JP7516763B2 - Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing - Google Patents

Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing Download PDF

Info

Publication number
JP7516763B2
JP7516763B2 JP2020011469A JP2020011469A JP7516763B2 JP 7516763 B2 JP7516763 B2 JP 7516763B2 JP 2020011469 A JP2020011469 A JP 2020011469A JP 2020011469 A JP2020011469 A JP 2020011469A JP 7516763 B2 JP7516763 B2 JP 7516763B2
Authority
JP
Japan
Prior art keywords
silica sol
silica
polishing
silica particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011469A
Other languages
Japanese (ja)
Other versions
JP2021116208A (en
Inventor
智裕 京谷
栄治 出島
友寛 加藤
毅 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020011469A priority Critical patent/JP7516763B2/en
Publication of JP2021116208A publication Critical patent/JP2021116208A/en
Priority to JP2024026870A priority patent/JP2024059837A/en
Application granted granted Critical
Publication of JP7516763B2 publication Critical patent/JP7516763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、シリカ粒子の製造方法、シリカゾルの製造方法、中間生成物の除去方法及び研磨方法に関する。 The present invention relates to a method for producing silica particles, a method for producing silica sol, a method for removing intermediate products, and a polishing method.

金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。 Polishing methods using polishing liquids are known as a method for polishing the surfaces of materials such as metals and inorganic compounds. In particular, in the final polishing of prime silicon wafers for semiconductors and reclaimed silicon wafers, as well as in chemical mechanical polishing (CMP) for planarizing interlayer insulating films during semiconductor device manufacturing, forming metal plugs, forming embedded wiring, and the like, the surface condition has a significant effect on the semiconductor characteristics, so the surfaces and end faces of these components must be polished with extremely high precision.

このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾルゲル法」と称される)によるもの等が知られている。 In such precision polishing, polishing compositions containing silica particles are used, and colloidal silica is widely used as the abrasive grains, which are the main component. Colloidal silica is known to be produced by a variety of methods, including those produced by the thermal decomposition of silicon tetrachloride (fumed silica, etc.), those produced by the deionization of alkali silicate such as water glass, and those produced by the hydrolysis and condensation reaction of alkoxysilanes (commonly known as the "sol-gel method").

コロイダルシリカを含むシリカゾルの製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1~3には、アルコキシシランの加水分解反応及び縮合反応によりシリカゾルを製造する方法が開示されている。 Many studies have been conducted on methods for producing silica sols containing colloidal silica. For example, Patent Documents 1 to 3 disclose methods for producing silica sols by hydrolysis and condensation reactions of alkoxysilanes.

特開平11-60232号公報Japanese Patent Application Publication No. 11-60232 国際公開第2008/123373号International Publication No. 2008/123373 国際公開第2004/000922号International Publication No. 2004/000922

ところで、アルコキシシランの加水分解反応及び縮合反応によるシリカゾルの製造時又は製造後において、中間生成物が発生することがある。この中間生成物は、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等と考えられる。また、このようなシリカは、反応活性状態にあるため、中間生成物が起点となり、10nm程度の微小粒子を発生させたり、粒子を想定以上に成長させたりすることがある。そのため、中間生成物を有するシリカゾルは、粘度の上昇やゲル化を引き起こし、その保存安定性を悪化させる
このような中間生成物や微小粒子は、所望のコロイダルシリカよりも低い縮合度のシリカと考えられるため、得られるシリカゾル中のコロイダルシリカの機械的特性を悪化させ、研磨速度を低下させる等、得られる研磨液の研磨特性に悪影響を及ぼす。また、微小粒子を含む研磨液を研磨に用いると、微小粒子が被研磨体を覆ってしまい、本来研磨に寄与するはずの研磨液中のコロイダルシリカが研磨に寄与しなくなる。更に、縮合度の低いシリカを含む研磨液を研磨に用いると、研磨液の研磨後の被研磨体からの除去性に劣る。
By the way, intermediate products may be generated during or after the production of silica sol by hydrolysis and condensation of alkoxysilane. These intermediate products are considered to be silica that remains as a solid with insufficient growth or silica that precipitates from dissolved silicic acid after production. In addition, since such silica is in a reactive state, the intermediate products may be the starting point to generate fine particles of about 10 nm or to grow the particles more than expected. Therefore, silica sol containing intermediate products causes an increase in viscosity and gelation, and deteriorates its storage stability. Since such intermediate products and fine particles are considered to be silica with a lower degree of condensation than the desired colloidal silica, they deteriorate the mechanical properties of colloidal silica in the obtained silica sol, reduce the polishing speed, and have an adverse effect on the polishing properties of the obtained polishing liquid. In addition, when a polishing liquid containing fine particles is used for polishing, the fine particles cover the polished object, and the colloidal silica in the polishing liquid that should originally contribute to polishing does not contribute to polishing. Furthermore, when a polishing liquid containing silica with a low degree of condensation is used for polishing, the polishing liquid is poorly removable from the polished object after polishing.

特許文献1~3に開示されているアルコキシシランの加水分解反応及び縮合反応によりシリカゾルを製造する方法は、このような中間生成物や微小粒子の対処について何ら記載されておらず、製造条件次第では中間生成物や微小粒子を多く含むシリカゾルが得られてしまう。特に、中間生成物は、反応活性状態のまま残存していると推定されるため、シリカゾルの保存中に化学変化が進行し、ゲル化や微粒子発生を引き起こす。その結果、シリカゾルの保存安定性に劣り、得られる研磨液の研磨特性に悪影響を及ぼすだけでなく被研磨体からの除去性にも劣る。 The methods of producing silica sol by hydrolysis and condensation reactions of alkoxysilanes disclosed in Patent Documents 1 to 3 do not disclose any method for dealing with such intermediate products and fine particles, and depending on the production conditions, a silica sol containing a large amount of intermediate products and fine particles may be obtained. In particular, since the intermediate products are presumed to remain in a reactive state, chemical changes progress during storage of the silica sol, causing gelation and generation of fine particles. As a result, the storage stability of the silica sol is poor, which not only adversely affects the polishing properties of the resulting polishing liquid, but also makes it difficult to remove from the object to be polished.

本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、中間生成物の少ないシリカゾルの製造方法を提供することにある。また、本発明のもう1つの目的は、シリカゾル中の中間生成物を簡便に少なくできるシリカゾル中の中間生成物の除去方法を提供することにある。 The present invention was made in consideration of these problems, and an object of the present invention is to provide a method for producing a silica sol with fewer intermediate products. Another object of the present invention is to provide a method for removing intermediate products in a silica sol that can easily reduce the amount of intermediate products in the silica sol.

従来、中間生成物や微粒子を含むシリカゾルが存在し、そのまま中間生成物や微小粒子を除去せずに研磨液として用いられてきたため、得られる研磨液の研磨特性や保存安定性が十分とは言えなかった。しかしながら、本発明者らは、鋭意検討を重ねた結果、特定範囲の分画分子量の限外濾過膜でシリカゾルを限外濾過することで、微小粒子の原因となる中間生成物を除去し、保存安定性に優れるシリカゾルが得られることを見出し、本発明を完成するに至った。 Conventionally, silica sols containing intermediate products and fine particles have existed and have been used as polishing liquids without removing the intermediate products and fine particles, and the polishing properties and storage stability of the resulting polishing liquids have not been sufficient. However, after extensive research, the inventors have discovered that by ultrafiltering silica sols using ultrafiltration membranes with a specific range of molecular weight cutoff, intermediate products that cause fine particles can be removed and a silica sol with excellent storage stability can be obtained, thus completing the present invention.

即ち、本発明の要旨は、以下の通りである。
[1]以下の工程(1)及び工程(2)を含む、シリカ粒子の製造方法。
工程(1):テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程。
工程(2):シリカゾルを、分画分子量5,000~80,000の限外濾過膜を用いて限外濾過する工程。
[2]工程(1)の後に、工程(2)を行う、[1]に記載のシリカ粒子の製造方法。
[3]シリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、10質量%~50質量%である、[1]又は[2]に記載のシリカ粒子の製造方法。
[4]シリカ粒子のDLS法により測定した平均2次粒子径が、20nm~100nmである、[1]~[3]のいずれかに記載のシリカ粒子の製造方法。
[5]100℃以上に加熱する工程を含まない、[1]~[4]のいずれかに記載のシリカ粒子の製造方法。
[6][1]~[5]のいずれかに記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。
[7][6]に記載のシリカゾルの製造方法により、シリカゾル中の中間生成物を除去する、シリカゾル中の中間生成物の除去方法。
[8][1]~[5]のいずれかに記載のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する、研磨方法。
That is, the gist of the present invention is as follows.
[1] A method for producing silica particles, comprising the following steps (1) and (2):
Step (1): A step of subjecting tetraalkoxysilane to a hydrolysis reaction and a condensation reaction to obtain a silica sol.
Step (2): A step of ultrafiltering the silica sol using an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 80,000.
[2] The method for producing silica particles according to [1], wherein step (2) is carried out after step (1).
[3] The method for producing silica particles according to [1] or [2], wherein the content of silica particles in the silica sol is 10% by mass to 50% by mass, based on a total amount of the silica sol (100% by mass).
[4] The method for producing silica particles according to any one of [1] to [3], wherein the average secondary particle diameter of the silica particles measured by a DLS method is 20 nm to 100 nm.
[5] The method for producing silica particles according to any one of [1] to [4], which does not include a step of heating to 100° C. or higher.
[6] A method for producing a silica sol, comprising the method for producing silica particles according to any one of [1] to [5].
[7] A method for removing an intermediate product in a silica sol, comprising removing the intermediate product in the silica sol by the method for producing a silica sol according to [6].
[8] A polishing method, comprising the steps of: polishing with a polishing composition containing silica particles obtained by the method for producing silica particles according to any one of [1] to [5].

本発明のシリカゾルの製造方法は、中間生成物の少ないシリカゾルを得ることができ、得られるシリカゾルの保存安定性に優れ、得られる研磨液の研磨特性に優れ、得られる研磨液の研磨後の被研磨体からの除去性に優れる。また、本発明のシリカゾル中の中間生成物の除去方法は、シリカゾル中の中間生成物を簡便に少なくでき、得られるシリカゾルや得られる研磨液の保存安定性に優れ、得られる研磨液の研磨特性に優れ、得られる研磨液の研磨後の被研磨体からの除去性に優れる。 The method for producing silica sol of the present invention can obtain a silica sol with a small amount of intermediate products, and the resulting silica sol has excellent storage stability, the polishing properties of the resulting polishing liquid are excellent, and the resulting polishing liquid is excellent in removability from the polished object after polishing. Furthermore, the method for removing intermediate products in silica sol of the present invention can easily reduce the amount of intermediate products in the silica sol, and the resulting silica sol and the resulting polishing liquid have excellent storage stability, the polishing properties of the resulting polishing liquid are excellent, and the resulting polishing liquid is excellent in removability from the polished object after polishing.

中間生成物を含むシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of a silica sol containing an intermediate product observed with a field emission scanning electron microscope. 比較例1で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol obtained in Comparative Example 1 observed with a field emission scanning electron microscope. 実施例1で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol obtained in Example 1 observed with a field emission scanning electron microscope. 実施例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol obtained in Example 2 observed with a field emission scanning electron microscope. 比較例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol obtained in Comparative Example 2 observed with a field emission scanning electron microscope. 比較例3で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 1 is a diagram showing a secondary electron image of the silica sol obtained in Comparative Example 3 observed with a field emission scanning electron microscope. 参考例1で用いたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol used in Reference Example 1 observed with a field emission scanning electron microscope. 参考例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of the silica sol obtained in Reference Example 2 observed with a field emission scanning electron microscope.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。 The present invention is described in detail below, but is not limited to the following embodiments and can be modified and implemented in various ways within the scope of the gist. In this specification, when the expression "~" is used, it is used as an expression including the numerical values or physical property values before and after it.

(シリカ粒子の製造方法)
本発明のシリカ粒子の製造方法は、以下の工程(1)及び工程(2)を含む。
工程(1):テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程。
工程(2):シリカゾルを、分画分子量5,000~80,000の限外濾過膜を用いて限外濾過する工程。
(Method for producing silica particles)
The method for producing silica particles of the present invention includes the following steps (1) and (2).
Step (1): A step of subjecting tetraalkoxysilane to a hydrolysis reaction and a condensation reaction to obtain a silica sol.
Step (2): A step of ultrafiltering the silica sol using an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 80,000.

(工程(1))
工程(1)は、テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程である。
本発明のシリカ粒子の製造方法は、工程(1)を含むことで、得られるシリカゾルの金属不純物含有率を低減することができる。
(Step (1))
The step (1) is a step of obtaining a silica sol by subjecting a tetraalkoxysilane to a hydrolysis reaction and a condensation reaction.
The method for producing silica particles of the present invention includes the step (1), and thus the metal impurity content of the obtained silica sol can be reduced.

テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等が挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が早く、未反応物が残留しづらく、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。 Examples of tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, tetramethoxysilane and tetraethoxysilane are preferred, and tetramethoxysilane is more preferred, because they undergo a fast hydrolysis reaction, are less likely to leave unreacted material, are highly productive, and can easily produce a stable silica sol.

シリカ粒子を構成する原料は、テトラアルコキシシランの低縮合物等のテトラアルコキシシラン以外の原料を用いてもよいが、反応性に優れることから、シリカ粒子を構成する全原料100質量%中、テトラアルコキシシランが50質量%以上で、テトラアルコキシシラン以外の原料が50質量%以下であることが好ましく、テトラアルコキシシランが90質量%以上で、テトラアルコキシシラン以外の原料が10質量%以下であることがより好ましい。 The raw materials constituting the silica particles may be raw materials other than tetraalkoxysilane, such as low condensates of tetraalkoxysilane, but because of their excellent reactivity, it is preferable that, out of 100% by mass of all the raw materials constituting the silica particles, tetraalkoxysilane is 50% by mass or more and raw materials other than tetraalkoxysilane are 50% by mass or less, and it is even more preferable that tetraalkoxysilane is 90% by mass or more and raw materials other than tetraalkoxysilane are 10% by mass or less.

加水分解反応及び縮合反応を行う際の反応に用いる溶媒・分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒・分散媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水、メタノールがより好ましい。 Examples of the solvents and dispersion media used in the hydrolysis and condensation reactions include water, methanol, ethanol, propanol, isopropanol, and ethylene glycol. These solvents and dispersion media may be used alone or in combination of two or more. Among these solvents and dispersion media, water and alcohol are preferred, and water and methanol are more preferred, because the solvents and by-products used in the hydrolysis and condensation reactions are the same as those used in the hydrolysis and condensation reactions, and because they are convenient to manufacture.

加水分解反応及び縮合反応を行う際、触媒存在下であってもよく、無触媒下であってもよいが、加水分解反応及び縮合反応を促進できることから、触媒存在下が好ましい。
触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、ギ酸、クエン酸等の酸触媒、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等のアルカリ触媒等が挙げられる。これらの触媒の中でも、触媒作用に優れ、粒子形状を制御しやすいことから、アルカリ触媒が好ましく、金属不純物の混入を抑制することができ、揮発性が高く縮合反応後の除去性に優れることから、アルカリ触媒が好ましく、アンモニアがより好ましい。
The hydrolysis reaction and the condensation reaction may be carried out in the presence or absence of a catalyst, but are preferably carried out in the presence of a catalyst, since this can accelerate the hydrolysis reaction and the condensation reaction.
Examples of the catalyst include acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, formic acid, and citric acid, and alkali catalysts such as ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, and tetramethylammonium hydroxide. Among these catalysts, alkali catalysts are preferred because they have excellent catalytic action and are easy to control the particle shape, and alkali catalysts are preferred because they can suppress the inclusion of metal impurities, are highly volatile, and are easy to remove after the condensation reaction, with ammonia being more preferred.

(工程(1)と工程(2)との関係)
工程(2)は、工程(1)の間に行ってもよく、工程(1)の後に行ってもよいが、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等の中間生成物を効率的に除去できることから、工程(1)の後に行うことが好ましい。
(Relationship between step (1) and step (2))
Step (2) may be carried out during or after step (1). However, it is preferable to carry out step (2) after step (1) since intermediate products such as insufficiently grown silica remaining as a solid and silica precipitated from dissolved silicic acid after production can be efficiently removed.

(工程(2))
工程(2)は、シリカゾルを、分画分子量5,000~80,000の限外濾過膜を用いて限外濾過する工程である。
本発明のシリカ粒子の製造方法は、工程(2)を含むことで、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等の中間生成物を効率的に除去でき、ゲル化等の変質を抑制し、シリカゾルの保存安定性を高める。
(Step (2))
The step (2) is a step of ultrafiltering the silica sol using an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 80,000.
The method for producing silica particles of the present invention includes step (2), which makes it possible to efficiently remove intermediate products such as silica that remains as a solid due to insufficient growth and silica that precipitates from dissolved silicic acid after production, thereby suppressing deterioration such as gelation and improving the storage stability of the silica sol.

本明細書において、中間生成物は、電界放出型走査電子顕微鏡(FE-SEM)を用いて倍率10万倍~20万倍で撮影したFE-SEMの画像において、図1でいう黒い線で囲まれた部分のように見える箇所をいう。
この中間生成物は、アルコキシシランの加水分解反応及び縮合反応によるシリカゾルの製造時又は製造後における、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等と考えられる。
In this specification, the intermediate product refers to a portion that looks like the portion surrounded by the black line in FIG. 1 in a field emission scanning electron microscope (FE-SEM) image taken at a magnification of 100,000 to 200,000 using an FE-SEM.
This intermediate product is thought to be silica that remains as a solid due to insufficient growth during or after the production of silica sol by hydrolysis and condensation reaction of alkoxysilane, or silica that precipitates from dissolved silicic acid after production.

限外濾過膜の分画分子量は、5,000~80,000であり、6,000~60,000が好ましく、7,000~40,000がより好ましい。限外濾過膜の分画分子量が5,000以上であると、透過性に優れる。また、限外濾過膜の分画分子量が80,000以下であると、選択性に優れる。 The molecular weight cutoff of the ultrafiltration membrane is 5,000 to 80,000, preferably 6,000 to 60,000, and more preferably 7,000 to 40,000. When the molecular weight cutoff of the ultrafiltration membrane is 5,000 or more, the membrane has excellent permeability. When the molecular weight cutoff of the ultrafiltration membrane is 80,000 or less, the membrane has excellent selectivity.

限外濾過は、通常なされるミクロンオーダーの細孔径を持つ濾紙やフィルターによる濾過では細孔を通り抜けてしまう成分を、分子量ごとに分画できることが特徴である。したがって、限外濾過で分子量ごとの分画の選択性を上げるためには、遠心分離による方法が好ましい。 Ultrafiltration is characterized by its ability to separate components by molecular weight that would normally pass through the pores of filter paper or filters with pore sizes on the order of microns. Therefore, to increase the selectivity of fractionation by molecular weight using ultrafiltration, a method using centrifugation is preferred.

遠心分離による限外濾過の遠心力は、500g~10,000gが好ましく、800g~5,000gがより好ましい。限外濾過の遠心力が500g以上であると、濾過速度が十分で、シリカ粒子やシリカゾルの生産性に優れる。また、限外濾過の遠心力が10,000g以下であると、限外濾過の選択性に優れる。 The centrifugal force of ultrafiltration by centrifugation is preferably 500 g to 10,000 g, and more preferably 800 g to 5,000 g. When the centrifugal force of ultrafiltration is 500 g or more, the filtration speed is sufficient and the productivity of silica particles and silica sol is excellent. Furthermore, when the centrifugal force of ultrafiltration is 10,000 g or less, the selectivity of ultrafiltration is excellent.

遠心分離による限外濾過の回転数は、1,000rpm~20,000rpmが好ましく、2,000~10,000rpmがより好ましい。限外濾過の回転数が1,000rpm以上であると、濾過速度が十分で、シリカ粒子やシリカゾルの生産性に優れる。限外濾過の回転数が20,000rpm以下であると、限外濾過の選択性に優れる。 The rotation speed of ultrafiltration by centrifugation is preferably 1,000 rpm to 20,000 rpm, and more preferably 2,000 to 10,000 rpm. When the rotation speed of ultrafiltration is 1,000 rpm or more, the filtration speed is sufficient and the productivity of silica particles and silica sol is excellent. When the rotation speed of ultrafiltration is 20,000 rpm or less, the selectivity of ultrafiltration is excellent.

遠心分離による限外濾過の遠心分離時間は、10分~300分が好ましく、20分~180分がより好ましい。限外濾過の遠心分離時間が10分以上であると、シリカゾル中の中間生成物を抑制することができる。また、限外濾過の遠心分離時間が300分以下であると、シリカ粒子やシリカゾルの生産性に優れる。 The centrifugation time for ultrafiltration by centrifugation is preferably 10 to 300 minutes, and more preferably 20 to 180 minutes. If the centrifugation time for ultrafiltration is 10 minutes or more, intermediate products in the silica sol can be suppressed. Furthermore, if the centrifugation time for ultrafiltration is 300 minutes or less, the productivity of silica particles and silica sol is excellent.

(工程(1)と工程(2)以外の工程)
本発明のシリカ粒子の製造方法は、シリカ粒子の性能を損なわない範囲で、工程(1)及び工程(2)以外の工程を含んでもよい。
工程(1)及び工程(2)以外の工程としては、加圧加熱処理工程が挙げられるが、中間生成物が抑制されることにより加圧加熱処理で期待される効果が低減されることから、100℃以上に加熱する工程を含まないことが好ましく、150℃以上に加熱する工程を含まないことがより好ましい。
(Steps other than steps (1) and (2))
The method for producing silica particles of the present invention may include steps other than step (1) and step (2) as long as the performance of the silica particles is not impaired.
An example of a process other than the process (1) and the process (2) is a pressurized heat treatment process. However, since the effect expected from the pressurized heat treatment is reduced by suppressing the intermediate product, it is preferable not to include a process of heating to 100° C. or higher, and it is more preferable not to include a process of heating to 150° C. or higher.

(シリカ粒子の物性)
シリカ粒子の平均1次粒子径は、5nm~100nmが好ましく、10nm~60nmがより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
(Physical properties of silica particles)
The average primary particle size of the silica particles is preferably 5 nm to 100 nm, more preferably 10 nm to 60 nm. When the average primary particle size of the silica particles is 5 nm or more, the storage stability of the silica sol is excellent. Furthermore, when the average primary particle size of the silica particles is 100 nm or less, the surface roughness and scratches of the polished object, such as a silicon wafer, can be reduced, and sedimentation of the silica particles can be suppressed.

シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(1)を用いて平均1次粒子径を算出する。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (1)
The average primary particle diameter of the silica particles is measured by the BET method. Specifically, the specific surface area of the silica particles is measured using an automatic specific surface area measuring device, and the average primary particle diameter is calculated using the following formula (1).
Average primary particle diameter (nm) = 6000/(specific surface area (m 2 /g) x density (g/cm 3 )) ... (1)

シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average primary particle size of the silica particles can be set within the desired range using known conditions and methods.

シリカ粒子の平均2次粒子径は、10nm~200nmが好ましく、20nm~100nmがより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。 The average secondary particle diameter of the silica particles is preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm. When the average secondary particle diameter of the silica particles is 10 nm or more, the removability of particles and the like during cleaning after polishing is excellent, and the storage stability of the silica sol is excellent. When the average secondary particle diameter of the silica particles is 200 nm or less, the surface roughness and scratches on the polished object, such as a silicon wafer, can be reduced during polishing, particles and the like can be removed easily during cleaning after polishing, and sedimentation of the silica particles can be suppressed.

シリカ粒子の平均2次粒子径は、DLS法により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。 The average secondary particle size of silica particles is measured by the DLS method. Specifically, it is measured using a dynamic light scattering particle size measuring device.

シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average secondary particle size of the silica particles can be set within the desired range using known conditions and methods.

シリカ粒子のcv値は、15~50が好ましく、20~40がより好ましく、25~35が更に好ましい。シリカ粒子のcv値が15以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子のcv値が50以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。 The cv value of the silica particles is preferably 15 to 50, more preferably 20 to 40, and even more preferably 25 to 35. When the cv value of the silica particles is 15 or more, the polishing rate for the workpiece, such as a silicon wafer, is excellent, and the productivity of the silicon wafer is excellent. Furthermore, when the cv value of the silica particles is 50 or less, the surface roughness and scratches on the workpiece, such as a silicon wafer, during polishing can be reduced, and the removal of particles and the like during cleaning after polishing is excellent.

シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(2)を用いて算出する。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
The cv value of the silica particles is calculated using the following formula (2) by measuring the average secondary particle diameter of the silica particles using a dynamic light scattering particle diameter measuring device.
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)

シリカ粒子の会合比は、1.0~4.0が好ましく、1.1~3.0がより好ましい。シリカ粒子の会合比が1.0以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子の会合比が4.0以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。 The association ratio of the silica particles is preferably 1.0 to 4.0, and more preferably 1.1 to 3.0. When the association ratio of the silica particles is 1.0 or more, the polishing rate for the object to be polished, such as a silicon wafer, is excellent, and the productivity of the silicon wafer is excellent. Furthermore, when the association ratio of the silica particles is 4.0 or less, the surface roughness and scratches on the object to be polished, such as a silicon wafer, during polishing can be reduced, and the aggregation of the silica particles can be suppressed.

シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(3)を用いて会合比を算出する。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
The association ratio of the silica particles is calculated using the following formula (3) from the average primary particle diameter measured by the above-mentioned measurement method and the average secondary particle diameter measured by the above-mentioned measurement method.
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)

シリカ粒子の表面シラノール基密度は、0.1個/nm~10個/nmが好ましく、0.5個/nm~7.5個/nmがより好ましく、2.0個/nm~7.0個/nmが更に好ましい。シリカ粒子の表面シラノール基密度が0.1個/nm以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基密度が10個/nm以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。 The surface silanol group density of the silica particles is preferably 0.1/nm 2 to 10/nm 2 , more preferably 0.5/nm 2 to 7.5/nm 2 , and even more preferably 2.0/nm 2 to 7.0/nm 2. When the surface silanol group density of the silica particles is 0.1/nm 2 or more, the silica particles have a suitable surface repulsion, and the dispersion stability of the silica sol is excellent. In addition, when the surface silanol group density of the silica particles is 10/nm 2 or less, the silica particles have a suitable surface repulsion, and the aggregation of the silica particles can be suppressed.

シリカ粒子の表面シラノール基密度は、シアーズ法により測定する。具体的には、下記に示す条件で測定・算出する。
シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出する。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
The surface silanol group density of the silica particles is measured by the Sears method, specifically, under the following conditions.
A silica sol equivalent to 1.5 g of silica particles is collected, and pure water is added to make the liquid volume 90 mL. In an environment of 25° C., a 0.1 mol/L aqueous hydrochloric acid solution is added until the pH becomes 3.6, 30 g of sodium chloride is added, and pure water is gradually added to completely dissolve the sodium chloride. Finally, pure water is added until the total volume of the test liquid becomes 150 mL to obtain a test liquid.
The obtained test solution is placed in an automatic titrator, and a 0.1 mol/L aqueous solution of sodium hydroxide is added dropwise to measure the titration amount A (mL) of the 0.1 mol/L aqueous solution of sodium hydroxide required to change the pH from 4.0 to 9.0.
The amount V (mL) of 0.1 mol/L aqueous sodium hydroxide solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles is calculated using the following formula (4), and the surface silanol group density ρ (number/ nm2 ) of the silica particles is calculated using the following formula (5).
V=(A×f×100×1.5)/(W×C)... (4)
A: Titration amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles
f: Titer of 0.1 mol/L aqueous sodium hydroxide solution used C: Concentration of silica particles in silica sol (mass%)
W: Amount of silica sol collected (g)
ρ=(B× NA )/(10 18 ×M×S BET )...(5)
B: The amount (mol) of sodium hydroxide required to change the pH per 1.5 g of silica particles from 4.0 to 9.0 calculated from V
N A : Avogadro's number (pieces/mol)
M: Amount of silica particles (1.5 g)
S BET : specific surface area (m 2 /g) of silica particles measured when calculating the average primary particle diameter

尚、前記シリカ粒子の表面シラノール基密度の測定・算出方法は、「G.W.Sears,Jr., Analytical Chemistry, Vol.28, No.12, pp.1981-1983(1956).」、「羽場真一, 半導体集積回路プロセス用研磨剤の開発, 高知工科大学博士論文, pp.39-45, 2004年3月」、「特許第5967118号公報」、「特許第6047395号公報」を参考にした。 The method for measuring and calculating the surface silanol group density of the silica particles was based on "G.W. Sears, Jr., Analytical Chemistry, Vol. 28, No. 12, pp. 1981-1983 (1956)," "Shinichi Haba, Development of an Abrasive for Semiconductor Integrated Circuit Processing, Doctoral Dissertation, Kochi University of Technology, pp. 39-45, March 2004," "Patent Publication No. 5967118," and "Patent Publication No. 6047395."

シリカ粒子の表面シラノール基密度は、アルコキシシランの加水分解反応及び縮合反応の条件を調整することで、所望の範囲に設定することができる。 The surface silanol group density of silica particles can be set within the desired range by adjusting the conditions of the hydrolysis reaction and condensation reaction of alkoxysilane.

シリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。 The metal impurity content of the silica particles is preferably 5 ppm or less, and more preferably 2 ppm or less.

半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着・汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
When polishing silicon wafers for semiconductor devices, metallic impurities adhere to and contaminate the surface of the workpiece being polished, adversely affecting the characteristics of the wafer and diffusing into the interior of the wafer, degrading its quality, resulting in a significant decrease in the performance of semiconductor devices manufactured from such wafers.
Furthermore, when metal impurities are present on silica particles, coordination interactions occur between the acidic surface silanol groups and the metal impurities, changing the chemical properties (acidity, etc.) of the surface silanol groups and the three-dimensional environment of the silica particle surfaces (e.g. ease of aggregation of silica particles), thereby affecting the polishing rate.

シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP-MS)により測定する。具体的には、シリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温・溶解・蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。 The metal impurity content of silica particles is measured by inductively coupled plasma mass spectrometry (ICP-MS). Specifically, a silica sol containing 0.4 g of silica particles is accurately weighed, sulfuric acid and hydrofluoric acid are added, and the mixture is heated, dissolved, and evaporated. Pure water is added to the remaining sulfuric acid droplets so that the total amount is exactly 10 g to create a test solution, which is then measured using an inductively coupled plasma mass spectrometer. The target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver, and nickel, and the sum of the contents of these metals is the metal impurity content.

シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応及び縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
The metal impurity content of the silica particles can be reduced to 5 ppm or less by obtaining the silica particles through hydrolysis and condensation reactions using alkoxysilane as a main raw material.
In the method of deionizing alkali silicate such as water glass, sodium and the like derived from the raw material remain, so it is extremely difficult to reduce the metal impurity content of the silica particles to 5 ppm or less.

シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。 Examples of the shape of silica particles include spherical, chain-like, cocoon-like (also called lump-like or peanut-like), and irregular shapes (e.g. wart-like, bent, branched, etc.). Among these silica particle shapes, spherical shapes are preferred when it is desired to reduce the surface roughness and scratches on the polished object, such as a silicon wafer, during polishing, and irregular shapes are preferred when it is desired to increase the polishing rate for the polished object, such as a silicon wafer.

シリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
Silica particles preferably have no pores because they have excellent mechanical strength and storage stability.
The presence or absence of pores in the silica particles is confirmed by a multipoint BET analysis using an adsorption isotherm with nitrogen as the adsorption gas.

シリカ粒子は、機械的強度、保存安定性に優れることから、アルコキシシラン縮合物を主成分とすることが好ましく、テトラアルコキシシラン縮合物を主成分とすることがより好ましい。主成分とは、シリカ粒子を構成する全成分100質量%中、50質量%以上であることをいう。
アルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、アルコキシシランを主原料とすることが好ましい。テトラアルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、テトラアルコキシシランを主原料とすることが好ましい。主原料とは、シリカ粒子を構成する全原料100質量%中、50質量%以上であることをいう。
The silica particles preferably contain an alkoxysilane condensate as a main component, and more preferably a tetraalkoxysilane condensate as a main component, because they have excellent mechanical strength and storage stability. The main component means that the silica particles contain 50% by mass or more of the total components constituting the silica particles (100% by mass).
In order to obtain silica particles mainly composed of alkoxysilane condensates, it is preferable to use alkoxysilane as the main raw material. In order to obtain silica particles mainly composed of tetraalkoxysilane condensates, it is preferable to use tetraalkoxysilane as the main raw material. The main raw material means that the main raw material is 50% by mass or more out of 100% by mass of all raw materials constituting the silica particles.

(シリカゾルの製造方法)
本発明のシリカゾルの製造方法は、本発明のシリカ粒子の製造方法を含む。
(Method for producing silica sol)
The method for producing a silica sol of the present invention includes the method for producing silica particles of the present invention.

シリカゾルは、本発明のシリカ粒子の製造方法で得られたシリカ粒子の分散液をそのまま用いてもよく、得られた分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加して製造してもよい。 Silica sol may be produced by using the dispersion of silica particles obtained by the method for producing silica particles of the present invention as is, or by removing unnecessary components from the obtained dispersion and adding necessary components.

シリカゾルは、シリカ粒子及び溶媒・分散媒を含むことが好ましい。
シリカゾルの溶媒・分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらのシリカゾルの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾルの溶媒・分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
The silica sol preferably contains silica particles and a solvent/dispersion medium.
Examples of the solvent/dispersion medium of silica sol include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, etc. These solvents/dispersion mediums of silica sol may be used alone or in combination of two or more. Among these solvents/dispersion mediums of silica sol, water and alcohol are preferred, and water is more preferred, because they have excellent affinity with silica particles.

シリカゾル中のシリカ粒子の含有率は、シリカゾル全量100質量%中、3質量%~50質量%が好ましく、4質量%~40質量%がより好ましく、5質量%~30質量%が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。 The content of silica particles in the silica sol is preferably 3% to 50% by mass, more preferably 4% to 40% by mass, and even more preferably 5% to 30% by mass, based on the total amount of the silica sol (100% by mass). When the content of silica particles in the silica sol is 3% by mass or more, the polishing rate for a workpiece such as a silicon wafer is excellent. Furthermore, when the content of silica particles in the silica sol is 50% by mass or less, the aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent.

シリカゾル中の溶媒・分散媒の含有率は、シリカゾル全量100質量%中、50質量%~97質量%が好ましく、60質量%~96質量%がより好ましく、70質量%~95質量%が更に好ましい。シリカゾル中の溶媒・分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の溶媒・分散媒の含有率が97質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The content of the solvent/dispersion medium in the silica sol is preferably 50% to 97% by mass, more preferably 60% to 96% by mass, and even more preferably 70% to 95% by mass, out of a total amount of 100% by mass of the silica sol. When the content of the solvent/dispersion medium in the silica sol is 50% by mass or more, the aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent. Furthermore, when the content of the solvent/dispersion medium in the silica sol is 97% by mass or less, the polishing rate for the object to be polished, such as a silicon wafer, is excellent.

シリカゾル中のシリカ粒子や溶媒・分散媒の含有率は、シリカ粒子の分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。 The content of silica particles and solvent/dispersion medium in the silica sol can be set to the desired range by removing unnecessary components from the silica particle dispersion and adding necessary components.

シリカゾルは、シリカ粒子及び溶媒・分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌・殺生物剤を含ませることが好ましい。
In addition to the silica particles and the solvent/dispersion medium, the silica sol may contain other components such as an oxidizing agent, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, an antibacterial agent, or a biocide, as necessary, within the range that does not impair the performance of the silica sol.
In particular, it is preferable to include an antibacterial/biocide in the silica sol, since this provides excellent storage stability of the silica sol.

抗菌・殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、過酸化水素、p-ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌・殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌・殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
殺生物剤は、一般に殺菌剤と言われるものも含む。
Examples of antibacterial and biocide agents include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, hydrogen peroxide, methyl p-hydroxybenzoate, sodium chlorite, etc. These antibacterial and biocide agents may be used alone or in combination of two or more. Among these antibacterial and biocide agents, hydrogen peroxide is preferred because of its excellent affinity with silica sol.
Biocides also include those commonly referred to as bactericides.

シリカゾル中の抗菌・殺生物剤の含有率は、シリカゾル全量100質量%中、0.0001質量%~10質量%が好ましく、0.001質量%~1質量%がより好ましい。シリカゾル中の抗菌・殺生物剤の含有率が0.0001質量%質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌・殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。 The content of the antibacterial/biocide in the silica sol is preferably 0.0001% by mass to 10% by mass, and more preferably 0.001% by mass to 1% by mass, based on the total amount of the silica sol being 100% by mass. When the content of the antibacterial/biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent. When the content of the antibacterial/biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.

シリカゾルのpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。シリカゾルのpHが6.0以上であると、分散安定性に優れて、シリカ粒子の凝集を抑制することができる。また、シリカゾルのpHが8.0以下であると、シリカ粒子の溶解を防ぎ、長期間の保存安定性に優れる。
シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the silica sol is preferably 6.0 to 8.0, more preferably 6.5 to 7.8. When the pH of the silica sol is 6.0 or more, the dispersion stability is excellent and the aggregation of the silica particles can be suppressed. When the pH of the silica sol is 8.0 or less, dissolution of the silica particles is prevented and the long-term storage stability is excellent.
The pH of the silica sol can be adjusted to a desired range by adding a pH adjuster.

(シリカゾル中の中間生成物の除去方法)
本発明のシリカゾル中の中間生成物の除去方法は、本発明のシリカゾルの製造方法による方法であり、具体的な製造方法は、前述した通りである。
(Method for Removing Intermediate Products from Silica Sol)
The method for removing intermediate products in a silica sol of the present invention is a method according to the method for producing a silica sol of the present invention, and the specific production method is as described above.

(研磨組成物)
本発明のシリカ粒子の製造方法で得られるシリカ粒子は、研磨組成物として好適に用いることができる。
研磨組成物は、前述したシリカゾル及び水溶性高分子を含むことが好ましい。
(Polishing composition)
The silica particles obtained by the method for producing silica particles of the present invention can be suitably used as a polishing composition.
The polishing composition preferably contains the above-mentioned silica sol and a water-soluble polymer.

水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。 The water-soluble polymer increases the wettability of the polishing composition to the object to be polished, such as a silicon wafer. The water-soluble polymer is preferably a polymer having a functional group with high water affinity, and this functional group with high water affinity has a high affinity with the surface silanol groups of the silica particles, so that the silica particles and the water-soluble polymer are stably dispersed in close proximity in the polishing composition. Therefore, when polishing an object to be polished, such as a silicon wafer, the effects of the silica particles and the water-soluble polymer function synergistically.

水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。 Examples of water-soluble polymers include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, and polymers having a polyoxyalkylene structure.

セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
Examples of cellulose derivatives include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose.
An example of the copolymer having a polyvinylpyrrolidone skeleton is a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
Examples of polymers having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and copolymers of ethylene oxide and propylene oxide.

これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。 These water-soluble polymers may be used alone or in combination of two or more. Among these water-soluble polymers, cellulose derivatives are preferred, and hydroxyethyl cellulose is more preferred, because they have a high affinity with the surface silanol groups of the silica particles and act synergistically to impart good hydrophilicity to the surface of the object to be polished.

水溶性高分子の質量平均分子量は、1,000~3,000,000が好ましく、5,000~2,000,000がより好ましく、10,000~1,000,000が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The mass average molecular weight of the water-soluble polymer is preferably 1,000 to 3,000,000, more preferably 5,000 to 2,000,000, and even more preferably 10,000 to 1,000,000. When the mass average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with silica sol is excellent, and the polishing rate for the object to be polished, such as a silicon wafer, is excellent.

水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。 The mass average molecular weight of the water-soluble polymer is measured by size exclusion chromatography using a 0.1 mol/L NaCl solution as the mobile phase, in terms of polyethylene oxide.

研磨組成物中の水溶性高分子の含有率は、研磨組成物全量100質量%中、0.02質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, aggregation of silica particles during preparation of the polishing composition can be suppressed.

研磨組成物は、シリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
In addition to the silica sol and the water-soluble polymer, the polishing composition may contain other components, such as a basic compound, a polishing accelerator, a surfactant, a hydrophilic compound, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, an antibacterial agent, or a biocide, as necessary, within the range that does not impair the performance of the polishing composition.
In particular, it is preferable to include a basic compound in the polishing composition, since it is possible to perform chemical polishing (chemical etching) by applying a chemical action to the surface of an object to be polished, such as a silicon wafer, and because a synergistic effect with the surface silanol groups of the silica particles can improve the polishing rate of an object to be polished, such as a silicon wafer.

塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。 Examples of basic compounds include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, and ammonia. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, and ammonium carbonate are preferred because they are highly water-soluble and have excellent affinity with silica particles and water-soluble polymers, with ammonia, tetramethylammonium hydroxide, and tetraethylammonium hydroxide being more preferred, and ammonia being even more preferred.

研磨組成物中の塩基性化合物の含有率は、研磨組成物全量100質量%中、0.001質量%~5質量%が好ましく、0.01質量%~3質量%がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。 The content of the basic compound in the polishing composition is preferably 0.001% by mass to 5% by mass, and more preferably 0.01% by mass to 3% by mass, based on 100% by mass of the total amount of the polishing composition. If the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing speed of the object to be polished, such as a silicon wafer, can be improved. Furthermore, if the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.

研磨組成物のpHは、8.0~12.0が好ましく、9.0~11.0がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the polishing composition is preferably 8.0 to 12.0, more preferably 9.0 to 11.0. When the pH of the polishing composition is 8.0 or more, the aggregation of silica particles in the polishing composition can be suppressed, and the dispersion stability of the polishing composition is excellent. When the pH of the polishing composition is 12.0 or less, the dissolution of silica particles can be suppressed, and the stability of the polishing composition is excellent.
The pH of the polishing composition can be adjusted to a desired range by adding a pH adjuster.

研磨組成物は、本発明のシリカゾル、水溶性高分子、及び、必要に応じて、他の成分を混合することで得られるが、保管・運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。 The polishing composition can be obtained by mixing the silica sol of the present invention, the water-soluble polymer, and, if necessary, other components. However, taking into consideration storage and transportation, it may be prepared at a high concentration first and then diluted with water or the like immediately before polishing.

(研磨方法)
本発明の研磨方法は、本発明のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する方法である。
研磨組成物は、前述した研磨組成物を用いることが好ましい。
具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に本発明の研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
(Polishing method)
The polishing method of the present invention is a polishing method using a polishing composition containing silica particles obtained by the method for producing silica particles of the present invention.
As the polishing composition, it is preferable to use the polishing composition described above.
A specific example of the polishing method is a method in which the surface of a silicon wafer is pressed against a polishing pad, the polishing composition of the present invention is dropped onto the polishing pad, and the surface of the silicon wafer is polished.

(用途)
本発明のシリカ粒子の製造方法で得られたシリカ粒子や本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
(Application)
The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing a silica sol of the present invention can be suitably used for polishing purposes, for example, polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process in the production of integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used for photomasks and liquid crystals, polishing magnetic disk substrates, and the like, and among these, they can be particularly suitably used for polishing silicon wafers and chemical mechanical polishing.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to the description of the following examples as long as it does not deviate from the gist of the invention.

(平均1次粒子径の測定)
比較例1・参考例1で得られたシリカゾルを150℃で乾燥し、比表面積自動測定装置「BELSORP-MR1」(機種名、マイクロトラック・ベル株式会社)を用いて、シリカ粒子の比表面積を測定し、下記式(1)を用い、密度を2.2g/cmとし、平均1次粒子径を算出した。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (1)
(Measurement of average primary particle size)
The silica sol obtained in Comparative Example 1 and Reference Example 1 was dried at 150°C, and the specific surface area of the silica particles was measured using an automatic specific surface area measuring device "BELSORP-MR1" (model name, Microtrack BEL Co., Ltd.). The average primary particle size was calculated using the following formula (1), assuming the density to be 2.2 g/ cm3 .
Average primary particle diameter (nm) = 6000/(specific surface area (m 2 /g) x density (g/cm 3 )) ... (1)

(平均2次粒子径・cv値の測定)
比較例1・参考例1で得られたシリカゾルを、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(2)を用いてcv値を算出した。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
(Measurement of average secondary particle size and cv value)
The average secondary particle diameter of the silica particles of the silica sols obtained in Comparative Example 1 and Reference Example 1 was measured using a dynamic light scattering particle size measurement device "Zetersizer Nano ZS" (model name, manufactured by Malvern Instruments), and the cv value was calculated using the following formula (2).
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)

(会合比の算出)
測定した平均1次粒子径と平均2次粒子径とから、下記式(3)を用いて会合比を算出した。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
(Calculation of Association Ratio)
The association ratio was calculated from the measured average primary particle size and average secondary particle size using the following formula (3).
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)

(表面シラノール基密度の測定)
比較例1・参考例1で得られたシリカゾルの、シリカ粒子1.5gに相当する量を、200mLトールビーカーに採取し、純水を加えて液量を90mLにした。
25℃の環境下、トールビーカーにpH電極を挿入し、マグネティックスターラーにより試験液を5分間撹拌させた。マグネティックスターラーによる攪拌を続けた状態で、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加えた。トールビーカーからpH電極を取り外し、マグネティックスターラーによる攪拌を続けた状態で、塩化ナトリウムを30g加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、マグネティックスターラーにより試験液を5分間撹拌させ、試験液を得た。
(Measurement of surface silanol group density)
The silica sol obtained in Comparative Example 1 and Reference Example 1 was placed in a 200 mL tall beaker in an amount equivalent to 1.5 g of silica particles, and purified water was added to make the liquid volume 90 mL.
In an environment of 25°C, a pH electrode was inserted into the tall beaker, and the test solution was stirred for 5 minutes with a magnetic stirrer. With stirring continued with the magnetic stirrer, 0.1 mol/L aqueous hydrochloric acid solution was added until the pH reached 3.6. The pH electrode was removed from the tall beaker, and with stirring continued with the magnetic stirrer, 30 g of sodium chloride was added, and pure water was gradually added to completely dissolve the sodium chloride. Finally, pure water was added until the total amount of the test solution reached 150 mL, and the test solution was stirred for 5 minutes with a magnetic stirrer to obtain a test solution.

得られた試験液の入ったトールビーカーを、自動滴定装置「COM-1600」(平沼産業株式会社製)にセットし、装置付属のpH電極とビュレットをトールビーカーに挿入して、マグネティックスターラーにより試験液を撹拌させながら、ビュレットを通じて0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定した。
下記式(6)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(7)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出した。
V=(A×f×100×1.5)/(W×C) ・・・ (6)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (7)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
The tall beaker containing the obtained test solution was set in an automatic titration device "COM-1600" (manufactured by Hiranuma Sangyo Co., Ltd.), and the pH electrode and burette included with the device were inserted into the tall beaker. While stirring the test solution with a magnetic stirrer, 0.1 mol/L aqueous sodium hydroxide solution was dropped through the burette, and the titration amount A (mL) of 0.1 mol/L aqueous sodium hydroxide solution required to change the pH from 4.0 to 9.0 was measured.
The consumption amount V (mL) of 0.1 mol/L sodium hydroxide aqueous solution required for the pH to change from 4.0 to 9.0 per 1.5 g of silica particles was calculated using the following formula (6), and the surface silanol group density ρ (pieces/ nm2 ) of the silica particles was calculated using the following formula (7).
V=(A×f×100×1.5)/(W×C)... (6)
A: Titration amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles
f: Titer of 0.1 mol/L aqueous sodium hydroxide solution used C: Concentration of silica particles in silica sol (mass%)
W: Amount of silica sol collected (g)
ρ=(B× NA )/(10 18 ×M×S BET )...(7)
B: The amount (mol) of sodium hydroxide required to change the pH per 1.5 g of silica particles from 4.0 to 9.0 calculated from V
N A : Avogadro's number (pieces/mol)
M: Amount of silica particles (1.5 g)
S BET : specific surface area (m 2 /g) of silica particles measured when calculating the average primary particle diameter

(金属不純物含有率の測定)
比較例1で得られたシリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温・溶解・蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置「ELEMENT2」(機種名、サーモフィッシャーサイエンティフィック社製)を用いて、金属不純物含有率を測定した。
(Measurement of Metal Impurity Content)
The silica sol containing 0.4 g of silica particles obtained in Comparative Example 1 was accurately weighed out, sulfuric acid and hydrofluoric acid were added, and the mixture was heated, dissolved, and evaporated. Pure water was added to the remaining sulfuric acid droplets so that the total amount was exactly 10 g to prepare a test solution, and the metal impurity content was measured using a high-frequency inductively coupled plasma mass spectrometer "ELEMENT2" (model name, manufactured by Thermo Fisher Scientific).

(シリカゾル中の中間生成物の評価)
実施例・比較例・参考例で得られたシリカゾルについて、以下の操作により中間生成物の量を評価した。
まず、シリカゾルを分取して、超純水で5,000倍に希釈した。5,000倍に希釈した希釈液を5μL分取して、ミラーシリコンウエハ(株式会社エレクトロニクスエンドマテリアルズコーポレーション製)に滴下して、50℃で10分間乾燥させた。それを、電界放出型走査電子顕微鏡(FE-SEM、機種名「S-5200型」、株式会社日立ハイテクノロジーズ製)に装着して、加速電圧5kVで、倍率15万倍で、100個~200個のコロイダルシリカの粒子を観察し、画像を撮影した。
撮影した画像から、シリカゾル中の中間生成物の量を、以下の指標により評価した。尚、中間生成物は、図1でいう黒い線で囲まれた部分のように見える箇所をいう。
A:中間生成物を確認できない又は中間生成物を僅かに確認できる
B:中間生成物を確認できる
C:中間生成物を多量に確認できる
(Evaluation of intermediate products in silica sol)
For the silica sols obtained in the Examples, Comparative Examples, and Reference Examples, the amount of intermediate products was evaluated by the following procedure.
First, the silica sol was taken and diluted 5,000 times with ultrapure water. 5 μL of the 5,000-fold diluted solution was taken and dropped onto a mirror silicon wafer (manufactured by Electronics and Materials Corporation), and dried at 50° C. for 10 minutes. This was attached to a field emission scanning electron microscope (FE-SEM, model name "S-5200", manufactured by Hitachi High-Technologies Corporation), and 100 to 200 colloidal silica particles were observed at an acceleration voltage of 5 kV and a magnification of 150,000 times, and images were taken.
From the photographed images, the amount of intermediate products in the silica sol was evaluated according to the following indexes. The intermediate products refer to the areas that look like the areas surrounded by the black line in FIG.
A: No intermediate product was observed or only a small amount of intermediate product was observed. B: Intermediate product was observed. C: A large amount of intermediate product was observed.

[比較例1]
テトラメトキシシランとメタノールとを2.3:1(体積比)で混合した原料溶液と補助溶媒の3質量%アンモニア水溶液とを調液した。温度計、攪拌機、供給管、留出ラインを備えた反応槽に、予めメタノール、純水、アンモニアを混合した反応溶媒を仕込んだ。反応溶媒中の水の濃度は13質量%、反応溶媒中のアンモニアの濃度は0.9質量%であった。
反応溶媒の温度を34℃に保持しながら、反応溶媒と原料溶液と補助溶媒とを0.77:1:0.31(体積比)とし、原料溶液と補助溶媒とを150分間、均等速度で反応槽へ滴下し、シリカゾルを得た。得られたシリカゾルを、シリカ粒子の含有率が約20質量%になるように、液量を純水追加で調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
[Comparative Example 1]
A raw material solution in which tetramethoxysilane and methanol were mixed at a volume ratio of 2.3:1 and a 3% by mass aqueous ammonia solution as an auxiliary solvent were prepared. A reaction solvent in which methanol, pure water, and ammonia were mixed in advance was charged into a reaction tank equipped with a thermometer, a stirrer, a supply pipe, and a distillation line. The concentration of water in the reaction solvent was 13% by mass, and the concentration of ammonia in the reaction solvent was 0.9% by mass.
While maintaining the temperature of the reaction solvent at 34° C., the reaction solvent, raw material solution, and auxiliary solvent were adjusted to 0.77:1:0.31 (volume ratio), and the raw material solution and auxiliary solvent were dropped into the reaction tank at a uniform rate for 150 minutes to obtain a silica sol. The temperature of the obtained silica sol was raised to remove methanol and ammonia while adjusting the liquid amount by adding pure water so that the content of silica particles was about 20% by mass, and a silica sol with a content of silica particles of about 20% by mass was obtained.

得られたシリカ粒子は、平均1次粒子径が30.7nm、平均2次粒子径65.0nm、cv値30.6、会合比2.12、表面シラノール基密度6.2個/nmであった。
また、得られたシリカ粒子中の金属不純物含有率は、ナトリウムが1.1ppm、カリウムが0.140ppm、鉄が0.015ppm、アルミニウムが0.135ppm、カルシウムが0.075ppm、亜鉛が0.07ppm、マグネシウム、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルがいずれも0.005ppm未満であった。
The obtained silica particles had an average primary particle diameter of 30.7 nm, an average secondary particle diameter of 65.0 nm, a cv value of 30.6, an association ratio of 2.12, and a surface silanol group density of 6.2 particles/ nm2 .
The metal impurity contents in the obtained silica particles were 1.1 ppm for sodium, 0.140 ppm for potassium, 0.015 ppm for iron, 0.135 ppm for aluminum, 0.075 ppm for calcium, 0.07 ppm for zinc, and less than 0.005 ppm for magnesium, cobalt, chromium, copper, manganese, lead, titanium, silver, and nickel.

得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図2に示す。また、得られたシリカゾル中の中間生成物の量の評価結果を、表1に示す。 Figure 2 shows a secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope. Table 1 shows the evaluation results of the amount of intermediate products in the obtained silica sol.

[実施例1]
比較例1で得られたシリカゾル4.51gを、分画分子量10,000の限外濾過膜(商品名「Microsep Advance with 10K Omega MCP010C41」、Pall Corporation社製)を用いて、遠心力1,075g、回転数3,100rpm、遠心分離時間1時間の条件で遠心分離による限外濾過を行い、シリカゾルを得た。限外濾過膜を透過した液量は2.36g、その透過率は52.3質量%、透過した液中のシリカ濃度は260μg/gであった。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図3に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Example 1]
4.51g of the silica sol obtained in Comparative Example 1 was subjected to ultrafiltration by centrifugation using an ultrafiltration membrane with a molecular weight cutoff of 10,000 (product name "Microsep Advance with 10K Omega MCP010C41", manufactured by Pall Corporation) under conditions of a centrifugal force of 1,075g, a rotation speed of 3,100 rpm, and a centrifugation time of 1 hour, to obtain a silica sol. The amount of liquid that permeated the ultrafiltration membrane was 2.36g, its transmittance was 52.3 mass%, and the silica concentration in the permeated liquid was 260 μg/g.
A secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope is shown in Fig. 3. The evaluation results of the obtained silica sol are shown in Table 1.

[実施例2]
限外濾過膜(商品名「Microsep Advance with 30K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図4に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Example 2]
A silica sol was obtained in the same manner as in Example 1, except that the molecular weight cutoff of the ultrafiltration membrane (product name "Microsep Advance with 30K Omega MCP010C41", manufactured by Pall Corporation) and the conditions of centrifugation were changed as shown in Table 1.
A secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope is shown in Fig. 4. The evaluation results of the obtained silica sol are shown in Table 1.

[比較例2]
限外濾過膜(商品名「Microsep Advance with 3K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図5に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Comparative Example 2]
A silica sol was obtained in the same manner as in Example 1, except that the molecular weight cutoff of the ultrafiltration membrane (product name "Microsep Advance with 3K Omega MCP010C41", manufactured by Pall Corporation) and the conditions of centrifugation were changed as shown in Table 1.
A secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope is shown in Fig. 5. The evaluation results of the obtained silica sol are shown in Table 1.

[比較例3]
限外濾過膜(商品名「Microsep Advance with 100K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図6に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Comparative Example 3]
A silica sol was obtained in the same manner as in Example 1, except that the molecular weight cutoff of the ultrafiltration membrane (product name "Microsep Advance with 100K Omega MCP010C41", manufactured by Pall Corporation) and the conditions of centrifugation were changed as shown in Table 1.
A secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope is shown in Fig. 6. The evaluation results of the obtained silica sol are shown in Table 1.

[参考例1]
市販のシリカゾル(商品名「PL-3」、扶桑化学工業株式会社製)をそのまま用いた。
用いたシリカ粒子は、平均1次粒子径が36.1nm、平均2次粒子径71.2nm、cv値28.6、会合比1.97、表面シラノール基密度5.5個/nmであった。
用いたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図7に示す。また、用いたシリカゾルの評価結果を、表1に示す。
[Reference Example 1]
A commercially available silica sol (product name "PL-3", manufactured by Fuso Chemical Co., Ltd.) was used as it was.
The silica particles used had an average primary particle diameter of 36.1 nm, an average secondary particle diameter of 71.2 nm, a cv value of 28.6, an association ratio of 1.97, and a surface silanol group density of 5.5/ nm2 .
A secondary electron image of the silica sol used, observed with a field emission scanning electron microscope, is shown in Fig. 7. The evaluation results of the silica sol used are shown in Table 1.

[参考例2]
市販のシリカゾル(商品名「PL-3」、扶桑化学工業株式会社製)を用い、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図8に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Reference Example 2]
A silica sol was obtained in the same manner as in Example 1, except that a commercially available silica sol (product name "PL-3", manufactured by Fuso Chemical Co., Ltd.) was used and the centrifugation conditions were changed as shown in Table 1.
A secondary electron image of the obtained silica sol observed with a field emission scanning electron microscope is shown in Fig. 8. The evaluation results of the obtained silica sol are shown in Table 1.

Figure 0007516763000001
Figure 0007516763000001

限外濾過を行わなかった比較例1で得られたシリカゾルは、中間生成物が多く確認された。一方、特定範囲の分画分子量の限外濾過膜を用いて限外濾過を行った実施例1~2で得られたシリカゾルは、中間生成物がほとんど確認されなかった。更に、特定範囲から外れた分画分子量の限外濾過膜を用いて限外濾過を行った比較例2~3で得られたシリカゾルは、透過率が低く、限外濾過による中間生成物の除去量が少なく、中間生成物が確認された。
尚、市販のシリカゾル(商品名「PL-3」、扶桑化学工業株式会社製)は、そもそも中間生成物が少ないため、本発明の課題を有していないことが分かる。
A large amount of intermediate products was confirmed in the silica sol obtained in Comparative Example 1, in which ultrafiltration was not performed. On the other hand, almost no intermediate products were confirmed in the silica sol obtained in Examples 1 and 2, in which ultrafiltration was performed using an ultrafiltration membrane with a molecular weight cutoff within a specific range. Furthermore, the silica sol obtained in Comparative Examples 2 and 3, in which ultrafiltration was performed using an ultrafiltration membrane with a molecular weight cutoff outside the specific range, had low transmittance, and the amount of intermediate products removed by ultrafiltration was small, and intermediate products were confirmed.
Incidentally, it is understood that commercially available silica sol (product name "PL-3", manufactured by Fuso Chemical Co., Ltd.) does not have the problem of the present invention since it contains a small amount of intermediate products to begin with.

本発明のシリカ粒子の製造方法で得られたシリカ粒子や本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。 The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing purposes, such as polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process when manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used in photomasks and liquid crystals, and polishing magnetic disk substrates, and are particularly suitable for use in polishing silicon wafers and chemical mechanical polishing.

Claims (6)

以下の工程(1)及び工程(2)を含む、cv値が15~50のシリカ粒子を含むシリカゾルの製造方法。
工程(1):テトラアルコキシシランをアルカリ触媒を用いて加水分解反応及び縮合反応させ、シリカゾルを得る工程
工程(2):シリカゾルを、分画分子量7,000~40,000の限外濾過膜を用いて限外濾過する工程
A method for producing a silica sol containing silica particles having a cv value of 15 to 50, comprising the following steps (1) and (2):
Step (1): A step of subjecting tetraalkoxysilane to hydrolysis and condensation reaction using an alkali catalyst to obtain a silica sol. Step (2): A step of ultrafiltering the silica sol using an ultrafiltration membrane with a molecular weight cutoff of 7,000 to 40,000.
工程(1)の後に、工程(2)を行う、請求項1に記載のシリカゾルの製造方法。 The method for producing silica sol according to claim 1, wherein step (2) is carried out after step (1). シリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、3質量%~50質量%である、請求項1又は2に記載のシリカゾルの製造方法。 The method for producing a silica sol according to claim 1 or 2, wherein the content of silica particles in the silica sol is 3% by mass to 50% by mass, based on 100% by mass of the total amount of the silica sol. シリカ粒子のDLS法により測定した平均2次粒子径が、20nm~100nmであるシリカ粒子を含む、請求項1~3のいずれか1項に記載のシリカゾルの製造方法。 The method for producing a silica sol according to any one of claims 1 to 3, comprising silica particles having an average secondary particle diameter of 20 nm to 100 nm as measured by DLS. 工程(1)及び工程(2)以外の工程として、100℃以上に加熱する工程を含まない、請求項1~4のいずれか1項に記載のシリカゾルの製造方法。 The method for producing silica sol according to any one of claims 1 to 4, which does not include a step of heating to 100°C or higher as a step other than steps (1) and (2). 請求項1~5のいずれか1項に記載のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する、研磨方法。 A polishing method using a polishing composition containing a silica sol obtained by the method for producing a silica sol according to any one of claims 1 to 5.
JP2020011469A 2020-01-28 2020-01-28 Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing Active JP7516763B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020011469A JP7516763B2 (en) 2020-01-28 2020-01-28 Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing
JP2024026870A JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate products, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011469A JP7516763B2 (en) 2020-01-28 2020-01-28 Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024026870A Division JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate products, and polishing method

Publications (2)

Publication Number Publication Date
JP2021116208A JP2021116208A (en) 2021-08-10
JP7516763B2 true JP7516763B2 (en) 2024-07-17

Family

ID=77173953

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020011469A Active JP7516763B2 (en) 2020-01-28 2020-01-28 Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing
JP2024026870A Pending JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate products, and polishing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024026870A Pending JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate products, and polishing method

Country Status (1)

Country Link
JP (2) JP7516763B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060219A (en) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
WO2008015943A1 (en) 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
JP2009263484A (en) 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010182811A (en) 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2018090798A (en) 2016-12-02 2018-06-14 日揮触媒化成株式会社 Silica-based particles for polishing and abrasive
JP2019089692A (en) 2017-11-10 2019-06-13 三菱ケミカル株式会社 Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060219A (en) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
WO2008015943A1 (en) 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
JP2009263484A (en) 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010182811A (en) 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2018090798A (en) 2016-12-02 2018-06-14 日揮触媒化成株式会社 Silica-based particles for polishing and abrasive
JP2019089692A (en) 2017-11-10 2019-06-13 三菱ケミカル株式会社 Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2021116208A (en) 2021-08-10
JP2024059837A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP7552669B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for manufacturing silicon wafer, chemical mechanical polishing composition, and method for manufacturing semiconductor device
CN115023408B (en) Silica particles, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2021147267A (en) Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
JP2024097789A (en) Polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP6756423B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP7552019B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7516763B2 (en) Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing
JP7567484B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP6756422B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP7491081B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7505304B2 (en) Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method
JP2020132478A (en) Method for producing silica particle, method for producing silica sol and polishing method
JP7552145B2 (en) Silica sol, method for producing silica sol, polishing composition, polishing method, and method for producing semiconductor device
JP7565671B2 (en) Method for producing silica sol and method for suppressing intermediate products in silica sol
JP7331436B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP7464201B2 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device
JP2024141877A (en) Method for producing silica particles, method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2024131533A (en) Method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2021123527A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2022109711A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
CN118833827A (en) Silica particles, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2022109710A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2023043023A (en) Method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7516763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150