JP7516848B2 - Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same - Google Patents
Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same Download PDFInfo
- Publication number
- JP7516848B2 JP7516848B2 JP2020085244A JP2020085244A JP7516848B2 JP 7516848 B2 JP7516848 B2 JP 7516848B2 JP 2020085244 A JP2020085244 A JP 2020085244A JP 2020085244 A JP2020085244 A JP 2020085244A JP 7516848 B2 JP7516848 B2 JP 7516848B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium secondary
- active material
- composite active
- secondary batteries
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 126
- 229910052744 lithium Inorganic materials 0.000 title claims description 126
- 239000011149 active material Substances 0.000 title claims description 105
- 239000002131 composite material Substances 0.000 title claims description 104
- 229910000676 Si alloy Inorganic materials 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 25
- 239000010703 silicon Substances 0.000 title description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 167
- 229910052710 silicon Inorganic materials 0.000 claims description 81
- 229910002804 graphite Inorganic materials 0.000 claims description 79
- 239000010439 graphite Substances 0.000 claims description 79
- 229910052799 carbon Inorganic materials 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 56
- 239000002245 particle Substances 0.000 claims description 49
- 229920000642 polymer Polymers 0.000 claims description 37
- 238000000576 coating method Methods 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 23
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000000178 monomer Substances 0.000 claims description 18
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 16
- 239000011246 composite particle Substances 0.000 claims description 14
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 12
- 150000001722 carbon compounds Chemical class 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- 229920006254 polymer film Polymers 0.000 claims description 11
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 10
- 239000002270 dispersing agent Substances 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 9
- 239000011800 void material Substances 0.000 claims description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 238000004255 ion exchange chromatography Methods 0.000 claims description 8
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 7
- 239000003999 initiator Substances 0.000 claims description 7
- 238000010298 pulverizing process Methods 0.000 claims description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 4
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 4
- 229910052770 Uranium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 238000009840 oxygen flask method Methods 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 4
- 238000001878 scanning electron micrograph Methods 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000004438 BET method Methods 0.000 claims description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 3
- 238000001636 atomic emission spectroscopy Methods 0.000 claims description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 3
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 79
- 150000001875 compounds Chemical class 0.000 description 66
- 238000000034 method Methods 0.000 description 60
- 239000002002 slurry Substances 0.000 description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 48
- 239000000843 powder Substances 0.000 description 44
- 230000008569 process Effects 0.000 description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 229910021384 soft carbon Inorganic materials 0.000 description 28
- -1 silicon and tin Chemical class 0.000 description 27
- 239000000463 material Substances 0.000 description 26
- 239000002904 solvent Substances 0.000 description 26
- 238000003756 stirring Methods 0.000 description 20
- 239000007788 liquid Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000002253 acid Substances 0.000 description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 16
- 229910003481 amorphous carbon Inorganic materials 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000004793 Polystyrene Substances 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 229920002223 polystyrene Polymers 0.000 description 13
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 12
- 239000011294 coal tar pitch Substances 0.000 description 12
- 229910021389 graphene Inorganic materials 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000002243 precursor Substances 0.000 description 11
- 238000010304 firing Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000011324 bead Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 229910021385 hard carbon Inorganic materials 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 235000011187 glycerol Nutrition 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 239000003245 coal Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000011295 pitch Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 229910021382 natural graphite Inorganic materials 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011863 silicon-based powder Substances 0.000 description 5
- 238000005563 spheronization Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000007833 carbon precursor Substances 0.000 description 4
- 238000010000 carbonizing Methods 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 239000011300 coal pitch Substances 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000006011 modification reaction Methods 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 4
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 4
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 3
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 3
- LMAUULKNZLEMGN-UHFFFAOYSA-N 1-ethyl-3,5-dimethylbenzene Chemical compound CCC1=CC(C)=CC(C)=C1 LMAUULKNZLEMGN-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- MZGMQAMKOBOIDR-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCO MZGMQAMKOBOIDR-UHFFFAOYSA-N 0.000 description 3
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 3
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 3
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 3
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 3
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 3
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 3
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 3
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 3
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 3
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 3
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010332 dry classification Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- FKIRSCKRJJUCNI-UHFFFAOYSA-N ethyl 7-bromo-1h-indole-2-carboxylate Chemical compound C1=CC(Br)=C2NC(C(=O)OCC)=CC2=C1 FKIRSCKRJJUCNI-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 229940119545 isobornyl methacrylate Drugs 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229940041616 menthol Drugs 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- YRVUCYWJQFRCOB-UHFFFAOYSA-N n-butylprop-2-enamide Chemical compound CCCCNC(=O)C=C YRVUCYWJQFRCOB-UHFFFAOYSA-N 0.000 description 3
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 3
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 3
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 3
- 239000011301 petroleum pitch Substances 0.000 description 3
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 3
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 2
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 2
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 2
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 2
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 2
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920001893 acrylonitrile styrene Polymers 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229940105990 diglycerin Drugs 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical class NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 229960001149 dopamine hydrochloride Drugs 0.000 description 2
- 238000009837 dry grinding Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical class OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 229960004502 levodopa Drugs 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 2
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 2
- 239000010680 novolac-type phenolic resin Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 2
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- VBQCFYPTKHCPGI-UHFFFAOYSA-N 1,1-bis(2-methylpentan-2-ylperoxy)cyclohexane Chemical compound CCCC(C)(C)OOC1(OOC(C)(C)CCC)CCCCC1 VBQCFYPTKHCPGI-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 description 1
- IEMBFTKNPXENSE-UHFFFAOYSA-N 2-(2-methylpentan-2-ylperoxy)propan-2-yl hydrogen carbonate Chemical compound CCCC(C)(C)OOC(C)(C)OC(O)=O IEMBFTKNPXENSE-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- YAQDPWONDFRAHF-UHFFFAOYSA-N 2-methyl-2-(2-methylpentan-2-ylperoxy)pentane Chemical compound CCCC(C)(C)OOC(C)(C)CCC YAQDPWONDFRAHF-UHFFFAOYSA-N 0.000 description 1
- CUKVGYQSIHWKAV-UHFFFAOYSA-N 2-methylprop-2-enamide;2-methylprop-2-enoic acid Chemical class CC(=C)C(N)=O.CC(=C)C(O)=O CUKVGYQSIHWKAV-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-UHFFFAOYSA-N 2-phenylethenamine Chemical compound NC=CC1=CC=CC=C1 UWRZIZXBOLBCON-UHFFFAOYSA-N 0.000 description 1
- BQARUDWASOOSRH-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-yl hydrogen carbonate Chemical compound CC(C)(C)OOC(C)(C)OC(O)=O BQARUDWASOOSRH-UHFFFAOYSA-N 0.000 description 1
- LKSROJNHUVRZSN-UHFFFAOYSA-N 3-(1h-indol-2-yl)benzene-1,2-diol Chemical compound OC1=CC=CC(C=2NC3=CC=CC=C3C=2)=C1O LKSROJNHUVRZSN-UHFFFAOYSA-N 0.000 description 1
- XYFRHHAYSXIKGH-UHFFFAOYSA-N 3-(5-methoxy-2-methoxycarbonyl-1h-indol-3-yl)prop-2-enoic acid Chemical compound C1=C(OC)C=C2C(C=CC(O)=O)=C(C(=O)OC)NC2=C1 XYFRHHAYSXIKGH-UHFFFAOYSA-N 0.000 description 1
- UVRCNEIYXSRHNT-UHFFFAOYSA-N 3-ethylpent-2-enamide Chemical compound CCC(CC)=CC(N)=O UVRCNEIYXSRHNT-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000006173 Larrea tridentata Nutrition 0.000 description 1
- 244000073231 Larrea tridentata Species 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013534 LiN(HCF2CF2CH2OSO2)2 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- XDIJWRHVEDUFGP-UHFFFAOYSA-N azanium;2-phenylethenesulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 XDIJWRHVEDUFGP-UHFFFAOYSA-N 0.000 description 1
- AQIHMSVIAGNIDM-UHFFFAOYSA-N benzoyl bromide Chemical compound BrC(=O)C1=CC=CC=C1 AQIHMSVIAGNIDM-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 229950001002 cianidanol Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid Chemical compound OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229960002126 creosote Drugs 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LEDCJBCTEYLBJO-UHFFFAOYSA-N ethyl 2-phenylethenesulfonate Chemical compound CCOS(=O)(=O)C=CC1=CC=CC=C1 LEDCJBCTEYLBJO-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- GOMNOOKGLZYEJT-UHFFFAOYSA-N isoflavone Chemical compound C=1OC2=CC=CC=C2C(=O)C=1C1=CC=CC=C1 GOMNOOKGLZYEJT-UHFFFAOYSA-N 0.000 description 1
- CJWQYWQDLBZGPD-UHFFFAOYSA-N isoflavone Natural products C1=C(OC)C(OC)=CC(OC)=C1C1=COC2=C(C=CC(C)(C)O3)C3=C(OC)C=C2C1=O CJWQYWQDLBZGPD-UHFFFAOYSA-N 0.000 description 1
- 235000008696 isoflavones Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- ZKIAYSOOCAKOJR-UHFFFAOYSA-M lithium;2-phenylethenesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 ZKIAYSOOCAKOJR-UHFFFAOYSA-M 0.000 description 1
- YSKIQSYEHUCIFO-UHFFFAOYSA-M lithium;4-ethenylbenzenesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 YSKIQSYEHUCIFO-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 1
- DPLUMPJQXVYXBH-UHFFFAOYSA-N n,n-diethyl-2-phenylethenamine Chemical compound CCN(CC)C=CC1=CC=CC=C1 DPLUMPJQXVYXBH-UHFFFAOYSA-N 0.000 description 1
- UTKONZMCFKGKAR-UHFFFAOYSA-N n,n-diethyl-2-phenylprop-1-en-1-amine Chemical compound CCN(CC)C=C(C)C1=CC=CC=C1 UTKONZMCFKGKAR-UHFFFAOYSA-N 0.000 description 1
- VQGWOOIHSXNRPW-UHFFFAOYSA-N n-butyl-2-methylprop-2-enamide Chemical compound CCCCNC(=O)C(C)=C VQGWOOIHSXNRPW-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- QQZXAODFGRZKJT-UHFFFAOYSA-N n-tert-butyl-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NC(C)(C)C QQZXAODFGRZKJT-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 1
- 235000005493 rutin Nutrition 0.000 description 1
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 1
- 229960004555 rutoside Drugs 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、シリコンまたはシリコン合金およびそれを含むリチウム二次電池用複合活物質並びにその製造方法に関するものである。 The present invention relates to silicon or a silicon alloy, a composite active material for a lithium secondary battery containing the same, and a method for producing the same.
スマートフォン、タブレット型端末などモバイル機器の高性能化や、EV、PHEVなどリチウム二次電池を搭載した車両の普及に伴い、リチウム二次電池の高容量化の要求が高まっている。現在、リチウム二次電池の負極材には主に黒鉛が用いられているが、さらなる高容量化のため、理論容量が高く、リチウムイオンを吸蔵・放出可能な元素であるシリコンやスズ等の金属、もしくは他の元素との合金を用いた負極材の開発が活発化している。 Demand for higher capacity lithium secondary batteries is growing with the increasing performance of mobile devices such as smartphones and tablet terminals, and the widespread use of vehicles equipped with lithium secondary batteries such as EVs and PHEVs. Currently, graphite is mainly used as the negative electrode material for lithium secondary batteries, but in order to further increase capacity, there has been active development of negative electrode materials using metals such as silicon and tin, which have high theoretical capacity and are capable of absorbing and releasing lithium ions, or alloys with other elements.
一方、これらのリチウムイオンを吸蔵・放出可能な金属材料からなるリチウム二次電池用複合活物質は、充電によってリチウムと合金化した際に、著しく体積膨張することが知られている。そのため、活物質が割れて微細化し、さらにこれらを用いた負極も構造が破壊されて導電性が切断される。従って、これらの金属材料を用いた負極はサイクル経過によって容量が著しく低下することが課題となっている。 On the other hand, it is known that composite active materials for lithium secondary batteries, which are made of metal materials capable of absorbing and releasing lithium ions, undergo a significant volume expansion when alloyed with lithium by charging. This causes the active materials to crack and become finer, and furthermore, the structure of negative electrodes using these materials is destroyed, cutting off their conductivity. Therefore, a problem with negative electrodes using these metal materials is that their capacity decreases significantly over cycles.
この課題に対し、これらの金属材料の周囲にポリマーを被覆し、炭素質物や黒鉛などで複合化した後にポリマーを除去し空隙を形成する手法が提案されている。このような複合粒子は、金属材料がリチウムと合金化し体積膨張しても、周囲の空隙により活物質全体は膨張しないため、サイクル特性が著しく向上することが知られている。例えば、特許文献1には、SiまたはSi合金の周囲に空隙を有する構造を有するリチウム二次電池用複合活物質を活物質とするリチウム二次電池を作製することで、充放電試験における最大放電容量と比較した20回充放電した後の放電容量が70.0%以上であることが開示されている。しかしながら、SiまたはSi合金の酸素含有量や表面水酸基量の値については記載されていない。 To address this issue, a method has been proposed in which the metal materials are coated with a polymer, and then the polymer is removed to form voids after compounding with a carbonaceous material or graphite. It is known that such composite particles significantly improve cycle characteristics because the active material as a whole does not expand due to the voids around the metal material when the metal material is alloyed with lithium and expands in volume. For example, Patent Document 1 discloses that by producing a lithium secondary battery using a composite active material for lithium secondary batteries having a structure with voids around Si or a Si alloy as the active material, the discharge capacity after 20 charge/discharge cycles is 70.0% or more compared to the maximum discharge capacity in a charge/discharge test. However, there is no description of the oxygen content or the amount of surface hydroxyl groups in the Si or Si alloy.
また、特許文献2には、酸素含有量(重量%)をBET比表面積(m2/g)で割った値が0.1以下であることを特徴とするシリコン系粒子と該シリコン系粒子を含むリチウム二次電池用複合活物質が高い初回充放電効率を示すことが開示されている。しかしながら、酸素含有量が低いことから該シリコンまたはシリコン合金の表面に空隙の前駆体を形成することは困難である。空隙の前駆体を形成できなければ、シリコンまたはシリコン合金の表面に空隙を形成することは困難であり、リチウムイオン充電時の膨張率は高く、容量維持率が低いことは容易に推測される。 In addition, Patent Document 2 discloses that silicon-based particles, characterized in that the oxygen content (wt%) divided by the BET specific surface area ( m2 /g) is 0.1 or less, and a composite active material for lithium secondary batteries containing the silicon-based particles exhibit high initial charge/discharge efficiency. However, since the oxygen content is low, it is difficult to form a void precursor on the surface of the silicon or silicon alloy. If the void precursor cannot be formed, it is difficult to form voids on the surface of the silicon or silicon alloy, and it is easy to predict that the expansion rate during lithium ion charging will be high and the capacity retention rate will be low.
リチウム二次電池の要求特性のさらなる高まりを受け、特許文献1,2で得られるリチウム二次電池用複合活物質を用いた負極材よりも初回クーロン効率と初回膨張率の両立が可能な負極材の開発、ならびにそれに用いられるSiまたはSi合金の開発が求められている。 In response to the ever-increasing required characteristics of lithium secondary batteries, there is a demand for the development of a negative electrode material that can achieve both an initial coulombic efficiency and an initial expansion rate that is better than the negative electrode materials using the composite active materials for lithium secondary batteries obtained in Patent Documents 1 and 2, as well as the development of Si or Si alloys to be used therein.
近年、電池の使用安全性の点から、充放電を繰り返した後においても、電極材料の体積が膨張しないことが求められている。電極材料の体積膨張が大きいと、電解液の液漏れの発生や、電池の寿命の低下が起きる。一方、初回充放電効率が低いと正極に含まれているリチウムイオンを有効に使えず、重量当たりの容量が低下したり、製造コストが高くなったりするという問題が発生するため、初回充放電効率の高い材料が要求されており、これらの特性の両立が求められている。 In recent years, from the perspective of battery safety, it has become necessary for the electrode material to not expand in volume even after repeated charging and discharging. If the electrode material expands in volume significantly, electrolyte leakage occurs and the battery life is shortened. On the other hand, if the initial charge/discharge efficiency is low, the lithium ions contained in the positive electrode cannot be used effectively, resulting in problems such as reduced capacity per weight and high manufacturing costs. Therefore, there is a demand for materials with high initial charge/discharge efficiency, and it is necessary to achieve both of these properties.
本発明は、上記実情に鑑みて、初回充電時に体積膨張が抑制された電極材料であり、かつ、優れた初回充放電効率を示すリチウム二次電池用複合活物質及びそれに用いられるSiまたはSi合金、ならびにその製造方法を提供することを課題とする。 In view of the above circumstances, the present invention aims to provide a composite active material for lithium secondary batteries that is an electrode material in which volume expansion during initial charging is suppressed and that exhibits excellent initial charge/discharge efficiency, as well as Si or Si alloys used therein, and a method for producing the same.
本発明者らは、従来技術について鋭意検討を行った結果、以下の構成によって上記課題を解決できることを見出した。
(1) 平均粒径(D50)が0.01~0.6μm、平均粒径(D90)が0.01~1.0μmであり、BET法によるBET比表面積が40~300m2/g、酸素含有量が10重量%以上20重量%未満であることを特徴とするSiまたはSi合金。
(2) 表面水酸基量が1.0個/nm2~3.0個/nm2である(1)に記載のSiまたはSi合金。
(3) 酸素含有量(重量%)をBET比表面積(m2/g)で割った値が0.1~0.4である(1)又は(2)に記載のSiまたはSi合金。
(4) (1)~(3)のいずれかに記載のSiまたはSi合金及び結晶性炭素を含むリチウム二次電池用複合活物質であって、該SiまたはSi合金の周囲に空隙構造を有することを特徴とするリチウム二次電池用複合活物質。
(5) SiまたはSi合金が結晶性炭素に囲まれた構造を有し、かつSEM像観察により計測された前記リチウム二次電池用複合活物質中の空隙体積が該リチウム二次電池用複合活物質全体の体積の2%~90%である(4)に記載のリチウム二次電池用複合活物質。
(6) SiまたはSi合金が、0.5μm以下の厚みの結晶性炭素層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該結晶性炭素層がリチウム二次電池用複合活物質の表面付近で湾曲してリチウム二次電池用複合活物質を覆っている構造を特徴とする(4)又は(5)に記載のリチウム二次電池用複合活物質。
(7) 結晶性炭素が、ICP発光分光分析法による26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値より求めた純度が99重量%以上で、酸素フラスコ燃焼法によるイオンクロマトグラフィ-(IC)測定法によるS量が1重量%以下、及び/又はBET比表面積100m2/g以下であることを特徴とする(4)~(6)のいずれかに記載のリチウム二次電池用複合活物質。
(8) (1)~(3)のいずれかに記載のSiまたはSi合金に高分子モノマ-と開始剤と必要に応じて分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、必要に応じて炭素化合物と該複合粒子もしくは該焼成粒子とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含む(4)~(7)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(9) 高分子モノマ-がスチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、メタクリルアミド、N-メチルアクリルアミド、N、N‘-ジメチルアクリルアミド、N-tert-ブチルメタクリルアミド、N-n-ブチルメタクリルアミド、N-メチロ-ルメタクリルアミド、N-エチロ-ルメタクリルアミドなどのメタクリルアミド系、N,N’-メチレンビスアクリルアミド、N-イソプロピルアクリルアミド、N-tert-ブチルアクリルアミド、N-n-ブチルアクリルアミド、N-メチロ-ルアクリルアミド、N-エチロ-ルアクリルアミドなどのアクリルアミド系、安息香酸ビニル、ジエチルアミノスチレン、ジエチルアミノアルファ-メチルスチレン、p-ビニルベンゼンスルホン酸、p-ビニルベンゼンスルホン酸ナトリウム塩、ジビニルベンゼン、酢酸ビニル、酢酸ブチル、塩化ビニル、フッ化ビニル、臭化ビニル、無水マレイン酸、N-フェニルマレイミド、N-ブチルマレイミド、N-ビニルピロリドン、N-ビニルカルバゾ-ル、アクリロニトリル、アニリン、ピロ-ル、ウレタン重合に用いられるポリオ-ル系又はイソシアネ-ト系である(8)に記載のリチウム二次電池用複合活物質の製造方法。
As a result of thorough investigation of the prior art, the present inventors have found that the above-mentioned problems can be solved by the following configuration.
(1) Si or a Si alloy having an average particle size (D50) of 0.01 to 0.6 μm, an average particle size (D90) of 0.01 to 1.0 μm, a BET specific surface area of 40 to 300 m 2 /g as measured by the BET method, and an oxygen content of 10% by weight or more and less than 20% by weight.
(2) Si or a Si alloy according to (1), wherein the number of surface hydroxyl groups is 1.0/nm 2 to 3.0/nm 2 .
(3) Si or a Si alloy according to (1) or (2), in which the value obtained by dividing the oxygen content (wt %) by the BET specific surface area (m 2 /g) is 0.1 to 0.4.
(4) A composite active material for a lithium secondary battery comprising the Si or Si alloy according to any one of (1) to (3) above and crystalline carbon, the composite active material for a lithium secondary battery being characterized in having a void structure around the Si or Si alloy.
(5) The composite active material for lithium secondary batteries according to (4), wherein the composite active material for lithium secondary batteries has a structure in which Si or a Si alloy is surrounded by crystalline carbon, and the void volume in the composite active material for lithium secondary batteries measured by SEM image observation is 2% to 90% of the total volume of the composite active material for lithium secondary batteries.
(6) The composite active material for lithium secondary batteries according to (4) or (5), characterized in that the Si or Si alloy is sandwiched between crystalline carbon layers having a thickness of 0.5 μm or less, the structure spreads in a laminated and/or mesh-like manner, and the crystalline carbon layers are curved near the surfaces of the composite active material for lithium secondary batteries to cover the composite active material for lithium secondary batteries.
(7) The composite active material for lithium secondary batteries according to any one of (4) to (6), characterized in that the crystalline carbon has a purity of 99% by weight or more as determined from semi-quantitative impurity values of 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd, Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U) by ICP atomic emission spectroscopy, an S amount of 1% by weight or less as determined by an ion chromatography (IC) measurement method using an oxygen flask combustion method, and/or a BET specific surface area of 100 m2 /g or less.
(8) A method for producing a composite active material for a lithium secondary battery according to any one of (4) to (7), comprising the steps of: adding a polymer monomer, an initiator, and, if necessary, a dispersant to the Si or Si alloy according to any one of (1) to (3); coating the Si or Si alloy with a polymer film; mixing the resulting mixture with graphite and, if necessary, a carbon compound; granulating and compacting the mixture; pulverizing and spheronizing the mixture to form substantially spherical composite particles; calcining the composite particles in an inert atmosphere; mixing, if necessary, a carbon compound with the composite particles or the calcined particles; and heating the mixture in an inert atmosphere.
(9) The polymer monomer is a methyl methacrylate such as styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, or triethylene glycol methacrylate. acrylates, itaconic anhydride, itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, and other acrylic acid-based compounds; methacrylic acid Methacrylamides such as N,N'-methylenebisacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolmethacrylamide, and N-ethylolmethacrylamide; acrylamides such as N,N'-methylenebisacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolacrylamide, and N-ethylolacrylamide; vinyl benzoate, diethyl acrylamide, and the like. The method for producing a composite active material for a lithium secondary battery according to (8), wherein the active material is selected from the group consisting of aminostyrene, diethylamino alpha-methylstyrene, p-vinylbenzenesulfonic acid, sodium p-vinylbenzenesulfonate, divinylbenzene, vinyl acetate, butyl acetate, vinyl chloride, vinyl fluoride, vinyl bromide, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, N-vinylpyrrolidone, N-vinylcarbazole, acrylonitrile, aniline, pyrrole, a polyol-based material or an isocyanate-based material used in urethane polymerization.
本発明によれば、初回充放電効率が高く、初回充電後の体積膨張が抑制された二次電池用複合活物質およびその複合活物質に用いられる特定のSiまたはSi合金およびその製造方法を提供することができる。 The present invention provides a composite active material for a secondary battery that has high initial charge/discharge efficiency and suppresses volume expansion after initial charging, as well as a specific Si or Si alloy used in the composite active material and a method for producing the same.
以下に、本発明のSiまたはSi合金、ならびにリチウム二次電池用複合活物質およびその製造方法について、本発明の一例を示しながら詳述する。 The Si or Si alloy of the present invention, as well as the composite active material for lithium secondary batteries and the method for producing the same, will be described in detail below, showing an example of the present invention.
本発明のSiまたはSi合金(併せてSi化合物)は平均粒径(D50)が0.01~0.6μm、好ましくは0.03~0.5μm、さらに好ましくは0.05~0.5μmであり、平均粒径(D90)が0.01~1.0μm、好ましくは0.03~0.8μm、さらに好ましくは0.05~0.06μmであり、BET法によるBET比表面積が40~300m2/g、好ましくは40~250m2/g、さらに好ましくは40~200m2/g、特に好ましくは60~200m2/gであり、酸素含有量が10重量%以上20重量%未満、さらに好ましくは11重量%以上19重量%未満である。D50やD90がこの範囲よりも小さいとSiまたはSi合金の生産性が低下し、一方、この範囲よりも大きいと、SiまたはSi合金の凝集が大きく、均一なポリマー被覆が行えなくなる問題がある。また、酸素含有量がこの範囲よりも大きいと、リチウムイオンがSiまたはSi合金にトラップされやすくなるため初回充放電効率が低下し、この範囲よりも小さいとSiまたはSi合金表面にポリマーを被覆することができず、初回膨張率が高くなるという問題がある。 The Si or Si alloy (collectively, Si compound) of the present invention has an average particle size (D50) of 0.01 to 0.6 μm, preferably 0.03 to 0.5 μm, more preferably 0.05 to 0.5 μm, an average particle size (D90) of 0.01 to 1.0 μm, preferably 0.03 to 0.8 μm, more preferably 0.05 to 0.06 μm, a BET specific surface area by the BET method of 40 to 300 m 2 /g, preferably 40 to 250 m 2 /g, more preferably 40 to 200 m 2 /g, particularly preferably 60 to 200 m 2 /g, and an oxygen content of 10% by weight or more and less than 20% by weight, more preferably 11% by weight or more and less than 19% by weight. If D50 or D90 is smaller than this range, the productivity of Si or Si alloy decreases, while if it is larger than this range, there is a problem that the aggregation of Si or Si alloy is large and uniform polymer coating cannot be performed. Furthermore, if the oxygen content is greater than this range, lithium ions are more likely to be trapped in the Si or Si alloy, resulting in a decrease in the initial charge/discharge efficiency. If the oxygen content is less than this range, the Si or Si alloy surface cannot be coated with the polymer, resulting in a high initial expansion coefficient.
なお、D50、D90は、レ-ザ-回折散乱法により測定した累積粒度分布において微粒側からそれぞれ累積50%の粒径、90%の粒径に該当する。 Note that D50 and D90 correspond to the cumulative 50% and 90% particle sizes, respectively, from the fine particle side in the cumulative particle size distribution measured by the laser diffraction scattering method.
平均粒径測定に際しては、SiまたはSi合金のスラリーをそのまま、もしくは必要に応じて液体により希釈した後に超音波などを利用することで分散液を作製し、作製した分散液を装置に測定サンプルとして導入し、平均粒径の測定を行えばよい。希釈する液体はSiまたはSi合金が分散すればよく、水やアルコ-ル、低揮発性の有機溶媒を用いることが好ましい。 When measuring the average particle size, a dispersion liquid is prepared by using ultrasonic waves or the like after diluting the Si or Si alloy slurry as is or, if necessary, diluting it with a liquid, and the prepared dispersion liquid is introduced into the device as a measurement sample to measure the average particle size. The liquid to be used for dilution should be one in which Si or Si alloy can be dispersed, and it is preferable to use water, alcohol, or a low-volatility organic solvent.
SiまたはSi合金と該液体がうまくなじまない時、すなわちSiまたはSi合金が液体に均一に分散しにくい場合は、必要に応じて界面活性剤などを添加してもよい。 When the Si or Si alloy does not mix well with the liquid, i.e., when it is difficult to disperse the Si or Si alloy uniformly in the liquid, a surfactant or the like may be added as necessary.
BET比表面積は、試料を200℃で20分真空乾燥した後、窒素吸着法で測定される値である。一点法と多点法のどちらの方法で測定してもよい。 The BET specific surface area is a value measured by the nitrogen adsorption method after the sample is vacuum dried at 200°C for 20 minutes. It may be measured by either the single-point method or the multi-point method.
酸素含有量は、LECO社製インパルス炉溶融-赤外吸収法を用いた酸素量分析計により測定することができる。 The oxygen content can be measured using an oxygen analyzer manufactured by LECO using the impulse furnace melting-infrared absorption method.
SiまたはSi合金は、得られる粒度分布図は正規分布を示すことが好ましい。 It is preferable that the particle size distribution diagram obtained for Si or Si alloys shows a normal distribution.
本発明でいうSiまたはSi合金は、純度が98重量%程度の汎用グレ-ドの金属シリコン、純度が2~4Nのケミカルグレ-ドの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、もしくはそれらに周期表13族もしくは15族元素をド-ピングして、p型またはn型としたもの、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレ-ドの金属シリコン以上の純度のものであれば特に限定されない。Siは、純度2~4Nの金属シリコンであることが好ましい。 The Si or Si alloy referred to in the present invention is not particularly limited as long as it has a purity equal to or higher than that of general-purpose grade metal silicon, such as general-purpose grade metal silicon with a purity of about 98% by weight, chemical grade metal silicon with a purity of 2 to 4N, polysilicon with a purity higher than 4N that has been chlorinated and purified by distillation, ultra-high purity single crystal silicon that has undergone a precipitation process using a single crystal growth method, or those doped with an element from Group 13 or Group 15 of the periodic table to make them p-type or n-type, scraps from polishing or cutting wafers generated in the semiconductor manufacturing process, and discarded wafers that have become defective during the process. The Si is preferably metal silicon with a purity of 2 to 4N.
本発明でいうSi合金とは、Siが主成分の合金である。該Si合金において、Si以外に含まれる元素としては、周期表2~15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素が好ましい。 The term "Si alloy" as used in this invention refers to an alloy whose main component is Si. In the Si alloy, the elements contained other than Si are preferably one or more elements from groups 2 to 15 of the periodic table, and are preferably elements whose phase contained in the alloy has a melting point of 900°C or higher.
本発明のSiまたはSi合金は、表面水酸基量が1.0個/nm2~3.0個/nm2、好ましくは1.2個/nm2~2.7個/nm2、さらに好ましくは1.3個/nm2~2.5個/nm2である。表面水酸基の数がこの範囲よりも少ないと、SiまたはSi合金表面に高分子ポリマーを被覆することが困難であり、リチウム二次電池用複合活物質の初回膨張率が高くなるという問題がある。またこの範囲よりも大きいと充電時にリチウムイオンがSiもしくはSi合金表面にトラップされる問題が顕著になり、初回充放電効率が低下するという問題が発生する。 The Si or Si alloy of the present invention has a surface hydroxyl group amount of 1.0/nm 2 to 3.0/nm 2 , preferably 1.2/nm 2 to 2.7/nm 2 , and more preferably 1.3/nm 2 to 2.5/nm 2 . If the number of surface hydroxyl groups is less than this range, it is difficult to coat the Si or Si alloy surface with a polymer, and there is a problem that the initial expansion rate of the composite active material for lithium secondary batteries is high. If the number of surface hydroxyl groups is greater than this range, the problem of lithium ions being trapped on the Si or Si alloy surface during charging becomes significant, and there is a problem that the initial charge/discharge efficiency is reduced.
表面水酸基量の測定においては、従来知られている滴定法を用いることができる。まず、SiまたはSi合金のスラリーを80℃~110℃の温度で乾燥させ、必要に応じて軽く乳鉢で解砕し、SiまたはSi合金の粉末を得る。この粉末を20重量%の塩化ナトリウム水溶液30ccとエタノール10ccの混合溶媒に添加し、軽く攪拌する。その後、該スラリーをスターラーチップで攪拌しながら0.1mol/LのNaOH水溶液を滴下し、pHを4に調整する。その後、さらに溶液のpHが9で安定するまで該NaOH水溶液を滴下する。SiまたはSi合金の表面水酸基量は以下の式で与えられる。 A conventional titration method can be used to measure the amount of surface hydroxyl groups. First, the Si or Si alloy slurry is dried at a temperature of 80°C to 110°C, and if necessary, lightly crushed in a mortar to obtain Si or Si alloy powder. This powder is added to a mixed solvent of 30 cc of 20% by weight sodium chloride aqueous solution and 10 cc of ethanol, and lightly stirred. Then, while stirring the slurry with a stirrer tip, 0.1 mol/L NaOH aqueous solution is dropped to adjust the pH to 4. Then, the NaOH aqueous solution is further dropped until the pH of the solution stabilizes at 9. The amount of surface hydroxyl groups of Si or Si alloy is given by the following formula.
表面水酸基量(個/nm2)=c×V×NA/C×S
c(mol/L):滴定に用いたNaOH水溶液の濃度
V(L):pH4から9に上げるのに要した水酸化ナトリウム溶液の容量
NA(個/mol)=アボガドロ数
C(g):SiまたはSi合金の重量
S(nm2/g):SiまたはSi合金のBET比表面積
滴定は手動又は自動滴定装置のいずれでもよい。また、溶液のpHをpH4やpH9で安定させる際に、必要に応じて0.1mol/LのHClを用いてもよい。BET比表面積は、試料を200℃で20分真空乾燥した後、窒素吸着一点法、または多点法で測定される値である。
Amount of surface hydroxyl groups (number/nm 2 )=c×V×NA/C×S
c (mol/L): concentration of NaOH aqueous solution used in titration V (L): volume of sodium hydroxide solution required to increase pH from 4 to 9 NA (pieces/mol) = Avogadro's number C (g): weight of Si or Si alloy S (nm 2 /g): BET specific surface area of Si or Si alloy Titration may be performed manually or with an automatic titrator. In addition, when stabilizing the pH of the solution at pH 4 or pH 9, 0.1 mol/L of HCl may be used as necessary. The BET specific surface area is a value measured by a nitrogen adsorption single-point method or a multipoint method after vacuum drying the sample at 200°C for 20 minutes.
本発明のSiまたはSi合金は、酸素含有量(重量%)をBET比表面積(m2/g)で割った値が0.1~0.4、好ましくは0.1~0.3、さらに好ましくは0.1~0.2である。酸素含有量(重量%)をBET比表面積(m2/g)で割った値がこの範囲よりも小さいと、SiまたはSi合金表面に高分子膜を被覆することが困難であり、リチウム二次電池用複合活物質の初回膨張率が高くなるという問題があり、またこの範囲よりも大きいと充電時にLiイオンがSiもしくはSi合金表面にトラップされやすくなり、初回充放電効率が低下するという問題が発生する。 In the Si or Si alloy of the present invention, the value obtained by dividing the oxygen content (wt%) by the BET specific surface area ( m2 /g) is 0.1 to 0.4, preferably 0.1 to 0.3, and more preferably 0.1 to 0.2. If the value obtained by dividing the oxygen content (wt%) by the BET specific surface area ( m2 /g) is smaller than this range, it is difficult to coat the Si or Si alloy surface with a polymer film, and there is a problem that the initial expansion rate of the composite active material for lithium secondary batteries is high, and if it is larger than this range, Li ions are easily trapped on the Si or Si alloy surface during charging, and there is a problem that the initial charge/discharge efficiency is reduced.
本発明のSiまたはSi合金の製造方法について説明する。 The method for producing Si or Si alloy of the present invention will be explained.
SiまたはSi合金の原料としては、平均粒径(D50)が0.01~10μmの粉末を使用することが好ましい。所定の平均粒径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョ-クラッシャ-等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボ-ル又はビーズなどの粉砕媒体を運動させ、その運動エネルギ-による衝撃力、摩擦力、圧縮力を利用して、被砕物を粉砕するボ-ルミル、媒体撹拌ミルや、ロ-ラによる圧縮力を利用して粉砕を行うロ-ラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマ-、ブレ-ド、ピンなどを固設したロ-タ-の回転による衝撃力を利用して被砕物を粉砕するハンマ-ミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザ-」などを用いて微粉砕することができる。 As the raw material for Si or Si alloy, it is preferable to use powder with an average particle size (D50) of 0.01 to 10 μm. To obtain a Si compound with a specified average particle size, the raw material for the above-mentioned Si compound (ingot, wafer, powder, etc.) is pulverized in a pulverizer, and in some cases a classifier is used. In the case of lumps such as ingots and wafers, they can first be pulverized using a coarse pulverizer such as a jaw crusher. The material can then be finely pulverized using a ball mill, a media agitator mill, or a roller mill, which uses the compression force of rollers to pulverize the material, by moving a pulverizing medium such as balls or beads, and using the impact, friction, and compression forces generated by the kinetic energy of the pulverization medium; a jet mill, which pulverizes the material by colliding it at high speed with the lining material or with each other, and using the impact force generated by the impact; a hammer mill, pin mill, or disk mill, which pulverize the material by using the impact force generated by the rotation of a rotor to which hammers, blades, pins, etc. are fixed; a colloid mill that uses shear force; or a high-pressure wet opposed collision type disperser called an "ultimizer."
粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビ-ズミルを用い、ビーズ径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、又は、使用される気流の水分や酸素濃度を調整して行う。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 Both wet and dry grinding can be used. For further fine grinding, for example, a wet bead mill can be used to gradually reduce the bead diameter, thereby obtaining very fine particles. In addition, to adjust the particle size distribution after grinding, dry classification, wet classification, or sieving classification can be used. Dry classification mainly uses airflow, and the processes of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solids and gas), and discharge are performed sequentially or simultaneously. In order to prevent a decrease in classification efficiency due to interference between particles, particle shape, airflow turbulence, velocity distribution, static electricity, etc., pretreatment is performed before classification (adjustment of moisture, dispersibility, humidity, etc.), or the moisture and oxygen concentration of the airflow used is adjusted. In dry types with an integrated classifier, grinding and classification are performed at the same time, making it possible to achieve the desired particle size distribution.
別の所定の平均粒径のSiまたはSi合金を得る方法としては、プラズマやレ-ザ-等でSi化合物を加熱して蒸発させ、不活性雰囲気中で凝固させて得る方法、又は、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。 Other methods for obtaining Si or Si alloys with a specified average particle size include heating and evaporating a Si compound using plasma or laser, etc., and solidifying it in an inert atmosphere, or using CVD or plasma CVD using a gas source. These methods are suitable for obtaining ultrafine particles of 0.1 μm or less.
酸素含有量や表面水酸基量を調整するために、SiまたはSi合金の表面に化学的な処理を施す。例えば、SiまたはSi合金を過酸化水素、硝酸、硫酸、過マンガン酸カリウム、二クロム酸カリウム、次亜塩素酸ナトリウム、三酸化クロム、過硫酸アンモニウム、過硫酸カリウム、等の酸化剤で処理したり、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウムなどのアルカリ溶液で処理したりすることができる。また、必要に応じてSiまたはSi合金の表面に金属アルコキシドやカルボキシル基、水酸基を含有する化合物を修飾してもよい。具体的な表面改質化合物としてはテトラエトキシシラン、テトラメトキシランなどが挙げられ、酸素含有量や表面水酸基量を上記範囲に調整可能なものであれば特に限定されない。 In order to adjust the oxygen content or the amount of surface hydroxyl groups, the surface of the Si or Si alloy is chemically treated. For example, the Si or Si alloy can be treated with an oxidizing agent such as hydrogen peroxide, nitric acid, sulfuric acid, potassium permanganate, potassium dichromate, sodium hypochlorite, chromium trioxide, ammonium persulfate, potassium persulfate, or an alkaline solution such as ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, or magnesium hydroxide. If necessary, the surface of the Si or Si alloy can be modified with a metal alkoxide or a compound containing a carboxyl group or a hydroxyl group. Specific examples of surface modification compounds include tetraethoxysilane and tetramethoxysilane, and are not particularly limited as long as the oxygen content and the amount of surface hydroxyl groups can be adjusted to the above ranges.
表面改質化合物を用いる際には、SiまたはSi合金100質量部に対して表面改質化合物を0.1~300質量部添加することが好ましい。修飾反応中の粒子の凝集を防ぐため、必要に応じてポリカルボン酸系の安定化剤を添加してもよい。修飾反応を促進するため、必要に応じてアンモニア、水酸化ナトリウム、水酸化カリウム又は炭酸水素ナトリウムなどの水に溶けてアルカリ性を示す化合物や、塩酸、硝酸、酢酸又は硫酸などの水に溶けて酸性を示す化合物等の反応促進剤を添加してもよい。反応性が高く、金属化合物が残存しないことから、反応促進剤はアンモニア、塩酸、硝酸、酢酸であることが好ましい。反応促進剤を用いる場合、Si化合物100質量部に対して反応促進剤を0.005~54質量部添加することが好ましい。反応に用いる溶媒としては表面改質化合物が溶解する溶媒であればよく、水、エタノ-ル、メタノ-ル、アセトン、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ヘキサン又は、クロロホルムなどが挙げられ、必要に応じて混合溶媒を用いても良い。表面改質化合物としてテトラエトキシシランを用いてSi化合物表面を修飾する際には、水とエタノ-ルの混合溶媒を用いることが好ましい。該混合溶媒における各溶媒の比率は、エタノ-ル100質量部に対して、水が10~100質量部であることが好ましい。該混合溶媒中の水の比率がこの範囲内であることで、溶媒中のSiまたはSi合金が安定しやすく、なおかつ、修飾反応が十分に進みやすくなる。 When using a surface modification compound, it is preferable to add 0.1 to 300 parts by mass of the surface modification compound to 100 parts by mass of Si or Si alloy. In order to prevent aggregation of particles during the modification reaction, a polycarboxylic acid-based stabilizer may be added as necessary. In order to promote the modification reaction, a reaction accelerator such as ammonia, sodium hydroxide, potassium hydroxide, or sodium bicarbonate, which dissolves in water and shows alkalinity, or hydrochloric acid, nitric acid, acetic acid, or sulfuric acid, which dissolves in water and shows acidity, may be added as necessary. The reaction accelerator is preferably ammonia, hydrochloric acid, nitric acid, or acetic acid because it is highly reactive and does not leave any metal compound. When using a reaction accelerator, it is preferable to add 0.005 to 54 parts by mass of the reaction accelerator to 100 parts by mass of the Si compound. The solvent used in the reaction may be any solvent in which the surface modification compound dissolves, such as water, ethanol, methanol, acetone, dimethylformamide, tetrahydrofuran, toluene, hexane, or chloroform, and a mixed solvent may be used as necessary. When modifying the surface of a Si compound using tetraethoxysilane as a surface modification compound, it is preferable to use a mixed solvent of water and ethanol. The ratio of each solvent in the mixed solvent is preferably 10 to 100 parts by mass of water per 100 parts by mass of ethanol. When the ratio of water in the mixed solvent is within this range, the Si or Si alloy in the solvent is likely to be stable, and the modification reaction is likely to proceed sufficiently.
SiまたはSi合金に表面改質化合物を被覆した後に、必要に応じて、ボ-ルミルやビ-ズミルを用いて上記SiまたはSi合金を粉砕・微粒化しても良い。解砕に用いるボ-ルはジルコニア又はアルミナが好ましい。解砕時間は1~24時間が好ましく、より好ましくは1~12時間である。 After the Si or Si alloy is coated with the surface-modifying compound, the Si or Si alloy may be pulverized and atomized using a ball mill or a bead mill, if necessary. The balls used for crushing are preferably zirconia or alumina. The crushing time is preferably 1 to 24 hours, more preferably 1 to 12 hours.
また、SiまたはSi合金を粉砕・微粒化した後、必要に応じて遠心分離によりSiまたはSi合金表面を修飾する際に用いた溶媒を水に置換することが好ましい。 In addition, after the Si or Si alloy is pulverized and atomized, it is preferable to replace the solvent used to modify the Si or Si alloy surface with water by centrifugation, if necessary.
本発明のリチウム二次電池用複合活物質は前記SiまたはSi合金及び結晶性炭素を含むリチウム二次電池用複合活物質であって、該SiまたはSi合金の周囲に空隙構造を有することを特徴とするものであり、空隙は、SiまたはSi合金の膨張応力を緩和するために導入される。 The composite active material for lithium secondary batteries of the present invention is a composite active material for lithium secondary batteries containing the above-mentioned Si or Si alloy and crystalline carbon, and is characterized in that it has a void structure around the Si or Si alloy, and the voids are introduced to relieve the expansion stress of the Si or Si alloy.
本発明のリチウム二次電池用複合活物質における、Si化合物の周囲に空隙を有する構造とは、特に、Si化合物と結晶性炭素の間に、充電時のSi化合物の膨張による膨張応力を緩和するための空間を有する構造である。 In the composite active material for lithium secondary batteries of the present invention, the structure having voids around the Si compound is particularly a structure having spaces between the Si compound and the crystalline carbon to relieve the expansion stress caused by the expansion of the Si compound during charging.
リチウム二次電池用複合活物質におけるSi化合物の周囲に空隙を有する構造の中でも、特にSiまたはSi合金が結晶性炭素に囲まれた構造を有し、かつSEM像観察により計測された前記リチウム二次電池用複合活物質中の空隙体積が該リチウム二次電池用複合活物質全体の体積の2%~90%であることが好ましく、さらに好ましくは10~65%であり、特に好ましくは10~50%であり、より好ましくは15~50%である。このような構造を有するリチウム二次電池用複合活物質をリチウム二次電池の活物質として用いることにより、リチウム二次電池用複合活物質の膨張が抑制され、該リチウム二次電池は優れたサイクル特性を有する。 Among the structures in which the Si compound is surrounded by voids in the composite active material for lithium secondary batteries, it is particularly preferred that the composite active material for lithium secondary batteries has a structure in which Si or a Si alloy is surrounded by crystalline carbon, and the void volume in the composite active material for lithium secondary batteries measured by SEM image observation is 2% to 90% of the total volume of the composite active material for lithium secondary batteries, more preferably 10 to 65%, particularly preferably 10 to 50%, and even more preferably 15 to 50%. By using a composite active material for lithium secondary batteries having such a structure as the active material for a lithium secondary battery, the expansion of the composite active material for lithium secondary batteries is suppressed, and the lithium secondary battery has excellent cycle characteristics.
また、本発明のリチウム二次電池用複合活物質中のSiまたはSi合金体積に対する、SEM像観察により計測されたリチウム二次電池用複合活物質中の空隙体積の比は0.5~200であることが好ましく、特に好ましくは0.5~185であり、より好ましくは0.5~10である。 The ratio of the void volume in the composite active material for lithium secondary batteries of the present invention measured by SEM image observation to the volume of Si or Si alloy in the composite active material for lithium secondary batteries is preferably 0.5 to 200, particularly preferably 0.5 to 185, and more preferably 0.5 to 10.
空隙の算出方法として、以下の方法が挙げられる。 The following methods can be used to calculate voids:
まず、断面加工装置を用いてリチウム二次電池用負極を電極の垂直方向に切断する。断面加工に用いる装置としては、より明瞭な画像を得るために、クロスセクションポリッシャ-を用いることが好ましい。また、リチウム二次電池用複合活物質粉末、すなわち粉末状の本発明のリチウム二次電池用複合活物質をエポキシ樹脂に包埋した後にこれを切断し、その後、顕微鏡を用いて得られた断面部分を観察する。ここで用いられる顕微鏡は、解像度や観察範囲を十分得る必要があるため、電界放出型走査電子顕微鏡(FE-SEM)である。その後、得られた2次電子像の印刷画像の上に透明シ-トを2枚重ね、1枚のシ-トにはリチウム二次電池用複合活物質の輪郭を描き、もう1枚のシ-トには空隙部分をペンで塗りつぶす。透明シ-トとしては、作業性が良いことから、OHPシ-ト(オ-バ-ヘッドプロジェクタ-用シ-ト)を用いる。次に、それぞれの画像をJPEGやTIFFデ-タに変換し、Nano Hunter NS2K-Pro(ナノシステム株式会社)を用いて2値化し、リチウム二次電池用複合活物質の面積と空隙部分の面積を算出する。最後に、空隙率(%)=空隙部分の面積(μm2)/リチウム二次電池用複合活物質の面積(μm2)×100の式からリチウム二次電池用複合活物質中の空隙率を算出する。 First, the negative electrode for lithium secondary batteries is cut in the vertical direction of the electrode using a cross-section processing device. As a device used for cross-section processing, a cross-section polisher is preferably used in order to obtain a clearer image. In addition, the composite active material powder for lithium secondary batteries, that is, the powdered composite active material for lithium secondary batteries of the present invention is embedded in an epoxy resin, and then cut, and the obtained cross-section portion is observed using a microscope. The microscope used here is a field emission scanning electron microscope (FE-SEM) because it is necessary to obtain sufficient resolution and observation range. Then, two transparent sheets are placed on top of the printed image of the obtained secondary electron image, and the outline of the composite active material for lithium secondary batteries is drawn on one sheet, and the voids on the other sheet are filled in with a pen. As the transparent sheet, an OHP sheet (overhead projector sheet) is used because of its good workability. Next, each image is converted to JPEG or TIFF data and binarized using Nano Hunter NS2K-Pro (Nano Systems Co., Ltd.), and the area of the composite active material for lithium secondary batteries and the area of the voids are calculated. Finally, the porosity in the composite active material for lithium secondary batteries is calculated from the formula: porosity (%) = area of voids (μm 2 ) / area of composite active material for lithium secondary batteries (μm 2 ) × 100.
リチウム二次電池用複合活物質中におけるSi化合物の含有量は、5~80質量部が好ましく、さらに好ましくは10~50質量部であり、特に好ましくは15~50質量部である。Si化合物の含有量が5量部未満の場合、黒鉛をリチウム二次電池用複合活物質とする従来の負極に比べて十分に大きい容量が得られやすく、一方、80質量部を超える場合、サイクル劣化、すなわちサイクル特性の低下が小さくなりやすい。 The content of the Si compound in the composite active material for lithium secondary batteries is preferably 5 to 80 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 15 to 50 parts by mass. If the content of the Si compound is less than 5 parts by mass, a sufficiently large capacity is likely to be obtained compared to conventional negative electrodes that use graphite as a composite active material for lithium secondary batteries. On the other hand, if the content of the Si compound is more than 80 parts by mass, cycle deterioration, i.e., the decrease in cycle characteristics, is likely to be small.
本発明のリチウム二次電池用複合活物質において、結晶性炭素の含有量は95~10質量部が好ましく、70~10質量部が特に好ましい。結晶性炭素の含有量が10質量部未満の場合、結晶性炭素がSi化合物を覆うことができ、導電パスが十分となる。これによって、初回体積放電容量の劣化が起こりにくい。一方、結晶性炭素の含有量が95質量部を超える場合、充電容量が高くなりにくい。 In the composite active material for lithium secondary batteries of the present invention, the content of crystalline carbon is preferably 95 to 10 parts by mass, and particularly preferably 70 to 10 parts by mass. When the content of crystalline carbon is less than 10 parts by mass, the crystalline carbon can cover the Si compound, and the conductive path becomes sufficient. This makes it difficult for the initial volumetric discharge capacity to deteriorate. On the other hand, when the content of crystalline carbon exceeds 95 parts by mass, the charging capacity is difficult to increase.
結晶性炭素として、焼成すると結晶性炭素になるものであれば特に制限はなく、特に黒鉛由来の炭素が好ましい。 There are no particular limitations on the crystalline carbon, so long as it becomes crystalline carbon when fired, and carbon derived from graphite is particularly preferred.
本発明でいう焼成すると結晶性炭素となる黒鉛としては、天然黒鉛材、人造黒鉛等が挙げられ、その中でも通常グラファイトと呼ばれる薄片化黒鉛が好ましい。 The graphite that becomes crystalline carbon when fired in the present invention includes natural graphite and artificial graphite, among which exfoliated graphite, commonly called graphite, is preferred.
本明細書においては、薄片化黒鉛とは、グラフェンシ-トの積層数が400層以下の黒鉛を意図する。なお、グラフェンシ-トは主にファンデルワ-ルス力によって互いに結合している、すなわちファンデルワ-ルス力によって、グラフェンシ-ト同士が積層している。 In this specification, exfoliated graphite refers to graphite with 400 or fewer graphene sheet layers. The graphene sheets are bonded together primarily by van der Waals forces, that is, the graphene sheets are stacked together by van der Waals forces.
薄片化黒鉛におけるグラフェンシ-トの積層数は、Si化合物と、薄片化黒鉛とがより均一に分散することでリチウム二次電池用複合活物質を用いた電極材料の膨張がより抑制される点、および/または、リチウム二次電池のサイクル特性がより優れる点(以後、単に「本発明の効果がよ優れる点」)で、300層以下が好ましく、200層以下がより好ましく、150層以下がさらに好ましい。取り扱い性の点からは、グラフェンシ-トの積層数は5層以上が好ましい。 The number of layers of the graphene sheets in the exfoliated graphite is preferably 300 layers or less, more preferably 200 layers or less, and even more preferably 150 layers or less, in order to more uniformly disperse the Si compound and the exfoliated graphite, thereby further suppressing the expansion of the electrode material using the composite active material for lithium secondary batteries, and/or to improve the cycle characteristics of the lithium secondary battery (hereinafter simply referred to as "the advantages of the present invention"). From the viewpoint of ease of handling, the number of layers of the graphene sheets is preferably 5 layers or more.
なお、薄片化黒鉛におけるグラフェンシ-トの積層数は透過型電子顕微鏡(TEM)を用いて測定することができる。 The number of graphene sheets stacked in exfoliated graphite can be measured using a transmission electron microscope (TEM).
薄片化黒鉛の平均厚みは、本発明の効果がより優れる点で、40nm以下が好ましく、22nm以下がより好ましい。薄片化黒鉛の平均厚みの下限は、製造手順が簡易になることから、4nm以上が好ましい。 The average thickness of the exfoliated graphite is preferably 40 nm or less, and more preferably 22 nm or less, in order to obtain a better effect of the present invention. The lower limit of the average thickness of the exfoliated graphite is preferably 4 nm or more, in order to simplify the manufacturing procedure.
なお、上記薄片化黒鉛の平均厚みの測定方法は、電子顕微鏡観察(TEM)によって薄片化黒鉛を観察し、薄片化黒鉛中の積層したグラフェンシ-トの層の厚みを10個以上測定して、その値を算術平均することによって、薄片化黒鉛の平均厚みが得られる。 The average thickness of the exfoliated graphite is measured by observing the exfoliated graphite using a transmission electron microscope (TEM), measuring the thickness of 10 or more layers of stacked graphene sheets in the exfoliated graphite, and calculating the arithmetic average of the values to obtain the average thickness of the exfoliated graphite.
薄片化黒鉛は、黒鉛化合物、具体的には天然黒鉛に含まれるグラフェンシ-トの層面間において、これを剥離することで薄片化して得られる黒鉛である。 Exfoliated graphite is graphite obtained by exfoliating the graphene sheets contained in graphite compounds, specifically natural graphite, between the layers.
薄片化黒鉛としては、例えば、いわゆる膨張黒鉛が挙げられる。 An example of exfoliated graphite is so-called expanded graphite.
膨張黒鉛中には、黒鉛が含まれており、例えば、鱗片状黒鉛を濃硫酸や硝酸や過酸化水素水等の薬液で処理し、グラフェンシ-トの隙間にこれら薬液をインタ-カレ-トさせた後、さらに加熱してインタ-カレ-トされた薬液が気化する際にグラフェンシ-トの隙間を広げることによって得られる。なお、後述するように、膨張黒鉛を出発原料としてリチウム二次電池用複合活物質を製造することができる。つまり、リチウム二次電池用複合活物質中の黒鉛として、膨張黒鉛を使用することもできる。 Expanded graphite contains graphite, and can be obtained, for example, by treating flake graphite with chemicals such as concentrated sulfuric acid, nitric acid, or hydrogen peroxide, intercalating these chemicals into the gaps in the graphene sheet, and then heating the sheet to expand the gaps in the graphene sheet as the intercalated chemicals evaporate. As described below, a composite active material for lithium secondary batteries can be manufactured using expanded graphite as a starting material. In other words, expanded graphite can also be used as the graphite in the composite active material for lithium secondary batteries.
また、黒鉛として、球形化処理が施された膨張黒鉛も挙げられる。球形化処理の手順は後段で詳述する。なお、後述するように、膨張黒鉛に球形化処理を実施する際には、他の成分(例えば、ハ-ドカ-ボン及びソフトカ-ボンの前駆体、など)と共に、球形化処理をしてもよい。 Graphite also includes expanded graphite that has been subjected to a spheroidizing process. The procedure for the spheroidizing process will be described in detail later. As will be described later, when performing the spheroidizing process on expanded graphite, the spheroidizing process may be performed together with other components (e.g., precursors of hard carbon and soft carbon, etc.).
結晶性炭素としては純度99重量%以上、若しくは不純物量10000ppm以下であり、S量が1重量%以下、及び/又は、BET比表面積が100m2/g以下であることが好ましい。純度が99重量%以上、若しくは不純物量が10000ppm以下であると、不純物由来のSEI形成による不可逆容量が小さくなるため、初回の充電容量に対する放電容量である初回充放電効率が低くなりにくくなる傾向がある。また、S量が1重量%以下になると、同様に、不可逆容量が小さくなるため、初回充放電効率が低くなりにくくなる。さらに好ましくは、S量が0.5重量%以下である。黒鉛のBET比表面積は、好ましくは5~100m2/gであり、特に好ましくは20~50m2/gである。BET比表面積が100m2/g以下であると、電解液との反応する面積が少なくなるため、初回充放電効率が低くなりにくい。 The crystalline carbon preferably has a purity of 99% by weight or more, an impurity content of 10,000 ppm or less, an S content of 1% by weight or less, and/or a BET specific surface area of 100 m 2 /g or less. When the purity is 99% by weight or more, or the impurity content is 10,000 ppm or less, the irreversible capacity due to the formation of SEI derived from impurities is small, so the initial charge/discharge efficiency, which is the discharge capacity relative to the initial charge capacity, tends to be less likely to be low. Similarly, when the S content is 1% by weight or less, the irreversible capacity is small, so the initial charge/discharge efficiency is less likely to be low. More preferably, the S content is 0.5% by weight or less. The BET specific surface area of graphite is preferably 5 to 100 m 2 /g, and particularly preferably 20 to 50 m 2 /g. When the BET specific surface area is 100 m 2 /g or less, the area that reacts with the electrolyte is small, so the initial charge/discharge efficiency is less likely to be low.
本発明のリチウム二次電池用複合活物質はSiまたはSi合金が、0.5μm以下の厚みの結晶性炭素層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該結晶性炭素層がリチウム二次電池用複合活物質の表面付近で湾曲してリチウム二次電池用複合活物質を覆っている構造が好ましい。 The composite active material for lithium secondary batteries of the present invention has a structure in which Si or a Si alloy is sandwiched between crystalline carbon layers having a thickness of 0.5 μm or less, and the structure is spread in a laminated and/or mesh-like manner, and it is preferable that the crystalline carbon layers are curved near the surface of the composite active material for lithium secondary batteries to cover the composite active material for lithium secondary batteries.
本発明のリチウム二次電池用複合活物質においては、該結晶性炭素層がSi化合物の表面付近で湾曲してSi化合物とその近傍に存在する空隙を覆っており、結晶性炭素は三次元ネットワ-クを構築していること、すなわち結晶性炭素により形成された空隙の一部にSi化合物が含まれる構造が繰り返された構造であることが好ましい。 In the composite active material for lithium secondary batteries of the present invention, the crystalline carbon layer is curved near the surface of the Si compound to cover the Si compound and the voids present in its vicinity, and the crystalline carbon forms a three-dimensional network, i.e., it is preferable that the structure is a repeated structure in which the Si compound is contained in part of the voids formed by the crystalline carbon.
結晶性炭素層の厚みが0.5μmを超えると結晶性炭素層の電子伝達効果が薄まる。結晶性炭素層を断面で見て線状の場合、その長さはリチウム二次電池用複合活物質のサイズの半分以上あることが電子伝達に好ましく、リチウム二次電池用複合物質のサイズと同等程度であることがさらに好ましい。結晶性炭素層が網目状の場合、結晶性炭素層の網がリチウム二次電池用複合活物質のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、リチウム二次電池用複合活物質のサイズと同等程度であることがさらに好ましい。 If the thickness of the crystalline carbon layer exceeds 0.5 μm, the electron transfer effect of the crystalline carbon layer is weakened. If the crystalline carbon layer is linear when viewed in cross section, it is preferable for electron transfer that its length is at least half the size of the composite active material for lithium secondary batteries, and more preferably is approximately the same as the size of the composite active material for lithium secondary batteries. If the crystalline carbon layer is mesh-like, it is preferable for electron transfer that the mesh of the crystalline carbon layer is connected over at least half the size of the composite active material for lithium secondary batteries, and more preferably is approximately the same as the size of the composite active material for lithium secondary batteries.
本発明のリチウム二次電池用複合活物質においては、結晶性炭素層がリチウム二次電池用複合活物質の表面付近で湾曲してリチウム二次電池用複合活物質を覆うことが好ましい。そのような形状であることで、結晶性炭素層の端面からの電解液の侵入による、Si化合物や結晶性炭素層端面と電解液との直接接触による充放電時に反応物が形成され、充放電効率が下がるというリスクが低減する。 In the composite active material for lithium secondary batteries of the present invention, it is preferable that the crystalline carbon layer bends near the surface of the composite active material for lithium secondary batteries to cover the composite active material for lithium secondary batteries. Such a shape reduces the risk of a reaction product being formed during charging and discharging due to direct contact between the electrolyte and the Si compound or the end face of the crystalline carbon layer caused by the electrolyte penetrating from the end face of the crystalline carbon layer, resulting in a decrease in charge and discharge efficiency.
結晶性炭素は、ICP発光分光分析法による26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値より求めた純度が99重量%以上で、酸素フラスコ燃焼法によるイオンクロマトグラフィ-(IC)測定法によるS量が1重量%以下、及び/又はBET比表面積100m2/g以下であることが好ましい。 The crystalline carbon preferably has a purity of 99% by weight or more as determined from the semi-quantitative impurity values of 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd, Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U) by ICP atomic emission spectroscopy, an S amount of 1% by weight or less as determined by an ion chromatography (IC) measurement method using an oxygen flask combustion method, and/or a BET specific surface area of 100 m2 /g or less.
不純物の測定は、ICP発光分光分析法により、以下の26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値により測定する。また、S量は、酸素フラスコ燃焼法で燃焼吸収処理した後、フィルタ-濾過してイオンクロマトグラフィ-(IC)測定により行う。 Impurities are measured using ICP emission spectrometry, measuring the semi-quantitative impurity values of the following 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd, Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U). The amount of S is measured using ion chromatography (IC) after filtering after combustion and absorption treatment using the oxygen flask combustion method.
本発明のリチウム二次電池用複合活物質は、非晶性炭素を該リチウム二次電池用複合活物質の内部及び/又は外層部分に含むことがさらに好ましい。 It is further preferable that the composite active material for lithium secondary batteries of the present invention contains amorphous carbon in the inner and/or outer layer portions of the composite active material for lithium secondary batteries.
該非晶性炭素としては、焼成すると非晶性炭素になるものであれば特に制限はなく、特に黒鉛以外の非晶質もしくは微結晶の炭素質物が好ましい。 There are no particular limitations on the amorphous carbon, so long as it becomes amorphous carbon when fired, and amorphous or microcrystalline carbonaceous materials other than graphite are particularly preferred.
焼成すると非晶性炭素となる黒鉛以外の非晶質もしくは微結晶の炭素質物としては、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカ-ボン)と、黒鉛化しにくい難黒鉛化炭素(ハ-ドカ-ボン)、もしくは黒鉛様の芳香族系化合物が挙げられ、ソフトカ-ボン又はハ-ドカ-ボンの少なくともいずれかであることが好ましく、ソフトカ-ボンが特に好ましい。 Amorphous or microcrystalline carbonaceous materials other than graphite that become amorphous carbon when fired include easily graphitized carbon (soft carbon), which is graphitized by heat treatment at temperatures above 2000°C, non-graphitized carbon (hard carbon), which is difficult to graphitize, and graphite-like aromatic compounds. At least one of soft carbon and hard carbon is preferable, and soft carbon is particularly preferable.
ハ-ドカ-ボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、これにより得られるハ-ドカ-ボンはリチウム二次電池用炭素材として用いることができる。ハ-ドカ-ボンの原材料(前駆体)となる樹脂又は樹脂組成物として、高分子化合物など(例えば、熱硬化性樹脂、熱可塑性樹脂)が挙げられる。熱硬化性樹脂としては、例えば、ノボラック型フェノ-ル樹脂、レゾ-ル型フェノ-ル樹脂などのフェノ-ル樹脂、ビスフェノ-ル型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、イソシアネ-ト樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。 Hard carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition. By carbonizing the resin or resin composition, the hard carbon obtained can be used as a carbon material for lithium secondary batteries. Examples of resins or resin compositions that serve as raw materials (precursors) for hard carbon include polymer compounds (e.g., thermosetting resins, thermoplastic resins). Examples of thermosetting resins include phenolic resins such as novolac-type phenolic resins and resole-type phenolic resins, epoxy resins such as bisphenol-type epoxy resins and novolac-type epoxy resins, melamine resins, urea resins, aniline resins, isocyanate resins, furan resins, ketone resins, unsaturated polyester resins, and urethane resins. Modified products of these resins modified with various components can also be used.
また、熱可塑性樹脂としては、例えば、ポリエチレン、ポリスチレン、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、ポリエチレンテレフタレ-ト、ポリカ-ボネ-ト、ポリアセタ-ル、ポリフェニレンエ-テル、ポリブチレンテレフタレ-ト、ポリフェニレンサルファイド、ポリサルホン、ポリエ-テルサルホン又はポリエ-テルエ-テルケトンなどが挙げられる。これらのうち1種または2種以上を組み合わせて用いることができる。 Examples of thermoplastic resins include polyethylene, polystyrene, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, and polyetheretherketone. One or a combination of two or more of these may be used.
これらの中でも特に好ましいハ-ドカ-ボンの原材料(前駆体)は、ノボラック型フェノ-ル樹脂、レゾ-ル型フェノ-ル樹脂などのフェノ-ル樹脂等が挙げられる。 Among these, particularly preferred hard carbon raw materials (precursors) include phenolic resins such as novolac-type phenolic resins and resole-type phenolic resins.
ハ-ドカ-ボンの前駆体の形状は、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 Hard carbon precursors can be in any shape, including powder, plates, granules, fibers, chunks, and spheres. It is preferable that these precursors dissolve in the solvent used when mixing the various components.
使用されるハ-ドカ-ボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で100以上が好ましく、1,000,000以下がより好ましい。 The weight average molecular weight of the hard carbon precursor used is preferably 100 or more, and more preferably 1,000,000 or less, in order to obtain a better effect of the present invention.
ソフトカ-ボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、これにより得られたソフトカ-ボンはリチウム二次電池用炭素材として用いることができる。ソフトカ-ボンの原材料(前駆体)となる樹脂又は樹脂組成物としては、石炭系ピッチ(例えば、コ-ルタ-ルピッチ)、石油系ピッチ、メソフェ-ズピッチ、コ-クス、低分子重質油、またはそれらの誘導体などが挙げられ、石炭系ピッチ(例えば、コ-ルタ-ルピッチ)、石油系ピッチ、メソフェ-ズピッチ、コ-クス、低分子重質油、またはそれらの誘導体などが好ましい。本発明の効果がより優れる点で、ソフトカ-ボンは、石炭系ピッチなどの前駆体から得られるソフトカ-ボン、更にはコ-ルタ-ルピッチ由来のソフトカ-ボンが好ましい。 The soft carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition. The resin or resin composition is carbonized by carbonization, and the soft carbon obtained by carbonization can be used as a carbon material for lithium secondary batteries. Examples of the resin or resin composition that is the raw material (precursor) of the soft carbon include coal-based pitch (e.g., coal thal pitch), petroleum-based pitch, mesophase pitch, coke, low molecular weight heavy oil, and derivatives thereof, and coal-based pitch (e.g., coal thal pitch), petroleum-based pitch, mesophase pitch, coke, low molecular weight heavy oil, and derivatives thereof are preferred. In terms of superior effects of the present invention, the soft carbon is preferably soft carbon obtained from a precursor such as coal-based pitch, and more preferably soft carbon derived from coal thal pitch.
ソフトカ-ボンの前駆体の形状は、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 Soft carbon precursors can be in any shape, including powder, plates, granules, fibers, chunks, and spheres. These precursors are preferably soluble in the solvent used to mix the various components.
使用されるソフトカ-ボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で1,000以上が好ましく、1,000,000以下がより好ましい。 The weight average molecular weight of the soft carbon precursor used is preferably 1,000 or more, and more preferably 1,000,000 or less, in order to obtain a better effect of the present invention.
黒鉛様の芳香族系化合物としては、例えば、ド-パミン塩酸塩、ジヒドロキシフェニルアラニン、5,6-ジヒドロキヒインド-ルなどのド-パミン誘導体、タンニン酸、カテキン、アントシアニン、ルチン、イソフラボンなどのポリフェノ-ル類、カテコ-ルアミン、没色子酸、ピロガロ-ル又はガラセトフェノン、ならびにこれらを炭化焼成した材料が挙げられる。 Examples of graphite-like aromatic compounds include dopamine derivatives such as dopamine hydrochloride, dihydroxyphenylalanine, and 5,6-dihydroxykihindole, polyphenols such as tannic acid, catechin, anthocyanin, rutin, and isoflavone, catecholamine, gallic acid, pyrogallol, and galacetophenone, as well as materials obtained by carbonizing and calcining these compounds.
これらのうち1種または2種以上を組み合わせて用いることができる。 One or more of these can be used in combination.
これらの中でも特に好ましい黒鉛様の芳香族系化合物としては、ド-パミン塩酸塩、ジヒドロキシフェニルアラニン又は5,6-ジヒドロキヒインド-ルなどのド-パミン誘導体、ならびにその炭化物が挙げられる。 Among these, particularly preferred graphite-like aromatic compounds include dopamine hydrochloride, dopamine derivatives such as dihydroxyphenylalanine or 5,6-dihydroxyphenylindole, and carbides thereof.
非晶性炭素の含有量は、1~80質量部が好ましく、さらに好ましくは3~60質量部であり、特に好ましくは5~50質量部である。非晶性炭素の含有量が1量部未満の場合、リチウム二次電池用複合活物質と電解液の反応を抑制することができず、充放電を繰り返しても充放電効率が向上しない問題があり、80質量部を超える場合、非晶性炭素自身の不可逆容量が大きいため、リチウム二次電池用複合活物質の初回充放電効率も低下する問題が発生する。 The content of amorphous carbon is preferably 1 to 80 parts by mass, more preferably 3 to 60 parts by mass, and particularly preferably 5 to 50 parts by mass. If the content of amorphous carbon is less than 1 part by mass, the reaction between the composite active material for lithium secondary batteries and the electrolyte cannot be suppressed, and there is a problem that the charge/discharge efficiency does not improve even if the battery is repeatedly charged and discharged. If the content of amorphous carbon is more than 80 parts by mass, the irreversible capacity of the amorphous carbon itself is large, and there is a problem that the initial charge/discharge efficiency of the composite active material for lithium secondary batteries also decreases.
本発明のリチウム二次電池用複合活物質の平均粒径(D50)は、0.1μm~50μmが好ましく、さらに好ましくは0.3μm~40μm、特に好ましくは0.5μm~30μmである。平均粒径がこの範囲から外れると、電極塗工の際に塗りむらが発生しやすくなり好ましくない。また、リチウム二次電池用複合活物質のBET比表面積としては0.5~200m2/gが好ましく、さらに好ましくは1m2/g~150m2/g、特に好ましくは1m2/g~100m2/gである。BET比表面積が大きいと電解液との反応が多くなり、初回充放電効率が低下するという問題が発生する。 The average particle size (D50) of the composite active material for lithium secondary batteries of the present invention is preferably 0.1 μm to 50 μm, more preferably 0.3 μm to 40 μm, and particularly preferably 0.5 μm to 30 μm. If the average particle size is outside this range, coating unevenness is likely to occur during electrode coating, which is not preferable. The BET specific surface area of the composite active material for lithium secondary batteries is preferably 0.5 to 200 m 2 /g, more preferably 1 m 2 /g to 150 m 2 /g, and particularly preferably 1 m 2 /g to 100 m 2 /g. If the BET specific surface area is large, the reaction with the electrolyte increases, causing a problem of a decrease in the initial charge/discharge efficiency.
本発明のリチウム二次電池用複合活物質の製造方法は、SiまたはSi合金に高分子モノマ-と開始剤と必要に応じて分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、必要に応じて炭素化合物と該複合粒子もしくは該焼成粒子とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含むことを特徴とするものである。 The method for producing a composite active material for lithium secondary batteries of the present invention is characterized by including the steps of adding a polymer monomer, an initiator, and, if necessary, a dispersant to Si or a Si alloy, coating the Si or Si alloy with a polymer film, mixing the resulting mixture with graphite and, if necessary, a carbon compound, granulating and compacting the mixture, pulverizing and spheronizing the mixture to form substantially spherical composite particles, firing the composite particles in an inert atmosphere, and, if necessary, mixing the composite particles or the fired particles with a carbon compound, and heating the mixture in an inert atmosphere.
上記工程を経たSiまたはSi合金と高分子モノマ-の反応を促進させるために、必要に応じてあらかじめSiまたはSi合金の表面をシランカップリング剤等の表面修飾剤で修飾することが好ましい。表面修飾剤としては、分子内に金属アルコキシド基、カルボキシル基、又は水酸基を含むことが好ましく、具体的な表面修飾剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル系、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ系、p-スチリルトリメトキシシランなどのスチリル系、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル系、3-アクリロキシプロピルトリメトキシシランなどのアクリル系、トリス-(トリメトキシシリルプロピル)イソシアヌレ-トなどのイソシアヌレ-ト系又は3-イソシアネ-トプロピルトリエトキシシランなどのイソシアネ-ト系が挙げられ、好ましくは3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランの群から選ばれる1種以上、特に好ましくは3-メタクリロキシプロピルトリメトキシシランである。 In order to promote the reaction of the Si or Si alloy that has undergone the above process with the polymer monomer, it is preferable to modify the surface of the Si or Si alloy in advance as necessary with a surface modifier such as a silane coupling agent. The surface modifier preferably contains a metal alkoxide group, a carboxyl group, or a hydroxyl group in the molecule. Specific surface modifiers include, for example, vinyl-based such as vinyltrimethoxysilane and vinyltriethoxysilane, epoxy-based such as 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltriethoxysilane, styryl-based such as p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane. Examples of the silane include methacryl-based compounds such as 3-methacryloxypropyltriethoxysilane, acrylic compounds such as 3-acryloxypropyltrimethoxysilane, isocyanurate compounds such as tris-(trimethoxysilylpropyl)isocyanurate, and isocyanate compounds such as 3-isocyanatepropyltriethoxysilane. Of these, at least one selected from the group consisting of 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane is preferred, and 3-methacryloxypropyltrimethoxysilane is particularly preferred.
Si化合物と高分子モノマ-の反応中は、マグネチックスタ-ラ-、スリ-ワンモ-タ-、ホモミキサ-、インラインミキサ-、ビ-ズミル、ボ-ルミルなどの一般的な混合機や攪拌機を用い、各原料を均一に混合することが好ましい。反応温度は25℃が好ましい。また、反応時間は0.5~72時間が好ましく、より好ましくは0.5~24時間である。反応時間がこの範囲であることで、修飾反応が十分に進行し、なおかつ、生産性が低下しにくくなる。 During the reaction between the Si compound and the polymer monomer, it is preferable to mix the raw materials uniformly using a general mixer or stirrer such as a magnetic stirrer, three-one motor, homomixer, in-line mixer, bead mill, or ball mill. The reaction temperature is preferably 25°C. The reaction time is preferably 0.5 to 72 hours, and more preferably 0.5 to 24 hours. By keeping the reaction time within this range, the modification reaction proceeds sufficiently and productivity is less likely to decrease.
Si化合物に高分子モノマ-と開始剤を加えることにより、得られる高分子モノマ-のスラリ-を重合することにより、高分子ポリマーとなり、Si化合物の周囲に高分子ポリマー膜の被覆体が得られるものである。 By adding a polymer monomer and an initiator to a Si compound, the resulting polymer monomer slurry is polymerized to form a polymer, resulting in a coating of a polymer film around the Si compound.
Si化合物に反応させる高分子モノマ-としては、例えば、スチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、メタクリルアミド、N-メチルアクリルアミド、N、N‘-ジメチルアクリルアミド、N-tert-ブチルメタクリルアミド、N-n-ブチルメタクリルアミド、N-メチロ-ルメタクリルアミド、N-エチロ-ルメタクリルアミドなどのメタクリルアミド系、N,N’-メチレンビスアクリルアミド、N-イソプロピルアクリルアミド、N-tert-ブチルアクリルアミド、N-n-ブチルアクリルアミド、N-メチロ-ルアクリルアミド、N-エチロ-ルアクリルアミドなどのアクリルアミド系、安息香酸ビニル、ジエチルアミノスチレン、ジエチルアミノアルファ-メチルスチレン、p-ビニルベンゼンスルホン酸、p-ビニルベンゼンスルホン酸ナトリウム塩、ジビニルベンゼン、酢酸ビニル、酢酸ブチル、塩化ビニル、フッ化ビニル、臭化ビニル、無水マレイン酸、N-フェニルマレイミド、N-ブチルマレイミド、N-ビニルピロリドン、N-ビニルカルバゾ-ル、アクリロニトリル、アニリン、ピロ-ル、ウレタン重合に用いられるポリオ-ル系又はイソシアネ-ト系挙げられ、好ましくはスチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、アクリロニトリルであり、さらに好ましくは、スチレン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリロニトリル、特に好ましくはスチレン、メタクリル酸メチル又はアクリル酸メチルである。 Examples of polymer monomers to be reacted with the Si compound include methyl methacrylates such as styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, and triethylene glycol methacrylate; itaconic anhydride, itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, and acrylic acid. Acrylic acid-based compounds such as isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and hydroxybutyl acrylate; methacrylamide-based compounds such as methacrylamide, N-methylacrylamide, N,N'-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, and N-ethylolmethacrylamide; acrylamide-based compounds such as N,N'-methylenebisacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolacrylamide, and N-ethylolacrylamide; vinyl benzoate, diethylaminostyrene, diethylaminoalpha-methylstyrene, p-vinylbenzenesulfonic acid ... Examples of the methacrylic acid include sodium sulfonate, divinylbenzene, vinyl acetate, butyl acetate, vinyl chloride, vinyl fluoride, vinyl bromide, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, N-vinylpyrrolidone, N-vinylcarbazole, acrylonitrile, aniline, pyrrole, and polyols or isocyanates used in urethane polymerization, and preferably methyl methacrylates such as styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, and triethylene glycol methacrylate. Examples of the acrylic acid-based compounds include acrylic acid-based compounds such as acrylic acid-based compounds, itaconic anhydride, itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and hydroxybutyl acrylate, and acrylonitrile. More preferred are styrene, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and acrylonitrile. Particularly preferred are styrene, methyl methacrylate, and methyl acrylate.
用いる開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、過硫酸カリウム、過硫酸アンモニウム、過酸化ベンゾイル、ジイソブチリルパ-オキシド、ジ-n-プロピルパ-オキシジカ-ボネ-ト、ジイソプロピルパ-オキシジカ-ボネ-ト、ジラウロイルパ-オキシド、ジベンゾイルパ-オキシド、1,1-ジ(tert-へキシルペルオキシ)シクロヘキサン、1,1-ジ(tert-ブチルペルオキシ)シクロヘキサン、tert-ブチルヒドロパ-オキシドやジイソブチリルパ-オキシド、tert-ヘキシルペルオキシイソプロピルモノカルボネ-ト、tert-ブチルペルオキシイソプロピルモノカルボネ-ト、2,5-ジ-メチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、tert-ブチルペルオキシアセテ-ト、ジ-tert-ヘキシルペルオキシド、ジ-tert-ブチルペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、tert-ブチルヒドロペルオキシド等の有機過酸化物が挙げられる。 Examples of initiators used include azo compounds such as azobisisobutyronitrile, potassium persulfate, ammonium persulfate, benzoyl peroxide, diisobutyryl peroxide, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, dilauroyl peroxide, dibenzoyl peroxide, 1,1-di(tert-hexylperoxy)cyclohexane, 1,1-di(tert-butylperoxy)cyclohexane, and tert-butyl hydroperoxy. Examples of organic peroxides include diisobutyryl peroxide, tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxyisopropyl monocarbonate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxyacetate, di-tert-hexylperoxide, di-tert-butylperoxide, diisopropylbenzenehydroperoxide, and tert-butylhydroperoxide.
高分子モノマ-のスラリ-とする際に用いる溶媒としては、例えば、水、エタノ-ル、メタノ-ル、イソプロピルアルコ-ル、プロパノ-ル又はトルエン等が挙げられ、好ましくは水、エタノ-ル又はメタノ-ル、特に好ましくは水又はエタノ-ルである。これらは1種又は2種以上用いることができる。 Examples of solvents used to prepare a slurry of polymer monomers include water, ethanol, methanol, isopropyl alcohol, propanol, and toluene, and preferably water, ethanol, or methanol, and more preferably water or ethanol. These can be used alone or in combination of two or more.
高分子モノマ-のスラリ-における高分子モノマ-の含有量は、0.5~30重量%が好ましく、特に好ましくは1.5~20重量%である。高分子モノマ-の含有量がこの範囲であることで、Si化合物周囲の被覆体が十分な厚みとなり、結果としてSi化合物周囲の空隙量が十分となる。これにより、Li充電時のSi化合物の膨張が十分に緩和される、なおかつ、Si化合物同士の凝集が進行しにくくなる。 The polymer monomer content in the polymer monomer slurry is preferably 0.5 to 30% by weight, and particularly preferably 1.5 to 20% by weight. With the polymer monomer content in this range, the coating around the Si compound is sufficiently thick, and as a result, the amount of voids around the Si compound is sufficient. This sufficiently alleviates the expansion of the Si compound during Li charging, and also makes it difficult for aggregation between the Si compounds to progress.
高分子モノマ-のスラリ-における開始剤の含有量は、0.01~3重量%が好ましく、特に好ましくは0.01~1重量%である。 The content of the initiator in the polymer monomer slurry is preferably 0.01 to 3% by weight, and particularly preferably 0.01 to 1% by weight.
高分子モノマ-のスラリ-においては、Si化合物の分散性を向上させるため、または重合を促進させるため、分散剤を含有することが好ましく、該分散剤としては、例えば、ポリビニルピロリドン、スチレンスルホン酸ナトリウム、スチレンスルホン酸リチウム、スチレンスルホン酸アンモニウム、スチレンスルホン酸エチルエステル等のスチレンスルホン酸系、カルボキシスチレン、ポリアクリル酸、ポリメタクリル酸等のポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、ポリエチレングリコ-ル、ポリカルボン酸部分アルキルエステル系、ポリエ-テル系、ポリアルキレンポリアミン系、アルキルスルホン酸系、四級アンモニウム系、高級アルコ-ルアルキレンオキサイド系、多価アルコ-ルエステル系、アルキルポリアミン系又はポリリン酸塩系が挙げられ、好ましくはポリアクリル酸系添加剤、スチレンスルホン酸系、ポリビニルピロリドン、特に好ましくはスチレンスルホン酸系及びポリビニルピロリドンである。 In the polymer monomer slurry, it is preferable to contain a dispersant in order to improve the dispersibility of the Si compound or to promote polymerization. Examples of the dispersant include polyvinylpyrrolidone, styrene sulfonate-based agents such as sodium styrene sulfonate, lithium styrene sulfonate, ammonium styrene sulfonate, and styrene sulfonate ethyl ester, polycarboxylic acid-based agents such as carboxystyrene, polyacrylic acid, and polymethacrylic acid, naphthalene sulfonate-formaldehyde condensation agents, polyethylene glycol, polycarboxylic acid partial alkyl ester-based agents, polyether-based agents, polyalkylene polyamine-based agents, alkyl sulfonic acid-based agents, quaternary ammonium-based agents, higher alcohol alkylene oxide-based agents, polyhydric alcohol ester-based agents, alkyl polyamine-based agents, and polyphosphate-based agents. Polyacrylic acid-based additives, styrene sulfonate-based agents, and polyvinylpyrrolidone are preferred, and styrene sulfonate-based agents and polyvinylpyrrolidone are particularly preferred.
高分子モノマ-スラリ-における分散剤の含有量は、3重量%以下が好ましく、特に好ましくは0.001~2重量%である。分散剤の量がこの範囲内にあることで、Si化合物同士の凝集が進行しにくくなる。もしくは、Si化合物周囲のポリマ-膜厚が薄くなりにくくなる。 The content of the dispersant in the polymer monomer slurry is preferably 3% by weight or less, and particularly preferably 0.001 to 2% by weight. When the amount of the dispersant is within this range, aggregation of the Si compounds is less likely to proceed. Alternatively, the polymer film thickness around the Si compounds is less likely to become thin.
高分子モノマ-スラリ-においては、重合を促進するために、重合促進剤を含有することが好ましく、該重合を促進剤としては、例えば、炭酸水素ナトリウム又は水酸化カリウム等のpH調整剤が挙げられ、好ましくは炭酸水素ナトリウムである。 The polymer monomer slurry preferably contains a polymerization promoter to promote polymerization. Examples of the polymerization promoter include pH adjusters such as sodium bicarbonate or potassium hydroxide, and preferably sodium bicarbonate.
なお、得られたSi化合物に被覆された高分子ポリマー膜は、後述する焼成により除去され空隙となるものである。 The resulting polymer film coated with the Si compound is removed by firing, as described below, to form voids.
黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状、球状、円柱状又はファイバ-状が用いられる。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコ-ディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。膨張黒鉛又はその粉砕物はその他の黒鉛に比べて可とう性に優れており、後述する複合粒子を形成する工程において、粉砕された粒子が再結着して略球状の複合粒子を容易に形成することができる。上記の点で、黒鉛として膨張黒鉛又はその粉砕物を用いることが好ましい。原料の黒鉛は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1~100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm~5mm程度である。 Graphite can be natural graphite, artificial graphite made by graphitizing petroleum or coal pitch, etc., and can be in the form of flakes, ovals, spheres, cylinders, or fibers. In addition, expanded graphite or crushed expanded graphite, which is expanded by heat treatment after acid treatment or oxidation treatment and has some of the graphite layers peeled off to form an accordion shape, or graphene whose layers are peeled off by ultrasonic waves or the like, can also be used. Expanded graphite or crushed expanded graphite has better flexibility than other graphites, and in the process of forming composite particles described below, the crushed particles can easily recombine to form approximately spherical composite particles. From the above points, it is preferable to use expanded graphite or crushed expanded graphite as graphite. The graphite raw material is used after being adjusted to a size that can be used in the mixing process in advance, and the particle size before mixing is 1 to 100 μm for natural graphite and artificial graphite, and about 5 μm to 5 mm for expanded graphite or crushed expanded graphite and graphene.
Si化合物に高分子膜を被覆した後に、黒鉛と混合する際に、よりSi化合物と黒鉛を結着させることができることから、炭素化合物を加えることが好ましい。炭素化合物としては、Si化合物と黒鉛から得られる結晶性炭素を結合させることができ、かつ、焼成後に残炭成分が無いことが好ましく、例えば、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、ジグリセリン脂肪酸エステル、トリグリセリン脂肪酸エステルなどのグリセリン系、メント-ル、ペンタエリトリト-ル、ジペンタエリトリト-ル、トリペンタエリトリト-ル、エチレングリコ-ル、プロピレングリコ-ル、ジエチレングリコ-ル、ポリエチレングリコ-ル、ポリエチレンオキシド、トリメチロ-ルプロパンなどのグリコ-ル系又はポリビニルピロリドン等が挙げられ、好ましくはポリビニルピロリドン、メント-ル又はグリセリンであり、特に好ましくはグリセリンである。 It is preferable to add a carbon compound because it can better bind the Si compound and graphite when the Si compound is mixed with the graphite after coating the Si compound with a polymer film. The carbon compound is preferably one that can bind the crystalline carbon obtained from the Si compound and graphite and does not leave any carbon residue after firing. Examples of the carbon compound include glycerin-based compounds such as glycerin, diglycerin, triglycerin, polyglycerin, diglycerin fatty acid esters, and triglycerin fatty acid esters; glycol-based compounds such as menthol, pentaerythritol, dipentaerythritol, tripentaerythritol, ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, polyethylene oxide, and trimethylolpropane; and polyvinylpyrrolidone. Polyvinylpyrrolidone, menthol, or glycerin are preferred, and glycerin is particularly preferred.
Si化合物に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する際には、溶媒を用いることが好ましく、該溶媒としては、例えば、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソ-ト油、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン、グリセリン、メント-ル、ポリビニルアルコ-ル、水、エタノ-ル又はメタノ-ルを使用することができる。 After the Si compound is coated with a polymer film, it is preferable to use a solvent when mixing the graphite and, if necessary, the carbon compound. Examples of the solvent that can be used include quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote oil, tetrahydrofuran, cyclohexanone, nitrobenzene, glycerin, menthol, polyvinyl alcohol, water, ethanol, and methanol.
混合方法としては、スラリ-濃度が高い場合には、混練機(ニ-ダ-)やレ-ディゲミキサ-を用いることができる。溶媒を用いる場合は、上述の混練機の他、スリ-ワンモ-タ-、スタ-ラ-、ナウタ-ミキサ-、レ-ディゲミキサ-、ヘンシェルミキサ、ハイスピ-ドミキサ-、ホモミキサ-、インラインミキサ-等を用いることができる。 When the slurry concentration is high, a kneader or Loedige mixer can be used as a mixing method. When a solvent is used, in addition to the kneaders mentioned above, a three-one motor, stirrer, Nauta mixer, Loedige mixer, Henschel mixer, high-speed mixer, homomixer, in-line mixer, etc. can be used.
混合に溶媒を用い、該溶媒を除去する場合、そのままこれらの装置でジャケット加熱したり、振動乾燥機やパドルドライヤ-などで溶媒を除去したりすることができる。乾燥作業の前に、遠心分離機、フィルタ-プレス、吸引濾過器、加圧濾過機などの装置で固液分離することができる。過剰な炭素化合物を除去することで、焼成後にリチウム二次電池用複合活物質同士の連結、及び、その粉砕・解砕工程が不要になる。さらに、負極の容量低下の原因が除去されるため、これらの固液分離作業を行うことが好ましい。 When a solvent is used for mixing and the solvent is to be removed, the mixture can be jacket heated in these devices as is, or the solvent can be removed using a vibration dryer or paddle dryer. Before the drying process, solid-liquid separation can be performed using a device such as a centrifuge, filter press, suction filter, or pressure filter. By removing excess carbon compounds, the process of bonding the composite active materials for lithium secondary batteries together after firing and the process of crushing and disintegrating them are unnecessary. Furthermore, it is preferable to perform these solid-liquid separation processes, as this eliminates the cause of the capacity decrease of the negative electrode.
これらの装置で、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、黒鉛と必要に応じて炭素化合物との混合物は造粒・圧密化される。また、溶媒除去後の混合物をロ-ラ-コンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1~5mmが好ましい。 In these devices, the mixture of the Si compound, graphite, and optionally the carbon compound is granulated and compacted by continuing the stirring during the solvent removal process for a certain period of time. In addition, the mixture after the solvent removal can be granulated and compacted by compressing it with a compressor such as a roller compactor and coarsely crushing it with a crusher. The size of these granulated and compacted products is preferably 0.1 to 5 mm for ease of handling in the subsequent crushing process.
造粒・圧密化の方法は、圧縮力を利用して被砕物を粉砕するボ-ルミル、媒体撹拌ミルや、ロ-ラによる圧縮力を利用して粉砕を行うロ-ラミル、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマ-、ブレ-ド、ピンなどを固設したロ-タ-の回転による衝撃力を利用して被砕物を粉砕するハンマ-ミル、ピンミル又はディスクミル等の乾式の粉砕方法が好ましく、中でもロ-ラミルが特に好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 The methods of granulation and compaction are preferably dry grinding methods such as ball mills, which use compression force to grind the material to be crushed, media agitation mills, roller mills, which use compression force from rollers to grind the material, jet mills, which collide the material to be crushed against a lining material or against each other at high speed to grind the material by the impact force from the impact, hammer mills, pin mills, and disk mills, which use the impact force from the rotation of a rotor to which hammers, blades, pins, etc. are fixed, and among these, roller mills are particularly preferred. In addition, to adjust the particle size distribution after grinding, dry classification such as air classification and sieving is used. In types where the grinder and classifier are integrated, grinding and classification are performed at the same time, making it possible to achieve the desired particle size distribution.
また、造粒・圧密化回数を増やすことで、黒鉛中のSi化合物の分散性を向上させることができる。造粒・圧密化回数は1~10回が好ましく、2~10回がさらに好ましく、2~7回が特に好ましい。造粒・圧密化回数が10回以下である場合、黒鉛の結晶性が悪化しにくく、初回充放電効率が低下しにくくなる傾向がある。 In addition, by increasing the number of granulation and compaction processes, the dispersibility of the Si compound in the graphite can be improved. The number of granulation and compaction processes is preferably 1 to 10, more preferably 2 to 10, and particularly preferably 2 to 7. If the number of granulation and compaction processes is 10 or less, the crystallinity of the graphite tends not to deteriorate, and the initial charge/discharge efficiency tends not to decrease.
造粒・圧密化した混合物を粉砕及び球形化処理を施す方法としては、上述の粉砕方法により粉砕して粒度を整えた後、専用の球形化装置を通す方法と、上述のジェットミルやロ-タ-の回転による衝撃力を利用して被砕物を粉砕する方法を繰り返す、もしくは処理時間を延長することで球形化する方法が挙げられる。専用の球形化装置としては、ホソカワミクロン社のファカルティ(商品名)、ノビルタ(商品名)、メカノフュ-ジョン(商品名)、日本コ-クス工業社のCOMPOSI、奈良機械製作所社のハイブリダイゼ-ションシステム、ア-ステクニカ社のクリプトロンオ-ブ、クリプトロンエディ等が挙げられる。 Methods for crushing and spheronizing the granulated and compacted mixture include crushing the material by the above-mentioned crushing method to adjust the particle size, then passing the material through a dedicated spheronizing device, or crushing the material using the impact force of the rotation of a jet mill or rotor as described above, and repeating this process or extending the processing time to make the material spheroidal. Examples of dedicated spheronizing devices include Faculty (product name), Nobilta (product name), and Mechanofusion (product name) from Hosokawa Micron Corporation, COMPOSI from Nippon Coke & Co., Ltd., Hybridization System from Nara Machinery Works, and Cryptron Orb and Cryptron Eddy from Ars Technica.
上記粉砕および球形化処理を行うことにより、略球状の複合粒子を得ることができる。 By carrying out the above-mentioned grinding and spheronization processes, it is possible to obtain roughly spherical composite particles.
得られた複合粒子は、アルゴンガスや窒素ガス等の不活性雰囲気で焼成する。 The resulting composite particles are fired in an inert atmosphere such as argon gas or nitrogen gas.
焼成温度は300~1200℃が好ましく、特に好ましくは600~1200℃であり、より好ましくは800~1100℃である。焼成温度が300℃以上であると、Si化合物に被覆した高分子膜が残存しにくくなり、初回体積放電容量の低下、更には初回充放電効率の低下や初回電極膨張率の上昇が生じにくい。一方、焼成温度が1200℃以下である場合、Si化合物と黒鉛との反応が起こりにくく、放電容量の低下が発生しにくくなる傾向にある。 The firing temperature is preferably 300 to 1200°C, particularly preferably 600 to 1200°C, and more preferably 800 to 1100°C. If the firing temperature is 300°C or higher, the polymer film covering the Si compound is less likely to remain, and the initial volumetric discharge capacity is less likely to decrease, and furthermore, the initial charge/discharge efficiency is less likely to decrease, and the initial electrode expansion rate is less likely to increase. On the other hand, if the firing temperature is 1200°C or lower, the reaction between the Si compound and graphite is less likely to occur, and a decrease in discharge capacity tends to be less likely to occur.
本発明のリチウム二次電池用複合活物質は、リチウム二次電池で使用される電極材料に使用される活物質として有用である。 The composite active material for lithium secondary batteries of the present invention is useful as an active material used in electrode materials for lithium secondary batteries.
本発明のリチウム二次電池用複合活物質を使用してリチウム二次電池用負極を製造する方法は、公知の方法を使用することができる。 A known method can be used to manufacture a negative electrode for a lithium secondary battery using the composite active material for a lithium secondary battery of the present invention.
例えば、本発明のリチウム二次電池用複合活物質と結着剤とを混合し、溶剤を用いてペ-スト化し、負極合剤含有スラリ-とする。当該負極合剤含有スラリ-を、集電体上、例えば銅箔上、に塗布することで、リチウム二次電池用負極とすることができる。 For example, the composite active material for lithium secondary batteries of the present invention is mixed with a binder, and the mixture is made into a paste using a solvent to form a negative electrode mixture-containing slurry. The negative electrode mixture-containing slurry can be applied to a current collector, for example, copper foil, to form a negative electrode for a lithium secondary battery.
なお、集電体としては銅箔以外に、電池のサイクルがより優れる点で、三次元構造を有する集電体が好ましい。三次元構造を有する集電体の材料としては、例えば、炭素繊維、スポンジ状カ-ボン(スポンジ状樹脂にカ-ボンを塗工したもの)、銅以外の金属などが挙げられる。 In addition to copper foil, a collector having a three-dimensional structure is preferable as the current collector because it has a better battery cycle. Examples of materials for a current collector having a three-dimensional structure include carbon fiber, sponge-like carbon (carbon coated on sponge-like resin), and metals other than copper.
三次元構造を有する集電体(多孔質集電体)としては、金属や炭素の導電体の多孔質体として、平織り金網、エキスパンドメタル、ラス網、金属発泡体、金属織布、金属不織布、炭素繊維織布、または炭素繊維不織布などが挙げられる。 Current collectors with a three-dimensional structure (porous current collectors) include porous bodies made of metal or carbon conductors, such as plain woven wire mesh, expanded metal, lath mesh, metal foam, woven metal fabric, nonwoven metal fabric, woven carbon fiber fabric, and nonwoven carbon fiber fabric.
使用される結着剤としては、公知の材料を使用でき、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、スチレンブタジエンゴム(SBR)、ポリエチレン、ポリビニルアルコ-ル、カルボキシメチルセルロ-ス、ポリアクリル酸又は膠などが用いられる。 The binder used may be a known material, such as fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, styrene butadiene rubber (SBR), polyethylene, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, or glue.
また、溶剤としては、例えば、水、イソプロピルアルコ-ル、N-メチルピロリドン又はジメチルホルムアミドなどが挙げられる。なお、ペ-スト化する際には、必要に応じて、公知の攪拌機、混合機、混練機、ニ-ダ-などを用い、リチウム二次電池用複合活物質、結着剤及び溶剤を攪拌混合してもよい。 Examples of the solvent include water, isopropyl alcohol, N-methylpyrrolidone, and dimethylformamide. When forming the paste, the composite active material for lithium secondary batteries, the binder, and the solvent may be stirred and mixed using a known stirrer, mixer, kneader, or the like, as necessary.
リチウム二次電池用複合活物質を用いて負極合剤スラリ-を調製する場合、導電材として導電性カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物を添加することが好ましい。上記工程により得られたリチウム二次電池用複合活物質の形状は、比較的、粒状化(特に、略球形化)している場合が多く、該リチウム二次電池用複合活物質の粒子同士の接触は点接触となりやすい。この弊害を避けるために、該負極合剤スラリ-にカ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物を配合する方法が挙げられる。カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物はスラリ-溶剤の乾燥時に該リチウム二次電池用複合活物質が接触して形成する毛細管部分に集中的に凝集することが出来るので、サイクルに伴う接点切れ(抵抗増大)を防止することが出来る。 When preparing the negative electrode mixture slurry using the composite active material for lithium secondary batteries, it is preferable to add conductive carbon black, carbon nanotubes, or a mixture thereof as a conductive material. The shape of the composite active material for lithium secondary batteries obtained by the above process is often relatively granular (particularly, approximately spherical), and the particles of the composite active material for lithium secondary batteries tend to contact each other at points. In order to avoid this problem, a method can be used in which carbon black, carbon nanotubes, or a mixture thereof is added to the negative electrode mixture slurry. Carbon black, carbon nanotubes, or a mixture thereof can be concentrated and aggregated in the capillary portion formed by the contact of the composite active material for lithium secondary batteries when the slurry solvent dries, so that it is possible to prevent contact breakage (increased resistance) that occurs with cycles.
カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物の配合量は、リチウム二次電池用複合活物質100質量部に対して、0.2~4質量部が好ましく、0.5~2質量部より好ましい。カ-ボンナノチュ-ブとしては、シングルウォ-ルカ-ボンナノチュ-ブ、マルチウォ-ルカ-ボンナノチュ-ブが挙げられる。
(正極)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用される正極としては、公知の正極材料を使用した正極を使用することができる。
The amount of carbon black, carbon nanotubes or a mixture thereof is preferably 0.2 to 4 parts by mass, more preferably 0.5 to 2 parts by mass, based on 100 parts by mass of the composite active material for lithium secondary batteries. Examples of carbon nanotubes include single-wall carbon nanotubes and multi-wall carbon nanotubes.
(Positive electrode)
As the positive electrode used in a lithium secondary battery having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention, a positive electrode using a known positive electrode material can be used.
正極の製造方法としては公知の方法が挙げられ、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布する方法などが挙げられる。正極材料(正極活物質)としては、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、LiCoO2、LiNiO2、LiNi1-yCoyO2、LiNi1-x-yCoxAlyO2、LiMnO2、LiMn2O4、LiFeO2などのリチウム金属酸化物、硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物、または、ポリアセチレン、ポリパラフェニレン、ポリピロ-ルなどの導電性を有する共役系高分子物質などが挙げられる。
(電解液)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用される電解液としては、公知の電解液を使用することができる。
The method for producing the positive electrode includes a known method, such as a method of applying a positive electrode mixture consisting of a positive electrode material, a binder, and a conductive agent to the surface of a current collector. The positive electrode material (positive electrode active material) includes metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, lithium metal oxides such as LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , LiNi 1- x -y Co x Al y O 2 , LiMnO 2 , LiMn 2 O 4 , and LiFeO 2 , transition metal chalcogen compounds such as titanium sulfide and molybdenum sulfide, and conductive conjugated polymeric substances such as polyacetylene, polyparaphenylene, and polypyrrole.
(Electrolyte)
As the electrolyte used in a lithium secondary battery having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention, a known electrolyte can be used.
例えば、電解液中に含まれる電解質塩として、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6H5)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiN(CF3CH2OSO2)2、LiN(CF3CF3OSO2)2、LiN(HCF2CF2CH2OSO2)2、LiN{(CF3)2CHOSO2}2、LiB{C6H3(CF3)2}4、LiN(SO2CF3)2、LiC(SO2CF3)3、LiAlCl4又はLiSiF6などのリチウム塩を用いることができる。特にLiPF6およびLiBF4が酸化安定性の点から好ましい。 For example, electrolyte salts contained in the electrolyte solution include LiPF6, LiBF4, LiAsF6, LiClO4, LiB(C6H5 ) , LiCl , LiBr , LiCF3SO3 , LiCH3SO3, LiN(CF3SO2 ) 2 , LiC (CF3SO2) 3 , LiN ( CF3CH2OSO2 ) 2 , LiN ( CF3CF3OSO2 ) 2 , LiN ( HCF2CF2CH2OSO2 ) 2 , LiN{( CF3 ) 2CHOSO2 } 2 , LiB {C6H3 ( CF3 ) 2 } 4 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , or other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferred from the viewpoint of oxidation stability.
電解質溶液中の電解質塩濃度は0.1~5モル/リットルが好ましく、0.5~3モル/リットルがより好ましい。 The electrolyte salt concentration in the electrolyte solution is preferably 0.1 to 5 mol/L, and more preferably 0.5 to 3 mol/L.
電解液で使用される溶媒としては、例えば、エチレンカ-ボネ-ト、プロピレンカ-ボネ-ト、ジメチルカ-ボネ-ト、ジエチルカ-ボネ-トなどのカ-ボネ-ト、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソフラン、4-メチル-1,3-ジオキソラン、アニソ-ル、ジエチルエ-テルなどのエ-テル、スルホラン、メチルスルホランなどのチオエ-テル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメ-ト、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリン、エチレングリコ-ル又はジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。 Examples of solvents used in the electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, anisole, ethers such as diethyl ether, and thiol such as sulfolane and methylsulfolane. Nitriles such as ether, acetonitrile, chloronitrile, and propionitrile, and aprotic organic solvents such as trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazoline, ethylene glycol, and dimethyl sulfite can be used.
なお、電解液の代わりに、高分子固体電解質、高分子ゲル電解質などの高分子電解質を使用してもよい。高分子固体電解質または高分子ゲル電解質のマトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエ-テル系高分子化合物、ポリメタクリレ-トなどのメタクリレ-ト系高分子化合物、ポリアクリレ-トなどのアクリレ-ト系高分子化合物、ポリビニリデンフルオライド(PVDF)又はビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDF又はビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。
(セパレ-タ)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用されるセパレ-タとしては、公知の材料を使用できる。例えば、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であり、なかでもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
Instead of the electrolytic solution, a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte may be used. As the polymer compound constituting the matrix of the polymer solid electrolyte or polymer gel electrolyte, an ether-based polymer compound such as polyethylene oxide or its crosslinked product, a methacrylate-based polymer compound such as polymethacrylate, an acrylate-based polymer compound such as polyacrylate, or a fluorine-based polymer compound such as polyvinylidene fluoride (PVDF) or a vinylidene fluoride-hexafluoropropylene copolymer is preferred. These may also be used in combination. From the viewpoint of oxidation-reduction stability, a fluorine-based polymer compound such as PVDF or a vinylidene fluoride-hexafluoropropylene copolymer is particularly preferred.
(Separator)
A separator used in a lithium secondary battery having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention can be made of a known material. Examples include woven fabric, nonwoven fabric, and synthetic resin microporous membranes. Synthetic resin microporous membranes are preferred, and polyolefin microporous membranes are particularly preferred in terms of membrane thickness, membrane strength, membrane resistance, and the like. Specific examples include polyethylene and polypropylene microporous membranes, and microporous membranes made by combining these.
リチウム二次電池は、上述した負極、正極、セパレ-タ、電解液、その他電池構成要素(例えば、集電体、ガスケット、封口板、ケ-スなど)を用いて、常法にしたがって円筒型、角型あるいはボタン型などの形態を有することができる。 Lithium secondary batteries can be made in the usual manner into cylindrical, square, or button shapes using the above-mentioned negative electrodes, positive electrodes, separators, electrolytes, and other battery components (e.g., current collectors, gaskets, sealing plates, cases, etc.).
リチウム二次電池は、各種携帯電子機器に用いられ、特にノ-ト型パソコン、ノ-ト型ワ-プロ、パ-ムトップ(ポケット)パソコン、携帯電話、携帯ファックス、携帯プリンタ-、ヘッドフォンステレオ、ビデオカメラ、携帯テレビ、ポ-タブルCD、ポ-タブルMD、電動髭剃り機、電子手帳、トランシ-バ-、電動工具、ラジオ、テ-プレコ-ダ-、デジタルカメラ、携帯コピ-機、携帯ゲ-ム機などに用いることができる。また、さらに、電気自動車、ハイブリッド自動車、自動販売機、電動カ-ト、ロ-ドレベリング用蓄電システム、家庭用蓄電器、分散型電力貯蔵機システム(据置型電化製品に内蔵)、非常時電力供給システムなどの二次電池として用いることもできる。 Lithium secondary batteries are used in various portable electronic devices, particularly in notebook personal computers, notebook word processors, palmtop (pocket) personal computers, mobile phones, portable fax machines, portable printers, headphone stereos, video cameras, portable televisions, portable CDs, portable MDs, electric shavers, electronic organizers, walkie-talkies, power tools, radios, tape recorders, digital cameras, portable copiers, and portable game machines. They can also be used as secondary batteries in electric vehicles, hybrid vehicles, vending machines, electric carts, load leveling storage systems, home storage batteries, distributed power storage systems (built into stationary electrical appliances), and emergency power supply systems.
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.
<実施例1>
(膨張黒鉛の調製)
平均平均粒径1mmの鱗片状天然黒鉛を硫酸9質量部、硝酸1質量部の混酸に25℃で1時間浸漬後、No3ガラスフィルタ-で混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の横型電気炉に投入し、膨張黒鉛を得た。膨張黒鉛の嵩密度は0.015g/cm3、BET比表面積は24m2/gであった。
Example 1
(Preparation of Expanded Graphite)
Scaly natural graphite with an average particle size of 1 mm was immersed in a mixed acid of 9 parts by mass of sulfuric acid and 1 part by mass of nitric acid at 25°C for 1 hour, and then the mixed acid was removed using a No. 3 glass filter to obtain acid-treated graphite. The acid-treated graphite was further washed with water and then dried. 5 g of the dried acid-treated graphite was stirred in 100 g of distilled water, and the pH was measured after 1 hour, and found to be 6.7. The dried acid-treated graphite was placed in a horizontal electric furnace in a nitrogen atmosphere set at 850°C to obtain expanded graphite. The expanded graphite had a bulk density of 0.015 g/cm 3 and a BET specific surface area of 24 m 2 /g.
(Si粉砕工程)
平均粒径(D50)が7μmのケミカルグレ-ドの金属Si(純度3N)をエタノ-ルに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビ-ズミルを6時間行い、平均粒径(D50)0.2μm、乾燥時のBET比表面積が100m2/gの超微粒子Siスラリ-を得た。
(Si pulverization process)
Chemical grade metallic silicon (purity 3N) with an average particle size (D50) of 7 μm was mixed with ethanol at 21% by weight, and finely ground in a wet bead mill using zirconia beads with a diameter of 0.3 mm for 6 hours to obtain an ultrafine particle silicon slurry with an average particle size (D50) of 0.2 μm and a BET specific surface area when dried of 100 m2 /g.
(Si表面修飾工程)
粉砕Siを固形分量が40gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が1011gとなるように追加でエタノ-ルを添加してSiスラリ-を得た。その後、ポリカルボン酸系分散剤88g、アンモニウムヒドロキシド7.2gと水320g(アンモニア水溶液、NH3aq.)を上記Siスラリ-に添加し、撹拌羽を用いて回転数250rpmの条件25℃で6時間撹拌を行った。その後、得られたSiスラリ-を回転数4800rpm、回転時間25分の条件で遠心分離処理し、エタノ-ルで再分散した。得られたスラリ-に対して、直径1.0mmのジルコニアボ-ルを用いたボ-ルミル粉砕を8時間行い、平均粒径(D50)0.24μmのSiスラリ-を得た。これを回転数4800rpm、回転時間60分の条件で遠心分離処理し、水で再分散した。このスラリーを乾燥し得られたSi粉末の酸素含有量は17.9%、表面水酸基量は1.3個/nm2、酸素含有量(重量%)/BET比表面積(m2/g)の値は0.10であった。Siの物性を表1に示す。
(Si surface modification step)
The crushed silicon was weighed out so that the solid content was 40 g, and then ultrasonic irradiation was performed for 15 minutes. Additional ethanol was added so that the total amount of ethanol became 1011 g to obtain a silicon slurry. After that, 88 g of a polycarboxylic acid dispersant, 7.2 g of ammonium hydroxide, and 320 g of water (aqueous ammonia solution, NH3aq.) were added to the above-mentioned Si slurry, and the mixture was stirred at 25° C. at a rotation speed of 250 rpm using a stirring blade. The mixture was stirred for 6 hours. The resulting silicon slurry was then centrifuged at a rotation speed of 4800 rpm for 25 minutes, and redispersed in ethanol. The mixture was milled for 8 hours using a ball mill with 1.0 mm zirconia balls to obtain a silicon slurry with an average particle size (D50) of 0.24 μm. The mixture was then rotated at 4,800 rpm for 60 minutes. It was centrifuged and redispersed in water. The slurry was dried to obtain a Si powder having an oxygen content of 17.9%, a surface hydroxyl group content of 1.3/nm 2 , and a ratio of oxygen content (wt %)/BET specific surface area (m 2 /g). The value was 0.10. The physical properties of Si are shown in Table 1.
(Si被覆工程)
上記スラリ-をSi固形分量が13.85gとなるように秤量して丸底フラスコに移し、合計の水量が3823gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.525gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-87.7gと50gの水に溶解させたp-スチレンスルホン酸ナトリウム0.44gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、50gの水に溶解させた過硫酸アンモニウム1.93gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散することでポリスチレンコ-トSiを得た。
(Si coating process)
The above slurry was weighed so that the Si solid content was 13.85 g and transferred to a round-bottom flask, and additional water was added so that the total water amount was 3823 g. After purging the flask with nitrogen, the liquid temperature was raised to 35 ° C. Then, 0.525 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added to the flask and stirred for 30 minutes. 87.7 g of distilled styrene monomer and 0.44 g of sodium p-styrenesulfonate dissolved in 50 g of water were added and stirred for 2 hours. Then, the liquid temperature was raised to 62 ° C., and 1.93 g of ammonium persulfate dissolved in 50 g of water was added. Then, heating and stirring were continued for 10 hours under reflux. The obtained reaction liquid was centrifuged at a rotation speed of 4800 rpm and a rotation time of 45 minutes to remove free polystyrene, and the precipitate was redispersed with ethanol to obtain polystyrene-coated Si.
その後、上記ポリスチレンコ-トSiをSiとして9.01g、上記膨張黒鉛を21.0g、グリセリン3.0g、エタノ-ル705mLを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、76gの混合乾燥物(軽装かさ密度173g/L)を得た。 Then, 9.01 g of the polystyrene-coated Si, 21.0 g of the expanded graphite, 3.0 g of glycerin, and 705 mL of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homomixer. The mixture was then transferred to a rotary evaporator, heated to 50°C in a warm bath while rotating, and evacuated with an aspirator to remove the solvent. The mixture was then spread out on a tray in a draft and dried for 2 hours while evacuating, passed through a mesh with 2 mm openings, and dried for another day to obtain 76 g of a mixed dry product (light bulk density 173 g/L).
(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度200g/Lに造粒・圧密化した。
(Pressing process)
This mixed and dried product was passed through a triple roll mill six times, then passed through a sieve with 1 mm openings, and granulated and compacted to a light bulk density of 200 g/L.
(球形化工程)
次に、この造粒・圧密化物63gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度231g/Lの略球状複合粉末を得た。
(Spheronization process)
Next, 63 g of this granulated and compacted material was placed in a particle design/surface modification device (Nara Machinery Manufacturing Co., Ltd. Hybridization System NHS-1L), pulverized at 40 m/sec for 15 minutes, and simultaneously spheronized to obtain an approximately spherical composite powder with a loose bulk density of 231 g/L.
(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Firing process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace with nitrogen gas flowing at a maximum temperature of 900° C. for 1 hour, thereby obtaining a fired powder consisting of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si.
その後、目開き45μmのメッシュを通し、軽装かさ密度168g/Lの焼成粉を得た。 The powder was then passed through a mesh with 45 μm openings to obtain a fired powder with a light bulk density of 168 g/L.
得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、50質量部)を15分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The resulting fired powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 50 parts by mass) for 15 minutes, and then fired and coated using the following method.
回転焼成炉を使用し、窒素を流しながら(0.4L/min)、昇温度速度を30℃/minとし、2rpmにて回転させながら混合物を600℃で2時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。 The coal tar pitch was modified into soft carbon by heating the mixture at 600°C for 2 hours in a rotary sintering furnace while rotating at 2 rpm and flowing nitrogen (0.4 L/min) at a temperature increase rate of 30°C/min. This resulted in a sintered powder consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal tar pitch).
(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に0.27L/mの流量の窒素ガス及び、0.13L/mの流量のエチレンガスを流し、2rpmにて回転させながら電気ヒ-タ-で920℃まで加熱し、その状態を25分間保持する事で炭素被覆を行った。炭素被覆による重量増は15重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素45質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン15質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、平均粒径(D50)が22μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and the inside of the tube was evacuated with a rotary pump, followed by flowing nitrogen gas at a flow rate of 0.27 L/m and ethylene gas at a flow rate of 0.13 L/m into the tube, and heating to 920 ° C. with an electric heater while rotating at 2 rpm, and carbon coating was performed by maintaining that state for 25 minutes. The weight increase due to carbon coating was 15 wt%, and this resulted in a composite active material for lithium secondary batteries consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 45 parts by mass of amorphous carbon (30 parts by mass of soft carbon derived from coal tar pitch, 15 parts by mass of soft carbon derived from gas phase coat). Thereafter, the powder was passed through a mesh with an opening of 45 μm to obtain a sintered powder with an average particle size (D50) of 22 μm.
(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrodes for lithium secondary batteries and battery evaluation)
92.5% by weight (content in the total amount of solids; the same applies below) of the obtained composite active material for lithium secondary batteries was mixed with 0.5% by weight of acetylene black as a conductive assistant, 7.0% by weight of a polycarboxylic acid-based binder as a binder, and water to prepare a negative electrode mixture-containing slurry.
得られた負極合剤含有スラリ-を、アプリケ-タを用いて固形分塗布量が2.5mg/cm2になるように厚みが18μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、100℃下、送り速度1m/min、圧力4.0t/cm2の条件でロ-ルプレスし、さらに真空下、110℃で3時間熱処理して、負極合剤層を形成したリチウム二次電池用負極を得た。 The obtained negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content coating amount was 2.5 mg/ cm2 , and dried for 12 hours in a vacuum dryer at 90° C. After drying, it was punched out into a circle of 14 mmφ, roll pressed under conditions of 100° C., a feed rate of 1 m/min, and a pressure of 4.0 t/ cm2 , and further heat-treated in vacuum at 110° C. for 3 hours to obtain a negative electrode for a lithium secondary battery having a negative electrode mixture layer formed thereon.
その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は961mAh/g、初回充電膨張率は137%、初回充放電効率は85%、20サイクル後の容量維持率は98%であった。 After that, a cell for evaluating the initial charge expansion rate and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge/discharge test was conducted. The initial charge capacity was 961 mAh/g, the initial charge expansion rate was 137%, the initial charge/discharge efficiency was 85%, and the capacity retention rate after 20 cycles was 98%.
<実施例2>
(Si表面修飾工程)
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が52.5gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が1327gとなるように追加でエタノ-ルを添加してSiスラリ-を得た。その後、ポリカルボン酸系分散剤116g、10mol/Lの塩酸3.5gと水420gを上記Siスラリ-に添加し、撹拌羽を用いて回転数250rpmの条件で30分間撹拌を行った。その後、テトラエトキシシラン(TEOS)105gを上記Siスラリ-に添加し、液温を70℃に昇温した。70℃で12時間撹拌を行い、その後、得られたSiスラリ-を回転数4800rpm、回転時間25分の条件で遠心分離処理し、エタノ-ルで再分散した。得られたスラリ-に対して、直径1.0mmのジルコニアボ-ルを用いたボ-ルミル粉砕を8時間行い、平均粒径(D50)0.24μmのSiスラリ-を得た。これを回転数4800rpm、回転時間60分の条件で遠心分離処理し、水で再分散した。このスラリーを乾燥し得られたSi粉末の酸素含有量は14.3%、表面水酸基量は1.6個/nm2、酸素含有量(重量%)/BET比表面積(m2/g)の値は0.11であった。Siの物性を表1に示す。
Example 2
(Si surface modification step)
The crushed Si obtained by the same method as the Si crushing process of Example 1 was weighed so that the solid content was 52.5 g, and then ultrasonic irradiation was performed for 15 minutes, and additional ethanol was added so that the total amount of ethanol was 1327 g to obtain a Si slurry. Then, 116 g of a polycarboxylic acid dispersant, 3.5 g of 10 mol/L hydrochloric acid, and 420 g of water were added to the above-mentioned Si slurry, and stirring was performed for 30 minutes under the condition of a rotation speed of 250 rpm using a stirring blade. Then, 105 g of tetraethoxysilane (TEOS) was added to the above-mentioned Si slurry, and the liquid temperature was raised to 70 ° C. Stirring was performed for 12 hours at 70 ° C., and then the obtained Si slurry was centrifuged under the condition of a rotation speed of 4800 rpm and a rotation time of 25 minutes, and redispersed with ethanol. The obtained slurry was pulverized in a ball mill using zirconia balls with a diameter of 1.0 mm for 8 hours to obtain a Si slurry with an average particle size (D50) of 0.24 μm. This was centrifuged at a rotation speed of 4800 rpm for 60 minutes, and redispersed in water. The Si powder obtained by drying this slurry had an oxygen content of 14.3%, a surface hydroxyl group amount of 1.6/nm 2 , and an oxygen content (wt %)/BET specific surface area (m 2 /g) value of 0.11. The physical properties of Si are shown in Table 1.
(Si被覆工程)
上記スラリ-をSi固形分量が13.85gとなるように秤量して丸底フラスコに移し、合計の水量が3823gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.53gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-87.8gと40gの水に溶解させたp-スチレンスルホン酸リチウム0.41gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、40gの水に溶解させた過硫酸アンモニウム0.56gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散することでポリスチレンコ-トSiを得た。
(Si coating process)
The above slurry was weighed so that the Si solid content was 13.85 g and transferred to a round-bottom flask, and additional water was added so that the total water amount was 3823 g. After purging the flask with nitrogen, the liquid temperature was raised to 35 ° C. Then, 0.53 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added to the flask and stirred for 30 minutes. 87.8 g of distilled styrene monomer and 0.41 g of lithium p-styrenesulfonate dissolved in 40 g of water were added and stirred for 2 hours. Then, the liquid temperature was raised to 62 ° C., and 0.56 g of ammonium persulfate dissolved in 40 g of water was added. Then, heating and stirring were continued for 10 hours under reflux. The obtained reaction liquid was centrifuged under conditions of a rotation speed of 4800 rpm and a rotation time of 45 minutes to remove free polystyrene, and the precipitate was redispersed in ethanol to obtain polystyrene-coated Si.
その後、上記ポリスチレンコ-トSiをSiとして10.37g、上記膨張黒鉛を24.20g、グリセリン3.46g、エタノ-ル500mLを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら1時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、78gの混合乾燥物(軽装かさ密度162g/L)を得た。 Then, 10.37 g of the polystyrene-coated Si, 24.20 g of the expanded graphite, 3.46 g of glycerin, and 500 mL of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homomixer. The mixture was then transferred to a rotary evaporator, heated to 50°C in a warm bath while rotating, and evacuated with an aspirator to remove the solvent. The mixture was then spread out on a tray in a draft and dried for 1 hour while evacuating, passed through a mesh with 2 mm openings, and dried for another day to obtain 78 g of a mixed dry product (light bulk density 162 g/L).
(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度185g/Lに造粒・圧密化した。
(Pressing process)
This mixed and dried product was passed through a triple roll mill six times, then passed through a sieve with 1 mm openings, and granulated and compacted to a light bulk density of 185 g/L.
(球形化工程)
次に、この造粒・圧密化物59gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度247g/Lの略球状複合粉末を得た。
(Spheronization process)
Next, 59 g of this granulated and compacted material was placed in a particle design/surface modification device (Hybridization System NHS-1L manufactured by Nara Machinery Manufacturing Co., Ltd.), pulverized at 40 m/sec for 15 minutes, and simultaneously spheronized to obtain an approximately spherical composite powder with a loose bulk density of 247 g/L.
(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Firing process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace with nitrogen gas flowing at a maximum temperature of 900° C. for 1 hour, thereby obtaining a fired powder consisting of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si.
その後、目開き45μmのメッシュを通し、軽装かさ密度177g/L、平均粒径(D50)が14μmの焼成粉を得た。 The powder was then passed through a mesh with 45 μm openings to obtain a fired powder with a light bulk density of 177 g/L and an average particle size (D50) of 14 μm.
得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、50質量部)を30分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The resulting fired powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 50 parts by mass) for 30 minutes, and then fired and coated using the following method.
回転焼成炉を使用し、窒素を流しながら(0.4L/min)、昇温度速度を30℃/minとし、1rpmにて回転させながら混合物を300℃で2時間、600℃で1時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。 Using a rotary kiln, the mixture was heated at 300°C for 2 hours and 600°C for 1 hour while rotating at 1 rpm with nitrogen flowing (0.4 L/min) at a temperature increase rate of 30°C/min, thereby modifying the coal tar pitch to soft carbon. This resulted in a fired powder consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal tar pitch).
(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に266SCCMの流量の窒素ガス及び、133SCCMの流量のエチレンガスを流し、1rpmにて回転させながら電気ヒ-タ-で1000℃まで加熱し、その状態を1時間保持する事で炭素被覆を行った。炭素被覆による重量増は5重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素35質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン5質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、平均粒径(D50)が25μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and the inside of the tube was evacuated with a rotary pump, followed by flowing nitrogen gas at a flow rate of 266 SCCM and ethylene gas at a flow rate of 133 SCCM into the tube, and heated to 1000 ° C. with an electric heater while rotating at 1 rpm, and carbon coating was performed by maintaining that state for 1 hour. The weight increase due to carbon coating was 5 wt%, and this resulted in a composite active material for lithium secondary batteries consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 35 parts by mass of amorphous carbon (30 parts by mass of soft carbon derived from coal tar pitch, and 5 parts by mass of soft carbon derived from gas phase coat). Thereafter, the powder was passed through a mesh with an opening of 45 μm to obtain a sintered powder with an average particle size (D50) of 25 μm.
(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrodes for lithium secondary batteries and battery evaluation)
92.5% by weight (content in the total amount of solids; the same applies below) of the obtained composite active material for lithium secondary batteries was mixed with 0.5% by weight of acetylene black as a conductive assistant, 7.0% by weight of a polycarboxylic acid-based binder as a binder, and water to prepare a negative electrode mixture-containing slurry.
得られた負極合剤含有スラリ-を、アプリケ-タを用いて11μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、100℃下、送り速度1m/min、圧力4.0t/cm2の条件でロ-ルプレスし、さらに真空下、110℃で2時間熱処理して、負極合剤層を形成したリチウム二次電池用負極を得た。 The obtained negative electrode mixture-containing slurry was applied to a copper foil of 11 μm using an applicator, and dried for 12 hours in a vacuum dryer at 90° C. After drying, it was punched out into a circle of 14 mmφ, roll pressed under conditions of 100° C., a feed rate of 1 m/min, and a pressure of 4.0 t/ cm2 , and further heat-treated in vacuum at 110° C. for 2 hours to obtain a negative electrode for a lithium secondary battery having a negative electrode mixture layer formed thereon.
その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電膨張率は142%、初回充放電効率は84%、20サイクル後の容量維持率は98%であった。
<実施例3>
(シリコン粉砕工程)
平均粒径(D50)が7μmのケミカルグレ-ドの金属シリコン(純度3N)を水に16重量%混合し、直径0.3mmのジルコニアビ-ズを用いた微粉砕湿式ビ-ズミルを行い、平均粒径(D50)255nm、乾燥時のBET比表面積が68m2/gのシリコンスラリーを得た。
(シリコン表面改質工程)
上記粉砕シリコンスラリーを固形分量が300gとなるように秤量し、その後、超音波照射を15分間行い、合計の水量が5000gとなるように追加で水を添加してシリコンスラリーを得た。その後、アンモニウムヒドロキシド0.54gを上記シリコンスラリーに添加し、マグネチックスターラーを用いて回転数500rpmの条件で1時間撹拌を行った。その後、テトラエトキシシラン(TEOS)600gを上記スラリーに添加した。25℃で5時間撹拌を行い、その後、分液漏斗でテトラエトキシシランを除去し、平均粒径(D50)0.27μmのシリコンスラリーを得た。このスラリーを乾燥し得られたSi粉末の酸素含有量は18.7%、表面水酸基量は2.2個/nm2、酸素含有量(重量%)/BET比表面積(m2/g)の値は0.18であった。Siの物性を表1に示す。
Thereafter, a cell for evaluating the initial charge expansion rate and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge/discharge test was performed. The initial charge expansion rate was 142%, the initial charge/discharge efficiency was 84%, and the capacity retention rate after 20 cycles was 98%.
Example 3
(Silicon crushing process)
Chemical grade metal silicon (purity 3N) with an average particle size (D50) of 7 μm was mixed with water at 16% by weight, and finely pulverized in a wet bead mill using zirconia beads with a diameter of 0.3 mm to obtain a silicon slurry with an average particle size (D50) of 255 nm and a BET specific surface area when dry of 68 m 2 /g.
(Silicon surface modification process)
The pulverized silicon slurry was weighed so that the solid content was 300 g, and then ultrasonic irradiation was performed for 15 minutes, and additional water was added so that the total water amount was 5000 g to obtain a silicon slurry. Then, 0.54 g of ammonium hydroxide was added to the silicon slurry, and stirring was performed for 1 hour using a magnetic stirrer at a rotation speed of 500 rpm. Then, 600 g of tetraethoxysilane (TEOS) was added to the slurry. Stirring was performed for 5 hours at 25°C, and then tetraethoxysilane was removed using a separatory funnel to obtain a silicon slurry with an average particle size (D50) of 0.27 μm. The oxygen content of the Si powder obtained by drying this slurry was 18.7%, the surface hydroxyl group amount was 2.2 pieces/nm 2 , and the value of oxygen content (wt%)/BET specific surface area (m 2 /g) was 0.18. The physical properties of Si are shown in Table 1.
(ポリマー被覆工程)
上記スラリーをシリコン固形分量が80gとなるように秤量して丸底フラスコに移し、合計の水量が6965gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、MPS12.1gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマー507gと50gの水に溶解させたNaSS2.54gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、375gの水に溶解させたAPS11.1gをシリンジポンプを用いて8cc/hの速度で添加した。その後、還流下で10時間加熱撹拌を続け、ポリマー被覆シリコンのスラリーを得た。
(Polymer coating process)
The slurry was weighed so that the silicon solid content was 80 g and transferred to a round-bottom flask, and additional water was added so that the total water amount was 6965 g. After purging the flask with nitrogen, the liquid temperature was raised to 35 ° C. Then, 12.1 g of MPS was added to the flask and stirred for 30 minutes. 507 g of distilled styrene monomer and 2.54 g of NaSS dissolved in 50 g of water were added and stirred for 2 hours. Then, the liquid temperature was raised to 62 ° C., and 11.1 g of APS dissolved in 375 g of water was added at a rate of 8 cc / h using a syringe pump. Then, heating and stirring were continued under reflux for 10 hours to obtain a polymer-coated silicon slurry.
その後、上記ポリスチレンコ-トSiをSiとして64g、合計の水として16540g、20重量%のポリジアリルジメチルアンモニウムクロリド水溶液32g、上記膨張黒鉛を149.3gを撹拌容器に入れ、ホモミキサ-で混合撹拌した。その後、混合液を真空減圧下で濾過し溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら乾燥し、さらに1日間乾燥して、651gの混合乾燥物を得た。 Then, 64 g of the polystyrene-coated Si, 16,540 g of total water, 32 g of a 20 wt % aqueous solution of polydiallyldimethylammonium chloride, and 149.3 g of the expanded graphite were placed in a stirring vessel and mixed and stirred in a homomixer. The mixture was then filtered under reduced pressure in vacuum to remove the solvent. The mixture was then spread out on a tray in a draft and dried while ventilating, and further dried for one day to obtain 651 g of a mixed dried product.
(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度211g/Lに造粒・圧密化した。
(Pressing process)
This mixed and dried product was passed through a triple roll mill six times, then passed through a sieve with 1 mm openings, and granulated and compacted to a light bulk density of 211 g/L.
(球形化工程)
次に、この造粒・圧密化物1223gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度271g/Lの略球状複合粉末を得た。
(Spheronization process)
Next, 1,223 g of this granulated and compacted material was placed in a particle design/surface modification device (Hybridization System NHS-1L manufactured by Nara Machinery Manufacturing Co., Ltd.), pulverized at 40 m/sec for 15 minutes, and simultaneously spheronized to obtain an approximately spherical composite powder with a loose bulk density of 271 g/L.
得られた複合粉末(100質量部)を、コ-ルタ-ルピッチ(炭化度40%、75質量部)を20分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The resulting composite powder (100 parts by mass) was mixed with coal tar pitch (carbonization degree 40%, 75 parts by mass) for 20 minutes, and then fired and coated using the following method.
ロータリーキルン炉を使用し、窒素を流しながら、昇温度速度を5℃/minとし、回転させながら混合物を920℃で1時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。その後、目開き45μmのメッシュを通し、軽装嵩密度252g/Lの焼成粉を得た。 The coal thal pitch was modified into soft carbon by heating the mixture to 920°C for 1 hour while rotating in a rotary kiln at a temperature increase rate of 5°C/min and flowing nitrogen. This resulted in a fired powder consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal thal pitch). The mixture was then passed through a mesh with 45μm openings to obtain fired powder with a loose bulk density of 252g/L.
(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に3.6L/minの流量の窒素ガス及び、1.8L/minの流量のエチレンガスを流し、回転させながら電気ヒ-タ-で920℃まで加熱し、その状態を7分間保持する事で炭素被覆を行った。炭素被覆による重量増は26重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素56質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン26質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、平均粒径(D50)が25μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and the inside of the tube was evacuated with a rotary pump, followed by flowing nitrogen gas at a flow rate of 3.6 L/min and ethylene gas at a flow rate of 1.8 L/min into the tube, and heating to 920 ° C. with an electric heater while rotating, and carbon coating was performed by maintaining that state for 7 minutes. The weight increase due to carbon coating was 26 wt%, and this resulted in a composite active material for lithium secondary batteries consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 56 parts by mass of amorphous carbon (30 parts by mass of soft carbon derived from coal tar pitch, and 26 parts by mass of soft carbon derived from gas phase coat). Thereafter, the powder was passed through a mesh with an opening of 45 μm to obtain a sintered powder with an average particle size (D50) of 25 μm.
(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrodes for lithium secondary batteries and battery evaluation)
92.5% by weight (content in the total amount of solids; the same applies below) of the obtained composite active material for lithium secondary batteries was mixed with 0.5% by weight of acetylene black as a conductive assistant, 7.0% by weight of a polycarboxylic acid-based binder as a binder, and water to prepare a negative electrode mixture-containing slurry.
得られた負極合剤含有スラリ-を、アプリケ-タを用いて厚みが11μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、100℃下、送り速度1m/min、圧力4.0t/cm2の条件でロ-ルプレスし、さらに真空下、110℃で2時間熱処理して、負極合剤層を形成したリチウム二次電池用負極を得た。 The obtained negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 11 μm using an applicator, and dried for 12 hours in a vacuum dryer at 90° C. After drying, the foil was punched out into a circle having a diameter of 14 mm, roll pressed under conditions of 100° C., a feed rate of 1 m/min, and a pressure of 4.0 t/cm2, and further heat-treated in a vacuum at 110° C. for 2 hours to obtain a negative electrode for a lithium secondary battery having a negative electrode mixture layer formed thereon.
その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電膨張率は137%、初回充放電効率は83%、20サイクル後の容量維持率は97%であった。Siの物性を表1に示す。 After that, a cell for evaluating the initial charge expansion rate and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge/discharge test was performed. The initial charge expansion rate was 137%, the initial charge/discharge efficiency was 83%, and the capacity retention rate after 20 cycles was 97%. The physical properties of Si are shown in Table 1.
<比較例1>
(Si表面修飾工程)
粉砕Siを固形分量が40gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が1018gとなるように追加でエタノ-ルを添加してSiスラリ-を得た。その後、ポリカルボン酸系分散剤88g、アンモニウムヒドロキシド36gと水320gを上記Siスラリ-に添加し、撹拌羽を用いて回転数400rpmの条件で1時間撹拌を行った。その後、テトラエトキシシラン(TEOS)80gを上記Siスラリ-に添加した。25℃で1.5時間撹拌を行い、その後、得られたSiスラリ-を回転数4800rpm、回転時間25分の条件で遠心分離処理し、エタノ-ルで再分散した。得られたスラリ-に対して、直径1.0mmのジルコニアボ-ルを用いたボ-ルミルを8時間行い、平均粒径(D50)0.25μmのSiスラリ-を得た。これを回転数4800rpm、回転時間60分の条件で遠心分離処理し、水で再分散した。このスラリーを乾燥し得られたSi粉末の酸素含有量は43.0%、表面水酸基量は3.5個/nm2、酸素含有量(重量%)/BET比表面積(m2/g)の値は0.50であった。Siの物性を表1に示す。
<Comparative Example 1>
(Si surface modification step)
The crushed Si was weighed so that the solid content was 40 g, and then ultrasonic irradiation was performed for 15 minutes, and additional ethanol was added so that the total amount of ethanol was 1018 g to obtain a Si slurry. Then, 88 g of a polycarboxylic acid dispersant, 36 g of ammonium hydroxide, and 320 g of water were added to the above Si slurry, and stirring was performed for 1 hour using a stirring blade at a rotation speed of 400 rpm. Then, 80 g of tetraethoxysilane (TEOS) was added to the above Si slurry. Stirring was performed for 1.5 hours at 25°C, and then the obtained Si slurry was centrifuged at a rotation speed of 4800 rpm and a rotation time of 25 minutes, and redispersed with ethanol. The obtained slurry was subjected to a ball mill using a zirconia ball with a diameter of 1.0 mm for 8 hours to obtain a Si slurry with an average particle size (D50) of 0.25 μm. This was centrifuged at 4,800 rpm for 60 minutes and redispersed in water. The oxygen content of the Si powder obtained by drying this slurry was 43.0%, the number of surface hydroxyl groups was 3.5/ nm2 , and the oxygen content (wt%)/BET specific surface area ( m2 /g) was 0.50. The physical properties of Si are shown in Table 1.
(Si被覆工程)
上記スラリ-をSi固形分量が13.85gとなるように秤量して丸底フラスコに移し、合計の水量が3386gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.465gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-77.7gと40gの水に溶解させたp-スチレンスルホン酸ナトリウム0.39gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、40gの水に溶解させた過硫酸アンモニウム1.7gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散することでポリスチレンコ-トSiを得た。
(Si coating process)
The above slurry was weighed so that the Si solid content was 13.85 g and transferred to a round-bottom flask, and additional water was added so that the total water amount was 3386 g. After purging the flask with nitrogen, the liquid temperature was raised to 35 ° C. Then, 0.465 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added to the flask and stirred for 30 minutes. 77.7 g of distilled styrene monomer and 0.39 g of sodium p-styrenesulfonate dissolved in 40 g of water were added and stirred for 2 hours. Then, the liquid temperature was raised to 62 ° C., and 1.7 g of ammonium persulfate dissolved in 40 g of water was added. Then, heating and stirring were continued for 10 hours under reflux. The obtained reaction liquid was centrifuged under conditions of a rotation speed of 4800 rpm and a rotation time of 45 minutes to remove free polystyrene, and the precipitate was redispersed with ethanol to obtain polystyrene-coated Si.
その後、上記ポリスチレンコ-トSiをSiとして9.95g、上記膨張黒鉛を23.2g、グリセリン3.32g、エタノ-ル450mLを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、85gの混合乾燥物(軽装かさ密度183g/L)を得た。 Then, 9.95 g of the polystyrene-coated Si, 23.2 g of the expanded graphite, 3.32 g of glycerin, and 450 mL of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homomixer. The mixture was then transferred to a rotary evaporator, heated to 50°C in a warm bath while rotating, and evacuated with an aspirator to remove the solvent. The mixture was then spread out on a tray in a draft and dried for 2 hours while evacuating, passed through a mesh with 2 mm openings, and dried for another day to obtain 85 g of a mixed dry product (light bulk density 183 g/L).
(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度205g/Lに造粒・圧密化した。
(Pressing process)
This mixed and dried product was passed through a triple roll mill six times, then passed through a sieve with 1 mm openings, and granulated and compacted to a light bulk density of 205 g/L.
(球形化工程)
次に、この造粒・圧密化物27gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度264g/Lの略球状複合粉末を得た。
(Spheronization process)
Next, 27 g of this granulated and compacted material was placed in a particle design/surface modification device (Hybridization System NHS-1L manufactured by Nara Machinery Manufacturing Co., Ltd.), pulverized at 40 m/sec for 15 minutes, and simultaneously spheronized to obtain an approximately spherical composite powder with a loose bulk density of 264 g/L.
(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Firing process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace with nitrogen gas flowing at a maximum temperature of 900° C. for 1 hour, thereby obtaining a fired powder consisting of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si.
その後、目開き45μmのメッシュを通し、軽装かさ密度207g/L、平均粒径(D50)が13μmの焼成粉を得た。 The powder was then passed through a mesh with 45 μm openings to obtain a fired powder with a light bulk density of 207 g/L and an average particle size (D50) of 13 μm.
得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、50質量部)を30分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The resulting fired powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 50 parts by mass) for 30 minutes, and then fired and coated using the following method.
回転焼成炉を使用し、窒素を流しながら(0.3L/min)、昇温度速度を30℃/minとし、2rpmにて回転させながら混合物を600℃で2時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。 The coal thal pitch was modified into soft carbon by heating the mixture at 600°C for 2 hours in a rotary sintering furnace while rotating at 2 rpm and flowing nitrogen (0.3 L/min) at a temperature increase rate of 30°C/min. This resulted in a sintered powder consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal thal pitch).
(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、2rpmにて回転させながら電気ヒ-タ-で920℃まで加熱し、その状態を25分間保持する事で炭素被覆を行った。炭素被覆による重量増は17重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素47質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン17質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、平均粒径(D50)が27μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and the inside of the tube was evacuated with a rotary pump, followed by flowing nitrogen gas at a flow rate of 200 SCCM and ethylene gas at a flow rate of 100 SCCM into the tube, and heating to 920 ° C. with an electric heater while rotating at 2 rpm, and maintaining that state for 25 minutes to perform carbon coating. The weight increase due to carbon coating was 17 wt%, and this resulted in a composite active material for lithium secondary batteries consisting of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 47 parts by mass of amorphous carbon (30 parts by mass of soft carbon derived from coal tar pitch, 17 parts by mass of soft carbon derived from gas phase coat). Thereafter, the powder was passed through a mesh with an opening of 45 μm to obtain a sintered powder with an average particle size (D50) of 27 μm.
(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrodes for lithium secondary batteries and battery evaluation)
92.5% by weight (content in the total amount of solids; the same applies below) of the obtained composite active material for lithium secondary batteries was mixed with 0.5% by weight of acetylene black as a conductive assistant, 7.0% by weight of a polycarboxylic acid-based binder as a binder, and water to prepare a negative electrode mixture-containing slurry.
得られた負極合剤含有スラリ-を、アプリケ-タを用いて固形分塗布量が2.5mg/cm2になるように厚みが18μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、100℃下、送り速度1m/min、圧力4.0t/cm2の条件でロ-ルプレスし、さらに真空下、110℃で3時間熱処理して、厚みが32μmの負極合剤層を形成したリチウム二次電池用負極を得た。 The obtained negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content coating amount was 2.5 mg/ cm2 , and dried for 12 hours in a vacuum dryer at 90° C. After drying, it was punched out into a circle of 14 mmφ, roll pressed under conditions of 100° C., a feed rate of 1 m/min, and a pressure of 4.0 t/ cm2 , and further heat-treated in vacuum at 110° C. for 3 hours to obtain a negative electrode for a lithium secondary battery having a negative electrode mixture layer having a thickness of 32 μm.
その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電膨張率は115%、初回充放電効率は73%、20サイクル後の容量維持率は100%であった。
<比較例2>
実施例1のSi粉砕工程と同様の手法でSiスラリ-を作製した。このスラリーを乾燥し得られたSi粉末の酸素含有量は8.8%、表面水酸基量は1.5個/nm2、酸素含有量(重量%)/BET比表面積(m2/g)の値は0.08であった。このSiスラリーをSi固形分量が0.36gとなるように秤量して丸底フラスコに移し、合計の水量が24.6g、合計のエタノールが60.2gとなるように溶媒を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.596gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-2.5gと4gの水に溶解させたp-スチレンスルホン酸ナトリウム0.025gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、4gの水に溶解させた過硫酸カリウム0.26gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散したが、Si周囲をポリスチレンで被覆することはできなかった。
Thereafter, a cell for evaluating the initial charge expansion rate and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge/discharge test was performed. The initial charge expansion rate was 115%, the initial charge/discharge efficiency was 73%, and the capacity retention rate after 20 cycles was 100%.
<Comparative Example 2>
A Si slurry was prepared in the same manner as in the Si pulverization step of Example 1. The oxygen content of the Si powder obtained by drying this slurry was 8.8%, the amount of surface hydroxyl groups was 1.5/nm 2 , and the value of oxygen content (wt%)/BET specific surface area (m 2 /g) was 0.08. This Si slurry was weighed out so that the Si solid content was 0.36 g and transferred to a round-bottom flask, and a solvent was added so that the total amount of water was 24.6 g and the total amount of ethanol was 60.2 g. After purging the flask with nitrogen, the liquid temperature was raised to 35°C. Then, 0.596 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added to the flask and stirred for 30 minutes. 2.5 g of distilled styrene monomer and 0.025 g of sodium p-styrenesulfonate dissolved in 4 g of water were added and stirred for 2 hours. The liquid temperature was then raised to 62°C, and 0.26 g of potassium persulfate dissolved in 4 g of water was added. Heating and stirring was then continued for 10 hours under reflux. The resulting reaction liquid was centrifuged at a rotation speed of 4800 rpm for 45 minutes to remove free polystyrene, and the precipitate was redispersed in ethanol, but it was not possible to cover the periphery of Si with polystyrene.
比較例1は、酸素含有量や表面水酸基量が多く、初回充放電効率が低いものであった。また、比較例2は酸素含有量が少なく、また、酸含有素量(重量%)/BET比表面積(m2/g)の値も小さかったため、Si化合物に高分子膜を被覆することができなかったものである。 Comparative Example 1 had a high oxygen content and a high amount of surface hydroxyl groups, and thus had a low initial charge-discharge efficiency, while Comparative Example 2 had a low oxygen content and a low value of the acid content (wt %)/BET specific surface area ( m2 /g), and therefore the Si compound could not be coated with a polymer film.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020085244A JP7516848B2 (en) | 2020-05-14 | 2020-05-14 | Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020085244A JP7516848B2 (en) | 2020-05-14 | 2020-05-14 | Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021180124A JP2021180124A (en) | 2021-11-18 |
JP7516848B2 true JP7516848B2 (en) | 2024-07-17 |
Family
ID=78510356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020085244A Active JP7516848B2 (en) | 2020-05-14 | 2020-05-14 | Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7516848B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162692A1 (en) * | 2022-02-25 | 2023-08-31 | Dic株式会社 | Nano silicon, nano silicon slurry, method for producing nano silicon, active material for secondary batteries, and secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015159935A1 (en) | 2014-04-16 | 2015-10-22 | 昭和電工株式会社 | Negative electrode material for lithium-ion battery, and use therefor |
JP2016531398A (en) | 2013-07-29 | 2016-10-06 | ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation | Elastic gel polymer binder for silicon negative electrode |
JP2017112057A (en) | 2015-12-18 | 2017-06-22 | 東ソー株式会社 | Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof |
WO2018229515A1 (en) | 2017-06-16 | 2018-12-20 | Nexeon Limited | Electroactive materials for metal-ion batteries |
WO2019131519A1 (en) | 2017-12-27 | 2019-07-04 | 東ソー株式会社 | Composite active material for lithium secondary cell and method for manufacturing same |
CN110890538A (en) | 2019-11-14 | 2020-03-17 | 浙江锂宸新材料科技有限公司 | Method for improving initial coulombic efficiency of silicon-based lithium ion battery negative electrode material |
-
2020
- 2020-05-14 JP JP2020085244A patent/JP7516848B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016531398A (en) | 2013-07-29 | 2016-10-06 | ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation | Elastic gel polymer binder for silicon negative electrode |
WO2015159935A1 (en) | 2014-04-16 | 2015-10-22 | 昭和電工株式会社 | Negative electrode material for lithium-ion battery, and use therefor |
JP2017112057A (en) | 2015-12-18 | 2017-06-22 | 東ソー株式会社 | Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof |
WO2018229515A1 (en) | 2017-06-16 | 2018-12-20 | Nexeon Limited | Electroactive materials for metal-ion batteries |
US20200099043A1 (en) | 2017-06-16 | 2020-03-26 | Nexeon Limited | Electroactive materials for metal-ion batteries |
WO2019131519A1 (en) | 2017-12-27 | 2019-07-04 | 東ソー株式会社 | Composite active material for lithium secondary cell and method for manufacturing same |
CN110890538A (en) | 2019-11-14 | 2020-03-17 | 浙江锂宸新材料科技有限公司 | Method for improving initial coulombic efficiency of silicon-based lithium ion battery negative electrode material |
Also Published As
Publication number | Publication date |
---|---|
JP2021180124A (en) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7452599B2 (en) | Composite active material for lithium secondary batteries | |
JP2018107145A (en) | Composite active material for lithium secondary battery and method for producing the same | |
JP6508870B2 (en) | Composite active material for lithium secondary battery and method of manufacturing the same | |
WO2015125784A1 (en) | Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material | |
JP2017130274A (en) | Negative electrode material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery | |
JP6961948B2 (en) | Composite active material for silicon-based lithium secondary batteries and its manufacturing method | |
JP7009255B2 (en) | Binder and negative electrode material for negative electrode of lithium ion secondary battery | |
JP6961980B2 (en) | Composite active material for lithium secondary battery and its manufacturing method | |
KR101572364B1 (en) | Carbon-silicon composite and negative electrode for lithium secondary battery and lithium secondary battery using the same | |
WO2016125819A1 (en) | Composite active material for lithium secondary cell and method for manufacturing same | |
KR20140072874A (en) | Composite active material for lithium secondary batteries and method for producing same | |
JP6617403B2 (en) | Negative electrode active material for lithium ion secondary battery and method for producing the same | |
WO2015146864A1 (en) | Negative electrode active material for lithium ion secondary battery, and method for producing same | |
JP2017134937A (en) | Composite active material for lithium secondary battery and method of producing the same | |
JP6808959B2 (en) | Composite active material for lithium-ion secondary battery and its manufacturing method | |
KR102176590B1 (en) | Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery | |
JP2023541439A (en) | Silicon carbon composite negative electrode material and its manufacturing method, and lithium ion battery | |
JP6961981B2 (en) | Composite active material for lithium secondary battery and its manufacturing method | |
EP4131488A1 (en) | Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery | |
JP2017112057A (en) | Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof | |
TW201640726A (en) | Composite active material for lithium secondary cell and method for manufacturing same | |
JP6739142B2 (en) | Negative electrode active material for lithium ion secondary battery and method for producing the same | |
JP7516848B2 (en) | Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same | |
JPWO2019186828A1 (en) | Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP7503407B2 (en) | Binder for lithium ion secondary battery negative electrode and lithium ion secondary battery negative electrode material containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7516848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |