25, the amount of electrolyte held by the negative electrode liquid retention layer 27 increases. Therefore, the amount of electrolyte supplied from the negative electrode liquid retention layer 27 to the negative electrode electrolyte layer 25 increases, and a higher effect can be obtained.

また、正極電解質層24に含まれている高分子化合物がフッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの一方または双方を含んでいれば、その正極電解質層24において優れた物理的強度および優れた電気化学的安定性が得られるため、より高い効果を得ることができる。Furthermore, if the polymer compound contained in the positive electrode electrolyte layer 24 contains one or both of a homopolymer of vinylidene fluoride and a copolymer of vinylidene fluoride, the positive electrode electrolyte layer 24 can have excellent physical strength and excellent electrochemical stability, thereby achieving even greater effects.

この場合には、フッ化ビニリデンの共重合体が重合成分としてヘキサフルオロプロピレンを含んでいれば、正極電解質層24による電解液の保持量が増加するため、より高い効果を得ることができる。また、フッ化ビニリデンの共重合体がさらに重合成分として不飽和二塩基酸および不飽和二塩基酸モノエステルのうちの一方または双方を含んでいれば、正極電解質層24による電解液の保持量がより増加するため、さらに高い効果を得ることができる。In this case, if the vinylidene fluoride copolymer contains hexafluoropropylene as a polymerization component, the amount of electrolyte held by the positive electrode electrolyte layer 24 increases, and a higher effect can be obtained. If the vinylidene fluoride copolymer further contains one or both of an unsaturated dibasic acid and an unsaturated dibasic acid monoester as a polymerization component, the amount of electrolyte held by the positive electrode electrolyte layer 24 increases, and a higher effect can be obtained.

また、正極電解質層24が複数の絶縁性粒子を含んでいれば、その正極電解質層24による電解液の保持量が増加するため、より高い効果を得ることができる。Furthermore, if the positive electrode electrolyte layer 24 contains a plurality of insulating particles, the amount of electrolyte held by the positive electrode electrolyte layer 24 increases, thereby achieving a greater effect.

上記した正極電解質層24の構成(高分子化合物の種類および複数の絶縁性粒子の有無)に基づいて得られる効果は、負極電解質層25、正極保液層26および負極保液層27のそれぞれの構成に基づいても同様に得られる。The effects obtained based on the configuration of the positive electrode electrolyte layer 24 described above (type of polymer compound and the presence or absence of multiple insulating particles) can also be obtained based on the respective configurations of the negative electrode electrolyte layer 25, the positive electrode liquid retention layer 26 and the negative electrode liquid retention layer 27.

また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。 Furthermore, if the secondary battery is a lithium-ion secondary battery, sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, resulting in even greater effects.

<2.変形例>
上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
2. Modified Examples
The configuration of the secondary battery described above can be modified as appropriate, as described below, although any two or more of the series of modifications described below may be combined with each other.

[変形例1]
図2では、正極電解質層24の両側に正極保液層26が配置されているため、電池素子20が2個の正極保液層26を含んでいる。しかしながら、正極電解質層24の片側だけに正極保液層26が配置されているため、電池素子20が1個の正極保液層26だけを含んでいてもよい。この場合においても、電池素子20が正極保液層26を含んでいない場合と比較して、充放電繰り返しても放電容量の減少が抑制されるため、同様の効果を得ることができる。
[Modification 1]
2, the positive electrode liquid retaining layer 26 is disposed on both sides of the positive electrode electrolyte layer 24, so that the battery element 20 includes two positive electrode liquid retaining layers 26. However, since the positive electrode liquid retaining layer 26 is disposed on only one side of the positive electrode electrolyte layer 24, the battery element 20 may include only one positive electrode liquid retaining layer 26. Even in this case, the decrease in discharge capacity is suppressed even when charging and discharging are repeated, as compared with the case where the battery element 20 does not include the positive electrode liquid retaining layer 26, so that the same effect can be obtained.

上記した正極保液層26の配置場所に関する変形は、負極保液層27の配置場所に関しても同様である。すなわち、負極電解質層25の両側に負極保液層27が配置されているため、電池素子20が2個の負極保液層27を含んでいるが、その負極電解質層25の片側だけに負極保液層27が配置されているため、電池素子20が1個の負極保液層27だけを含んでいてもよい。この場合においても、電池素子20が負極保液層27を含んでいない場合と比較して、充放電繰り返しても放電容量の減少が抑制されるため、同様の効果を得ることができる。The above-mentioned modification of the location of the positive electrode liquid retaining layer 26 is also applicable to the location of the negative electrode liquid retaining layer 27. That is, since the negative electrode liquid retaining layer 27 is arranged on both sides of the negative electrode electrolyte layer 25, the battery element 20 includes two negative electrode liquid retaining layers 27, but since the negative electrode liquid retaining layer 27 is arranged on only one side of the negative electrode electrolyte layer 25, the battery element 20 may include only one negative electrode liquid retaining layer 27. Even in this case, the decrease in discharge capacity is suppressed even when charging and discharging are repeated, compared to when the battery element 20 does not include the negative electrode liquid retaining layer 27, so the same effect can be obtained.

[変形例2]
図2では、正極電解質層24に正極保液層26が隣接されていると共に、負極電解質層25に負極保液層27が隣接されている。しかしながら、正極電解質層24に正極保液層26が隣接されているのに対して、負極電解質層25に負極保液層27が隣接されていなくてもよい。または、正極電解質層24に正極保液層26が隣接されていないのに対して、負極電解質層25に負極保液層27が隣接されていてもよい。この場合においても、正極電解質層24に正極保液層26が隣接されていないと共に、負極電解質層25に負極保液層27が隣接されていない場合と比較して、充放電繰り返しても放電容量の減少が抑制されるため、同様の効果を得ることができる。
[Modification 2]
In Fig. 2, the positive electrode liquid retaining layer 26 is adjacent to the positive electrode electrolyte layer 24, and the negative electrode liquid retaining layer 27 is adjacent to the negative electrode electrolyte layer 25. However, the positive electrode liquid retaining layer 26 may be adjacent to the positive electrode electrolyte layer 24, while the negative electrode liquid retaining layer 27 may not be adjacent to the negative electrode electrolyte layer 25. Alternatively, the positive electrode liquid retaining layer 26 may not be adjacent to the positive electrode electrolyte layer 24, while the negative electrode liquid retaining layer 27 may be adjacent to the negative electrode electrolyte layer 25. Even in this case, the decrease in discharge capacity is suppressed even when charging and discharging are repeated, compared with the case where the positive electrode liquid retaining layer 26 is not adjacent to the positive electrode electrolyte layer 24 and the negative electrode liquid retaining layer 27 is not adjacent to the negative electrode electrolyte layer 25, so that the same effect can be obtained.

[変形例3]
図2では、電池素子20の作製工程において、セパレータ23の一面に正極保液層26を形成したのち、その正極保液層26が形成されたセパレータ23などを巻回させている。しかしながら、セパレータ23などを巻回させたのち、そのセパレータ23の一面に正極保液層26を形成してもよい。この場合においても、正極保液層26を含む電池素子20を作製可能であるため、同様の効果を得ることができる。
[Modification 3]
2, in the process of producing the battery element 20, the positive electrode liquid retaining layer 26 is formed on one surface of the separator 23, and then the separator 23 on which the positive electrode liquid retaining layer 26 has been formed is wound. However, the positive electrode liquid retaining layer 26 may be formed on one surface of the separator 23 after the separator 23 is wound. Even in this case, the battery element 20 including the positive electrode liquid retaining layer 26 can be produced, and therefore the same effect can be obtained.

上記した正極保液層26を含む電池素子20の作製方法に関する変形は、負極保液層27を含む電池素子20の作製方法に関しても同様である。すなわち、セパレータ23の一面に負極保液層27を形成したのち、その負極保液層27が形成されたセパレータ23などを巻回させているが、セパレータ23などを巻回させたのち、そのセパレータ23の一面に負極保液層27を形成してもよい。この場合においても、負極保液層27を含む電池素子20を作製可能であるため、同様の効果を得ることができる。The above-mentioned variations in the method of producing the battery element 20 including the positive electrode liquid retaining layer 26 are also applicable to the method of producing the battery element 20 including the negative electrode liquid retaining layer 27. That is, the negative electrode liquid retaining layer 27 is formed on one side of the separator 23, and then the separator 23 on which the negative electrode liquid retaining layer 27 is formed is wound. However, the separator 23 may be wound, and then the negative electrode liquid retaining layer 27 may be formed on one side of the separator 23. In this case, the battery element 20 including the negative electrode liquid retaining layer 27 can be produced, and the same effect can be obtained.

[変形例4]
多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。
[Modification 4]
A porous membrane separator 23 was used. However, although not specifically shown here, a laminated separator including a polymer compound layer may also be used.

具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に配置された高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(巻きずれ)が抑制されるからである。これにより、電解液の分解反応などが発生しても、二次電池の膨れが抑制される。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。Specifically, the laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer disposed on one or both surfaces of the porous membrane. This is because the adhesion of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, thereby suppressing misalignment (winding misalignment) of the battery element 20. This suppresses swelling of the secondary battery even if a decomposition reaction of the electrolyte occurs. The polymer compound layer includes a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride and the like have excellent physical strength and are electrochemically stable.

なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。複数の絶縁性粒子に関する詳細は、上記した通りである。In addition, one or both of the porous film and the polymer compound layer may contain one or more types of the multiple insulating particles. This is because the multiple insulating particles dissipate heat when the secondary battery generates heat, improving the safety (heat resistance) of the secondary battery. Details regarding the multiple insulating particles are as described above.

積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。When making a laminated separator, a precursor solution containing a polymer compound and a solvent is prepared, and then the precursor solution is applied to one or both sides of a porous membrane. In this case, multiple insulating particles may be added to the precursor solution, if necessary.

この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電池素子20の巻きずれが抑制されるため、より高い効果を得ることができる。Even when this laminated separator is used, the same effect can be obtained because lithium ions can move between the positive electrode 21 and the negative electrode 22. In this case, as described above, the winding misalignment of the battery element 20 is suppressed, and therefore a higher effect can be obtained.

[変形例5]
図1および図2では、巻回電極体である電池素子20を用いている。しかしながら、図1に対応する図3および図2に対応する図4に示したように、積層電極体である電池素子50を用いてもよい。以下では、随時、既に説明した図1および図2を参照する。
[Modification 5]
In Fig. 1 and Fig. 2, a battery element 20 which is a wound electrode body is used. However, as shown in Fig. 3 which corresponds to Fig. 1 and Fig. 4 which corresponds to Fig. 2, a battery element 50 which is a laminated electrode body may be used. In the following, reference will be made to Fig. 1 and Fig. 2 which have already been described.

図3および図4に示したラミネートフィルム型の二次電池は、電池素子20(正極21、負極22、セパレータ23、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27)および正極リード31および負極リード32の代わりに、電池素子50(正極51、負極52、セパレータ53、正極電解質層54、負極電解質層55、正極保液層56および負極保液層57)および正極リード58および負極リード59を備えていることを除いて、図1および図2に示したラミネートフィルム型の二次電池の構成とほぼ同様の構成を有している。The laminate film type secondary battery shown in Figures 3 and 4 has a configuration similar to that of the laminate film type secondary battery shown in Figures 1 and 2, except that it has a battery element 50 (positive electrode 51, negative electrode 52, separator 53, positive electrode electrolyte layer 54, negative electrode electrolyte layer 55, positive electrode electrolyte layer 56, and negative electrode electrolyte layer 57) and a positive electrode lead 58 and a negative electrode lead 59 instead of the battery element 20 (positive electrode 21, negative electrode 22, separator 23, positive electrode electrolyte layer 24, negative electrode electrolyte layer 25, positive electrode electrolyte layer 26, and negative electrode electrolyte layer 27) and positive electrode lead 31 and negative electrode lead 32.

正極51、負極52、セパレータ53、正極電解質層54、負極電解質層55、正極保液層56、負極保液層57、正極リード58および負極リード59のそれぞれの構成は、以下で説明することを除いて、正極21、負極22、セパレータ23、正極電解質層24、負極電解質層25、正極保液層26、負極保液層27、正極リード31および負極リード32のそれぞれの構成と同様である。The respective configurations of the positive electrode 51, negative electrode 52, separator 53, positive electrode electrolyte layer 54, negative electrode electrolyte layer 55, positive electrode liquid retention layer 56, negative electrode liquid retention layer 57, positive electrode lead 58 and negative electrode lead 59 are similar to the respective configurations of the positive electrode 21, negative electrode 22, separator 23, positive electrode electrolyte layer 24, negative electrode electrolyte layer 25, positive electrode liquid retention layer 26, negative electrode liquid retention layer 27, positive electrode lead 31 and negative electrode lead 32, except as described below.

すなわち、正極電解質層54の重量比R1と正極保液層56の重量比R2との関係および負極電解質層55の重量比R3と負極保液層57の重量比R4との関係は、上記した通りである。また、正極電解質層54の厚さT1と正極保液層56の厚さT2との関係および負極電解質層55の厚さT3と負極保液層57の厚さTとの関係は、上記した通りである。That is, the relationship between the weight ratio R1 of the positive electrolyte layer 54 and the weight ratio R2 of the positive electrolyte layer 56, and the relationship between the weight ratio R3 of the negative electrolyte layer 55 and the weight ratio R4 of the negative electrolyte layer 57 are as described above. Also, the relationship between the thickness T1 of the positive electrolyte layer 54 and the thickness T2 of the positive electrolyte layer 56, and the relationship between the thickness T3 of the negative electrolyte layer 55 and the thickness T of the negative electrolyte layer 57 are as described above.

電池素子50では、正極51および負極52がセパレータ53、正極電解質層54および負極電解質層55を介して交互に積層されている。正極保液層56は、正極電解質層54に隣接されていると共に、負極保液層57は、負極電解質層55に隣接されている。正極51、負極52、セパレータ53、正極電解質層54および負極電解質層55のそれぞれの積層数は、特に限定されないため、任意に設定可能である。正極51は、正極集電体21Aおよび正極活物質層21Bに対応する正極集電体51Aおよび正極活物質層51Bを含んでいると共に、負極52は、負極集電体22Aおよび負極活物質層22Bに対応する負極集電体52Aおよび負極活物質層52Bを含んでいる。In the battery element 50, the positive electrode 51 and the negative electrode 52 are alternately stacked with the separator 53, the positive electrode electrolyte layer 54, and the negative electrode electrolyte layer 55 interposed therebetween. The positive electrode electrolyte layer 56 is adjacent to the positive electrode electrolyte layer 54, and the negative electrode electrolyte layer 57 is adjacent to the negative electrode electrolyte layer 55. The number of layers of the positive electrode 51, the negative electrode 52, the separator 53, the positive electrode electrolyte layer 54, and the negative electrode electrolyte layer 55 is not particularly limited and can be set arbitrarily. The positive electrode 51 includes a positive electrode collector 51A and a positive electrode active material layer 51B corresponding to the positive electrode collector 21A and the positive electrode active material layer 21B, and the negative electrode 52 includes a negative electrode collector 52A and a negative electrode active material layer 52B corresponding to the negative electrode collector 22A and the negative electrode active material layer 22B.

ただし、図3および図4に示したように、正極集電体51Aは、正極活物質層51Bが形成されていない突出部51ATを含んでいると共に、負極集電体52Aは、負極活物質層52Bが形成されていない突出部52ATを含んでいる。この突出部52ATは、突出部51ATと重ならない位置に配置されている。複数の突出部51ATは、互いに接合されているため、1本のリード状の接合部51Zを形成していると共に、複数の突出部52ATは、互いに接合されているため、1本のリード状の接合部52Zを形成している。正極リード58は、接合部51Zに接続されていると共に、負極リード59は、接合部52Zに接続されている。However, as shown in Figures 3 and 4, the positive electrode collector 51A includes a protrusion 51AT where the positive electrode active material layer 51B is not formed, and the negative electrode collector 52A includes a protrusion 52AT where the negative electrode active material layer 52B is not formed. This protrusion 52AT is arranged at a position where it does not overlap with the protrusion 51AT. The multiple protrusions 51AT are joined to each other to form a single lead-like joint 51Z, and the multiple protrusions 52AT are joined to each other to form a single lead-like joint 52Z. The positive electrode lead 58 is connected to the joint 51Z, and the negative electrode lead 59 is connected to the joint 52Z.

図3および図4に示した二次電池の製造方法は、電池素子20の代わりに電池素子50を作製すると共に、正極リード31および負極リード32の代わりに正極リード58および負極リード59を用いて二次電池を組み立てることを除いて、図1および図2に示した二次電池の製造方法と同様である。The manufacturing method of the secondary battery shown in Figures 3 and 4 is similar to the manufacturing method of the secondary battery shown in Figures 1 and 2, except that a battery element 50 is prepared instead of the battery element 20, and a secondary battery is assembled using a positive electrode lead 58 and a negative electrode lead 59 instead of a positive electrode lead 31 and a negative electrode lead 32.

具体的には、最初に、正極集電体51A(突出部51ATを除く。)の両面に正極活物質層51Bが形成された正極51と、負極集電体52A(突出部52ATを除く。)の両面に負極活物質層52Bが形成された負極52とを作製する。続いて、正極51の表面に正極電解質層54を形成すると共に、負極52の表面に負極電解質層55を形成する。また、セパレータ53の両面に正極保液層56および負極保液層57を形成する。続いて、正極保液層56および負極保液層57が形成されているセパレータ53を介して、正極電解質層54が形成されている正極51および負極電解質層55が形成されている負極52を交互に積層させることにより、電池素子50を作製する。Specifically, first, a positive electrode 51 having a positive electrode active material layer 51B formed on both sides of a positive electrode collector 51A (excluding the protruding portion 51AT), and a negative electrode 52 having a negative electrode active material layer 52B formed on both sides of a negative electrode collector 52A (excluding the protruding portion 52AT) are prepared. Next, a positive electrode electrolyte layer 54 is formed on the surface of the positive electrode 51, and a negative electrode electrolyte layer 55 is formed on the surface of the negative electrode 52. In addition, a positive electrode liquid retention layer 56 and a negative electrode liquid retention layer 57 are formed on both sides of a separator 53. Next, a battery element 50 is prepared by alternately stacking a positive electrode 51 having a positive electrode electrolyte layer 54 formed thereon and a negative electrode 52 having a negative electrode electrolyte layer 55 formed thereon through a separator 53 having a positive electrode liquid retention layer 56 and a negative electrode liquid retention layer 57 formed thereon.

続いて、溶接法などを用いて複数の突出部51ATを互いに接合させることにより、接合部51Zを形成すると共に、溶接法などを用いて複数の突出部52ATを互いに接合させることにより、接合部52Zを形成する。最後に、溶接法などを用いて突出部51ATに正極リード58を接続させると共に、溶接法などを用いて突出部52ATに負極リード59を接続させる。Next, the plurality of protrusions 51AT are joined together by welding or the like to form joint 51Z, and the plurality of protrusions 52AT are joined together by welding or the like to form joint 52Z. Finally, the positive electrode lead 58 is connected to the protrusion 51AT by welding or the like, and the negative electrode lead 59 is connected to the protrusion 52AT by welding or the like.

この積層電極体である電池素子50を用いた場合においても、巻回電極体である電池素子20を用いた場合と同様に、充放電繰り返しても放電容量の減少が抑制されるため、同様の効果を得ることができる。When using this laminated electrode battery element 50, the same effect can be obtained as when using the wound electrode battery element 20, because the decrease in discharge capacity is suppressed even with repeated charging and discharging.

なお、上記した変形例1~4のそれぞれは、電池素子20の代わりに電池素子50に適用されてもよい。 In addition, each of the above-mentioned modified examples 1 to 4 may be applied to battery element 50 instead of battery element 20.

<3.二次電池の用途>
二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
<3. Uses of secondary batteries>
The use (application example) of the secondary battery is not particularly limited. The secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source. The main power source is a power source that is used preferentially regardless of the presence or absence of other power sources. The auxiliary power source is a power source that is used instead of the main power source, or a power source that is switched from the main power source.

二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。 Specific examples of uses for secondary batteries are as follows: Electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, headphone stereos, portable radios, and portable information terminals. Storage devices such as backup power sources and memory cards. Power tools such as electric drills and power saws. Battery packs installed in electronic devices, etc. Medical electronic devices such as pacemakers and hearing aids. Electric vehicles such as electric cars (including hybrid cars). Power storage systems such as home or industrial battery systems that store power in preparation for emergencies, etc. In these applications, one secondary battery may be used, or multiple secondary batteries may be used.

電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、駆動用電源として二次電池を用いて作動(走行)する車両であり、その二次電池以外の他の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。 The battery pack may use a single cell or a battery pack. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a hybrid vehicle that also has a driving source other than the secondary battery. In a home power storage system, it is possible to use household electrical appliances, etc., by utilizing the power stored in the secondary battery, which is a power storage source.

ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。Here, we will specifically explain an example of an application of a secondary battery. The configuration of the application example described below is merely an example and can be modified as appropriate.

図5は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。 Figure 5 shows the block diagram of a battery pack. The battery pack described here is a battery pack (a so-called soft pack) that uses one secondary battery, and is installed in electronic devices such as smartphones.

この電池パックは、図5に示したように、電源61と、回路基板62とを備えている。この回路基板62は、電源61に接続されていると共に、正極端子63、負極端子64および温度検出端子65を含んでいる。As shown in Figure 5, the battery pack includes a power source 61 and a circuit board 62. The circuit board 62 is connected to the power source 61 and includes a positive terminal 63, a negative terminal 64, and a temperature detection terminal 65.

電源61は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子63に接続されていると共に、負極リードが負極端子64に接続されている。この電源61は、正極端子63および負極端子64を介して外部と接続可能であるため、充放電可能である。回路基板62は、制御部66と、スイッチ67と、熱感抵抗素子(PTC素子)68と、温度検出部69とを含んでいる。ただし、PTC素子68は省略されてもよい。The power source 61 includes one secondary battery. In this secondary battery, the positive electrode lead is connected to the positive electrode terminal 63, and the negative electrode lead is connected to the negative electrode terminal 64. This power source 61 can be connected to the outside via the positive electrode terminal 63 and the negative electrode terminal 64, and therefore can be charged and discharged. The circuit board 62 includes a control unit 66, a switch 67, a thermosensitive resistor (PTC element) 68, and a temperature detection unit 69. However, the PTC element 68 may be omitted.

制御部66は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部66は、必要に応じて電源61の使用状態の検出および制御を行う。The control unit 66 includes a central processing unit (CPU) and memory, and controls the operation of the entire battery pack. This control unit 66 detects and controls the usage state of the power source 61 as necessary.

なお、制御部66は、電源61(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ67を切断することにより、電源61の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.4V±0.1Vである。When the voltage of the power source 61 (secondary battery) reaches the overcharge detection voltage or the overdischarge detection voltage, the control unit 66 turns off the switch 67 to prevent the charging current from flowing through the current path of the power source 61. The overcharge detection voltage is not particularly limited, but is specifically 4.2V±0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.4V±0.1V.

スイッチ67は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部66の指示に応じて電源61と外部機器との接続の有無を切り換える。このスイッチ67は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ67のON抵抗に基づいて検出される。The switch 67 includes a charge control switch, a discharge control switch, a charge diode, and a discharge diode, and switches between the presence and absence of a connection between the power source 61 and an external device in response to an instruction from the control unit 66. The switch 67 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, and the charge/discharge current is detected based on the ON resistance of the switch 67.

温度検出部69は、サーミスタなどの温度検出素子を含んでおり、温度検出端子65を用いて電源61の温度を測定すると共に、その温度の測定結果を制御部66に出力する。温度検出部69により測定される温度の測定結果は、異常発熱時において制御部66が充放電制御を行う場合および残容量の算出時において制御部66が補正処理を行う場合などに用いられる。The temperature detection unit 69 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 61 using the temperature detection terminal 65, and outputs the temperature measurement result to the control unit 66. The temperature measurement result measured by the temperature detection unit 69 is used when the control unit 66 performs charge/discharge control in the event of abnormal heat generation, and when the control unit 66 performs correction processing when calculating the remaining capacity.

本技術の実施例に関して説明する。 An example of this technology is described below.

<実施例1~11および比較例1~3>
以下で説明するように、二次電池を作製したのち、その二次電池の電池特性を評価した。
<Examples 1 to 11 and Comparative Examples 1 to 3>
As described below, after the secondary battery was fabricated, the battery characteristics of the secondary battery were evaluated.

[二次電池の作製]
以下の手順により、図1および図2に示した電池素子20(巻回電極体)を備えたラミネートフィルム型のリチウムイオン二次電池を作製した。
[Preparation of secondary battery]
A laminate film type lithium ion secondary battery including the battery element 20 (wound electrode body) shown in Figs. 1 and 2 was fabricated by the following procedure.

(正極の作製)
最初に、正極活物質(リチウム含有化合物(酸化物)であるLiNi0.80Co0.15Al0.052 )96質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(カーボンブラック)1質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(厚さ=15μmであるアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型したのち、その正極活物質層21Bが形成されている正極集電体21Aを帯状(48mm×300mm)となるように切断した。これにより、正極21が作製された。
(Preparation of Positive Electrode)
First, 96 parts by mass of a positive electrode active material (LiNi 0.80 Co 0.15 Al 0.05 O 2 which is a lithium-containing compound (oxide), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and 1 part by mass of a positive electrode conductive agent (carbon black) were mixed together to prepare a positive electrode mixture. Next, the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone which is an organic solvent), and the organic solvent was stirred to prepare a paste-like positive electrode mixture slurry. Next, the positive electrode mixture slurry was applied to both sides of a positive electrode current collector 21A (aluminum foil having a thickness of 15 μm) using a coating device, and then the positive electrode mixture slurry was dried to form a positive electrode active material layer 21B. Finally, the positive electrode active material layer 21B was compression molded using a roll press, and then the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed was cut into a strip shape (48 mm × 300 mm). In this way, the positive electrode 21 was produced.

(負極の作製)
最初に、負極活物質(炭素材料である人造黒鉛)90質量部と、負極結着剤(ポリフッ化ビニリデン)10質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(厚さ=15μmである銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型したのち、その負極活物質層22Bが形成されている負極集電体22Aを帯状(50mm×310mm)となるように切断した。これにより、負極22が作製された。
(Preparation of negative electrode)
First, 90 parts by mass of the negative electrode active material (artificial graphite, which is a carbon material) and 10 parts by mass of the negative electrode binder (polyvinylidene fluoride) were mixed together to prepare a negative electrode mixture. Next, the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and then the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry was applied to both sides of the negative electrode current collector 22A (copper foil with a thickness of 15 μm) using a coating device, and then the negative electrode mixture slurry was dried to form the negative electrode active material layer 22B. Finally, the negative electrode active material layer 22B was compression-molded using a roll press machine, and then the negative electrode current collector 22A on which the negative electrode active material layer 22B was formed was cut into a strip (50 mm x 310 mm). This produced the negative electrode 22.

(正極電解質層の形成)
最初に、溶媒(炭酸エステル系化合物である炭酸エチレン(EC)および炭酸プロピレン(PC))に電解質塩(リチウム塩であるLiPF6 )を投入したのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン=50:50、電解質塩の含有量を溶媒に対して1mol/kgとした。
(Formation of Positive Electrolyte Layer)
First, electrolyte salt (lithium salt LiPF6 ) was added to a solvent (carbonate ester compounds ethylene carbonate (EC) and propylene carbonate (PC)), and the solvent was then stirred. In this case, the mixing ratio (weight ratio) of the solvent was ethylene carbonate:propylene carbonate = 50:50, and the content of the electrolyte salt was 1 mol/kg relative to the solvent.

高分子化合物としては、フッ化ビニリデンの単独重合体であるポリフッ化ビニリデン(PVDF)と、6種類のフッ化ビニリデンの共重合体とを用いた。6種類のフッ化ビニリデンの共重合体としては、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(VH)と、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸(マレイン酸)との共重合体(VHMA)と、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸モノエステル(マレイン酸モノメチルエステル)との共重合体(VHMMM)と、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸モノエステル(マレイン酸モノエチルエステル)との共重合体(VHMME)と、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸モノエステル(シトラコン酸モノメチルエステル)との共重合体(VHCMM)と、フッ化ビニリデンとヘキサフルオロプロピレンと不飽和二塩基酸モノエステル(シトラコン酸モノエチルエステル)との共重合体(VHCME)とを用いた。これにより、電解液が調製された。The polymer compounds used were polyvinylidene fluoride (PVDF), a homopolymer of vinylidene fluoride, and a copolymer of six types of vinylidene fluoride. The six types of vinylidene fluoride copolymers used were a copolymer of vinylidene fluoride and hexafluoropropylene (VH), a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid (maleic acid) (VHMA), a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid monoester (maleic acid monomethyl ester) (VHMMM), a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid monoester (maleic acid monoethyl ester) (VHMME), a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid monoester (citraconate monomethyl ester) (VHCMM), and a copolymer of vinylidene fluoride, hexafluoropropylene, and an unsaturated dibasic acid monoester (citraconate monoethyl ester) (VHCME). In this way, the electrolyte was prepared.

続いて、電解液と、高分子化合物と、追加の溶媒(炭酸ジメチル)とを互いに混合させることにより、混合溶液を調製した。続いて、ホモジナイザを用いて混合溶液を加熱しながら撹拌することにより(加熱温度=80℃,撹拌時間=30分間~1時間)、ゾル状の前駆溶液を調整した。最後に、正極21の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、正極電解質層24を形成した。この正極電解質層24を形成する場合には、電解液と高分子化合物との混合比を調整することにより、重量比R1を制御すると共に、前駆溶液の塗布量を調整することにより、厚さT1(μm)を制御した。重量比R1および厚さT1のそれぞれに関する詳細は、表1に示した通りである。 Next, the electrolyte, the polymer compound, and the additional solvent (dimethyl carbonate) were mixed together to prepare a mixed solution. Next, the mixed solution was heated and stirred using a homogenizer (heating temperature = 80 ° C, stirring time = 30 minutes to 1 hour) to prepare a sol-like precursor solution. Finally, the precursor solution was applied to the surface of the positive electrode 21, and then the precursor solution was dried to form the positive electrode electrolyte layer 24. When forming this positive electrode electrolyte layer 24, the weight ratio R1 was controlled by adjusting the mixing ratio of the electrolyte and the polymer compound, and the thickness T1 (μm) was controlled by adjusting the amount of the precursor solution applied. Details regarding the weight ratio R1 and the thickness T1 are as shown in Table 1.

(負極電解質層の形成)
負極22の表面に前駆溶液を塗布したことを除いて、正極電解質層24の形成手順と同様の手順により、負極電解質層25を形成した。重量比R3および厚さT3のそれぞれに関する詳細は、表1に示した通りである。
(Formation of negative electrode electrolyte layer)
The negative electrode electrolyte layer 25 was formed by the same procedure as that for forming the positive electrode electrolyte layer 24, except that the precursor solution was applied to the surface of the negative electrode 22. Details regarding the weight ratio R3 and the thickness T3 are as shown in Table 1.

(正極保液層の形成)
セパレータ23(厚さ=11μmである微孔性ポリプロピレンフィルム)の一面に前駆溶液を塗布したことを除いて、正極電解質層24の形成手順と同様の手順により、正極保液層26を形成した。この場合には、電解液と高分子化合物との混合比を調整することにより、正極保液層26の重量比R2が正極電解質層24の重量比R1よりも大きくなるようにした。重量比R2および厚さT2のそれぞれに関する詳細は、表1に示した通りである。
(Formation of Positive Electrode Liquid Retaining Layer)
Except for applying the precursor solution to one surface of separator 23 (a microporous polypropylene film having a thickness of 11 μm), positive electrode liquid retaining layer 26 was formed in the same manner as in the formation of positive electrode electrolyte layer 24. In this case, the mixing ratio of the electrolyte and the polymer compound was adjusted so that weight ratio R2 of positive electrode liquid retaining layer 26 was greater than weight ratio R1 of positive electrode electrolyte layer 24. Details regarding weight ratio R2 and thickness T2 are as shown in Table 1.

(負極保液層の形成)
セパレータ23の一面(正極保液層26が形成された面とは反対側の面)に前駆溶液を塗布したことを除いて、正極電解質層24の形成手順と同様の手順により、負極保液層27を形成した。この場合には、電解液と高分子化合物との混合比を調整することにより、負極保液層27の重量比R4が負極電解質層25の重量比R3よりも大きくなるようにした。重量比R4および厚さT4のそれぞれに関する詳細は、表1に示した通りである。
(Formation of negative electrode electrolyte layer)
Except for applying the precursor solution to one surface of the separator 23 (the surface opposite to the surface on which the positive electrode liquid retaining layer 26 is formed), the negative electrode liquid retaining layer 27 was formed in the same manner as in the formation of the positive electrode electrolyte layer 24. In this case, the mixing ratio of the electrolyte and the polymer compound was adjusted so that the weight ratio R4 of the negative electrode liquid retaining layer 27 was larger than the weight ratio R3 of the negative electrode electrolyte layer 25. Details of the weight ratio R4 and the thickness T4 are as shown in Table 1.

実施例1~10および比較例1~3では、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれを形成するために、互いに共通する組成を有する電解液を用いたと共に、互いに共通する種類の高分子化合物を用いた。表1に「高分子化合物」の欄を1個だけ示しているのは、上記したように、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれにおいて互いに共通する種類の高分子化合物を用いたことを表している。In Examples 1 to 10 and Comparative Examples 1 to 3, electrolytes having a common composition and a common type of polymer compound were used to form the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode liquid retention layer 26, and the negative electrode liquid retention layer 27. Table 1 shows only one "Polymer compound" column, which indicates that a common type of polymer compound was used in the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode liquid retention layer 26, and the negative electrode liquid retention layer 27, as described above.

実施例11では、正極電解質層24および負極電解質層25のそれぞれを形成するために用いた高分子化合物の種類と、正極保液層26および負極保液層27のそれぞれを形成するために用いた高分子化合物の種類とを互いに異ならせた。具体的には、正極電解質層24および負極電解質層25のそれぞれを形成するためにPVDFを用いたと共に、正極保液層26および負極保液層27のそれぞれを形成するためにVHMMMを用いた。In Example 11, the types of polymer compounds used to form the positive electrode electrolyte layer 24 and the negative electrode electrolyte layer 25 were different from the types of polymer compounds used to form the positive electrode liquid retaining layer 26 and the negative electrode liquid retaining layer 27. Specifically, PVDF was used to form the positive electrode electrolyte layer 24 and the negative electrode electrolyte layer 25, and VHMMM was used to form the positive electrode liquid retaining layer 26 and the negative electrode liquid retaining layer 27.

なお、比較のために、正極保液層26および負極保液層27の双方を形成しなかった。また、比較のために、重量比R2が重量比R1以下となるように正極保液層26を形成したと共に、重量比R4が重量比R3以下となるように負極保液層27を形成した。For comparison, neither the positive electrode liquid retaining layer 26 nor the negative electrode liquid retaining layer 27 was formed. For comparison, the positive electrode liquid retaining layer 26 was formed so that the weight ratio R2 was equal to or less than the weight ratio R1, and the negative electrode liquid retaining layer 27 was formed so that the weight ratio R4 was equal to or less than the weight ratio R3.

(二次電池の組み立て)
最初に、正極21の正極集電体21Aにアルミニウム製の正極リード31を溶接したと共に、負極22の負極集電体22Aに銅製の負極リード32を溶接した。
(Assembly of secondary batteries)
First, the aluminum positive electrode lead 31 was welded to the positive electrode current collector 21 A of the positive electrode 21 , and the copper negative electrode lead 32 was welded to the negative electrode current collector 22 A of the negative electrode 22 .

続いて、正極保液層26および負極保液層27が形成されているセパレータ23を介して、正極電解質層24が形成されている正極21と、負極電解質層25が形成されている負極22とを互いに積層させた。続いて、正極21、負極22、セパレータ23、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27を巻回させることにより、電池素子20を作製した。続いて、プレス機を用いて電池素子20をプレスすることにより、その電池素子20を扁平形状となるように成型した。 Next, the positive electrode 21 on which the positive electrode electrolyte layer 24 is formed and the negative electrode 22 on which the negative electrode electrolyte layer 25 is formed were laminated together via the separator 23 on which the positive electrode electrolyte layer 26 and the negative electrode electrolyte layer 27 are formed. Next, the positive electrode 21, the negative electrode 22, the separator 23, the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode electrolyte layer 26, and the negative electrode electrolyte layer 27 were wound together to produce the battery element 20. Next, the battery element 20 was pressed using a press machine to mold the battery element 20 into a flat shape.

続いて、窪み部10Uの内部に電池素子20を収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させた。外装フィルム10としては、融着層(厚さ=30μmであるポリプロピレンフィルム)と、金属層(厚さ=40μmであるアルミニウム箔)と、表面保護層(厚さ=25μmであるナイロンフィルム)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。Next, the battery element 20 was placed inside the recess 10U, and the exterior film 10 (adhesive layer/metal layer/surface protection layer) was folded so that the exterior films 10 faced each other. The exterior film 10 was an aluminum laminate film in which the adhesive layer (polypropylene film with a thickness of 30 μm), the metal layer (aluminum foil with a thickness of 40 μm), and the surface protection layer (nylon film with a thickness of 25 μm) were laminated in this order from the inside.

最後に、互いに対向する外装フィルム10(融着層)のうちの3辺の外周縁部同士を互いに熱融着させた。この場合には、外装フィルム10と正極リード31との間に封止フィルム41(厚さ=5μmであるポリプロピレンフィルム)を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42(厚さ=5μmであるポリプロピレンフィルム)を挿入した。これにより、袋状の外装フィルム10の内部に電池素子20が封入されたため、二次電池が組み立てられた。Finally, the outer peripheral edges of three sides of the opposing exterior films 10 (fusing layers) were heat-sealed to each other. In this case, a sealing film 41 (a polypropylene film having a thickness of 5 μm) was inserted between the exterior film 10 and the positive electrode lead 31, and a sealing film 42 (a polypropylene film having a thickness of 5 μm) was inserted between the exterior film 10 and the negative electrode lead 32. As a result, the battery element 20 was enclosed inside the bag-shaped exterior film 10, and a secondary battery was assembled.

(二次電池の安定化)
常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。これにより、ラミネートフィルム型の二次電池が完成した。
(Stabilization of secondary batteries)
The secondary battery was charged and discharged for one cycle in a room temperature environment (temperature = 23 ° C.). During charging, the battery was charged at a constant current of 0.1 C until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current reached 0.05 C. During discharging, the battery was discharged at a constant current of 0.1 C until the voltage reached 3.0 V. 0.1 C is the current value at which the battery capacity (theoretical capacity) is fully discharged in 10 hours, and 0.05 C is the current value at which the battery capacity is fully discharged in 20 hours. This completed a laminate film type secondary battery.

[電池特性の評価]
二次電池の電池特性(サイクル特性)を評価したところ、表1に示した結果が得られた。
[Evaluation of Battery Characteristics]
When the battery characteristics (cycle characteristics) of the secondary battery were evaluated, the results shown in Table 1 were obtained.

サイクル特性を調べる場合には、最初に、常温環境中(温度=23℃)において二次電池を充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。続いて、同環境中においてサイクル数が300サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(300サイクル目の放電容量)を測定した。最後に、容量維持率(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、サイクル特性を評価するための指標である容量維持率を算出した。When investigating cycle characteristics, first, the discharge capacity (discharge capacity at the first cycle) was measured by charging and discharging the secondary battery in a room temperature environment (temperature = 23°C). Next, the discharge capacity (discharge capacity at the 300th cycle) was measured by repeatedly charging and discharging the secondary battery in the same environment until the number of cycles reached 300. Finally, the capacity retention rate, which is an index for evaluating cycle characteristics, was calculated based on the formula: capacity retention rate (%) = (discharge capacity at the 300th cycle / discharge capacity at the first cycle) x 100.

充放電条件は、充電時の電流および放電時の電流のそれぞれを0.5Cに変更したことを除いて、二次電池の安定化時の充放電条件と同様にした。0.5Cとは、電池容量を2時間で放電しきる電流値である。The charging and discharging conditions were the same as those for stabilizing the secondary battery, except that the charging current and discharging current were both changed to 0.5 C. 0.5 C is the current value that fully discharges the battery capacity in 2 hours.

Figure 0007517480000001
Figure 0007517480000001

[考察]
表1に示したように、容量維持率は、二次電池の構成に応じて大きく変動した。
[Discussion]
As shown in Table 1, the capacity retention rate varied greatly depending on the configuration of the secondary battery.

具体的には、正極保液層26および負極保液層27の双方を用いなかった場合(比較例1)には、容量維持率が著しく減少した。Specifically, when neither the positive electrode liquid retention layer 26 nor the negative electrode liquid retention layer 27 was used (Comparative Example 1), the capacity retention rate decreased significantly.

これに対して、正極保液層26および負極保液層27の双方を用いた場合(実施例1~11および比較例2,3)には、重量比R1~R4に応じて容量維持率に大きな差異が生じた。In contrast, when both the positive electrode liquid retaining layer 26 and the negative electrode liquid retaining layer 27 were used (Examples 1 to 11 and Comparative Examples 2 and 3), large differences in capacity retention rates occurred depending on the weight ratios R1 to R4.

すなわち、重量比R2が重量比R1以下であると共に重量比R4が重量比R3以下である場合(比較例2,3)には、正極保液層26および負極保液層27の双方を用いなかった場合(比較例1)と比較して、容量維持率がごく僅かに増加した。しかしながら、容量維持率はほぼ維持されたままであるため、依然として著しく減少したままであった。That is, when the weight ratio R2 was equal to or less than the weight ratio R1 and the weight ratio R4 was equal to or less than the weight ratio R3 (Comparative Examples 2 and 3), the capacity retention rate increased very slightly compared to the case where neither the positive electrode liquid retaining layer 26 nor the negative electrode liquid retaining layer 27 was used (Comparative Example 1). However, the capacity retention rate was almost maintained, and therefore still significantly decreased.

重量比R2が重量比R1よりも大きいと共に重量比R4が重量比R3よりも大きい場合(実施例1~11)には、正極保液層26および負極保液層27の双方を用いなかった場合(比較例1)と比較して、容量維持率が著しく増加した。この場合には、容量維持率が2倍以上になったため、その容量維持率が飛躍的に増加した。When weight ratio R2 was greater than weight ratio R1 and weight ratio R4 was greater than weight ratio R3 (Examples 1 to 11), the capacity retention rate increased significantly compared to the case where neither the positive electrode liquid retention layer 26 nor the negative electrode liquid retention layer 27 was used (Comparative Example 1). In this case, the capacity retention rate increased by more than double, resulting in a dramatic increase in the capacity retention rate.

特に、重量比R2が重量比R1よりも大きいと共に重量比R4が重量比R3よりも大きい場合には、以下で説明する一連の傾向が得られた。In particular, when weight ratio R2 was greater than weight ratio R1 and weight ratio R4 was greater than weight ratio R3, a series of trends was obtained, as described below.

第1に、厚さT2が厚さT1よりも大きいと共に厚さT4が厚さT3よりも大きいと、容量維持率がより増加した。 First, when thickness T2 was greater than thickness T1 and thickness T4 was greater than thickness T3, the capacity retention rate was increased more.

第2に、高分子化合物としてフッ化ビニリデンの共重合体を用い、より具体的にはフッ化ビニリデンの共重合体が重合成分としてヘキサフルオロプロピレンを含んでいると、容量維持率がより増加した。この場合には、フッ化ビニリデンの共重合体がさらに重合成分として不飽和二塩基酸および不飽和二塩基酸モノエステルのうちのいずれかを含んでいると、容量維持率がさらに増加した。Secondly, when a vinylidene fluoride copolymer was used as the polymer compound, more specifically when the vinylidene fluoride copolymer contained hexafluoropropylene as a polymerization component, the capacity retention rate was further increased. In this case, when the vinylidene fluoride copolymer further contained either an unsaturated dibasic acid or an unsaturated dibasic acid monoester as a polymerization component, the capacity retention rate was further increased.

<実施例12~20>
表2に示したように、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれに複数の絶縁性粒子を含有させたことを除いて実施例2と同様の手順により、二次電池を作製したと共に電池特性を評価した。
<Examples 12 to 20>
As shown in Table 2, a secondary battery was produced and its battery characteristics were evaluated in the same manner as in Example 2, except that a plurality of insulating particles were contained in each of the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode liquid retaining layer 26, and the negative electrode liquid retaining layer 27.

正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれを形成する場合には、電解液、高分子化合物および追加の溶媒(炭酸ジメチル)に複数の絶縁性粒子を添加したことを除いて同様の手順を経た。複数の絶縁性粒子の材質(絶縁性材料)としては、粉末状の無機材料である酸化アルミニウム(Al2 3 ,メジアン径D50=0.4μm)および酸化チタン(TiO2 ,メジアン径D50=0.4μm)と、粉末状の高分子化合物であるアクリル樹脂(メジアン径D50=0.4μm)とを用いた。複数の絶縁性粒子の添加量は、電解液の重量と高分子化合物の重量との和に対して2.5重量%とした。 The positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode liquid retaining layer 26, and the negative electrode liquid retaining layer 27 were formed in the same manner, except that a plurality of insulating particles were added to the electrolyte, the polymer compound, and the additional solvent (dimethyl carbonate). As the material (insulating material) of the plurality of insulating particles, aluminum oxide (Al 2 O 3 , median diameter D50 = 0.4 μm) and titanium oxide (TiO 2 , median diameter D50 = 0.4 μm), which are powdered inorganic materials, and acrylic resin (median diameter D50 = 0.4 μm), which is a powdered polymer compound, were used. The amount of the plurality of insulating particles added was 2.5 wt % of the sum of the weight of the electrolyte and the weight of the polymer compound.

Figure 0007517480000002
Figure 0007517480000002

表2に示したように、正極電解質層24、負極電解質層25、正極保液層26および負極保液層27のそれぞれが複数の絶縁性粒子を含んでいると(実施例12~20)、容量維持率がより増加した。As shown in Table 2, when each of the positive electrode electrolyte layer 24, the negative electrode electrolyte layer 25, the positive electrode liquid retention layer 26 and the negative electrode liquid retention layer 27 contained a plurality of insulating particles (Examples 12 to 20), the capacity retention rate was further increased.

<実施例21~27および比較例4~6>
表3に示したように、図1および図2に示した電池素子20(巻回電極体)を備えたラミネートフィルム型のリチウムイオン二次電池の代わりに、図3および図4に示した電池素子50(積層電極体)を備えたラミネートフィルム型のリチウムイオン二次電池を作製したこと除いて、実施例1~20および比較例1~3と同様の手順により、二次電池を作製したと共に電池特性を評価した。
<Examples 21 to 27 and Comparative Examples 4 to 6>
As shown in Table 3, secondary batteries were produced and their battery characteristics were evaluated in the same manner as in Examples 1 to 20 and Comparative Examples 1 to 3, except that a laminate film type lithium ion secondary battery having a battery element 50 (laminated electrode body) shown in FIGS. 3 and 4 was produced instead of a laminate film type lithium ion secondary battery having a battery element 20 (wound electrode body) shown in FIGS. 1 and 2.

電池素子50を備えた二次電池の製造手順は、以下で説明することを除いて、電池素子20を備えた二次電池の製造手順と同様である。The manufacturing procedure for a secondary battery having battery element 50 is similar to the manufacturing procedure for a secondary battery having battery element 20, except as described below.

正極保液層56および負極保液層57が形成されているセパレータ53を介して、正極電解質層54が形成されている正極51および負極電解質層55が形成されている負極52を交互に積層させることにより、電池素子50を作製した。続いて、複数の突出部51ATを互いに溶接させることにより、接合部51Zを形成したと共に、複数の突出部52ATを互いに溶接させることにより、接合部52Zを形成した。続いて、突出部51ATに正極リード58を溶接したと共に、突出部52ATに負極リード59を溶接した。A battery element 50 was produced by alternately stacking a positive electrode 51 on which a positive electrode electrolyte layer 54 was formed and a negative electrode 52 on which a negative electrode electrolyte layer 55 was formed, via a separator 53 on which a positive electrode electrolyte layer 56 and a negative electrode electrolyte layer 57 were formed. Next, a joint 51Z was formed by welding a plurality of protrusions 51AT to each other, and a joint 52Z was formed by welding a plurality of protrusions 52AT to each other. Next, a positive electrode lead 58 was welded to the protrusion 51AT, and a negative electrode lead 59 was welded to the protrusion 52AT.

Figure 0007517480000003
Figure 0007517480000003

表3に示したように、電池素子50(積層電極体)を用いた場合(実施例21~27および比較例4~6)においても、電池素子20(巻回電極体)を用いた場合(実施例1~20および比較例1~3)と同様の結果が得られた。As shown in Table 3, when battery element 50 (laminated electrode body) was used (Examples 21 to 27 and Comparative Examples 4 to 6), similar results were obtained as when battery element 20 (wound electrode body) was used (Examples 1 to 20 and Comparative Examples 1 to 3).

すなわち、正極保液層56および負極保液層57の双方を用いなかった場合(比較例4)には、容量維持率が著しく減少した。また、正極保液層56および負極保液層57のそれぞれを用いても、重量比R2が重量比R1以下であると共に重量比R4が重量比R3以下である場合(比較例5,6)には、依然として容量維持率が著しく減少したままであった。That is, when neither the positive electrode liquid retaining layer 56 nor the negative electrode liquid retaining layer 57 was used (Comparative Example 4), the capacity retention rate was significantly reduced. Even when both the positive electrode liquid retaining layer 56 and the negative electrode liquid retaining layer 57 were used, when the weight ratio R2 was equal to or less than the weight ratio R1 and the weight ratio R4 was equal to or less than the weight ratio R3 (Comparative Examples 5 and 6), the capacity retention rate was still significantly reduced.

これに対して、正極保液層56および負極保液層57の双方を用いることにより、重量比R2が重量比R1よりも大きいと共に重量比R4が重量比R3よりも大きい場合(実施例21~27)には、容量維持率が著しく増加した。この他、表1に関して説明した一連の傾向も同様に得られた。In contrast, when both the positive electrode liquid retaining layer 56 and the negative electrode liquid retaining layer 57 were used, and the weight ratio R2 was greater than the weight ratio R1 and the weight ratio R4 was greater than the weight ratio R3 (Examples 21 to 27), the capacity retention rate increased significantly. In addition, the series of trends described in Table 1 were also obtained.

[まとめ]
表1~表3に示した結果から、正極21とセパレータ23との間に正極電解質層24が配置されており、その正極電解質層24に正極保液層26が隣接されており、その正極保液層26の重量比R2が正極電解質層24の重量比R1よりも大きいと、容量維持率が大幅に改善された。よって、二次電池において優れたサイクル特性が得られた。
[summary]
From the results shown in Tables 1 to 3, when the positive electrode electrolyte layer 24 was disposed between the positive electrode 21 and the separator 23, the positive electrode liquid retaining layer 26 was adjacent to the positive electrode electrolyte layer 24, and the weight ratio R2 of the positive electrode liquid retaining layer 26 was larger than the weight ratio R1 of the positive electrode electrolyte layer 24, the capacity retention rate was significantly improved. Therefore, excellent cycle characteristics were obtained in the secondary battery.

また、負極22とセパレータ23との間に負極電解質層25が配置されており、その負極電解質層25に負極保液層27が隣接されており、その負極保液層27の重量比R4が負極電解質層25の重量比R3よりも大きい場合においても、容量維持率が大幅に改善されたため、二次電池において優れたサイクル特性が得られた。 In addition, even when a negative electrode electrolyte layer 25 is disposed between the negative electrode 22 and the separator 23, a negative electrode liquid retaining layer 27 is adjacent to the negative electrode electrolyte layer 25, and the weight ratio R4 of the negative electrode liquid retaining layer 27 is greater than the weight ratio R3 of the negative electrode electrolyte layer 25, the capacity retention rate is significantly improved, and therefore excellent cycle characteristics are obtained in the secondary battery.

以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。 The present technology has been described above with reference to one embodiment and an example, but the configuration of the present technology is not limited to the configuration described in the embodiment and example and can be modified in various ways.

二次電池の電池構造がラミネートフィルム型である場合に関して説明したが、その電池構造の種類は、特に限定されない。具体的には、電池構造は、円筒型、角型、コイン型およびボタン型などでもよい。Although the battery structure of the secondary battery has been described as being of a laminate film type, the type of battery structure is not particularly limited. Specifically, the battery structure may be of a cylindrical type, a square type, a coin type, a button type, etc.

また、電池素子の構成が巻回型および積層型である場合に関して説明したが、その電池素子の構成は、特に限定されない。具体的には、電池素子の構成は、正極および負極がジグザグに折り畳まれた九十九折り型などでもよい。Although the battery element configuration has been described as being wound and stacked, the configuration of the battery element is not particularly limited. Specifically, the battery element may be configured as a zigzag fold type in which the positive and negative electrodes are folded in a zigzag pattern.

さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質の種類は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。Furthermore, although the electrode reactant is described as being lithium, the type of the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium, and calcium. In addition, the electrode reactant may be other light metals such as aluminum.

本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。The effects described in this specification are merely examples, and the effects of the present technology are not limited to the effects described in this specification. Therefore, other effects may be obtained with respect to the present technology.

Claims (7)

第1電解液および第1高分子化合物を含む第1電解質層と、
前記第1電解質層を介して互いに対向する電極およびセパレータと、
前記電極および前記セパレータが前記第1電解質層を介して互いに対向する方向と交差する方向において前記第1電解質層に隣接され、第2電解液および第2高分子化合物を含む第2電解質層と
を備え、
前記第2高分子化合物の重量に対する前記第2電解液の重量の比は、前記第1高分子化合物の重量に対する前記第1電解液の重量の比よりも大きい、
二次電池。
a first electrolyte layer including a first electrolytic solution and a first polymer compound;
an electrode and a separator facing each other with the first electrolyte layer interposed therebetween;
a second electrolyte layer adjacent to the first electrolyte layer in a direction intersecting a direction in which the electrodes and the separator face each other with the first electrolyte layer interposed therebetween, the second electrolyte layer including a second electrolytic solution and a second polymer compound;
a ratio of the weight of the second electrolytic solution to the weight of the second polymer compound is greater than a ratio of the weight of the first electrolytic solution to the weight of the first polymer compound;
Secondary battery.
前記第2電解質層の厚さは、前記第1電解質層の厚さよりも大きい、
請求項1記載の二次電池。
The thickness of the second electrolyte layer is greater than the thickness of the first electrolyte layer.
The secondary battery according to claim 1 .
前記第1高分子化合物および前記第2高分子化合物のうちの少なくとも一方は、フッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの少なくとも一方を含む、
請求項1または請求項2に記載の二次電池。
At least one of the first polymer compound and the second polymer compound includes at least one of a homopolymer of vinylidene fluoride and a copolymer of vinylidene fluoride.
The secondary battery according to claim 1 or 2.
前記フッ化ビニリデンの共重合体は、重合成分としてヘキサフルオロプロピレンを含む、
請求項3記載の二次電池。
The vinylidene fluoride copolymer contains hexafluoropropylene as a polymerization component.
The secondary battery according to claim 3.
前記フッ化ビニリデンの共重合体は、さらに、重合成分として不飽和二塩基酸および不飽和二塩基酸モノエステルのうちの少なくとも一方を含む、
請求項4記載の二次電池。
The vinylidene fluoride copolymer further contains at least one of an unsaturated dibasic acid and an unsaturated dibasic acid monoester as a polymerization component.
The secondary battery according to claim 4.
前記第1電解質層および前記第2電解質層のうちの少なくとも一方は、さらに、複数の絶縁性粒子を含む、
請求項1ないし請求項5のいずれか1項に記載の二次電池。
At least one of the first electrolyte layer and the second electrolyte layer further includes a plurality of insulating particles.
The secondary battery according to claim 1 .
リチウムイオン二次電池である、
請求項1ないし請求項6のいずれか1項に記載の二次電池。
It is a lithium-ion secondary battery.
The secondary battery according to claim 1 .
JP2022578101A 2021-01-29 2021-12-07 Secondary battery Active JP7517480B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021013771 2021-01-29
JP2021013771 2021-01-29
PCT/JP2021/044941 WO2022163139A1 (en) 2021-01-29 2021-12-07 Secondary battery

Publications (2)

Publication Number Publication Date
JPWO2022163139A1 JPWO2022163139A1 (en) 2022-08-04
JP7517480B2 true JP7517480B2 (en) 2024-07-17

Family

ID=82653308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022578101A Active JP7517480B2 (en) 2021-01-29 2021-12-07 Secondary battery

Country Status (2)

Country Link
JP (1) JP7517480B2 (en)
WO (1) WO2022163139A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207461A (en) 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012074367A (en) 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2014056695A (en) 2012-09-12 2014-03-27 Sony Corp Secondary battery, battery pack and electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207461A (en) 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012074367A (en) 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2014056695A (en) 2012-09-12 2014-03-27 Sony Corp Secondary battery, battery pack and electric vehicle

Also Published As

Publication number Publication date
JPWO2022163139A1 (en) 2022-08-04
WO2022163139A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2022196266A1 (en) Secondary battery
JP7384291B2 (en) secondary battery
JP7405155B2 (en) secondary battery
JP7517480B2 (en) Secondary battery
WO2021187068A1 (en) Secondary cell
WO2024142877A1 (en) Secondary battery
JP7537504B2 (en) Electrolyte for secondary battery and secondary battery
WO2023189708A1 (en) Secondary battery
WO2024204282A1 (en) Positive electrode for secondary battery, and secondary battery
WO2023189725A1 (en) Secondary battery
JP7380898B2 (en) secondary battery
WO2023189709A1 (en) Secondary battery electrolyte and secondary battery
WO2023189762A1 (en) Secondary battery
WO2022196238A1 (en) Electrolyte solution for secondary battery, and secondary battery
WO2023120687A1 (en) Secondary battery
WO2023162432A1 (en) Secondary battery
WO2024150541A1 (en) Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery
WO2023112576A1 (en) Positive electrode for secondary batteries, and secondary battery
JP7462142B2 (en) Secondary battery
JP7302731B2 (en) secondary battery
WO2023119946A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023162428A1 (en) Secondary battery
JP7380845B2 (en) secondary battery
WO2023162429A1 (en) Secondary battery electrolyte and secondary battery
WO2023162852A1 (en) Secondary battery electrolyte and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7517480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150