JP2021116208A - Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method - Google Patents

Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method Download PDF

Info

Publication number
JP2021116208A
JP2021116208A JP2020011469A JP2020011469A JP2021116208A JP 2021116208 A JP2021116208 A JP 2021116208A JP 2020011469 A JP2020011469 A JP 2020011469A JP 2020011469 A JP2020011469 A JP 2020011469A JP 2021116208 A JP2021116208 A JP 2021116208A
Authority
JP
Japan
Prior art keywords
silica sol
silica
silica particles
polishing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020011469A
Other languages
Japanese (ja)
Inventor
智裕 京谷
Tomohiro Kyotani
智裕 京谷
栄治 出島
Eiji Dejima
栄治 出島
友寛 加藤
Tomohiro Kato
友寛 加藤
毅 沢井
Takeshi Sawai
毅 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020011469A priority Critical patent/JP2021116208A/en
Publication of JP2021116208A publication Critical patent/JP2021116208A/en
Priority to JP2024026870A priority patent/JP2024059837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a method for producing a silica sol with a reduced amount of intermediate products, and provide a method for removing an intermediate product in a silica sol which can conveniently reduce the amount of the intermediate product in the silica sol.SOLUTION: A method for producing silica particles includes step (1) of subjecting tetraalkoxysilane to hydrolysis and condensation reactions, to obtain a silica sol and step (2) of subjecting the silica sol to ultrafiltration using an ultrafilter with a molecular weight cutoff of 5,000-80,000. There is also provided a method for producing a silica sol, including the method for producing silica particles. There is also provided a method for removing an intermediate product in a silica sol which removes the intermediate product in the silica sol, by using the method for producing the silica sol.SELECTED DRAWING: Figure 3

Description

本発明は、シリカ粒子の製造方法、シリカゾルの製造方法、中間生成物の除去方法及び研磨方法に関する。 The present invention relates to a method for producing silica particles, a method for producing silica sol, a method for removing intermediate products, and a polishing method.

金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。 As a method of polishing the surface of a material such as a metal or an inorganic compound, a polishing method using a polishing liquid is known. Among them, chemical mechanical polishing (CMP) such as final finish polishing of prime silicon wafers for semiconductors and these recycled silicon wafers, flattening of interlayer insulating films during semiconductor device manufacturing, metal plug formation, embedded wiring formation, etc. ), Since the surface condition greatly affects the semiconductor characteristics, the surface and end faces of these parts are required to be polished with extremely high precision.

このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾルゲル法」と称される)によるもの等が知られている。 In such precision polishing, a polishing composition containing silica particles is adopted, and colloidal silica is widely used as the abrasive grains which are the main components thereof. Colloidal silica is produced by thermal decomposition of silicon tetrachloride (fumed silica, etc.), by deionization of alkali silicate such as water glass, hydrolysis reaction and condensation reaction of alkoxysilane (generally, "" The method called "sol-gel method") is known.

コロイダルシリカを含むシリカゾルの製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1〜3には、アルコキシシランの加水分解反応及び縮合反応によりシリカゾルを製造する方法が開示されている。 Many studies have been made on the method for producing a silica sol containing colloidal silica. For example, Patent Documents 1 to 3 disclose a method for producing a silica sol by a hydrolysis reaction and a condensation reaction of alkoxysilane.

特開平11−60232号公報Japanese Unexamined Patent Publication No. 11-60232 国際公開第2008/123373号International Publication No. 2008/123373 国際公開第2004/000922号International Publication No. 2004/000922

ところで、アルコキシシランの加水分解反応及び縮合反応によるシリカゾルの製造時又は製造後において、中間生成物が発生することがある。この中間生成物は、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等と考えられる。また、このようなシリカは、反応活性状態にあるため、中間生成物が起点となり、10nm程度の微小粒子を発生させたり、粒子を想定以上に成長させたりすることがある。そのため、中間生成物を有するシリカゾルは、粘度の上昇やゲル化を引き起こし、その保存安定性を悪化させる
このような中間生成物や微小粒子は、所望のコロイダルシリカよりも低い縮合度のシリカと考えられるため、得られるシリカゾル中のコロイダルシリカの機械的特性を悪化させ、研磨速度を低下させる等、得られる研磨液の研磨特性に悪影響を及ぼす。また、微小粒子を含む研磨液を研磨に用いると、微小粒子が被研磨体を覆ってしまい、本来研磨に寄与するはずの研磨液中のコロイダルシリカが研磨に寄与しなくなる。更に、縮合度の低いシリカを含む研磨液を研磨に用いると、研磨液の研磨後の被研磨体からの除去性に劣る。
By the way, an intermediate product may be generated during or after the production of the silica sol by the hydrolysis reaction and the condensation reaction of the alkoxysilane. This intermediate product is considered to be silica remaining as a solid with insufficient growth, silica precipitated from dissolved silicic acid after production, and the like. Further, since such silica is in a reaction active state, an intermediate product may be the starting point to generate fine particles of about 10 nm, or the particles may grow more than expected. Therefore, a silica sol having an intermediate product causes an increase in viscosity and gelation, and deteriorates its storage stability. Such an intermediate product or fine particles are considered to be silica having a lower degree of condensation than the desired colloidal silica. Therefore, the mechanical properties of the colloidal silica in the obtained silica sol are deteriorated, the polishing rate is lowered, and the polishing properties of the obtained polishing liquid are adversely affected. Further, when a polishing liquid containing fine particles is used for polishing, the fine particles cover the object to be polished, and colloidal silica in the polishing liquid, which should originally contribute to polishing, does not contribute to polishing. Further, when a polishing liquid containing silica having a low degree of condensation is used for polishing, the removability of the polishing liquid from the object to be polished after polishing is inferior.

特許文献1〜3に開示されているアルコキシシランの加水分解反応及び縮合反応によりシリカゾルを製造する方法は、このような中間生成物や微小粒子の対処について何ら記載されておらず、製造条件次第では中間生成物や微小粒子を多く含むシリカゾルが得られてしまう。特に、中間生成物は、反応活性状態のまま残存していると推定されるため、シリカゾルの保存中に化学変化が進行し、ゲル化や微粒子発生を引き起こす。その結果、シリカゾルの保存安定性に劣り、得られる研磨液の研磨特性に悪影響を及ぼすだけでなく被研磨体からの除去性にも劣る。 The method for producing a silica sol by the hydrolysis reaction and the condensation reaction of alkoxysilane disclosed in Patent Documents 1 to 3 does not describe how to deal with such intermediate products and fine particles, and depends on the production conditions. A silica sol containing a large amount of intermediate products and fine particles is obtained. In particular, since the intermediate product is presumed to remain in the reaction active state, chemical changes proceed during storage of the silica sol, causing gelation and generation of fine particles. As a result, the storage stability of the silica sol is inferior, and not only the polishing characteristics of the obtained polishing liquid are adversely affected, but also the removability from the object to be polished is inferior.

本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、中間生成物の少ないシリカゾルの製造方法を提供することにある。また、本発明のもう1つの目的は、シリカゾル中の中間生成物を簡便に少なくできるシリカゾル中の中間生成物の除去方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing a silica sol having a small amount of intermediate products. Another object of the present invention is to provide a method for removing intermediate products in silica sol, which can easily reduce intermediate products in silica sol.

従来、中間生成物や微粒子を含むシリカゾルが存在し、そのまま中間生成物や微小粒子を除去せずに研磨液として用いられてきたため、得られる研磨液の研磨特性や保存安定性が十分とは言えなかった。しかしながら、本発明者らは、鋭意検討を重ねた結果、特定範囲の分画分子量の限外濾過膜でシリカゾルを限外濾過することで、微小粒子の原因となる中間生成物を除去し、保存安定性に優れるシリカゾルが得られることを見出し、本発明を完成するに至った。 Conventionally, a silica sol containing intermediate products and fine particles has existed and has been used as a polishing liquid without removing the intermediate products and fine particles as it is. Therefore, it can be said that the polishing characteristics and storage stability of the obtained polishing liquid are sufficient. There wasn't. However, as a result of diligent studies, the present inventors have removed intermediate products that cause fine particles by ultrafiltration of silica sol with an ultrafiltration membrane having a specific molecular weight cut-off, and preserved the mixture. They have found that a silica sol having excellent stability can be obtained, and have completed the present invention.

即ち、本発明の要旨は、以下の通りである。
[1]以下の工程(1)及び工程(2)を含む、シリカ粒子の製造方法。
工程(1):テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程。
工程(2):シリカゾルを、分画分子量5,000〜80,000の限外濾過膜を用いて限外濾過する工程。
[2]工程(1)の後に、工程(2)を行う、[1]に記載のシリカ粒子の製造方法。
[3]シリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、10質量%〜50質量%である、[1]又は[2]に記載のシリカ粒子の製造方法。
[4]シリカ粒子のDLS法により測定した平均2次粒子径が、20nm〜100nmである、[1]〜[3]のいずれかに記載のシリカ粒子の製造方法。
[5]100℃以上に加熱する工程を含まない、[1]〜[4]のいずれかに記載のシリカ粒子の製造方法。
[6][1]〜[5]のいずれかに記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。
[7][6]に記載のシリカゾルの製造方法により、シリカゾル中の中間生成物を除去する、シリカゾル中の中間生成物の除去方法。
[8][1]〜[5]のいずれかに記載のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する、研磨方法。
That is, the gist of the present invention is as follows.
[1] A method for producing silica particles, which comprises the following steps (1) and (2).
Step (1): A step of hydrolyzing and condensing tetraalkoxysilane to obtain a silica sol.
Step (2): A step of ultrafiltration the silica sol using an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 80,000.
[2] The method for producing silica particles according to [1], wherein the step (2) is performed after the step (1).
[3] The method for producing silica particles according to [1] or [2], wherein the content of the silica particles in the silica sol is 10% by mass to 50% by mass in 100% by mass of the total amount of the silica sol.
[4] The method for producing silica particles according to any one of [1] to [3], wherein the average secondary particle size of the silica particles measured by the DLS method is 20 nm to 100 nm.
[5] The method for producing silica particles according to any one of [1] to [4], which does not include a step of heating to 100 ° C. or higher.
[6] A method for producing silica sol, which comprises the method for producing silica particles according to any one of [1] to [5].
[7] A method for removing an intermediate product in a silica sol, which removes the intermediate product in the silica sol by the method for producing a silica sol according to [6].
[8] A polishing method for polishing using a polishing composition containing silica particles obtained by the method for producing silica particles according to any one of [1] to [5].

本発明のシリカゾルの製造方法は、中間生成物の少ないシリカゾルを得ることができ、得られるシリカゾルの保存安定性に優れ、得られる研磨液の研磨特性に優れ、得られる研磨液の研磨後の被研磨体からの除去性に優れる。また、本発明のシリカゾル中の中間生成物の除去方法は、シリカゾル中の中間生成物を簡便に少なくでき、得られるシリカゾルや得られる研磨液の保存安定性に優れ、得られる研磨液の研磨特性に優れ、得られる研磨液の研磨後の被研磨体からの除去性に優れる。 The method for producing a silica sol of the present invention can obtain a silica sol with a small amount of intermediate products, is excellent in storage stability of the obtained silica sol, is excellent in polishing characteristics of the obtained polishing liquid, and is covered with the obtained polishing liquid after polishing. Excellent removability from the polished body. Further, the method for removing intermediate products in the silica sol of the present invention can easily reduce the amount of intermediate products in the silica sol, has excellent storage stability of the obtained silica sol and the obtained polishing liquid, and has excellent polishing characteristics of the obtained polishing liquid. Excellent in removing the obtained polishing liquid from the object to be polished after polishing.

中間生成物を含むシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol containing an intermediate product. 比較例1で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in the comparative example 1. FIG. 実施例1で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in Example 1. FIG. 実施例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in Example 2. FIG. 比較例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in the comparative example 2. FIG. 比較例3で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in the comparative example 3. FIG. 参考例1で用いたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol used in Reference Example 1. FIG. 参考例2で得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the field emission scanning electron microscope of the silica sol obtained in Reference Example 2. FIG.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「〜」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist thereof. When the expression "-" is used in the present specification, it is used as an expression including numerical values or physical property values before and after the expression.

(シリカ粒子の製造方法)
本発明のシリカ粒子の製造方法は、以下の工程(1)及び工程(2)を含む。
工程(1):テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程。
工程(2):シリカゾルを、分画分子量5,000〜80,000の限外濾過膜を用いて限外濾過する工程。
(Manufacturing method of silica particles)
The method for producing silica particles of the present invention includes the following steps (1) and (2).
Step (1): A step of hydrolyzing and condensing tetraalkoxysilane to obtain a silica sol.
Step (2): A step of ultrafiltration the silica sol using an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 80,000.

(工程(1))
工程(1)は、テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程である。
本発明のシリカ粒子の製造方法は、工程(1)を含むことで、得られるシリカゾルの金属不純物含有率を低減することができる。
(Step (1))
Step (1) is a step of hydrolyzing and condensing tetraalkoxysilane to obtain a silica sol.
The method for producing silica particles of the present invention can reduce the metal impurity content of the obtained silica sol by including the step (1).

テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等が挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が早く、未反応物が残留しづらく、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。 Examples of the tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, tetramethoxysilane and tetraethoxysilane are preferable because the hydrolysis reaction is fast, unreacted substances are hard to remain, productivity is excellent, and a stable silica sol can be easily obtained. More preferred is methoxysilane.

シリカ粒子を構成する原料は、テトラアルコキシシランの低縮合物等のテトラアルコキシシラン以外の原料を用いてもよいが、反応性に優れることから、シリカ粒子を構成する全原料100質量%中、テトラアルコキシシランが50質量%以上で、テトラアルコキシシラン以外の原料が50質量%以下であることが好ましく、テトラアルコキシシランが90質量%以上で、テトラアルコキシシラン以外の原料が10質量%以下であることがより好ましい。 As the raw material constituting the silica particles, a raw material other than tetraalkoxysilane such as a low condensate of tetraalkoxysilane may be used, but since it is excellent in reactivity, tetra is used in 100% by mass of all the raw materials constituting the silica particles. It is preferable that the amount of alkoxysilane is 50% by mass or more and the amount of raw material other than tetraalkoxysilane is 50% by mass or less, the amount of tetraalkoxysilane is 90% by mass or more, and the amount of raw material other than tetraalkoxysilane is 10% by mass or less. Is more preferable.

加水分解反応及び縮合反応を行う際の反応に用いる溶媒・分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒・分散媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水、メタノールがより好ましい。 Examples of the solvent / dispersion medium used in the reaction for performing the hydrolysis reaction and the condensation reaction include water, methanol, ethanol, propanol, isopropanol, ethylene glycol and the like. As these solvents / dispersion media, one type may be used alone, or two or more types may be used in combination. Among these solvents and dispersion media, those used in the hydrolysis reaction and the condensation reaction and those produced as by-products are the same, and are excellent in manufacturing convenience. Therefore, water and alcohol are preferable, and water and methanol are more preferable. ..

加水分解反応及び縮合反応を行う際、触媒存在下であってもよく、無触媒下であってもよいが、加水分解反応及び縮合反応を促進できることから、触媒存在下が好ましい。
触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、ギ酸、クエン酸等の酸触媒、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等のアルカリ触媒等が挙げられる。これらの触媒の中でも、触媒作用に優れ、粒子形状を制御しやすいことから、アルカリ触媒が好ましく、金属不純物の混入を抑制することができ、揮発性が高く縮合反応後の除去性に優れることから、アルカリ触媒が好ましく、アンモニアがより好ましい。
When the hydrolysis reaction and the condensation reaction are carried out, they may be in the presence of a catalyst or in the absence of a catalyst, but the presence of a catalyst is preferable because the hydrolysis reaction and the condensation reaction can be promoted.
Examples of the catalyst include acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, formic acid and citric acid, and alkalis such as ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine and tetramethylammonium hydroxide. Examples include catalysts. Among these catalysts, an alkaline catalyst is preferable because it has excellent catalytic action and it is easy to control the particle shape, it is possible to suppress the mixing of metal impurities, it is highly volatile, and it is excellent in removability after a condensation reaction. , Alkaline catalyst is preferable, and ammonia is more preferable.

(工程(1)と工程(2)との関係)
工程(2)は、工程(1)の間に行ってもよく、工程(1)の後に行ってもよいが、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等の中間生成物を効率的に除去できることから、工程(1)の後に行うことが好ましい。
(Relationship between process (1) and process (2))
Step (2) may be carried out during step (1) or after step (1), but silica remaining as a solid with insufficient growth or silica precipitated from dissolved silicic acid after production. It is preferable to carry out after the step (1) because the intermediate products such as the above can be efficiently removed.

(工程(2))
工程(2)は、シリカゾルを、分画分子量5,000〜80,000の限外濾過膜を用いて限外濾過する工程である。
本発明のシリカ粒子の製造方法は、工程(2)を含むことで、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等の中間生成物を効率的に除去でき、ゲル化等の変質を抑制し、シリカゾルの保存安定性を高める。
(Step (2))
Step (2) is a step of ultrafiltration the silica sol using an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 80,000.
By including the step (2), the method for producing silica particles of the present invention can efficiently remove intermediate products such as silica remaining as a solid with insufficient growth and silica precipitated from dissolved silicic acid after production. , Suppresses deterioration such as gelation, and enhances storage stability of silica sol.

本明細書において、中間生成物は、電界放出型走査電子顕微鏡(FE−SEM)を用いて倍率10万倍〜20万倍で撮影したFE−SEMの画像において、図1でいう黒い線で囲まれた部分のように見える箇所をいう。
この中間生成物は、アルコキシシランの加水分解反応及び縮合反応によるシリカゾルの製造時又は製造後における、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカ等と考えられる。
In the present specification, the intermediate product is surrounded by a black line in FIG. 1 in an image of FE-SEM taken at a magnification of 100,000 to 200,000 times using a field emission scanning electron microscope (FE-SEM). A part that looks like an exposed part.
The intermediate product is considered to be silica remaining as a solid with insufficient growth during or after production of the silica sol by hydrolysis reaction and condensation reaction of alkoxysilane, silica precipitated from dissolved silicic acid after production, and the like.

限外濾過膜の分画分子量は、5,000〜80,000であり、6,000〜60,000が好ましく、7,000〜40,000がより好ましい。限外濾過膜の分画分子量が5,000以上であると、透過性に優れる。また、限外濾過膜の分画分子量が80,000以下であると、選択性に優れる。 The fractional molecular weight of the ultrafiltration membrane is 5,000 to 80,000, preferably 6,000 to 60,000, more preferably 7,000 to 40,000. When the molecular weight cut-off of the ultrafiltration membrane is 5,000 or more, the permeability is excellent. Further, when the molecular weight cut-off of the ultrafiltration membrane is 80,000 or less, the selectivity is excellent.

限外濾過は、通常なされるミクロンオーダーの細孔径を持つ濾紙やフィルターによる濾過では細孔を通り抜けてしまう成分を、分子量ごとに分画できることが特徴である。したがって、限外濾過で分子量ごとの分画の選択性を上げるためには、遠心分離による方法が好ましい。 The feature of ultrafiltration is that components that pass through the pores in the usual filtration with a filter paper having a pore size on the order of microns or a filter can be fractionated by molecular weight. Therefore, in order to increase the selectivity of fraction for each molecular weight by ultrafiltration, the method by centrifugation is preferable.

遠心分離による限外濾過の遠心力は、500g〜10,000gが好ましく、800g〜5,000gがより好ましい。限外濾過の遠心力が500g以上であると、濾過速度が十分で、シリカ粒子やシリカゾルの生産性に優れる。また、限外濾過の遠心力が10,000g以下であると、限外濾過の選択性に優れる。 The centrifugal force of the ultrafiltration by centrifugation is preferably 500 g to 10,000 g, more preferably 800 g to 5,000 g. When the centrifugal force of the ultrafiltration is 500 g or more, the filtration rate is sufficient and the productivity of silica particles and silica sol is excellent. Further, when the centrifugal force of the ultrafiltration is 10,000 g or less, the selectivity of the ultrafiltration is excellent.

遠心分離による限外濾過の回転数は、1,000rpm〜20,000rpmが好ましく、2,000〜10,000rpmがより好ましい。限外濾過の回転数が1,000rpm以上であると、濾過速度が十分で、シリカ粒子やシリカゾルの生産性に優れる。限外濾過の回転数が20,000rpm以下であると、限外濾過の選択性に優れる。 The rotation speed of the ultrafiltration by centrifugation is preferably 1,000 rpm to 20,000 rpm, more preferably 2,000 to 10,000 rpm. When the rotation speed of the extraneous filtration is 1,000 rpm or more, the filtration rate is sufficient and the productivity of silica particles and silica sol is excellent. When the rotation speed of the ultrafiltration is 20,000 rpm or less, the selectivity of the ultrafiltration is excellent.

遠心分離による限外濾過の遠心分離時間は、10分〜300分が好ましく、20分〜180分がより好ましい。限外濾過の遠心分離時間が10分以上であると、シリカゾル中の中間生成物を抑制することができる。また、限外濾過の遠心分離時間が300分以下であると、シリカ粒子やシリカゾルの生産性に優れる。 The centrifugation time for ultrafiltration by centrifugation is preferably 10 minutes to 300 minutes, more preferably 20 minutes to 180 minutes. When the centrifugation time of the ultrafiltration is 10 minutes or more, intermediate products in the silica sol can be suppressed. Further, when the centrifugation time of the ultrafiltration is 300 minutes or less, the productivity of silica particles and silica sol is excellent.

(工程(1)と工程(2)以外の工程)
本発明のシリカ粒子の製造方法は、シリカ粒子の性能を損なわない範囲で、工程(1)及び工程(2)以外の工程を含んでもよい。
工程(1)及び工程(2)以外の工程としては、加圧加熱処理工程が挙げられるが、中間生成物が抑制されることにより加圧加熱処理で期待される効果が低減されることから、100℃以上に加熱する工程を含まないことが好ましく、150℃以上に加熱する工程を含まないことがより好ましい。
(Steps other than step (1) and step (2))
The method for producing silica particles of the present invention may include steps other than steps (1) and (2) as long as the performance of the silica particles is not impaired.
Examples of the steps other than the step (1) and the step (2) include a pressure heat treatment step, but since the effect expected in the pressure heat treatment is reduced by suppressing intermediate products, the expected effect of the pressure heat treatment is reduced. It is preferable not to include a step of heating to 100 ° C. or higher, and more preferably not to include a step of heating to 150 ° C. or higher.

(シリカ粒子の物性)
シリカ粒子の平均1次粒子径は、5nm〜100nmが好ましく、10nm〜60nmがより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
(Physical characteristics of silica particles)
The average primary particle size of the silica particles is preferably 5 nm to 100 nm, more preferably 10 nm to 60 nm. When the average primary particle size of the silica particles is 5 nm or more, the storage stability of the silica sol is excellent. Further, when the average primary particle size of the silica particles is 100 nm or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer can be reduced, and the sedimentation of the silica particles can be suppressed.

シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(1)を用いて平均1次粒子径を算出する。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (1)
The average primary particle size of the silica particles is measured by the BET method. Specifically, the specific surface area of silica particles is measured using an automatic specific surface area measuring device, and the average primary particle size is calculated using the following formula (1).
Average primary particle size (nm) = 6000 / (specific surface area (m 2 / g) x density (g / cm 3 )) ... (1)

シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average primary particle size of the silica particles can be set in a desired range by known conditions and methods.

シリカ粒子の平均2次粒子径は、10nm〜200nmが好ましく、20nm〜100nmがより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。 The average secondary particle size of the silica particles is preferably 10 nm to 200 nm, more preferably 20 nm to 100 nm. When the average secondary particle size of the silica particles is 10 nm or more, the removability of particles and the like in cleaning after polishing is excellent, and the storage stability of the silica sol is excellent. When the average secondary particle size of the silica particles is 200 nm or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer during polishing can be reduced, and the removability of particles and the like during cleaning after polishing is excellent, and silica. It is possible to suppress the sedimentation of particles.

シリカ粒子の平均2次粒子径は、DLS法により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。 The average secondary particle size of the silica particles is measured by the DLS method. Specifically, the measurement is performed using a dynamic light scattering particle size measuring device.

シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average secondary particle size of the silica particles can be set in a desired range by known conditions and methods.

シリカ粒子のcv値は、15〜50が好ましく、20〜40がより好ましく、25〜35が更に好ましい。シリカ粒子のcv値が15以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子のcv値が50以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。 The cv value of the silica particles is preferably 15 to 50, more preferably 20 to 40, and even more preferably 25 to 35. When the cv value of the silica particles is 15 or more, the polishing rate for the object to be polished represented by the silicon wafer is excellent, and the productivity of the silicon wafer is excellent. Further, when the cv value of the silica particles is 50 or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer during polishing can be reduced, and the removability of particles and the like in cleaning after polishing is excellent.

シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(2)を用いて算出する。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
The cv value of the silica particles is calculated by measuring the average secondary particle size of the silica particles using a dynamic light scattering particle size measuring device and using the following formula (2).
cv value = (standard deviation (nm) / average secondary particle size (nm)) x 100 ... (2)

シリカ粒子の会合比は、1.0〜4.0が好ましく、1.1〜3.0がより好ましい。シリカ粒子の会合比が1.0以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子の会合比が4.0以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。 The association ratio of the silica particles is preferably 1.0 to 4.0, more preferably 1.1 to 3.0. When the association ratio of the silica particles is 1.0 or more, the polishing rate with respect to the object to be polished represented by the silicon wafer is excellent, and the productivity of the silicon wafer is excellent. Further, when the association ratio of the silica particles is 4.0 or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer at the time of polishing can be reduced, and the aggregation of the silica particles can be suppressed.

シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(3)を用いて会合比を算出する。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
The association ratio of the silica particles is calculated by using the following formula (3) from the average primary particle size measured by the above-mentioned measuring method and the average secondary particle size measured by the above-mentioned measuring method. ..
Association ratio = average secondary particle size / average primary particle size ... (3)

シリカ粒子の表面シラノール基密度は、0.1個/nm〜10個/nmが好ましく、0.5個/nm〜7.5個/nmがより好ましく、2.0個/nm〜7.0個/nmが更に好ましい。シリカ粒子の表面シラノール基密度が0.1個/nm以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基密度が10個/nm以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。 The surface silanol group density of the silica particles is preferably 0.1 pcs / nm 2 to 10 pcs / nm 2, more preferably 0.5 pcs / nm 2 to 7.5 pcs / nm 2 , and 2.0 pcs / nm. 2 to 7.0 pieces / nm 2 is more preferable. When the surface silanol group density of the silica particles is 0.1 element / nm 2 or more, the silica particles have an appropriate surface repulsion and the dispersion stability of the silica sol is excellent. Further, when the surface silanol group density of the silica particles is 10 particles / nm 2 or less, the silica particles have an appropriate surface repulsion, and the aggregation of the silica particles can be suppressed.

シリカ粒子の表面シラノール基密度は、シアーズ法により測定する。具体的には、下記に示す条件で測定・算出する。
シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出する。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
The surface silanol group density of silica particles is measured by the Sears method. Specifically, it is measured and calculated under the conditions shown below.
A silica sol corresponding to 1.5 g of silica particles is collected, and pure water is added to bring the liquid volume to 90 mL. In an environment of 25 ° C., add 0.1 mol / L hydrochloric acid aqueous solution until the pH reaches 3.6, add 30 g of sodium chloride, and gradually add pure water to completely dissolve sodium chloride, and finally test. Pure water is added until the total volume of the solution reaches 150 mL to obtain a test solution.
The obtained test solution is placed in an automatic titrator, and a 0.1 mol / L sodium hydroxide aqueous solution is added dropwise to obtain 0.1 mol / L sodium hydroxide required for the pH to change from 4.0 to 9.0. Measure the titration amount A (mL) of the aqueous solution.
Using the following formula (4), calculate the consumption V (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0. Then, the surface silanol group density ρ (pieces / nm 2 ) of the silica particles is calculated using the following formula (5).
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (4)
A: Drop quantification (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0.
f: Titer of 0.1 mol / L sodium hydroxide aqueous solution used C: Concentration (mass%) of silica particles in silica sol
W: Amount of silica sol collected (g)
ρ = (B × N A) / (10 18 × M × S BET) ··· (5)
B: Amount of sodium hydroxide (mol) required for the pH per 1.5 g of silica particles calculated from V to change from 4.0 to 9.0.
N A: Avogadro's number (number / mol)
M: Amount of silica particles (1.5 g)
SBET : Specific surface area (m 2 / g) of silica particles measured when calculating the average primary particle size.

尚、前記シリカ粒子の表面シラノール基密度の測定・算出方法は、「G.W.Sears,Jr., Analytical Chemistry, Vol.28, No.12, pp.1981−1983(1956).」、「羽場真一, 半導体集積回路プロセス用研磨剤の開発, 高知工科大学博士論文, pp.39−45, 2004年3月」、「特許第5967118号公報」、「特許第6047395号公報」を参考にした。 The method for measuring and calculating the surface silanol group density of the silica particles is described in "GW Sears, Jr., Analytical Chemistry, Vol. 28, No. 12, pp. 1981-1983 (1956).", " Shinichi Haba, Development of Polishing Agents for Semiconductor Integrated Circuit Processes, Doctoral Dissertation, Kochi University of Technology, pp.39-45, March 2004 ”,“ Patent No. 5967118 ”,“ Patent No. 6047395 ” ..

シリカ粒子の表面シラノール基密度は、アルコキシシランの加水分解反応及び縮合反応の条件を調整することで、所望の範囲に設定することができる。 The surface silanol group density of the silica particles can be set in a desired range by adjusting the conditions of the hydrolysis reaction and the condensation reaction of the alkoxysilane.

シリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。 The metal impurity content of the silica particles is preferably 5 ppm or less, more preferably 2 ppm or less.

半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着・汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
In polishing a silicon wafer of a semiconductor device, metal impurities adhere to and contaminate the surface of the object to be polished, which adversely affects the wafer characteristics and diffuses inside the wafer to deteriorate the quality. The performance of manufactured semiconductor devices is significantly reduced.
In addition, when metal impurities are present in the silica particles, a coordinated interaction occurs between the surface silanol groups showing acidity and the metal impurities, which changes the chemical properties (acidity, etc.) of the surface silanol groups, or silica. It changes the three-dimensional environment of the particle surface (easiness of aggregation of silica particles, etc.) and affects the polishing rate.

シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP−MS)により測定する。具体的には、シリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温・溶解・蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。 The metal impurity content of silica particles is measured by high frequency inductively coupled plasma mass spectrometry (ICP-MS). Specifically, the silica sol containing 0.4 g of silica particles is accurately weighed, sulfuric acid and hydrofluoric acid are added, and the mixture is heated, dissolved, and evaporated, and pure water is added to the remaining sulfuric acid droplets so that the total amount is exactly 10 g. To prepare a test solution, measure using a high-frequency inductively coupled plasma mass spectrometer. The target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver and nickel, and the total content of these metals is defined as the metal impurity content. do.

シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応及び縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
The metal impurity content of the silica particles can be 5 ppm or less by performing a hydrolysis reaction and a condensation reaction using alkoxysilane as a main raw material to obtain silica particles.
In the method of deionizing alkali silicate such as water glass, it is extremely difficult to reduce the metal impurity content of silica particles to 5 ppm or less because sodium or the like derived from the raw material remains.

シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。 Examples of the shape of the silica particles include a spherical shape, a chain shape, a cocoon shape (also referred to as a hump shape or a peanut shape), and an irregular shape (for example, a wart shape, a bent shape, a branched shape, etc.). Among these shapes of silica particles, if it is desired to reduce the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing, a spherical shape is preferable, and the polishing rate for the object to be polished represented by a silicon wafer is set. If you want to increase it, a different shape is preferable.

シリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
Silica particles are preferably free of pores because they are excellent in mechanical strength and storage stability.
The presence or absence of pores in the silica particles is confirmed by BET multipoint analysis using an adsorption isotherm using nitrogen as an adsorption gas.

シリカ粒子は、機械的強度、保存安定性に優れることから、アルコキシシラン縮合物を主成分とすることが好ましく、テトラアルコキシシラン縮合物を主成分とすることがより好ましい。主成分とは、シリカ粒子を構成する全成分100質量%中、50質量%以上であることをいう。
アルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、アルコキシシランを主原料とすることが好ましい。テトラアルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、テトラアルコキシシランを主原料とすることが好ましい。主原料とは、シリカ粒子を構成する全原料100質量%中、50質量%以上であることをいう。
Since the silica particles are excellent in mechanical strength and storage stability, it is preferable that the silica particles contain an alkoxysilane condensate as a main component, and more preferably a tetraalkoxysilane condensate as a main component. The main component means that it is 50% by mass or more in 100% by mass of all the components constituting the silica particles.
In order to obtain silica particles containing an alkoxysilane condensate as a main component, it is preferable to use alkoxysilane as a main raw material. In order to obtain silica particles containing a tetraalkoxysilane condensate as a main component, it is preferable to use tetraalkoxysilane as a main raw material. The main raw material means that it is 50% by mass or more in 100% by mass of all the raw materials constituting the silica particles.

(シリカゾルの製造方法)
本発明のシリカゾルの製造方法は、本発明のシリカ粒子の製造方法を含む。
(Manufacturing method of silica sol)
The method for producing a silica sol of the present invention includes the method for producing silica particles of the present invention.

シリカゾルは、本発明のシリカ粒子の製造方法で得られたシリカ粒子の分散液をそのまま用いてもよく、得られた分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加して製造してもよい。 As the silica sol, the dispersion liquid of the silica particles obtained by the method for producing silica particles of the present invention may be used as it is, and among the components in the obtained dispersion liquid, unnecessary components are removed and necessary components are used. It may be added and manufactured.

シリカゾルは、シリカ粒子及び溶媒・分散媒を含むことが好ましい。
シリカゾルの溶媒・分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらのシリカゾルの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾルの溶媒・分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
The silica sol preferably contains silica particles and a solvent / dispersion medium.
Examples of the solvent / dispersion medium of the silica sol include water, methanol, ethanol, propanol, isopropanol, ethylene glycol and the like. As the solvent / dispersion medium of these silica sol, one kind may be used alone, or two or more kinds may be used in combination. Among the solvents and dispersion media of these silica sol, water and alcohol are preferable, and water is more preferable, because they have excellent affinity with silica particles.

シリカゾル中のシリカ粒子の含有率は、シリカゾル全量100質量%中、3質量%〜50質量%が好ましく、4質量%〜40質量%がより好ましく、5質量%〜30質量%が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。 The content of the silica particles in the silica sol is preferably 3% by mass to 50% by mass, more preferably 4% by mass to 40% by mass, still more preferably 5% by mass to 30% by mass, based on 100% by mass of the total amount of the silica sol. When the content of silica particles in the silica sol is 3% by mass or more, the polishing rate for the object to be polished represented by a silicon wafer is excellent. Further, when the content of the silica particles in the silica sol is 50% by mass or less, the aggregation of the silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent.

シリカゾル中の溶媒・分散媒の含有率は、シリカゾル全量100質量%中、50質量%〜97質量%が好ましく、60質量%〜96質量%がより好ましく、70質量%〜95質量%が更に好ましい。シリカゾル中の溶媒・分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の溶媒・分散媒の含有率が97質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The content of the solvent / dispersion medium in the silica sol is preferably 50% by mass to 97% by mass, more preferably 60% by mass to 96% by mass, still more preferably 70% by mass to 95% by mass, based on 100% by mass of the total amount of the silica sol. .. When the content of the solvent / dispersion medium in the silica sol is 50% by mass or more, aggregation of silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent. Further, when the content of the solvent / dispersion medium in the silica sol is 97% by mass or less, the polishing rate for the object to be polished represented by the silicon wafer is excellent.

シリカゾル中のシリカ粒子や溶媒・分散媒の含有率は、シリカ粒子の分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。 The content of the silica particles and the solvent / dispersion medium in the silica sol shall be set within a desired range by removing unnecessary components from the components in the dispersion liquid of the silica particles and adding the necessary components. Can be done.

シリカゾルは、シリカ粒子及び溶媒・分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌・殺生物剤を含ませることが好ましい。
In addition to silica particles and solvents / dispersion media, silica sol can be used as an oxidizing agent, preservative, fungicide, pH adjuster, pH buffer, surfactant, chelating agent, if necessary, as long as its performance is not impaired. , Antibacterial / biocide and other other ingredients may be included.
In particular, it is preferable to include an antibacterial / biocide in the silica sol because the silica sol is excellent in storage stability.

抗菌・殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、過酸化水素、p−ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌・殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌・殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
殺生物剤は、一般に殺菌剤と言われるものも含む。
Examples of antibacterial / biocide include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, hydrogen peroxide, methyl p-hydroxybenzoate, and sodium chlorite. And so on. These antibacterial and biocide agents may be used alone or in combination of two or more. Among these antibacterial and biocide agents, hydrogen peroxide is preferable because it has an excellent affinity with silica sol.
Biocides also include what are commonly referred to as fungicides.

シリカゾル中の抗菌・殺生物剤の含有率は、シリカゾル全量100質量%中、0.0001質量%〜10質量%が好ましく、0.001質量%〜1質量%がより好ましい。シリカゾル中の抗菌・殺生物剤の含有率が0.0001質量%質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌・殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。 The content of the antibacterial / biocide in the silica sol is preferably 0.0001% by mass to 10% by mass, more preferably 0.001% by mass to 1% by mass, based on 100% by mass of the total amount of the silica sol. When the content of the antibacterial / biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent. When the content of the antibacterial / biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.

シリカゾルのpHは、6.0〜8.0が好ましく、6.5〜7.8がより好ましい。シリカゾルのpHが6.0以上であると、分散安定性に優れて、シリカ粒子の凝集を抑制することができる。また、シリカゾルのpHが8.0以下であると、シリカ粒子の溶解を防ぎ、長期間の保存安定性に優れる。
シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the silica sol is preferably 6.0 to 8.0, more preferably 6.5 to 7.8. When the pH of the silica sol is 6.0 or more, the dispersion stability is excellent and the aggregation of silica particles can be suppressed. Further, when the pH of the silica sol is 8.0 or less, the dissolution of silica particles is prevented and the storage stability for a long period of time is excellent.
The pH of the silica sol can be set in a desired range by adding a pH adjuster.

(シリカゾル中の中間生成物の除去方法)
本発明のシリカゾル中の中間生成物の除去方法は、本発明のシリカゾルの製造方法による方法であり、具体的な製造方法は、前述した通りである。
(Method of removing intermediate products in silica sol)
The method for removing the intermediate product in the silica sol of the present invention is the method according to the method for producing the silica sol of the present invention, and the specific production method is as described above.

(研磨組成物)
本発明のシリカ粒子の製造方法で得られるシリカ粒子は、研磨組成物として好適に用いることができる。
研磨組成物は、前述したシリカゾル及び水溶性高分子を含むことが好ましい。
(Abrasive composition)
The silica particles obtained by the method for producing silica particles of the present invention can be suitably used as a polishing composition.
The polishing composition preferably contains the above-mentioned silica sol and water-soluble polymer.

水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。 The water-soluble polymer enhances the wettability of the polishing composition with respect to the object to be polished represented by a silicon wafer. The water-soluble polymer is preferably a polymer having a functional group having a high hydrophilicity, and the functional group having a high hydrophilicity has a high affinity with the surface silanol group of the silica particles, and is contained in the polishing composition. The silica particles and the water-soluble polymer are stably dispersed in the vicinity. Therefore, the effects of the silica particles and the water-soluble polymer function synergistically when polishing the object to be polished represented by a silicon wafer.

水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。 Examples of the water-soluble polymer include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, and polymers having a polyoxyalkylene structure.

セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
Examples of the cellulose derivative include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like.
Examples of the copolymer having a polyvinylpyrrolidone skeleton include a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
Examples of the polymer having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and a copolymer of ethylene oxide and propylene oxide.

これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。 These water-soluble polymers may be used alone or in combination of two or more. Among these water-soluble polymers, cellulose derivatives are preferable because they have a high affinity for the surface silanol groups of silica particles and act synergistically to give good hydrophilicity to the surface of the object to be polished. Therefore, hydroxyethyl cellulose is preferable. Is more preferable.

水溶性高分子の質量平均分子量は、1,000〜3,000,000が好ましく、5,000〜2,000,000がより好ましく、10,000〜1,000,000が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The mass average molecular weight of the water-soluble polymer is preferably 1,000 to 3,000,000, more preferably 5,000 to 2,000,000, and even more preferably 10,000 to 1,000,000. When the mass average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved. Further, when the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with the silica sol is excellent, and the polishing rate for the object to be polished represented by the silicon wafer is excellent.

水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。 The mass average molecular weight of the water-soluble polymer is measured by size exclusion chromatography under the condition that a 0.1 mol / L NaCl solution is used as the mobile phase in terms of polyethylene oxide.

研磨組成物中の水溶性高分子の含有率は、研磨組成物全量100質量%中、0.02質量%〜10質量%が好ましく、0.05質量%〜5質量%がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Further, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, the aggregation of silica particles at the time of preparing the polishing composition can be suppressed.

研磨組成物は、シリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
In addition to silica sol and water-soluble polymer, the polishing composition may contain basic compounds, polishing accelerators, surfactants, hydrophilic compounds, preservatives, fungicides, etc., as necessary, as long as the performance is not impaired. It may contain other components such as a pH adjuster, a pH buffer, a surfactant, a chelating agent, an antibacterial / killing agent, and the like.
In particular, it is possible to perform chemical polishing (chemical etching) by giving a chemical action to the surface of the object to be polished represented by a silicon wafer, and due to the synergistic effect with the surface silanol groups of silica particles, the surface of the object to be polished represented by a silicon wafer is represented. Since the polishing speed of the polished body can be improved, it is preferable to include a basic compound in the polishing composition.

塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。 Examples of the basic compound include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, ammonia and the like. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogencarbonate, and ammonium carbonate are preferable because they are highly water-soluble and have excellent affinity with silica particles and water-soluble polymers. , Ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide are more preferable, and ammonia is even more preferable.

研磨組成物中の塩基性化合物の含有率は、研磨組成物全量100質量%中、0.001質量%〜5質量%が好ましく、0.01質量%〜3質量%がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。 The content of the basic compound in the polishing composition is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 3% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing rate of the object to be polished represented by the silicon wafer can be improved. Further, when the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.

研磨組成物のpHは、8.0〜12.0が好ましく、9.0〜11.0がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the polishing composition is preferably 8.0 to 12.0, more preferably 9.0 to 11.0. When the pH of the polishing composition is 8.0 or more, the aggregation of silica particles in the polishing composition can be suppressed, and the dispersion stability of the polishing composition is excellent. Further, when the pH of the polishing composition is 12.0 or less, dissolution of silica particles can be suppressed, and the stability of the polishing composition is excellent.
The pH of the polishing composition can be set in a desired range by adding a pH adjuster.

研磨組成物は、本発明のシリカゾル、水溶性高分子、及び、必要に応じて、他の成分を混合することで得られるが、保管・運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。 The polishing composition can be obtained by mixing the silica sol of the present invention, the water-soluble polymer, and other components as necessary, but in consideration of storage and transportation, once prepared at a high concentration, immediately before polishing. May be diluted with water or the like.

(研磨方法)
本発明の研磨方法は、本発明のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する方法である。
研磨組成物は、前述した研磨組成物を用いることが好ましい。
具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に本発明の研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
(Polishing method)
The polishing method of the present invention is a method of polishing using a polishing composition containing silica particles obtained by the method for producing silica particles of the present invention.
As the polishing composition, it is preferable to use the above-mentioned polishing composition.
Specific examples of the polishing method include a method in which the surface of a silicon wafer is pressed against a polishing pad, the polishing composition of the present invention is dropped onto the polishing pad, and the surface of the silicon wafer is polished.

(用途)
本発明のシリカ粒子の製造方法で得られたシリカ粒子や本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
(Use)
The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing applications, for example, polishing a semiconductor material such as a silicon wafer. Used for polishing electronic materials such as hard disk substrates, polishing in the flattening process when manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used for photomasks and liquid crystals, polishing magnetic disk substrates, etc. It can be particularly preferably used for polishing silicon wafers and chemical mechanical polishing.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the description of the following Examples as long as it does not deviate from the gist thereof.

(平均1次粒子径の測定)
比較例1・参考例1で得られたシリカゾルを150℃で乾燥し、比表面積自動測定装置「BELSORP−MR1」(機種名、マイクロトラック・ベル株式会社)を用いて、シリカ粒子の比表面積を測定し、下記式(1)を用い、密度を2.2g/cmとし、平均1次粒子径を算出した。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (1)
(Measurement of average primary particle size)
The silica sol obtained in Comparative Example 1 and Reference Example 1 was dried at 150 ° C., and the specific surface area of the silica particles was measured using an automatic specific surface area measuring device "BELSORP-MR1" (model name: Microtrac Bell Co., Ltd.). The measurement was carried out, and the density was set to 2.2 g / cm 3 using the following formula (1), and the average primary particle size was calculated.
Average primary particle size (nm) = 6000 / (specific surface area (m 2 / g) x density (g / cm 3 )) ... (1)

(平均2次粒子径・cv値の測定)
比較例1・参考例1で得られたシリカゾルを、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(2)を用いてcv値を算出した。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
(Measurement of average secondary particle size / cv value)
The silica sol obtained in Comparative Example 1 and Reference Example 1 was measured for the average secondary particle size of silica particles using a dynamic light scattering particle size measuring device "Zetersizer Nano ZS" (model name, manufactured by Malvern). Then, the cv value was calculated using the following formula (2).
cv value = (standard deviation (nm) / average secondary particle size (nm)) x 100 ... (2)

(会合比の算出)
測定した平均1次粒子径と平均2次粒子径とから、下記式(3)を用いて会合比を算出した。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
(Calculation of meeting ratio)
From the measured average primary particle size and average secondary particle size, the association ratio was calculated using the following formula (3).
Association ratio = average secondary particle size / average primary particle size ... (3)

(表面シラノール基密度の測定)
比較例1・参考例1で得られたシリカゾルの、シリカ粒子1.5gに相当する量を、200mLトールビーカーに採取し、純水を加えて液量を90mLにした。
25℃の環境下、トールビーカーにpH電極を挿入し、マグネティックスターラーにより試験液を5分間撹拌させた。マグネティックスターラーによる攪拌を続けた状態で、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加えた。トールビーカーからpH電極を取り外し、マグネティックスターラーによる攪拌を続けた状態で、塩化ナトリウムを30g加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、マグネティックスターラーにより試験液を5分間撹拌させ、試験液を得た。
(Measurement of surface silanol group density)
The amount of the silica sol obtained in Comparative Example 1 and Reference Example 1 corresponding to 1.5 g of silica particles was collected in a 200 mL tall beaker, and pure water was added to bring the liquid volume to 90 mL.
The pH electrode was inserted into a tall beaker in an environment of 25 ° C., and the test solution was stirred with a magnetic stirrer for 5 minutes. While stirring with a magnetic stirrer was continued, a 0.1 mol / L hydrochloric acid aqueous solution was added until the pH reached 3.6. With the pH electrode removed from the tall beaker and stirring with a magnetic stirrer continued, 30 g of sodium chloride was added, and pure water was gradually added to completely dissolve the sodium chloride, and finally the total volume of the test solution became 150 mL. Pure water was added until the test solution was added, and the test solution was stirred with a magnetic stirrer for 5 minutes to obtain a test solution.

得られた試験液の入ったトールビーカーを、自動滴定装置「COM−1600」(平沼産業株式会社製)にセットし、装置付属のpH電極とビュレットをトールビーカーに挿入して、マグネティックスターラーにより試験液を撹拌させながら、ビュレットを通じて0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定した。
下記式(6)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(7)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出した。
V=(A×f×100×1.5)/(W×C) ・・・ (6)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (7)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
Set the tall beaker containing the obtained test solution in the automatic titrator "COM-1600" (manufactured by Hiranuma Sangyo Co., Ltd.), insert the pH electrode and burette attached to the device into the tall beaker, and test with a magnetic stirrer. Titration of 0.1 mol / L sodium hydroxide aqueous solution required for pH to change from 4.0 to 9.0 by dropping 0.1 mol / L sodium hydroxide aqueous solution through a burette while stirring the liquid. A (mL) was measured.
Using the following formula (6), the consumption V (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0 was calculated. Then, the surface silanol group density ρ (pieces / nm 2 ) of the silica particles was calculated using the following formula (7).
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (6)
A: Drop quantification (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0.
f: Titer of 0.1 mol / L sodium hydroxide aqueous solution used C: Concentration (mass%) of silica particles in silica sol
W: Amount of silica sol collected (g)
ρ = (B × N A) / (10 18 × M × S BET) ··· (7)
B: Amount of sodium hydroxide (mol) required for the pH per 1.5 g of silica particles calculated from V to change from 4.0 to 9.0.
N A: Avogadro's number (number / mol)
M: Amount of silica particles (1.5 g)
SBET : Specific surface area (m 2 / g) of silica particles measured when calculating the average primary particle size.

(金属不純物含有率の測定)
比較例1で得られたシリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温・溶解・蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置「ELEMENT2」(機種名、サーモフィッシャーサイエンティフィック社製)を用いて、金属不純物含有率を測定した。
(Measurement of metal impurity content)
Accurately weigh the silica sol containing 0.4 g of the silica particles obtained in Comparative Example 1, add sulfuric acid and hydrofluoric acid, heat, dissolve, and evaporate, and pure water so that the total amount of the remaining sulfuric acid droplets is exactly 10 g. Was added to prepare a test solution, and the metal impurity content was measured using a high-frequency inductively coupled plasma mass spectrometer "ELEMENT2" (model name, manufactured by Thermo Fisher Scientific Co., Ltd.).

(シリカゾル中の中間生成物の評価)
実施例・比較例・参考例で得られたシリカゾルについて、以下の操作により中間生成物の量を評価した。
まず、シリカゾルを分取して、超純水で5,000倍に希釈した。5,000倍に希釈した希釈液を5μL分取して、ミラーシリコンウエハ(株式会社エレクトロニクスエンドマテリアルズコーポレーション製)に滴下して、50℃で10分間乾燥させた。それを、電界放出型走査電子顕微鏡(FE−SEM、機種名「S−5200型」、株式会社日立ハイテクノロジーズ製)に装着して、加速電圧5kVで、倍率15万倍で、100個〜200個のコロイダルシリカの粒子を観察し、画像を撮影した。
撮影した画像から、シリカゾル中の中間生成物の量を、以下の指標により評価した。尚、中間生成物は、図1でいう黒い線で囲まれた部分のように見える箇所をいう。
A:中間生成物を確認できない又は中間生成物を僅かに確認できる
B:中間生成物を確認できる
C:中間生成物を多量に確認できる
(Evaluation of intermediate products in silica sol)
For the silica sol obtained in Examples, Comparative Examples, and Reference Examples, the amount of intermediate products was evaluated by the following operation.
First, the silica sol was separated and diluted 5,000 times with ultrapure water. 5 μL of the diluted solution diluted 5,000 times was taken, dropped onto a mirror silicon wafer (manufactured by Electronics End Materials Corporation), and dried at 50 ° C. for 10 minutes. It is mounted on a field emission scanning electron microscope (FE-SEM, model name "S-5200", manufactured by Hitachi High-Technologies Co., Ltd.), and has an acceleration voltage of 5 kV, a magnification of 150,000 times, and 100 to 200 particles. Particles of colloidal silica were observed and images were taken.
From the captured images, the amount of intermediate products in the silica sol was evaluated by the following indexes. The intermediate product refers to a portion that looks like a portion surrounded by a black line in FIG.
A: Intermediate products cannot be confirmed or intermediate products can be slightly confirmed B: Intermediate products can be confirmed C: Intermediate products can be confirmed in large quantities

[比較例1]
テトラメトキシシランとメタノールとを2.3:1(体積比)で混合した原料溶液と補助溶媒の3質量%アンモニア水溶液とを調液した。温度計、攪拌機、供給管、留出ラインを備えた反応槽に、予めメタノール、純水、アンモニアを混合した反応溶媒を仕込んだ。反応溶媒中の水の濃度は13質量%、反応溶媒中のアンモニアの濃度は0.9質量%であった。
反応溶媒の温度を34℃に保持しながら、反応溶媒と原料溶液と補助溶媒とを0.77:1:0.31(体積比)とし、原料溶液と補助溶媒とを150分間、均等速度で反応槽へ滴下し、シリカゾルを得た。得られたシリカゾルを、シリカ粒子の含有率が約20質量%になるように、液量を純水追加で調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
[Comparative Example 1]
A raw material solution in which tetramethoxysilane and methanol were mixed at a ratio of 2.3: 1 (volume ratio) and a 3% by mass aqueous ammonia solution as an auxiliary solvent were prepared. A reaction solvent in which methanol, pure water, and ammonia were mixed in advance was charged into a reaction vessel equipped with a thermometer, a stirrer, a supply pipe, and a distillation line. The concentration of water in the reaction solvent was 13% by mass, and the concentration of ammonia in the reaction solvent was 0.9% by mass.
While maintaining the temperature of the reaction solvent at 34 ° C., the reaction solvent, the raw material solution and the co-solvent were set to 0.77: 1: 0.31 (volume ratio), and the raw material solution and the co-solvent were mixed at a uniform rate for 150 minutes. It was added dropwise to the reaction vessel to obtain a silica sol. While adjusting the amount of the obtained silica sol by adding pure water so that the content of silica particles becomes about 20% by mass, the temperature is raised to remove methanol and ammonia, and the content of silica particles is increased. About 20% by mass silica sol was obtained.

得られたシリカ粒子は、平均1次粒子径が30.7nm、平均2次粒子径65.0nm、cv値30.6、会合比2.12、表面シラノール基密度6.2個/nmであった。
また、得られたシリカ粒子中の金属不純物含有率は、ナトリウムが1.1ppm、カリウムが0.140ppm、鉄が0.015ppm、アルミニウムが0.135ppm、カルシウムが0.075ppm、亜鉛が0.07ppm、マグネシウム、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルがいずれも0.005ppm未満であった。
The obtained silica particles had an average primary particle size of 30.7 nm, an average secondary particle size of 65.0 nm, a cv value of 30.6, an association ratio of 2.12, and a surface silanol group density of 6.2 particles / nm 2 . there were.
The metal impurity content in the obtained silica particles was 1.1 ppm for sodium, 0.140 ppm for potassium, 0.015 ppm for iron, 0.135 ppm for aluminum, 0.075 ppm for calcium, and 0.07 ppm for zinc. , Magnesium, cobalt, chromium, copper, manganese, lead, titanium, silver and nickel were all less than 0.005 ppm.

得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図2に示す。また、得られたシリカゾル中の中間生成物の量の評価結果を、表1に示す。 The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. Table 1 shows the evaluation results of the amount of intermediate products in the obtained silica sol.

[実施例1]
比較例1で得られたシリカゾル4.51gを、分画分子量10,000の限外濾過膜(商品名「Microsep Advance with 10K Omega MCP010C41」、Pall Corporation社製)を用いて、遠心力1,075g、回転数3,100rpm、遠心分離時間1時間の条件で遠心分離による限外濾過を行い、シリカゾルを得た。限外濾過膜を透過した液量は2.36g、その透過率は52.3質量%、透過した液中のシリカ濃度は260μg/gであった。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図3に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Example 1]
4.51 g of the silica sol obtained in Comparative Example 1 was subjected to a centrifugal force of 1,075 g using an ultrafiltration membrane having a molecular weight cut off of 10,000 (trade name “Microsep Advance with 10K Omega MCP010C41”, manufactured by Pall Corporation). Ultrafiltration by centrifugation was performed under the conditions of a rotation speed of 3,100 rpm and a centrifugation time of 1 hour to obtain a silica sol. The amount of liquid that permeated the ultrafiltration membrane was 2.36 g, the transmittance was 52.3% by mass, and the silica concentration in the permeated liquid was 260 μg / g.
The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. The evaluation results of the obtained silica sol are shown in Table 1.

[実施例2]
限外濾過膜(商品名「Microsep Advance with 30K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図4に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Example 2]
The operation was carried out in the same manner as in Example 1 except that the fractional molecular weight of the ultrafiltration membrane (trade name "Microsep Advance with 30K Omega MCP010C41", manufactured by Pall Corporation) and the conditions for centrifugation were changed as shown in Table 1. A silica sol was obtained.
The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. The evaluation results of the obtained silica sol are shown in Table 1.

[比較例2]
限外濾過膜(商品名「Microsep Advance with 3K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図5に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Comparative Example 2]
The operation was carried out in the same manner as in Example 1 except that the fractional molecular weight of the ultrafiltration membrane (trade name "Microsep Advance with 3K Omega MCP010C41", manufactured by Pall Corporation) and the conditions for centrifugation were changed as shown in Table 1. A silica sol was obtained.
The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. The evaluation results of the obtained silica sol are shown in Table 1.

[比較例3]
限外濾過膜(商品名「Microsep Advance with 100K Omega MCP010C41」、Pall Corporation社製)の分画分子量、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図6に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Comparative Example 3]
The operation was carried out in the same manner as in Example 1 except that the fractional molecular weight of the ultrafiltration membrane (trade name "Microsep Advance with 100K Omega MCP010C41", manufactured by Pall Corporation) and the conditions for centrifugation were changed as shown in Table 1. A silica sol was obtained.
The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. The evaluation results of the obtained silica sol are shown in Table 1.

[参考例1]
市販のシリカゾル(商品名「PL−3」、扶桑化学工業株式会社製)をそのまま用いた。
用いたシリカ粒子は、平均1次粒子径が36.1nm、平均2次粒子径71.2nm、cv値28.6、会合比1.97、表面シラノール基密度5.5個/nmであった。
用いたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図7に示す。また、用いたシリカゾルの評価結果を、表1に示す。
[Reference example 1]
A commercially available silica sol (trade name "PL-3", manufactured by Fuso Chemical Industry Co., Ltd.) was used as it was.
The silica particles used had an average primary particle size of 36.1 nm, an average secondary particle size of 71.2 nm, a cv value of 28.6, an association ratio of 1.97, and a surface silanol group density of 5.5 particles / nm 2. rice field.
The secondary electron image observed by the field emission scanning electron microscope of the silica sol used is shown in FIG. The evaluation results of the silica sol used are shown in Table 1.

[参考例2]
市販のシリカゾル(商品名「PL−3」、扶桑化学工業株式会社製)を用い、遠心分離の条件を表1にように変更した以外は、実施例1と同様に操作し、シリカゾルを得た。
得られたシリカゾルの電界放出型走査電子顕微鏡で観測された二次電子像を、図8に示す。また、得られたシリカゾルの評価結果を、表1に示す。
[Reference example 2]
A commercially available silica sol (trade name "PL-3", manufactured by Fuso Chemical Industry Co., Ltd.) was used, and the same operation as in Example 1 was performed except that the conditions for centrifugation were changed as shown in Table 1, to obtain a silica sol. ..
The secondary electron image observed by the field emission scanning electron microscope of the obtained silica sol is shown in FIG. The evaluation results of the obtained silica sol are shown in Table 1.

Figure 2021116208
Figure 2021116208

限外濾過を行わなかった比較例1で得られたシリカゾルは、中間生成物が多く確認された。一方、特定範囲の分画分子量の限外濾過膜を用いて限外濾過を行った実施例1〜2で得られたシリカゾルは、中間生成物がほとんど確認されなかった。更に、特定範囲から外れた分画分子量の限外濾過膜を用いて限外濾過を行った比較例2〜3で得られたシリカゾルは、透過率が低く、限外濾過による中間生成物の除去量が少なく、中間生成物が確認された。
尚、市販のシリカゾル(商品名「PL−3」、扶桑化学工業株式会社製)は、そもそも中間生成物が少ないため、本発明の課題を有していないことが分かる。
A large amount of intermediate products were confirmed in the silica sol obtained in Comparative Example 1 in which no extrafiltration was performed. On the other hand, almost no intermediate products were confirmed in the silica sol obtained in Examples 1 and 2 in which ultrafiltration was performed using an ultrafiltration membrane having a specific molecular weight cut-off. Further, the silica sol obtained in Comparative Examples 2 and 3 obtained by ultrafiltration using an ultrafiltration membrane having a molecular weight cut off from a specific range has a low transmittance and removal of intermediate products by ultrafiltration. The amount was small and intermediate products were confirmed.
It can be seen that the commercially available silica sol (trade name "PL-3", manufactured by Fuso Chemical Industry Co., Ltd.) does not have the problem of the present invention because there are few intermediate products in the first place.

本発明のシリカ粒子の製造方法で得られたシリカ粒子や本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。 The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing applications, for example, polishing a semiconductor material such as a silicon wafer. Used for polishing electronic materials such as hard disk substrates, polishing in the flattening process when manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used for photomasks and liquid crystals, polishing magnetic disk substrates, etc. It can be particularly preferably used for polishing silicon wafers and chemical mechanical polishing.

Claims (8)

以下の工程(1)及び工程(2)を含む、シリカ粒子の製造方法。
工程(1):テトラアルコキシシランを加水分解反応及び縮合反応させ、シリカゾルを得る工程
工程(2):シリカゾルを、分画分子量5,000〜80,000の限外濾過膜を用いて限外濾過する工程
A method for producing silica particles, which comprises the following steps (1) and (2).
Step (1): Hydrolysis reaction and condensation reaction of tetraalkoxysilane to obtain silica sol Step (2): Ultrafiltration of silica sol using an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 80,000. Process to do
工程(1)の後に、工程(2)を行う、請求項1に記載のシリカ粒子の製造方法。 The method for producing silica particles according to claim 1, wherein the step (2) is performed after the step (1). シリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、3質量%〜50質量%である、請求項1又は2に記載のシリカ粒子の製造方法。 The method for producing silica particles according to claim 1 or 2, wherein the content of the silica particles in the silica sol is 3% by mass to 50% by mass in 100% by mass of the total amount of the silica sol. シリカ粒子のDLS法により測定した平均2次粒子径が、20nm〜100nmである、請求項1〜3のいずれか1項に記載のシリカ粒子の製造方法。 The method for producing silica particles according to any one of claims 1 to 3, wherein the average secondary particle size of the silica particles measured by the DLS method is 20 nm to 100 nm. 100℃以上に加熱する工程を含まない、請求項1〜4のいずれか1項に記載のシリカ粒子の製造方法。 The method for producing silica particles according to any one of claims 1 to 4, which does not include a step of heating to 100 ° C. or higher. 請求項1〜5のいずれか1項に記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。 A method for producing silica sol, which comprises the method for producing silica particles according to any one of claims 1 to 5. 請求項6に記載のシリカゾルの製造方法により、シリカゾル中の中間生成物を除去する、シリカゾル中の中間生成物の除去方法。 A method for removing an intermediate product in a silica sol, which removes the intermediate product in the silica sol by the method for producing a silica sol according to claim 6. 請求項1〜5のいずれか1項に記載のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する、研磨方法。 A polishing method for polishing using a polishing composition containing silica particles obtained by the method for producing silica particles according to any one of claims 1 to 5.
JP2020011469A 2020-01-28 2020-01-28 Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method Pending JP2021116208A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020011469A JP2021116208A (en) 2020-01-28 2020-01-28 Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method
JP2024026870A JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate product, and method for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011469A JP2021116208A (en) 2020-01-28 2020-01-28 Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024026870A Division JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate product, and method for polishing

Publications (1)

Publication Number Publication Date
JP2021116208A true JP2021116208A (en) 2021-08-10

Family

ID=77173953

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020011469A Pending JP2021116208A (en) 2020-01-28 2020-01-28 Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method
JP2024026870A Pending JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate product, and method for polishing

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024026870A Pending JP2024059837A (en) 2020-01-28 2024-02-26 Method for producing silica sol, method for removing intermediate product, and method for polishing

Country Status (1)

Country Link
JP (2) JP2021116208A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060219A (en) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
WO2008015943A1 (en) * 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010182811A (en) * 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2018090798A (en) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 Silica-based particles for polishing and abrasive
JP2019089692A (en) * 2017-11-10 2019-06-13 三菱ケミカル株式会社 Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060219A (en) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
WO2008015943A1 (en) * 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010182811A (en) * 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2018090798A (en) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 Silica-based particles for polishing and abrasive
JP2019089692A (en) * 2017-11-10 2019-06-13 三菱ケミカル株式会社 Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2024059837A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP7206695B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device
JP2021147267A (en) Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
WO2021153502A1 (en) Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP6756423B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP7443857B2 (en) Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2020147490A (en) Silica particle, silica sol, polishing composition, polishing method, method of manufacturing semiconductor wafer, method of manufacturing semiconductor device, and method of evaluating silica particle
JP2021116209A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP6756422B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2021116208A (en) Method for producing silica particle, method for producing silica sol, method for removing intermediate product and polishing method
JP2023014749A (en) Silica particle, silica sol, polishing composition, polishing method, manufacturing method of semiconductor wafer, and manufacturing method of semiconductor device
JP7491081B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2021123526A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2020132479A (en) Silica particle, silica sol, polishing composition, polishing method, method of manufacturing semiconductor wafer, and method of manufacturing semiconductor device
JP7464201B2 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device
JP7505304B2 (en) Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method
JP7331436B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2021123527A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2023007711A (en) Production method of silica sol, polishing method, production method of semiconductor wafer, and production method of semiconductor device
JP2020180010A (en) Silica particle, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer and method for manufacturing semiconductor device
JP2022109711A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2022109710A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2023043023A (en) Method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2020075830A (en) Method for producing silica sol and method for suppressing intermediate products in silica sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604