JP7516347B2 - Method for producing vinyl polymer - Google Patents

Method for producing vinyl polymer Download PDF

Info

Publication number
JP7516347B2
JP7516347B2 JP2021507361A JP2021507361A JP7516347B2 JP 7516347 B2 JP7516347 B2 JP 7516347B2 JP 2021507361 A JP2021507361 A JP 2021507361A JP 2021507361 A JP2021507361 A JP 2021507361A JP 7516347 B2 JP7516347 B2 JP 7516347B2
Authority
JP
Japan
Prior art keywords
copper
compound
reducing agent
polyamine
ascorbic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021507361A
Other languages
Japanese (ja)
Other versions
JPWO2020189665A1 (en
Inventor
敬正 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2020189665A1 publication Critical patent/JPWO2020189665A1/ja
Application granted granted Critical
Publication of JP7516347B2 publication Critical patent/JP7516347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerization Catalysts (AREA)

Description

本発明はビニル系単量体のリビングラジカル重合方法に関する。 The present invention relates to a method for living radical polymerization of vinyl monomers.

高酸化遷移金属錯体に還元剤を作用させ、触媒サイクルを回すことを特徴とするActivators Regenerated by Electron Transfer Atom Transfer Radical Polymerization:ARGET ATRPが見出されている(特許文献1)。 Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET ATRP) has been discovered, which is characterized by reacting a highly oxidized transition metal complex with a reducing agent to perform a catalytic cycle (Patent Document 1).

これらの重合法を用いて、極めて少量の銅およびポリアミンを用いて、さらに塩基、および還元剤の併用をすることにより、短時間で高い転化率まで重合反応を進行させ、且つ分子量分布の狭い重合体を得ることができている(特許文献2)。また、同様の処方において、溶媒としてメタノールを使用することにより、エステル基の炭素数が8~22の(メタ)アクリル酸エステルの重合が制御できることが報告されている(特許文献3)。Using these polymerization methods, it has been possible to progress the polymerization reaction to a high conversion rate in a short time by using extremely small amounts of copper and polyamine, and further using a base and a reducing agent in combination, and to obtain a polymer with a narrow molecular weight distribution (Patent Document 2). It has also been reported that, in a similar recipe, the use of methanol as a solvent allows the polymerization of (meth)acrylic esters with 8 to 22 carbon atoms in the ester group to be controlled (Patent Document 3).

WO2005/087819号WO2005/087819 WO2012/020545号WO2012/020545 特開2016-153464号JP 2016-153464 A

特許文献1~3では、還元剤を添加しても重合が開始しない誘導期があらわれる傾向があり、還元剤の滴下による重合制御(例えば重合速度及び/又は重合発熱の制御)が困難な場合があった。In Patent Documents 1 to 3, there was a tendency for an induction period to occur during which polymerization did not start even when a reducing agent was added, and it was sometimes difficult to control the polymerization (e.g., control of the polymerization rate and/or heat generated by polymerization) by dropping a reducing agent.

本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、誘導期を無くす、もしくは短くすることができる、ビニル系重合体の新規の製造方法を提供することである。One embodiment of the present invention has been developed in consideration of the above-mentioned problems, and its purpose is to provide a new method for producing vinyl polymers that can eliminate or shorten the induction period.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、銅錯体に対して高酸化の銅以外の金属化合物を併用することによって、誘導期を無くす、もしくは短くすることができることが分かり、本発明を完成させるに至った。As a result of extensive research conducted by the inventors to solve the above problems, it was discovered that the induction period can be eliminated or shortened by using a highly oxidized metal compound other than copper in combination with a copper complex, which led to the completion of the present invention.

すなわち、本発明の一実施形態に係るビニル系重合体の製造方法は、以下の(A)~(E)の存在下でリビングラジカル重合をおこなうものである:
金属銅又は銅化合物(A)、
ポリアミン(B)、
ポリアミン以外の塩基(C)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
That is, the method for producing a vinyl polymer according to one embodiment of the present invention comprises carrying out living radical polymerization in the presence of the following (A) to (E):
Metallic copper or a copper compound (A),
Polyamine (B),
(C) a base other than a polyamine;
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

また、本発明の他の一実施形態に係るビニル系重合体の製造方法は、以下の(A)、(B)、(D)および(E)の存在下でリビングラジカル重合をおこない、なおかつ(A)中の遷移金属原子と(E)中の遷移金属原子との合計モル数に対して、モル数で0.8~1.5倍の(B)を使用するものである:
金属銅又は銅化合物(A)、
ポリアミン(B)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
In another embodiment of the present invention, a method for producing a vinyl polymer comprises carrying out living radical polymerization in the presence of the following (A), (B), (D), and (E), and using 0.8 to 1.5 times the number of moles of (B) relative to the total number of moles of transition metal atoms in (A) and transition metal atoms in (E):
Metallic copper or a copper compound (A),
Polyamine (B),
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

本発明の一実施形態に係る製造方法は、ビニル系重合体の合成において、銅錯体と高酸化の金属種との併用により、誘導期をなくすこと、もしくは短くすることが可能となり、その結果、還元剤滴下による重合制御が簡便になるという効果を奏する。 In one embodiment of the present invention, a manufacturing method for synthesizing a vinyl polymer uses a copper complex in combination with a highly oxidizable metal species, making it possible to eliminate or shorten the induction period, thereby making it easier to control polymerization by dripping a reducing agent.

まず最初に、本発明の一実施形態に係る製造方法におけるリビングラジカル重合法について説明する。First, we will explain the living radical polymerization method in the manufacturing process of one embodiment of the present invention.

<リビングラジカル重合>
本発明の一実施形態は、(a)遷移金属または遷移金属化合物、および(b)配位子から成る遷移金属錯体を触媒とするビニル系単量体のリビングラジカル重合方法に関する。
<Living radical polymerization>
One embodiment of the present invention relates to a method for the living radical polymerization of vinyl monomers catalyzed by a transition metal complex comprising (a) a transition metal or a transition metal compound, and (b) a ligand.

遷移金属錯体を触媒とするリビングラジカル重合は現在、原子移動ラジカル重合;Atom Transfer Radical Polymerization:ATRP(J.Am.Chem.Soc.1995,117,5614、Macromolecules.1995,28,1721)とSigle Electron Transfer Polymerization:SET-LRP(J.Am.Chem.Soc.2006,128,14156、JPSChem 2007,45,1607)の二通りの解釈が考えられている。ATRPは、例えば銅錯体では、1価銅錯体が重合体末端のハロゲンを引き抜いてラジカルを発生させて2価銅錯体になる。2価銅錯体は重合末端のラジカルに対してハロゲンを戻して1価銅錯体になる。これら平衡からなるリビングラジカル重合がATRPである。一方、SET-LRPは、銅錯体の場合、0価の金属銅あるいは銅錯体が重合体末端のハロゲンを引き抜いてラジカルを発生させて1価銅錯体になる。2価銅錯体は重合末端のラジカルに対してハロゲンを戻して1価銅錯体になる。1価銅錯体は不均化して0価と2価の銅錯体になる。これら平衡からなるリビングラジカル重合がSET-LRPである。本発明の一実施形態のリビングラジカル重合も、ATRPおよびSET-LRPのいずれかのリビングラジカル重合系として解釈されうる。本発明の一実施形態では、ATRPおよびSET-LRPを特に区別せず、触媒に(a)遷移金属又は遷移金属化合物と(b)配位子とを用いたリビングラジカル重合系を本発明の一実施形態の範疇として取り扱う。Currently, living radical polymerization using transition metal complexes as catalysts is considered to be two different interpretations: Atom Transfer Radical Polymerization (ATRP) (J. Am. Chem. Soc. 1995, 117, 5614, Macromolecules. 1995, 28, 1721) and Single Electron Transfer Polymerization (SET-LRP) (J. Am. Chem. Soc. 2006, 128, 14156, JPSChem 2007, 45, 1607). In ATRP, for example, in the case of copper complexes, a monovalent copper complex extracts a halogen from the polymer end to generate a radical, resulting in a divalent copper complex. The divalent copper complex returns a halogen to the radical at the polymerization end to become a monovalent copper complex. The living radical polymerization consisting of these equilibria is ATRP. On the other hand, in the case of a copper complex, zero-valent metallic copper or a copper complex extracts a halogen from the polymer end to generate a radical to become a monovalent copper complex. The divalent copper complex returns a halogen to the radical at the polymerization end to become a monovalent copper complex. The monovalent copper complex disproportionates to become zero-valent and divalent copper complexes. The living radical polymerization consisting of these equilibria is SET-LRP. The living radical polymerization of one embodiment of the present invention can also be interpreted as a living radical polymerization system of either ATRP or SET-LRP. In one embodiment of the present invention, ATRP and SET-LRP are not particularly distinguished from each other, and a living radical polymerization system using (a) a transition metal or transition metal compound and (b) a ligand as a catalyst is treated as the category of one embodiment of the present invention.

また、還元剤を用いて重合遅延又は重合停止の原因となる高酸化遷移金属錯体を減らすことにより、遷移金属錯体が少ない低触媒条件であっても速やかに、高反応率まで重合反応を進行させることができるActivators Regenerated by Electron Transfer:ARGET(Macromolecules.2006,39,39)がATRPの改良処方として報告されている。本発明の一実施形態に係るリビングラジカル重合は、ATRPの改良処方であるARGET ATRPのリビングラジカル重合系であってもよい。すなわち、本発明の一実施形態では、ARGET ATRPとATRPとSET-LRPとを特に区別せず、触媒に(a)遷移金属又は遷移金属化合物と(b)配位子とを用いたリビングラジカル重合系を本発明の一実施形態の範疇として取り扱う。 In addition, Activators Regenerated by Electron Transfer: ARGET (Macromolecules. 2006, 39, 39) has been reported as an improved formulation of ATRP, which uses a reducing agent to reduce highly oxidized transition metal complexes that cause polymerization delay or polymerization termination, thereby allowing the polymerization reaction to proceed quickly to a high reaction rate even under low catalyst conditions with a small amount of transition metal complexes. The living radical polymerization according to one embodiment of the present invention may be a living radical polymerization system of ARGET ATRP, which is an improved formulation of ATRP. That is, in one embodiment of the present invention, no particular distinction is made between ARGET ATRP, ATRP, and SET-LRP, and a living radical polymerization system using (a) a transition metal or transition metal compound and (b) a ligand as a catalyst is treated as the category of one embodiment of the present invention.

<<第一の実施形態と第二の実施形態>>
本発明は、少なくとも、以下に示す「第一の実施形態」及び「第二の実施形態」を含むものである。
<<First and Second Embodiments>>
The present invention includes at least a "first embodiment" and a "second embodiment" described below.

[第一の実施形態]
以下の(A)~(E)の存在下でリビングラジカル重合をおこなうことを特徴とするビニル系重合体の製造方法:
金属銅又は銅化合物(A)、
ポリアミン(B)、
ポリアミン以外の塩基(C)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
[First embodiment]
A method for producing a vinyl polymer, comprising carrying out living radical polymerization in the presence of the following (A) to (E):
Metallic copper or a copper compound (A),
Polyamine (B),
(C) a base other than a polyamine;
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

[第二の実施形態]
以下の(A)、(B)、(D)および(E)の存在下でリビングラジカル重合をおこない、なおかつ(A)中の遷移金属原子と(E)中の遷移金属原子との合計モル数に対して、モル数で0.8~1.5倍の(B)を使用することを特徴とするビニル系重合体の製造方法:
金属銅又は銅化合物(A)、
ポリアミン(B)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
[Second embodiment]
A method for producing a vinyl polymer, comprising carrying out living radical polymerization in the presence of the following (A), (B), (D) and (E), and using 0.8 to 1.5 times the molar amount of (B) relative to the total molar amount of transition metal atoms in (A) and transition metal atoms in (E):
Metallic copper or a copper compound (A),
Polyamine (B),
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

以下、第一の実施形態および第二の実施形態について具体的に説明する。 The first and second embodiments are described in detail below.

[1]第一の実施形態
本発明の第一の実施形態は、上述した構成を有するため、誘導期をなくすこと、もしくは短くすることが可能となり、その結果、還元剤(D)の添加による重合制御が簡便になるという利点を有する。
[1] First embodiment Since the first embodiment of the present invention has the above-mentioned configuration, it is possible to eliminate or shorten the induction period, and as a result, it has an advantage that polymerization control by addition of a reducing agent (D) becomes easy.

<金属銅又は銅化合物(A)>
金属銅又は銅化合物(A)は、配位子とともに銅錯体を形成する。本発明の一実施形態ではこの配位子にポリアミン(B)を用いる。すなわち、本発明の一実施形態では、金属銅又は銅化合物(A)とポリアミン(B)とが銅錯体を形成している。なお、使用する金属銅又は銅化合物(A)の全てがポリアミン(B)と銅錯体を形成している必要はない。
<Metallic copper or copper compound (A)>
Metallic copper or copper compound (A) forms a copper complex together with a ligand. In one embodiment of the present invention, a polyamine (B) is used as the ligand. That is, in one embodiment of the present invention, metallic copper or copper compound (A) and polyamine (B) form a copper complex. It is not necessary that all of the metallic copper or copper compound (A) used forms a copper complex with polyamine (B).

本発明の第一の実施形態に係るビニル系重合体の製造方法は、少なくとも金属銅又は銅化合物(A)の存在下でリビングラジカル重合を行うものである。これは、本発明の第一の実施形態に係るビニル系重合体の製造方法のリビングラジカル重合の反応系において、少なくとも金属銅または銅化合物の何れかが存在していればよいことを意図するものである。本発明の第一の実施形態に係るビニル系重合体の製造方法のリビングラジカル重合の反応系において、金属銅および銅化合物の両方が存在する態様を排除するものではない。The method for producing a vinyl polymer according to the first embodiment of the present invention is a method for performing living radical polymerization in the presence of at least metallic copper or a copper compound (A). This is intended to mean that at least either metallic copper or a copper compound needs to be present in the reaction system of the living radical polymerization in the method for producing a vinyl polymer according to the first embodiment of the present invention. This does not exclude an embodiment in which both metallic copper and a copper compound are present in the reaction system of the living radical polymerization in the method for producing a vinyl polymer according to the first embodiment of the present invention.

本発明の第一の実施形態は、少なくとも金属銅又は銅化合物(A)およびポリアミン(B)の存在下でリビングラジカル重合をおこなうものであるから、銅錯体の存在下でリビングラジカル重合をおこなうビニル系重合体の製造方法ともいえる。 The first embodiment of the present invention involves carrying out living radical polymerization in the presence of at least metallic copper or a copper compound (A) and a polyamine (B), and can therefore be said to be a method for producing a vinyl polymer in which living radical polymerization is carried out in the presence of a copper complex.

すなわち、本発明の第一の実施形態は、以下のような態様であってもよい。
金属銅又は銅化合物(A)およびポリアミン(B)からなる銅錯体、並びに、以下の(C)~(E)の存在下でリビングラジカル重合をおこなうことを特徴とするビニル系重合体の製造方法:
ポリアミン以外の塩基(C)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
That is, the first embodiment of the present invention may be configured as follows.
A method for producing a vinyl polymer, comprising carrying out living radical polymerization in the presence of metallic copper or a copper complex comprising a copper compound (A) and a polyamine (B), and the following (C) to (E):
(C) a base other than a polyamine;
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

また、本発明の第一の実施形態は、以下のような態様であってもよい。
金属銅又は銅化合物(A)およびポリアミン(B)からなる銅錯体、並びに、以下の(B)~(E)の存在下でリビングラジカル重合をおこなうことを特徴とするビニル系重合体の製造方法:
ポリアミン(B)、
ポリアミン以外の塩基(C)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E)。
The first embodiment of the present invention may be configured as follows.
A method for producing a vinyl polymer, comprising carrying out living radical polymerization in the presence of metallic copper or a copper complex comprising a copper compound (A) and a polyamine (B), and the following (B) to (E):
Polyamine (B),
(C) a base other than a polyamine;
a reducing agent (D), and a highly oxidized non-copper metal compound (E).

金属銅又は銅化合物(A)における金属銅は粉末銅、銅箔等の銅単体である。The metallic copper in the copper compound (A) is copper in the form of powdered copper, copper foil, or the like.

金属銅又は銅化合物(A)における銅化合物としては、銅の塩化物、臭素化物、ヨウ素化物、シアン化物、酸化物、水酸化物、酢酸化物、硫酸化物、硝酸化物等が例として挙げられるが、それらに限定されたものではない。 Examples of the copper compound in metallic copper or copper compound (A) include, but are not limited to, copper chloride, bromide, iodide, cyanide, oxide, hydroxide, acetate, sulfate, and nitrate.

銅原子は電子状態によって0価、1価、2価の価数をとりうる。金属銅又は銅化合物(A)における銅原子の価数は限定されるものではない。The copper atom can have a valence of 0, 1, or 2 depending on the electronic state. The valence of the copper atom in metallic copper or copper compound (A) is not limited.

銅原子の量を減量できれば銅原子を除くことが容易になり、さらに遷移金属量(銅原子量)に付随してポリアミン(B)の量も減る。そのため、金属銅又は銅化合物(A)における銅原子の重量はビニル系単量体の仕込み総重量に対して、5~50ppmが好ましく、5~15ppmがより好ましく、5~10ppmが特に好ましい。しかし、金属銅又は銅化合物(A)における銅原子の重量がビニル系単量体の仕込み総重量に対して5ppm未満の場合、分子量分布の狭い重合体を得るためには極めて長い時間をかけて重合を進める必要があるため好ましくない。If the amount of copper atoms can be reduced, it becomes easier to remove the copper atoms, and the amount of polyamine (B) will also decrease in accordance with the amount of transition metal (weight of copper atoms). Therefore, the weight of the copper atoms in metallic copper or copper compound (A) is preferably 5 to 50 ppm, more preferably 5 to 15 ppm, and particularly preferably 5 to 10 ppm, relative to the total weight of the vinyl monomers charged. However, if the weight of the copper atoms in metallic copper or copper compound (A) is less than 5 ppm relative to the total weight of the vinyl monomers charged, it is not preferable because it is necessary to carry out polymerization for an extremely long time in order to obtain a polymer with a narrow molecular weight distribution.

金属銅および銅化合物は固体であるため、金属銅又は銅化合物(A)は反応系に仕込むのが困難である。そこで予め、金属銅又は銅化合物(A)を溶媒およびポリアミン(B)と混合し、金属銅又は銅化合物(A)が溶解した溶液状態で反応系に仕込むことが好ましい。その点、金属銅又は銅化合物(A)における銅原子は、0価銅よりは1価銅および2価銅の方が、1価銅よりは2価銅の方が各種溶剤に溶解しやすくより好ましい。Since metallic copper and copper compounds are solids, it is difficult to charge metallic copper or copper compound (A) to the reaction system. Therefore, it is preferable to mix metallic copper or copper compound (A) with a solvent and polyamine (B) in advance and charge the reaction system in a solution state in which metallic copper or copper compound (A) is dissolved. In this respect, it is more preferable for the copper atom in metallic copper or copper compound (A) to be monovalent copper or divalent copper than zero-valent copper, and divalent copper than monovalent copper, because it is more easily dissolved in various solvents.

本明細書において「反応系」とは、リビングラジカル重合反応が進行している系を意図し、「重合系」と称する場合もある。「反応系」と「重合系」とは相互置換可能である。In this specification, the term "reaction system" refers to a system in which a living radical polymerization reaction is progressing, and may also be referred to as a "polymerization system." The terms "reaction system" and "polymerization system" are interchangeable.

<ポリアミン(B)>
本発明の一実施形態に係るポリアミン(B)とは、金属原子に配位可能な電子対を持つ窒素原子を2個以上有する化合物をいう。本発明の一実施形態に係るポリアミンは、例えば脂肪族アミンおよび芳香族アミンである。本発明の一実施形態に係るポリアミンは、例えばピリジン類ポリアミン、ピロール類ポリアミン、イミン類ポリアミンなど、窒素原子の電子対が共鳴する構造のものでもよい。
<Polyamine (B)>
The polyamine (B) according to one embodiment of the present invention refers to a compound having two or more nitrogen atoms with electron pairs that can be coordinated to metal atoms.The polyamine according to one embodiment of the present invention is, for example, an aliphatic amine or an aromatic amine.The polyamine according to one embodiment of the present invention may be, for example, a pyridine polyamine, a pyrrole polyamine, an imine polyamine, or the like, which has a structure in which the electron pairs of the nitrogen atoms resonate.

配位子として使用されるポリアミン(B)の具体例を以下に例示するが、ポリアミン(B)はこれらに限られるものではない。
二座配位のポリアミン:2,2-ビピリジン、4,4’-ジ-(5-ノニル)-2,2’-ビピリジン、N-(n-プロピル)ピリジルメタンイミン、N-(n-オクチル)ピリジルメタンイミン
三座配位のポリアミン:N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン、N-プロピル-N,N-ジ(2-ピリジルメチル)アミン
四座配位のポリアミン:ヘキサメチルトリス(2-アミノエチル)アミン、N,N-ビス(2-ジメチルアミノエチル)-N,N’-ジメチルエチレンジアミン、2,5,9,12-テトラメチル-2,5,9,12-テトラアザテトラデカン、2,6,9,13-テトラメチル-2,6,9,13-テトラアザテトラデカン、4,11-ジメチル-1,4,8,11-テトラアザビシクロヘキサデカン、N’,N’’-ジメチル-N’,N’’-ビス((ピリジン-2-イル)メチル)エタン-1,2-ジアミン、トリス[(2-ピリジル)メチル]アミン、2,5,8,12-テトラメチル-2,5,8,12-テトラアザテトラデカン
五座配位のポリアミン:N,N,N’,N’’,N’’’,N’’’’,N’’’’-ヘプタメチルテトラエチレンテトラミン
六座配位のポリアミン:N,N,N’,N’-テトラキス(2-ピリジルメチル)エチレンジアミン。
Specific examples of the polyamine (B) used as the ligand are shown below, but the polyamine (B) is not limited to these.
Bidentate polyamines: 2,2-bipyridine, 4,4'-di-(5-nonyl)-2,2'-bipyridine, N-(n-propyl)pyridylmethanimine, N-(n-octyl)pyridylmethanimine Tridentate polyamines: N,N,N',N'',N''-pentamethyldiethylenetriamine, N-propyl-N,N-di(2-pyridylmethyl)amine Tetradentate polyamines: hexamethyltris(2-aminoethyl)amine, N,N-bis(2-dimethylaminoethyl)-N,N'-dimethylethylenediamine, 2,5,9,12-tetramethyl-2,5,9,12-tetraazatetradecane, 2,6,9,1 3-tetramethyl-2,6,9,13-tetraazatetradecane, 4,11-dimethyl-1,4,8,11-tetraazabicyclohexadecane, N',N''-dimethyl-N',N''-bis((pyridin-2-yl)methyl)ethane-1,2-diamine, tris[(2-pyridyl)methyl]amine, 2,5,8,12-tetramethyl-2,5,8,12-tetraazatetradecane Pentadentate polyamine: N,N,N',N'',N''',N'''',N''''-heptamethyltetraethylenetetramine Hexadentate polyamine: N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine.

ポリアミン(B)としては、上述した以外のポリアミンとしてポリエチレンイミンなども挙げられる。 As polyamine (B), polyamines other than those mentioned above, such as polyethyleneimine, can be mentioned.

遷移金属原子の総重量がビニル系単量体の仕込み総重量に対して50ppm以下の低濃度触媒条件下で、十分な反応速度で重合を進行させ、分子量分布の狭い重合体を得るためには、一般式(1)あるいは一般式(4)で表されるポリアミン(B)が好ましい。In order to proceed with polymerization at a sufficient reaction rate and obtain a polymer with a narrow molecular weight distribution under low-concentration catalyst conditions in which the total weight of transition metal atoms is 50 ppm or less relative to the total weight of vinyl monomers charged, polyamine (B) represented by general formula (1) or general formula (4) is preferred.

Figure 0007516347000001
(式中、R、RおよびRは、それぞれ独立して、一般式(2)または一般式(3)を表す。
Figure 0007516347000001
(In the formula, R 1 , R 2 and R 3 each independently represent general formula (2) or general formula (3).

Figure 0007516347000002
(式中、R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~3のアルキル基を表す。)
Figure 0007516347000002
(In the formula, R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

Figure 0007516347000003
(式中、R、R、R10、R11およびR12は、それぞれ独立して、水素原子または炭素数1~3のアルキル基を表す。)
Figure 0007516347000003
(In the formula, R 8 , R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

Figure 0007516347000004
(nは0~3を表す。式中、R18、R19、R20およびR21は、それぞれ独立して、水素原子または炭素数1~3のアルキル基を表す。R13、R14、R15、R16およびR17は、それぞれ独立して、一般式(2)または一般式(3)を表す。)。
Figure 0007516347000004
(n represents 0 to 3. In the formula, R 18 , R 19 , R 20 and R 21 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 13 , R 14 , R 15 , R 16 and R 17 each independently represent general formula (2) or general formula (3).

これらポリアミン(B)は、単独で用いても良いし、複数種を組み合わせて使用しても構わない。These polyamines (B) may be used alone or in combination.

一般式(1)あるいは一般式(4)で表されるポリアミン以外のポリアミンでは長時間かけて重合したときには分子量分布の狭い重合体を得ることも可能だが、短時間で重合を進めたときには重合体の分子量分布が広がる。そのため、一般式(1)あるいは一般式(4)で表されるポリアミン以外のポリアミンよりも、一般式(1)あるいは一般式(4)で表されるポリアミンの方が好ましい。 With polyamines other than those represented by general formula (1) or general formula (4), it is possible to obtain a polymer with a narrow molecular weight distribution when polymerized over a long period of time, but when polymerization is carried out over a short period of time, the molecular weight distribution of the polymer becomes broad. Therefore, polyamines represented by general formula (1) or general formula (4) are preferred over polyamines other than those represented by general formula (1) or general formula (4).

数あるポリアミンの中でも特に一般式(1)および一般式(4)で示される特定のポリアミン(B)は工業的に入手が困難であるという制約がある。Among the many polyamines, the specific polyamine (B) represented by general formula (1) and general formula (4) has the limitation that it is difficult to obtain industrially.

ポリアミン(B)の使用量はビニル系単量体の総仕込み(100mol%)に対して、物質量にして70mmol%以下が好ましく、40mmol%以下がより好ましく、20mmol%以下がさらに好ましい。また、金属銅又は銅化合物(A)における銅原子の総量(100mol%)に対して150mol%以下が好ましく、120mol%以下がより好ましく、110mol%以下がさらに好ましく、100mol%以下が特に好ましい。The amount of polyamine (B) used is preferably 70 mmol% or less, more preferably 40 mmol% or less, and even more preferably 20 mmol% or less, based on the total amount of vinyl monomers (100 mol%). Also, the amount is preferably 150 mol% or less, more preferably 120 mol% or less, even more preferably 110 mol% or less, and particularly preferably 100 mol% or less, based on the total amount of copper atoms in metallic copper or copper compound (A) (100 mol%).

<ポリアミン以外の塩基(C)>
本発明の一実施形態におけるポリアミン以外の塩基(C)とは、上記ポリアミン(B)以外の塩基化合物をいう。ポリアミン以外の塩基(C)は重合系中に存在する酸あるいは発生する酸を中和し、酸の蓄積を防ぐためのものである。ポリアミン以外の塩基(C)は(a)ブレンステッドの塩基の定義に当てはまる、プロトンを受け入れる性質を持つ化合物、あるいは(b)ルイスの塩基の定義に当てはまる、非共有電子対を持っていてそれを授与することができ配位結合をつくる性質を有する化合物であれば良い。ポリアミン以外の塩基(C)の具体例を下に例示するが、ポリアミン以外の塩基(C)はそれらに限定されるものではない。ポリアミン以外の塩基(C)としては、以下に示すようなモノアミン系塩基、ポリアミン系塩基および無機塩基である塩基などが挙げられる。
<Base other than polyamine (C)>
In one embodiment of the present invention, the base other than polyamine (C) refers to a basic compound other than the polyamine (B). The base other than polyamine (C) neutralizes the acid present or generated in the polymerization system and prevents the accumulation of the acid. The base other than polyamine (C) may be (a) a compound that meets the definition of a Bronsted base and has the property of accepting a proton, or (b) a compound that meets the definition of a Lewis base and has an unshared electron pair and can donate it to form a coordinate bond. Specific examples of the base other than polyamine (C) are shown below, but the base other than polyamine (C) is not limited to them. Examples of the base other than polyamine (C) include monoamine bases, polyamine bases, and inorganic bases as shown below.

モノアミン系塩基:モノアミン系塩基は1分子中に上記で定義される塩基として作用する部位が1つしかない化合物を示し、以下に例示するがそれらに限定されるものではない。モノアミン系塩基としては、(a)メチルアミン、アニリン、リシン等の一級アミン、(b)ジメチルアミン、ピペリジン等の二級アミン、(c)トリメチルアミン、トリエチルアミン等の三級アミン、(d)ピリジン、ピロール等の芳香族系、および(e)アンモニアが挙げられる。Monoamine base: A monoamine base is a compound that has only one site per molecule that acts as a base as defined above, and includes, but is not limited to, the following examples: (a) primary amines such as methylamine, aniline, and lysine; (b) secondary amines such as dimethylamine and piperidine; (c) tertiary amines such as trimethylamine and triethylamine; (d) aromatics such as pyridine and pyrrole; and (e) ammonia.

ポリアミン系塩基:ポリアミン系塩基としては、(a)エチレンジアミン、テトラメチルエチレンジアミン等のジアミン、(b)ジエチレントリアミン、ペンタメチルジエチレントリアミン等のトリアミン、(c)トリエチレンテトラミン、ヘキサメチルトリエチレンテトラミン、ヘキサメチレンテトラミン等のテトラミン、(d)ポリエチレンイミン、等が挙げられる。Polyamine bases: Examples of polyamine bases include (a) diamines such as ethylenediamine and tetramethylethylenediamine, (b) triamines such as diethylenetriamine and pentamethyldiethylenetriamine, (c) tetramines such as triethylenetetramine, hexamethyltriethylenetetramine, and hexamethylenetetramine, (d) polyethyleneimines, etc.

無機塩基である塩基:無機塩基である塩基は周期表の一族および二族の単体あるいは化合物を示し、下記に例示するがそれに限定されるものではない。無機塩基である塩基としては、(a)リチウム、ナトリウム、カルシウム等の周期表の一族および二族の単体、(b)ナトリウムメトキシド、カリウムエトキシド、メチルリチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸三カリウム、リン酸水素二カリウム、酢酸ナトリウム、酢酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、フェノキシナトリウム、フェノキシカリウム、アスコルビン酸ナトリウム、アスコルビン酸カリウム等の周期表の一族および二族の化合物、(c)水酸化アンモニウムなどの、弱酸と強塩基との塩、などが挙げられる。 Inorganic bases: Inorganic bases refer to elements or compounds of Groups 1 and 2 of the periodic table, and are exemplified below but are not limited thereto. Examples of inorganic bases include (a) elements of Groups 1 and 2 of the periodic table, such as lithium, sodium, and calcium, (b) compounds of Groups 1 and 2 of the periodic table, such as sodium methoxide, potassium ethoxide, methyllithium, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonium bicarbonate, trisodium phosphate, disodium hydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate, sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, sodium phenoxy, potassium phenoxy, sodium ascorbate, and potassium ascorbate, and (c) salts of weak acids and strong bases, such as ammonium hydroxide.

これらポリアミン以外の塩基(C)は、単独で用いても良いし、複数種を組み合わせて使用しても構わない。These bases (C) other than polyamines may be used alone or in combination of multiple types.

また、ポリアミン以外の塩基(C)は、直接反応系に添加してもよいし、反応系中で発生させてもよい。 In addition, a base (C) other than a polyamine may be added directly to the reaction system or may be generated in the reaction system.

ポリアミン以外の塩基(C)はポリアミン(B)を酸から保護するために用いられているため、ポリアミン以外の塩基(C)の塩基性はポリアミン(B)と同程度、あるいはより強い方が好ましい。言い換えるならばポリアミン以外の塩基(C)の塩基解離定数(pKb)はポリアミン(B)のpKb以下であることが好ましい。Since the base other than polyamine (C) is used to protect the polyamine (B) from the acid, it is preferable that the basicity of the base other than polyamine (C) is equal to or stronger than that of the polyamine (B). In other words, it is preferable that the base dissociation constant (pKb) of the base other than polyamine (C) is equal to or lower than the pKb of the polyamine (B).

ポリアミン以外の塩基(C)は反応開始前に全量を一括で反応系に仕込んでも良いし、反応中に徐々に反応系に追加していっても良い。ただし、添加された還元剤(D)により移動する電子に対して常に100mol%以上であることが好ましい。The base (C) other than the polyamine may be added to the reaction system in its entirety at once before the start of the reaction, or may be added gradually during the reaction. However, it is preferable that the amount of the base (C) is always 100 mol % or more relative to the electrons transferred by the added reducing agent (D).

金属銅または銅化合物に対してポリアミン(B)およびポリアミン以外の塩基(C)を加える順番については特に限定されない。There is no particular limitation on the order in which the polyamine (B) and the base other than the polyamine (C) are added to the metallic copper or copper compound.

金属銅又は銅化合物(A)に対してポリアミン以外の塩基(C)および還元剤(D)を加える順番については特に限定されない。還元剤(D)として水素化物還元剤を用いる場合、還元剤(D)、そしてポリアミン以外の塩基(C)の順で遷移金属原子と混合させたときには、重合速度が低下し重合体の分子量分布が広がる。そのため、還元剤(D)として水素化物還元剤を用いる場合、ポリアミン以外の塩基(C)、そして還元剤(D)の順、あるいは同時に遷移金属原子(例えば金属銅又は銅化合物(A))と混合させることが好ましい。これは、還元剤(D)として水素化物還元剤を用いる場合、還元剤(D)が遷移金属原子(例えば金属銅又は銅化合物(A))を還元させたときにハロゲン化水素を発生させ、ポリアミン(B)がアンモニウム塩化されるためと推測する。本発明の一実施形態はかかる推測に限定されない。一方、還元剤(D)として水素化物還元剤以外の塩基を用いる場合には、還元剤(D)が遷移金属原子を還元させたときに酸が発生しないため、金属銅又は銅化合物(A)に対してポリアミン以外の塩基(C)および還元剤(D)を加える順序は制限されない。ただし、ここで言う「同時」とはおおよそ同じタイミングで混合させることを示しており、厳密なものではない。There is no particular restriction on the order in which the base other than polyamine (C) and the reducing agent (D) are added to metallic copper or copper compound (A). When a hydride reducing agent is used as the reducing agent (D), the polymerization rate decreases and the molecular weight distribution of the polymer widens when the reducing agent (D) and the base other than polyamine (C) are mixed with the transition metal atom in this order. Therefore, when a hydride reducing agent is used as the reducing agent (D), it is preferable to mix the base other than polyamine (C) and the reducing agent (D) in this order, or simultaneously with the transition metal atom (e.g., metallic copper or copper compound (A)). This is presumably because, when a hydride reducing agent is used as the reducing agent (D), hydrogen halide is generated when the reducing agent (D) reduces the transition metal atom (e.g., metallic copper or copper compound (A)), and the polyamine (B) becomes an ammonium salt. One embodiment of the present invention is not limited to such a presumption. On the other hand, when a base other than a hydride reducing agent is used as the reducing agent (D), since no acid is generated when the reducing agent (D) reduces the transition metal atom, the order of adding the base (C) other than a polyamine and the reducing agent (D) to the metallic copper or copper compound (A) is not limited. However, the term "simultaneous" as used herein means that they are mixed at approximately the same timing, and is not strictly defined.

ポリアミン以外の塩基(C)の溶解性に依存して、ポリアミン以外の塩基(C)の効果が低減する。そのため、ポリアミン以外の塩基(C)として重合溶媒に溶解しにくい塩基を用いる場合は、予めポリアミン以外の塩基(C)を良溶媒で溶解させて、ポリアミン以外の塩基(C)を溶液で反応系に添加することが好ましい。なお、ここでいう「良溶媒」とは、ポリアミン以外の塩基(C)の溶解性に優れる溶媒を意図する。Depending on the solubility of the base other than polyamine (C), the effect of the base other than polyamine (C) is reduced. Therefore, when using a base that is poorly soluble in the polymerization solvent as the base other than polyamine (C), it is preferable to dissolve the base other than polyamine (C) in a good solvent in advance and add the base other than polyamine (C) in the form of a solution to the reaction system. Note that the "good solvent" here refers to a solvent that has excellent solubility for the base other than polyamine (C).

ポリアミン以外の塩基(C)の量について、ポリアミン(B)を保護するために、ポリアミン(B)に対して過剰量添加されていることが好ましい。また還元剤(D)に水素化物還元剤を用いた場合、添加された還元剤(D)が遷移金属原子(例えば金属銅又は銅化合物(A))を還元させたときにハロゲン化水素を発生させる。そのため、ポリアミン以外の塩基(C)の量は、還元剤(D)により移動する電子に対して、常に100mol%以上のポリアミン以外の塩基(C)の量が好ましく、150mol%以上がより好ましく、200mol%以上がよりに好ましく、300mol%以上がさらに好ましい。ポリアミン以外の塩基(C)にモノアミン、あるいは無機塩基を用いた場合には、真空脱揮、あるいは油水分離による抽出が可能であるため、ポリアミン以外の塩基(C)を過剰に使用することに制限がなくなる。Regarding the amount of base (C) other than polyamine, it is preferable that it is added in an excess amount relative to polyamine (B) in order to protect polyamine (B). In addition, when a hydride reducing agent is used as reducing agent (D), hydrogen halide is generated when the added reducing agent (D) reduces a transition metal atom (e.g., metallic copper or copper compound (A)). Therefore, the amount of base (C) other than polyamine is preferably always 100 mol% or more of base (C) other than polyamine relative to the electrons transferred by reducing agent (D), more preferably 150 mol% or more, more preferably 200 mol% or more, and even more preferably 300 mol% or more. When a monoamine or inorganic base is used as base (C) other than polyamine, extraction by vacuum devolatilization or oil-water separation is possible, so there is no restriction on using an excess amount of base (C) other than polyamine.

<還元剤(D)>
金属銅又は銅化合物(A)とポリアミン(B)とからなる銅錯体を触媒とするリビングラジカル重合において、還元剤を併用することで、過剰な配位子(例えばポリアミン(B))が必要となるものの、活性が向上することが見出されている(ARGET ATRP)。このARGET ATRPは重合中にラジカル同士のカップリング等で生じた、反応遅延および反応停止の原因となる高酸化銅錯体を還元剤により還元して減少させることで活性が向上すると考えられている。このARGET ATRPは、通常数百~数千ppm必要な銅錯体を数十~数百ppmまで減らすことを可能にしている。本発明の一実施形態においても還元剤(D)はARGET ATRPと同様の働きをしている。
<Reducing Agent (D)>
In living radical polymerization catalyzed by a copper complex consisting of metallic copper or a copper compound (A) and a polyamine (B), it has been found that the activity is improved by using a reducing agent in combination, although an excess of ligand (e.g., polyamine (B)) is required (ARGET ATRP). It is believed that this ARGET ATRP improves activity by reducing and reducing the high-oxidized copper complex that is generated by coupling between radicals during polymerization and causes reaction delay and reaction termination. This ARGET ATRP makes it possible to reduce the copper complex, which is usually required in the amount of several hundred to several thousand ppm, to several tens to several hundred ppm. In one embodiment of the present invention, the reducing agent (D) also functions in the same way as ARGET ATRP.

本発明の一実施形態で用いる還元剤(D)の具体例を以下に例示するが、還元剤(D)はこれらの還元剤に限定されるものではない。還元剤(D)としては、(a)銅錯体を還元するときに酸を発生させない還元剤、および(b)銅錯体を還元する際に酸を発生させる還元剤(水素化物還元剤)が挙げられる。 Specific examples of the reducing agent (D) used in one embodiment of the present invention are given below, but the reducing agent (D) is not limited to these reducing agents. Examples of the reducing agent (D) include (a) a reducing agent that does not generate an acid when reducing a copper complex, and (b) a reducing agent (hydride reducing agent) that generates an acid when reducing a copper complex.

(銅錯体を還元するときに酸を発生させない還元剤)
銅錯体を還元するときに酸を発生させない還元剤としては、以下に例示するような金属、金属化合物、有機スズ化合物、リン又はリン化合物および硫黄又は硫黄化合物、等が挙げられる。
(Reducing agent that does not generate acid when reducing copper complex)
Examples of reducing agents that do not generate an acid when reducing a copper complex include metals, metal compounds, organotin compounds, phosphorus or phosphorus compounds, and sulfur or sulfur compounds, as exemplified below.

金属の具体例としては、(a)リチウム、ナトリウム、カリウム等のアルカリ金属類;(b)ベリリウム、マグネシウム、カルシウム、バリウム等のアルカリ土類金属類;(c)アルミニウム;(d)亜鉛等の典型金属;(e)銅、ニッケル、ルテニウム、鉄等の遷移金属;等が挙げられる。またこれらの金属は水銀との合金(アマルガム)の状態であってもよい。Specific examples of metals include: (a) alkali metals such as lithium, sodium, and potassium; (b) alkaline earth metals such as beryllium, magnesium, calcium, and barium; (c) aluminum; (d) typical metals such as zinc; (e) transition metals such as copper, nickel, ruthenium, and iron; etc. These metals may also be in the form of an alloy (amalgam) with mercury.

金属化合物としては、(a)典型金属又は遷移金属の塩、および典型元素との塩、さらに(b)典型金属又は遷移金属に、一酸化炭素、オレフィン、含窒素化合物、含酸素化合物、含リン化合物、含硫黄化合物等が配位した錯体等が挙げられる。金属化合物として具体的には、(a)金属とアンモニア/アミンとの化合物、三塩化チタン、チタンアルコキシド、塩化クロム、硫酸クロム、酢酸クロム、塩化スズ、酢酸亜鉛、水酸化亜鉛、(b)Ni(CO)、CoCO等のカルボニル錯体、(c)[Ni(cod)]、[RuCl(cod)]、[PtCl(cod)]等のオレフィン錯体(ただしcodはシクロオクタジエンを表す)および(d)[RhCl(P(C]、[RuCl(P(C]、[PtCl(P(C]等のホスフィン錯体等が挙げられる。 Examples of the metal compound include (a) salts of typical metals or transition metals, and salts with typical elements, and (b) complexes in which a typical metal or transition metal is coordinated with carbon monoxide, an olefin, a nitrogen-containing compound, an oxygen-containing compound, a phosphorus-containing compound, a sulfur-containing compound, or the like. Specific examples of metal compounds include: (a) compounds of metals and ammonia/amines, titanium trichloride, titanium alkoxides, chromium chloride, chromium sulfate, chromium acetate, tin chloride, zinc acetate, and zinc hydroxide ; (b) carbonyl complexes such as Ni(CO) 4 and Co2CO8 ; (c) olefin complexes such as [Ni(cod) 2 ], [ RuCl2 (cod)], and [ PtCl2 (cod)] (wherein cod represents cyclooctadiene); and (d) phosphine complexes such as [RhCl(P( C6H5 ) 3 ) 3 ], [ RuCl2 (P( C6H5 ) 3 ) 2 ], and [ PtCl2 (P( C6H5 ) 3 ) 2 ].

有機スズ化合物の具体例としては、オクチル酸スズ、2-エチルヘキシル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズメルカプチド、ジブチルスズチオカルボキシレート、ジブチルスズジマレエート、ジオクチルスズチオカルボキシレート等が挙げられる。 Specific examples of organotin compounds include tin octoate, tin 2-ethylhexylate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin dimaleate, and dioctyltin thiocarboxylate.

リン又はリン化合物として具体的には、リン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、ヘキサメチルホスフォラストリアミド、ヘキサエチルホスフォラストリアミド等が挙げられる。 Specific examples of phosphorus or phosphorus compounds include phosphorus, trimethylphosphine, triethylphosphine, triphenylphosphine, trimethylphosphite, triethylphosphite, triphenylphosphine, hexamethylphosphorus triamide, hexaethylphosphorus triamide, etc.

硫黄又は硫黄化合物として具体的には、硫黄、ロンガリット類、ハイドロサルファイト類、二酸化チオ尿素等が挙げられる。ロンガリットとは、スルホキシル酸塩のホルムアルデヒド誘導体であり、MSO・CHO(MはNa又はZnを示す)で表される。ロンガリットとして具体的には、ソジウムホルムアルデヒドスルホキシレート、亜鉛ホルムアルデヒドスルホキシレート等が挙げられる。ハイドロサルファイトとは、次亜硫酸ナトリウム及び次亜硫酸ナトリウムのホルムアルデヒド誘導体の総称である。 Specific examples of sulfur or sulfur compounds include sulfur, Rongalites, hydrosulfites, and thiourea dioxide. Rongalite is a formaldehyde derivative of a sulfoxylate salt, and is represented by MSO2.CH2O (M represents Na or Zn). Specific examples of Rongalite include sodium formaldehyde sulfoxylate and zinc formaldehyde sulfoxylate. Hydrosulfite is a general term for sodium hyposulfite and formaldehyde derivatives of sodium hyposulfite.

(銅錯体を還元するときに酸を発生させる還元剤(水素化物還元剤))
銅錯体を還元するときに酸を発生させなる還元剤(水素化物還元剤)としては、以下に例示するような金属水素化物、ケイ素水素化物、ホウ素水素化物、窒素水素化合物、リン又はリン化合物、硫黄又は硫黄化合物、還元作用を示す有機化合物、および水素、等が挙げられる。
金属水素化物として具体例としては、(a)水素化ナトリウム;(b)水素化ゲルマニウム;(c)水素化タングステン;(d)水素化ジイソブチルアルミニウム、水素化アルミニウムリチウム、水素アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等のアルミニウム水素化物;(e)水素化トリフェニルスズ、水素化トリ-n-ブチルスズ、水素化ジフェニルスズ、水素化ジ-n-ブチルスズ、水素化トリエチルスズ、水素化トリメチルスズ等の有機スズ水素化物;等が挙げられる。
ケイ素水素化物として具体例としては、トリクロロシラン、トリメチルシラン、トリエチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシロキサン等が挙げられる。
ホウ素水素化物として具体的には、ボラン、ジボラン、水素化ホウ素ナトリウム、水素化トリメトキシホウ酸ナトリウム、硫化水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、シアン化水素化ホウ素リチウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-s-ブチルホウ素リチウム、水素化トリ-t-ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラ-n-ブチルアンモニウム等が挙げられる。
窒素水素化合物として具体的には、ヒドラジン、ジイミド等が挙げられる。
リン又はリン化合物として具体的には、ホスフィン、ジアザホスホレン等が挙げられる。
硫黄又は硫黄化合物として具体的には硫化水素等が挙げられる。
還元作用を示す有機化合物として具体的には、アルコール、アルデヒド、フェノール類及び有機酸化合物等が挙げられる。アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール等が挙げられる。アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ギ酸等が挙げられる。フェノール類としては、フェノール、ハイドロキノン、ジブチルヒドロキシトルエン、トコフェロール等が挙げられる。有機酸化合物としては、クエン酸、シュウ酸、アスコルビン酸、アスコルビン酸塩、アスコルビン酸エステル等が挙げられる。
(Reducing agent (hydride reducing agent) that generates acid when reducing copper complex)
Examples of reducing agents (hydride reducing agents) that generate an acid when reducing a copper complex include metal hydrides, silicon hydrides, boron hydrides, nitrogen hydrogen compounds, phosphorus or phosphorus compounds, sulfur or sulfur compounds, organic compounds exhibiting a reducing action, and hydrogen, as exemplified below.
Specific examples of metal hydrides include (a) sodium hydride; (b) germanium hydride; (c) tungsten hydride; (d) aluminum hydrides such as diisobutylaluminum hydride, lithium aluminum hydride, sodium aluminum hydride, sodium triethoxyaluminum hydride, and sodium bis(2-methoxyethoxy)aluminum hydride; and (e) organotin hydrides such as triphenyltin hydride, tri-n-butyltin hydride, diphenyltin hydride, di-n-butyltin hydride, triethyltin hydride, and trimethyltin hydride.
Specific examples of silicon hydrides include trichlorosilane, trimethylsilane, triethylsilane, diphenylsilane, phenylsilane, and polymethylhydrosiloxane.
Specific examples of boron hydrides include borane, diborane, sodium borohydride, sodium trimethoxyborohydride, sodium borohydride sulfide, sodium cyanide borohydride, lithium cyanide borohydride, lithium borohydride, lithium triethylborohydride, lithium tri-s-butylborohydride, lithium tri-t-butylborohydride, calcium borohydride, potassium borohydride, zinc borohydride, tetra-n-butylammonium borohydride, and the like.
Specific examples of the nitrogen-hydrogen compound include hydrazine and diimide.
Specific examples of phosphorus or phosphorus compounds include phosphine and diazaphospholene.
Specific examples of sulfur or sulfur compounds include hydrogen sulfide.
Specific examples of organic compounds exhibiting a reducing action include alcohols, aldehydes, phenols, and organic acid compounds. Examples of alcohols include methanol, ethanol, propanol, and isopropanol. Examples of aldehydes include formaldehyde, acetaldehyde, benzaldehyde, and formic acid. Examples of phenols include phenol, hydroquinone, dibutylhydroxytoluene, and tocopherol. Examples of organic acid compounds include citric acid, oxalic acid, ascorbic acid, ascorbate, and ascorbate ester.

中でも、銅錯体を還元したときに酸を発生させる水素化物還元剤は、ポリアミン以外の塩基(C)を併用しない場合、重合速度の低下と重合制御の悪化による分子量分布の広がりを招くため、ポリアミン以外の塩基(C)の併用がより効果的である。これは発生した酸が遷移金属錯体を形成するポリアミン(B)をアンモニウム塩化させ、錯体構造を崩すためと推測する。本発明の一実施形態はかかる推測に限定されない。Among them, hydride reducing agents that generate acid when copper complexes are reduced lead to a decrease in polymerization rate and a widening of the molecular weight distribution due to deterioration of polymerization control when a base other than polyamine (C) is not used in combination, so it is more effective to use a base other than polyamine (C) in combination. This is presumably because the generated acid converts the polyamine (B) that forms the transition metal complex into an ammonium salt, destroying the complex structure. One embodiment of the present invention is not limited to such a presumption.

還元剤(D)の還元力が強いほど重合も速く進めることが可能になる。上述した化合物の中でも金属、有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物は還元力が強く、還元剤(D)としてより好ましい。それ故、還元剤(D)は、有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物からなる群から選ばれる少なくとも1種の還元剤であることが好ましい。The stronger the reducing power of the reducing agent (D), the faster the polymerization can proceed. Among the above-mentioned compounds, metals, organotin compounds, ascorbic acid, ascorbic acid esters, ascorbate salts, hydrazine, and boron hydrides have strong reducing power and are more preferable as the reducing agent (D). Therefore, the reducing agent (D) is preferably at least one reducing agent selected from the group consisting of organotin compounds, ascorbic acid, ascorbic acid esters, ascorbate salts, hydrazine, and boron hydrides.

また、工業化を考えると重合後、還元剤(D)も重合体から取り除かれることが好ましい。そのため、還元剤(D)としては、(a)酸化物が揮発除去しやすいヒドラジン、シュウ酸等、並びに(b)油水分離によって除去しやすい水素化ナトリウム、水素化ホウ素ナトリウム、ヒドラジン、クエン酸、シュウ酸、アスコルビン酸、アスコルビン酸塩、およびアスコルビン酸エステル等、が好ましい。In addition, from the viewpoint of industrialization, it is preferable that the reducing agent (D) is also removed from the polymer after polymerization. Therefore, the reducing agent (D) preferably includes (a) hydrazine, oxalic acid, etc., whose oxides are easily removed by volatilization, and (b) sodium hydride, sodium borohydride, hydrazine, citric acid, oxalic acid, ascorbic acid, ascorbate salts, ascorbate esters, etc., whose oxides are easily removed by oil-water separation.

よって、還元剤(D)としては、アスコルビン酸、アスコルビン酸塩、アスコルビン酸エステル、およびヒドラジンがより好ましく、中でもアスコルビン酸、アスコルビン酸塩、およびアスコルビン酸エステルが特に好ましい。Therefore, as the reducing agent (D), ascorbic acid, ascorbate salts, ascorbate esters, and hydrazine are more preferred, and among these, ascorbic acid, ascorbate salts, and ascorbate esters are particularly preferred.

これら還元剤(D)は単独で用いてもよいし、2種以上を組み合わせて使用してもかまわない。These reducing agents (D) may be used alone or in combination of two or more.

また、還元剤(D)は、直接反応系に添加してもよいし、反応系中で発生させてもよい。後者には、電解還元も含まれる。電解還元では陰極で生じた電子が直ちに、あるいは一度溶媒和した後、還元作用を示すことが知られている。つまり、還元剤(D)が電気分解により生じるものも用いることができる。The reducing agent (D) may be added directly to the reaction system, or may be generated within the reaction system. The latter includes electrolytic reduction. In electrolytic reduction, it is known that the electrons generated at the cathode exhibit a reducing effect immediately, or after being solvated once. In other words, a reducing agent (D) generated by electrolysis can also be used.

還元剤(D)の添加量が少なすぎる場合は十分な重合活性が期待できない点で好ましくなく、多すぎる場合には得られた重合体から還元剤(D)の除去が困難になる点で好ましくない。即ち、還元剤(D)の添加量は、ビニル系単量体の仕込み総量に対して10~100000ppmが好ましく、10~10000ppmがより好ましく、10~1000ppmが更に好ましく、10~500ppmが特に好ましい。If the amount of reducing agent (D) added is too small, sufficient polymerization activity cannot be expected, which is undesirable, and if the amount is too large, it is undesirable because it becomes difficult to remove the reducing agent (D) from the obtained polymer. That is, the amount of reducing agent (D) added is preferably 10 to 100,000 ppm, more preferably 10 to 10,000 ppm, even more preferably 10 to 1,000 ppm, and particularly preferably 10 to 500 ppm, relative to the total amount of vinyl monomer charged.

また、還元剤(D)が常温で固体である場合、還元剤(D)を良溶媒に溶解させた溶液として反応系に添加した方がより効果を発揮できるために好ましい。なお、ここでいう「良溶媒」とは、還元剤(D)の溶解性に優れる溶媒を意図する。In addition, when the reducing agent (D) is a solid at room temperature, it is preferable to add the reducing agent (D) to the reaction system as a solution in a good solvent, since this is more effective. Note that the term "good solvent" here refers to a solvent that has excellent solubility for the reducing agent (D).

ARGET ATRPの機構からわかるように、還元剤(D)を一度に過剰量添加するとラジカルを制御するための2価銅錯体が不足し、カップリング等によって分子量分布が広がる。そのため、還元剤(D)は重合の進行に伴い少量ずつ添加すること、具体的には銅錯体(100mol%)に対して、1~1000mol%/時間で添加することが好ましく、5~700mol%/時間で添加することがより好ましく、10~500mol%/時間で添加するのが特に好ましい。As can be seen from the mechanism of ARGET ATRP, if an excessive amount of reducing agent (D) is added at once, there will be a shortage of divalent copper complex to control the radicals, and the molecular weight distribution will widen due to coupling, etc. Therefore, the reducing agent (D) is added little by little as the polymerization progresses, specifically, it is preferably added at 1 to 1000 mol%/hour relative to the copper complex (100 mol%), more preferably at 5 to 700 mol%/hour, and particularly preferably at 10 to 500 mol%/hour.

銅錯体に対してポリアミン以外の塩基(C)および還元剤(D)を加える順番については特に限定されない。還元剤(D)として水素化物還元剤を用いる場合、還元剤(D)、そしてポリアミン以外の塩基(C)の順で銅原子と混合させたときには、重合速度が低下し重合体の分子量分布が広がるため、ポリアミン以外の塩基(C)、そして還元剤(D)の順、あるいは同時に銅錯体と混合させることが好ましい。これは、還元剤(D)として水素化物還元剤を用いる場合、還元剤(D)が銅原子を還元させたときにハロゲン化水素を発生させ、ポリアミン(B)がアンモニウム塩化されるためと推測する。本発明の一実施形態はかかる推測に限定されない。一方、還元剤(D)として水素化物還元剤以外の塩基を用いる場合には、還元剤(D)が銅原子を還元させたときに酸が発生しないため、銅錯体に対してポリアミン以外の塩基(C)および還元剤(D)を加える順序は制限されない。ただし、ここで言う「同時」とはおおよそ同じタイミングで混合させることを示しており、厳密なものではない。特に還元剤(D)にアスコルビン酸を用いる場合には、予めポリアミン以外の塩基(C)と還元剤(D)とを混合することにより、還元剤(D)およびポリアミン以外の塩基(C)の有機溶媒への溶解性が向上し、操作性が向上する。そのため、特に還元剤(D)にアスコルビン酸を用いる場合には、ポリアミン以外の塩基(C)および還元剤(D)を同時に反応系に添加させることが好ましい。There is no particular restriction on the order in which the base (C) other than polyamines and the reducing agent (D) are added to the copper complex. When a hydride reducing agent is used as the reducing agent (D), the polymerization rate decreases and the molecular weight distribution of the polymer widens when the reducing agent (D) and the base (C) other than polyamines are mixed with the copper complex, so it is preferable to mix the base (C) other than polyamines and the reducing agent (D) in that order, or simultaneously. This is presumed to be because, when a hydride reducing agent is used as the reducing agent (D), hydrogen halide is generated when the reducing agent (D) reduces the copper atom, and the polyamine (B) becomes an ammonium salt. One embodiment of the present invention is not limited to such a presumption. On the other hand, when a base other than a hydride reducing agent is used as the reducing agent (D), an acid is not generated when the reducing agent (D) reduces the copper atom, so the order in which the base (C) other than polyamines and the reducing agent (D) are added to the copper complex is not limited. However, the term "simultaneous" here refers to mixing at approximately the same timing, and is not strict. In particular, when ascorbic acid is used as the reducing agent (D), the solubility of the reducing agent (D) and the base other than polyamine (C) in the organic solvent is improved by mixing the reducing agent (D) with the base other than polyamine (C) in advance, and the operability is improved. Therefore, in particular, when ascorbic acid is used as the reducing agent (D), it is preferable to add the base other than polyamine (C) and the reducing agent (D) to the reaction system at the same time.

<高酸化の銅以外の金属化合物(E)>
本発明の一実施形態における「高酸化の銅以外の金属化合物(E)」とは、以下の2つの条件を共に満たす金属化合物をいう。
<Highly oxidized metal compounds other than copper (E)>
In one embodiment of the present invention, the "highly oxidized metal compound other than copper (E)" refers to a metal compound that satisfies both of the following two conditions.

(ア)複数の酸化数を持つことができる銅以外の金属原子を含んでいる
(イ)上記の銅以外の金属原子の酸化数は、高い方の値になっている。
(a) It contains metal atoms other than copper, which can have multiple oxidation numbers. (b) The oxidation numbers of the metal atoms other than copper mentioned above are on the higher side.

高酸化の銅以外の金属化合物(E)の金属種としては、常温常圧において複数の酸化状態を有する金属で高い酸化数を示すものであれば特に限定されない。例えばFeの場合は、常温常圧でFe(II)とFe(III)の酸化状態を取り得ることが知られているため、高酸化のFe(III)が高酸化の銅以外の金属化合物(E)に該当する。同様に、Zn(IV),Mn(IV),Sn(VI),Cr(II),Co(III),Rh(II),Ru(III),Sc(III),Te(III),Bi(III),Sb(III)等の高酸化の遷移金属なども高酸化の銅以外の金属化合物(E)の金属種として挙げられる。高酸化の銅以外の金属化合物(E)としては、これら金属種の金属化合物、例えば塩化物、臭化物、ヨウ素化物、シアン化物、酸化物、水酸化物、酢酸化物、硫酸化物、硝酸化物等が例として挙げられるが、それらに限定されたものではない。高酸化の銅以外の金属化合物(E)としては、上述した中でも、三価の鉄化合物であることが好ましく、塩化鉄(III)、臭化鉄(III)、ヨウ化鉄(III)および三酸化二鉄(Fe)(III)からなる群から選択される1種以上であることがより好ましい。当該構成によると、誘導期を短くする効果が高いという利点を有する。 The metal species of the highly oxidized non-copper metal compound (E) is not particularly limited as long as it is a metal that has multiple oxidation states at room temperature and normal pressure and shows a high oxidation number. For example, in the case of Fe, it is known that it can take the oxidation states of Fe(II) and Fe(III) at room temperature and normal pressure, so that highly oxidized Fe(III) corresponds to the highly oxidized non-copper metal compound (E). Similarly, highly oxidized transition metals such as Zn(IV), Mn(IV), Sn(VI), Cr(II), Co(III), Rh(II), Ru(III), Sc(III), Te(III), Bi(III), and Sb(III) can also be listed as the metal species of the highly oxidized non-copper metal compound (E). Examples of the metal compound (E) other than the highly oxidized copper include, but are not limited to, metal compounds of these metal species, such as chlorides, bromides, iodides, cyanides, oxides, hydroxides, acetates, sulfates, and nitrates. As the metal compound (E) other than the highly oxidized copper, among the above, a trivalent iron compound is preferable, and one or more selected from the group consisting of iron chloride (III), iron bromide (III), iron iodide (III), and iron trioxide (Fe 2 O 3 ) (III) are more preferable. This configuration has the advantage of being highly effective in shortening the induction period.

高酸化の銅以外の金属化合物(E)の量は、金属銅又は銅化合物(A)/高酸化の銅以外の金属化合物(E)のモル比が、0.9/0.1~0.2/0.8となることが好ましい。当該構成によると、誘導期を短縮する効果を持ちながら、狭い分子量分布を有する重合体が得られるという利点を有する。The amount of metal compound (E) other than highly oxidized copper is preferably such that the molar ratio of metallic copper or copper compound (A)/metal compound (E) other than highly oxidized copper is 0.9/0.1 to 0.2/0.8. This configuration has the advantage of being able to obtain a polymer with a narrow molecular weight distribution while having the effect of shortening the induction period.

高酸化の銅以外の金属化合物(E)は固体であるため、反応系に仕込むのが困難である。そこで、予め高酸化の銅以外の金属化合物(E)を溶媒と混合し、高酸化の銅以外の金属化合物(E)が溶解した溶液状態で反応系に仕込むことが好ましい。Since the highly oxidized metal compound other than copper (E) is a solid, it is difficult to add it to the reaction system. Therefore, it is preferable to mix the highly oxidized metal compound other than copper (E) with a solvent in advance and add it to the reaction system in the form of a solution in which the highly oxidized metal compound other than copper (E) is dissolved.

高酸化の銅以外の金属化合物(E)の重量(使用量)は、金属銅又は銅化合物(A)とある一定のモル比の範囲内に収まることが好ましい。高酸化の銅以外の金属化合物(E)の量を減量できれば高酸化の銅以外の金属化合物(E)を除くことが容易になる。そのため、高酸化の銅以外の金属化合物(E)の重量(使用量)は、ビニル系単量体の仕込み総重量に対して、1~200ppmが好ましく、1~100ppmがより好ましく、1~40ppmが特に好ましい。It is preferable that the weight (amount used) of the metal compound (E) other than highly oxidized copper is within a certain molar ratio range with metallic copper or copper compound (A). If the amount of the metal compound (E) other than highly oxidized copper can be reduced, it becomes easier to remove the metal compound (E) other than highly oxidized copper. Therefore, the weight (amount used) of the metal compound (E) other than highly oxidized copper is preferably 1 to 200 ppm, more preferably 1 to 100 ppm, and particularly preferably 1 to 40 ppm, relative to the total weight of the vinyl monomer charged.

高酸化の銅以外の金属化合物(E)の重量(使用量)は、高酸化の銅以外の金属化合物(E)中の金属原子の重量に換算して、ビニル系単量体の仕込み総重量に対して、1~200ppmが好ましく、1~100ppmがより好ましく、1~40ppmが特に好ましい。The weight (amount used) of the metal compound (E) other than highly oxidized copper is preferably 1 to 200 ppm, more preferably 1 to 100 ppm, and particularly preferably 1 to 40 ppm, based on the total weight of the vinyl monomer charged, converted into the weight of the metal atoms in the metal compound (E) other than highly oxidized copper.

高酸化の銅以外の金属化合物(E)は、還元剤(D)と反応し低酸化の銅以外の金属化合物を生成する。この低酸化の銅以外の金属化合物が、(a)金属銅又は銅化合物(A)およびポリアミン(B)からなる銅錯体を還元するか、または(b)開始剤と直接反応しラジカルを生成するために、当該銅錯体と還元剤(D)との反応で生じる誘導期を短縮していると推測する。そのため、金属銅又は銅化合物(A)、ポリアミン(B)および高酸化の銅以外の金属化合物(E)を反応系に加えた後に、還元剤(D)を反応系に添加することが望ましい。換言すれば、金属銅又は銅化合物(A)とポリアミン(B)と高酸化の銅以外の金属化合物(E)とを混合した後、還元剤(D)を添加することが好ましい。なお、本発明の一実施形態はかかる推測に限定されない。The highly oxidized metal compound (E) other than copper reacts with the reducing agent (D) to generate a low-oxidized metal compound other than copper. It is presumed that this low-oxidized metal compound other than copper (a) reduces a copper complex consisting of metallic copper or copper compound (A) and polyamine (B), or (b) reacts directly with an initiator to generate radicals, thereby shortening the induction period that occurs in the reaction between the copper complex and the reducing agent (D). Therefore, it is preferable to add the reducing agent (D) to the reaction system after adding metallic copper or copper compound (A), polyamine (B), and highly oxidized metal compound other than copper (E) to the reaction system. In other words, it is preferable to mix metallic copper or copper compound (A), polyamine (B), and highly oxidized metal compound other than copper (E) and then add the reducing agent (D). Note that one embodiment of the present invention is not limited to such a presumption.

<ビニル系単量体(モノマー)>
本発明の一実施形態におけるビニル系単量体(モノマー)としては、例えば(メタ)アクリル系単量体、アクリルアミド系単量体、スチレン系単量体、塩化ビニル系単量体、カルボン酸ビニル系単量体、などを挙げることができる。これらの中では、(メタ)アクリル系単量体、アクリルアミド系単量体およびスチレン系単量体が好ましく、(メタ)アクリル系単量体が特に好ましい。
<Vinyl Monomer>
Examples of the vinyl monomer in one embodiment of the present invention include (meth)acrylic monomers, acrylamide monomers, styrene monomers, vinyl chloride monomers, vinyl carboxylate monomers, etc. Among these, (meth)acrylic monomers, acrylamide monomers, and styrene monomers are preferred, and (meth)acrylic monomers are particularly preferred.

本明細書において「(メタ)アクリル」とは「アクリル」および/または「メタクリル」を意図する。In this specification, "(meth)acrylic" refers to "acrylic" and/or "methacrylic".

本発明の一実施形態における(メタ)アクリル系単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸-n-ペンチル、(メタ)アクリル酸-n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-n-ヘプチル、(メタ)アクリル酸-n-オクチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等が挙げられる。これらは、単独で用いても良いし、複数種の単量体を共重合させて用いても構わない。必要に応じて(メタ)アクリル系単量体以外のその他の単量体を(メタ)アクリル系単量体と共重合することもできる。本発明の一実施形態において、ビニル系単量体として(メタ)アクリル系単量体を使用する場合に得られる(メタ)アクリル系重合体は、(メタ)アクリル系単量体に由来する繰り返し単位を、全繰り返し単位中5重量%以上有していることが好ましく、50重量%以上がより好ましく、80重量%以上がさらにより好ましい。Examples of the (meth)acrylic monomer in one embodiment of the present invention include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and (meth)acrylic acid. Examples of the monomer include 2-hydroxypropyl acrylate, stearyl (meth)acrylate, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate, γ-(methacryloyloxypropyl)trimethoxysilane, ethylene oxide adduct of (meth)acrylic acid, trifluoromethylmethyl (meth)acrylate, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, 2-perfluoroethyl (meth)acrylate, perfluoromethyl (meth)acrylate, diperfluoromethylmethyl (meth)acrylate, 2-perfluoromethyl-2-perfluoroethylmethyl (meth)acrylate, 2-perfluorohexylethyl (meth)acrylate, 2-perfluorodecylethyl (meth)acrylate, and 2-perfluorohexadecylethyl (meth)acrylate. These monomers may be used alone or may be copolymerized with a plurality of monomers. If necessary, other monomers than the (meth)acrylic monomer may be copolymerized with the (meth)acrylic monomer. In one embodiment of the present invention, the (meth)acrylic polymer obtained when the (meth)acrylic monomer is used as the vinyl monomer preferably has 5% by weight or more, more preferably 50% by weight or more, and even more preferably 80% by weight or more of repeating units derived from the (meth)acrylic monomer in the total repeating units.

本発明の一実施形態で得られるビニル系重合体は、ビニル系単量体に由来する繰り返し単位を、全繰り返し単位中5重量%以上有していることが好ましく、50重量%以上がより好ましく、80重量%以上がさらにより好ましい。The vinyl polymer obtained in one embodiment of the present invention preferably has repeating units derived from vinyl monomers in an amount of 5% by weight or more of the total repeating units, more preferably 50% by weight or more, and even more preferably 80% by weight or more.

<開始剤>
本発明の一実施形態では重合開始剤として、反応性の高い炭素-ハロゲン結合を有する有機ハロゲン化物を用いることができる。有機ハロゲン化物としては、例えば、α位にハロゲンを有するカルボニル化合物、ベンジル位にハロゲンを有する化合物、あるいはハロゲン化スルホニル化合物等が例示される。有機ハロゲン化物として具体的には、 C-CHX、C-C(H)(X)CH、C-C(X)(CH(ただし、上の化学式中、Cはフェニル基、Xは塩素、臭素、またはヨウ素); R-C(H)(X)-CO、R-C(CH)(X)-CO、R-C(H)(X)-C(O)R、R-C(CH)(X)-C(O)R、(式中、R、Rは水素原子または炭素数1~20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素); R-C-SOX (式中、Rは水素原子または炭素数1~20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素);等が挙げられる。
<Initiator>
In one embodiment of the present invention, an organic halide having a highly reactive carbon-halogen bond can be used as the polymerization initiator. Examples of the organic halide include a carbonyl compound having a halogen at the α-position, a compound having a halogen at the benzyl position, and a sulfonyl halide compound. Specific examples of organic halides include C 6 H 5 -CH 2 X, C 6 H 5 -C(H)(X)CH 3 , C 6 H 5 -C(X)(CH 3 ) 2 (wherein, in the above chemical formula, C 6 H 5 is a phenyl group, and X is chlorine, bromine, or iodine); R 3 -C(H)(X)-CO 2 R 4 , R 3 -C(CH 3 )(X)-CO 2 R 4 , R 3 -C(H)(X)-C(O)R 4 , R 3 -C(CH 3 )( X )-C(O)R 4 (wherein, R 3 and R 4 are hydrogen atoms or alkyl groups, aryl groups, or aralkyl groups having 1 to 20 carbon atoms, and X is chlorine, bromine, or iodine); -C 6 H 4 -SO 2 X (wherein R 3 is a hydrogen atom or an alkyl group, an aryl group, or an aralkyl group having 1 to 20 carbon atoms, and X is a chlorine, bromine, or iodine atom); and the like.

また、2つ以上の開始点を持つ有機ハロゲン化物、または2つ以上の開始点を持つハロゲン化スルホニル化合物を開始剤として使用してもよい。 Alternatively, an organic halide having two or more initiation points or a sulfonyl halide compound having two or more initiation points may be used as an initiator.

単量体量と開始剤量との比を調整することにより、所望の重合体分子量に設定することができることがリビングラジカル重合の特徴である。 A characteristic of living radical polymerization is that the desired polymer molecular weight can be set by adjusting the ratio of the amount of monomer to the amount of initiator.

単量体量と開始剤量との比によって重合体の分子量を設定することができる。設定分子量が低いほど、ラジカル生成量の制御が難しく分子量分布が広がりやすい。また設定分子量が高くても副反応(停止反応および連載道反応)の影響が大きく分子量分布が広がりやすい。そのため、開始剤の量は単量体の量(100mol%)に対して0.0001~10mol%が好ましく、0.001~20mol%がより好ましい。The molecular weight of the polymer can be set by the ratio of the amount of monomer to the amount of initiator. The lower the set molecular weight, the more difficult it is to control the amount of radicals produced, and the more likely it is that the molecular weight distribution will broaden. Even if the set molecular weight is high, the influence of side reactions (termination reactions and serial reactions) is large, and the molecular weight distribution will tend to broaden. For this reason, the amount of initiator is preferably 0.0001 to 10 mol% relative to the amount of monomer (100 mol%), and more preferably 0.001 to 20 mol%.

<溶媒>
本発明の一実施形態における溶媒の具体例について以下に例示するが、このリビングラジカル重合法を用いる場合、溶媒は特に限定されるものではない。
高極性非プロトン性溶媒:ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン等
カーボネート系溶媒:エチレンカーボネート、プロピレンカーボネート等
アルコール系溶媒:メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール等
ニトリル系溶媒:アセトニトリル、プロピオニトリル、ベンゾニトリル等
ケトン系溶媒:アセトン、メチルエチルケトン、メチルイソブチルケトン等
エーテル系溶媒:ジエチルエーテル、テトラヒドロフラン等
ハロゲン化炭化系溶媒:塩化メチレン、クロロホルム等
エステル系溶媒:酢酸エチル、酢酸ブチル等
炭化水素系溶媒:ペンタン、ヘキサン、シクロヘキサン、オクタン、デカン、ベンゼン、トルエン等
本発明の一実施形態における溶媒としては、イオン性液体、水等も挙げられる。本発明の一実施形態における溶媒としては超臨界流体を用いてもよい。
<Solvent>
Specific examples of the solvent in one embodiment of the present invention are given below, but when this living radical polymerization method is used, the solvent is not particularly limited.
Highly polar aprotic solvent: dimethylsulfoxide (DMSO), dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone, etc. Carbonate solvent: ethylene carbonate, propylene carbonate, etc. Alcohol solvent: methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, etc. Nitrile solvent: acetonitrile, propionitrile, benzonitrile, etc. Ketone solvent: acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. Ether solvent: diethyl ether, tetrahydrofuran, etc. Halogenated carbon solvent: methylene chloride, chloroform, etc. Ester solvent: ethyl acetate, butyl acetate, etc. Hydrocarbon solvent: pentane, hexane, cyclohexane, octane, decane, benzene, toluene, etc. Examples of the solvent in one embodiment of the present invention include ionic liquids and water. A supercritical fluid may be used as the solvent in one embodiment of the present invention.

上記溶媒は単独又は2種以上を混合して用いることができる。The above solvents can be used alone or in combination of two or more.

リビングラジカル重合法では、溶媒への連鎖移動反応が重合制御の悪化の要因となるが、還元剤(D)が析出することでも重合制御は悪化する。そのため、溶媒量は、ビニル系単量体の仕込み総重量100重量部に対して、0.5~60重量部が好ましく、2~20重量部がより好ましい。In the living radical polymerization method, the chain transfer reaction to the solvent is a factor in the deterioration of polymerization control, but the polymerization control is also deteriorated by the precipitation of the reducing agent (D). Therefore, the amount of the solvent is preferably 0.5 to 60 parts by weight, more preferably 2 to 20 parts by weight, per 100 parts by weight of the total weight of the vinyl monomers charged.

さらに、金属銅又は銅化合物(A)、ポリアミン(B)、ポリアミン以外の塩基(C)、還元剤(D)、高酸化の銅以外の金属化合物(E)、ビニル系単量体(モノマー)および開始剤が反応系中で均一になっていることが、反応制御、重合反応速度、仕込みやすさおよびスケールアップリスクの点でより好ましい。そのため、それらを溶解させる溶媒を選択することが好ましい。例えば、還元剤(D)としてアスコルビン酸を用いる場合、還元剤(D)の溶解性が還元剤(D)の還元力に大きく影響を及ぼすことから、溶媒としては、アスコルビン酸、アスコルビン酸の塩又はアスコルビン酸のエステルを溶解できる溶媒、例えば、(a)メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール等のアルコール系溶媒、(b)ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン等の高極性非プロトン性溶媒、および(c)水が好ましい。またこれらの溶媒を他の溶媒と混合させて混合溶媒として用いることにより、還元剤(D)であるアスコルビン酸の溶解性を向上させることも有用である。 Furthermore, it is more preferable that the metallic copper or copper compound (A), polyamine (B), base other than polyamine (C), reducing agent (D), metal compound other than highly oxidized copper (E), vinyl monomer and initiator are uniform in the reaction system in terms of reaction control, polymerization reaction rate, ease of charging and risk of scale-up. Therefore, it is preferable to select a solvent that dissolves them. For example, when ascorbic acid is used as the reducing agent (D), the solubility of the reducing agent (D) greatly affects the reducing power of the reducing agent (D), so that the solvent is preferably a solvent that can dissolve ascorbic acid, a salt of ascorbic acid or an ester of ascorbic acid, for example, (a) an alcohol-based solvent such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, etc., (b) a highly polar aprotic solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone, etc., and (c) water. It is also useful to mix these solvents with other solvents to prepare mixed solvents, thereby improving the solubility of ascorbic acid, which is the reducing agent (D).

[2]第二の実施形態
本発明の第二の実施形態は、上述した構成を有するため、誘導期をなくすこと、もしくは短くすることが可能となり、その結果、還元剤(D)の添加による重合制御が簡便になるという利点を有する。
[2] Second embodiment Since the second embodiment of the present invention has the above-mentioned configuration, it is possible to eliminate or shorten the induction period, and as a result, it has an advantage that polymerization control by addition of a reducing agent (D) becomes easy.

<金属銅又は銅化合物(A)>
第二の実施形態における金属銅又は銅化合物(A)は、第一の実施形態のものと同様である。
<Metallic copper or copper compound (A)>
The metallic copper or copper compound (A) in the second embodiment is the same as that in the first embodiment.

<ポリアミン(B)>
第二の実施形態におけるポリアミン(B)は、第一の実施形態のものと同様である。ただし第二の実施形態のポリアミン(B)は、第一の実施形態でのポリアミン以外の塩基(C)の役割も果たしている。第二の実施形態におけるポリアミン(B)の使用量などは以下のとおりである。
<Polyamine (B)>
The polyamine (B) in the second embodiment is the same as that in the first embodiment. However, the polyamine (B) in the second embodiment also plays the role of the base (C) other than the polyamine in the first embodiment. The amount of polyamine (B) used in the second embodiment is as follows.

第二の実施形態において、ポリアミン(B)の使用量は、重合系中に存在する遷移金属原子(100mol%)に対して、80~150mol%が好ましく、90~120mol%がより好ましく、95~110mol%がさらに好ましく、100mol%が特に好ましい。また第二の実施形態において、ポリアミン(B)は、複数回に分けて重合系中に分割添加することが好ましい。後で添加する(2回目以降に添加する)ポリアミン(B)は、重合系中に存在する酸あるいは発生する酸を中和し、酸の蓄積を防ぐためのものである場合が多い。In the second embodiment, the amount of polyamine (B) used is preferably 80 to 150 mol%, more preferably 90 to 120 mol%, even more preferably 95 to 110 mol%, and particularly preferably 100 mol%, relative to the transition metal atoms (100 mol%) present in the polymerization system. In the second embodiment, it is preferable to add polyamine (B) to the polymerization system in multiple installments. The polyamine (B) added later (added after the second installment) is often intended to neutralize the acid present or generated in the polymerization system and prevent the accumulation of acid.

<還元剤(D)>
第二の実施形態における還元剤(D)は、第一の実施形態のものと同様である。
<Reducing Agent (D)>
The reducing agent (D) in the second embodiment is the same as that in the first embodiment.

<高酸化の銅以外の金属化合物(E)>
第二の実施形態における、高酸化の銅以外の金属化合物(E)は、第一の実施形態のものと同様である。
<Highly oxidized metal compounds other than copper (E)>
In the second embodiment, the highly oxidized metal compound (E) other than copper is the same as that in the first embodiment.

<ビニル系単量体(モノマー)>
第二の実施形態における、ビニル系単量体(モノマー)は、第一の実施形態のものと同様である。
<Vinyl Monomer>
The vinyl monomer in the second embodiment is the same as that in the first embodiment.

<開始剤>
第二の実施形態における開始剤は、第一の実施形態のものと同様である。
<Initiator>
The initiator in the second embodiment is the same as that in the first embodiment.

<溶媒>
第二の実施形態における溶媒は、第一の実施形態のものと同様である。
<Solvent>
The solvent in the second embodiment is the same as that in the first embodiment.

<本発明の一実施形態で得られるビニル系重合体>
本発明の一実施形態に係る製造方法で得られるビニル系重合体の数平均分子量は特に制限はないが、500~1,000,000の範囲が好ましく、1,000~500,000の範囲がより好ましく、3,000~300,000の範囲がさらに好ましく、5,000~300,000が特に好ましい。
<Vinyl-based polymer obtained according to one embodiment of the present invention>
The number average molecular weight of the vinyl polymer obtained by the production method according to one embodiment of the present invention is not particularly limited, but is preferably in the range of 500 to 1,000,000, more preferably in the range of 1,000 to 500,000, even more preferably in the range of 3,000 to 300,000, and particularly preferably in the range of 5,000 to 300,000.

本発明の一実施形態に係る製造方法で得られるビニル系重合体の分子量分布、すなわち、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mn)と数平均分子量(Mw)との比は、1.1~1.8であることが好ましく、より好ましくは1.1~1.7であり、より好ましくは1.1~1.5であり、さらに好ましくは1.1~1.3である。本発明の一実施形態におけるGPC測定においては、通常、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにて行い、数平均分子量等はポリスチレン換算で求めることができる。The molecular weight distribution of the vinyl polymer obtained by the production method according to one embodiment of the present invention, i.e., the ratio of the weight average molecular weight (Mn) to the number average molecular weight (Mw) measured by gel permeation chromatography, is preferably 1.1 to 1.8, more preferably 1.1 to 1.7, more preferably 1.1 to 1.5, and even more preferably 1.1 to 1.3. In the GPC measurement according to one embodiment of the present invention, chloroform is usually used as the mobile phase, and the measurement is performed in a polystyrene gel column, and the number average molecular weight and the like can be calculated in terms of polystyrene.

本発明の一実施形態に係る製造方法で得られるビニル系重合体のモノマーであるビニル系単量体の転化率、すなわち、反応系中に残存するビニル系単量体のモル数とビニル系単量体の総仕込みモル数の比((ビニル系単量体の総仕込みモル数-反応系中に残存するビニル系単量体のモル数)/ビニル系単量体の総仕込みモル数×100)(%)は、特に限定されないが、好ましくは85%以上であり、好ましくは90%以上であり、より好ましくは95%以上である。The conversion rate of the vinyl monomer, which is the monomer of the vinyl polymer obtained by the production method according to one embodiment of the present invention, i.e., the ratio of the number of moles of vinyl monomer remaining in the reaction system to the total number of moles of vinyl monomer charged ((total number of moles of vinyl monomer charged - number of moles of vinyl monomer remaining in the reaction system) / total number of moles of vinyl monomer charged x 100) (%) is not particularly limited, but is preferably 85% or more, preferably 90% or more, and more preferably 95% or more.

本発明の第一実施形態に係る製造方法で得られるビニル系重合体の、金属銅又は銅化合物(A)、ポリアミン(B)、ポリアミン以外の塩基(C)、還元剤(D)および高酸化の銅以外の金属化合物(E)の全てを混合し始めてからの重合時間は特に限定されないが、好ましくは360分以下であり、好ましくは300分以下であり、より好ましくは240分以下である。The polymerization time from the start of mixing metallic copper or copper compound (A), polyamine (B), base other than polyamine (C), reducing agent (D) and metal compound other than highly oxidized copper (E) for the vinyl polymer obtained by the manufacturing method according to the first embodiment of the present invention is not particularly limited, but is preferably 360 minutes or less, preferably 300 minutes or less, and more preferably 240 minutes or less.

本発明の第二実施形態に係る製造方法で得られるビニル系重合体の、金属銅又は銅化合物(A)、ポリアミン(B)、還元剤(D)および高酸化の銅以外の金属化合物(E)の全てを混合し始めてからの重合時間は特に限定されないが、好ましくは360分以下であり、好ましくは300分以下であり、より好ましくは240分以下である。The polymerization time from the start of mixing metallic copper or copper compound (A), polyamine (B), reducing agent (D) and metal compound other than highly oxidized copper (E) for the vinyl polymer obtained by the manufacturing method according to the second embodiment of the present invention is not particularly limited, but is preferably 360 minutes or less, preferably 300 minutes or less, and more preferably 240 minutes or less.

重合温度は、限定はされないが、低すぎると反応速度が遅くなる虞があり、温度が高いと副反応(連載道反応)が起こりやすくなるため、0~100℃の範囲が好ましく、20~90℃がより好ましく、40~70℃がさらに好ましい。The polymerization temperature is not limited, but if it is too low, the reaction rate may be slow, and if the temperature is too high, side reactions (serial reactions) are more likely to occur, so a temperature in the range of 0 to 100°C is preferable, 20 to 90°C is more preferable, and 40 to 70°C is even more preferable.

重合雰囲気は、限定はされないが、酸素存在下で重合反応を行う場合、金属銅又は銅化合物(A)および高酸化の銅以外の金属化合物(E)、並びにこれらが還元剤(D)により還元された化合物が、酸素によって酸化され重合制御が悪くなる虞がある。そのため、重合反応は不活性ガス雰囲気下で行うのが好ましく、製造コストなどを考えると窒素雰囲気下で行うことがより好ましい。The polymerization atmosphere is not limited, but when the polymerization reaction is carried out in the presence of oxygen, the metallic copper or copper compound (A), the highly oxidized metal compound other than copper (E), and the compound reduced by the reducing agent (D) may be oxidized by oxygen, resulting in poor polymerization control. Therefore, it is preferable to carry out the polymerization reaction in an inert gas atmosphere, and it is more preferable to carry out the polymerization reaction in a nitrogen atmosphere in consideration of production costs, etc.

本発明の一実施形態に係る製造方法で得られるビニル系重合体主鎖は直鎖状でもよいし、枝分かれがあってもよい。The vinyl polymer main chain obtained by the manufacturing method according to one embodiment of the present invention may be linear or branched.

本発明の一実施形態に係る製造方法で得られるビニル系重合体は、(メタ)アクリル系重合体であることが好ましい。当該構成によると、容易に分子量分布の狭い重合体を得られるという利点を有する。なお、本明細書において、「(メタ)アクリル系重合体」とは、(メタ)アクリル系単量体に由来する繰り返し単位を含む重合体を意図する。本発明の一実施形態に係る製造方法で得られるビニル系重合体は、(メタ)アクリル系単量体に由来する繰り返し単位を、全繰り返し単位中5重量%以上有していることが好ましく、50重量%以上がより好ましく、80重量%以上がさらにより好ましい。当該構成によると、分子量分布の狭い重合体を得られるという利点を有する。The vinyl polymer obtained by the manufacturing method according to one embodiment of the present invention is preferably a (meth)acrylic polymer. This configuration has the advantage of easily obtaining a polymer with a narrow molecular weight distribution. In this specification, the term "(meth)acrylic polymer" refers to a polymer containing repeating units derived from a (meth)acrylic monomer. The vinyl polymer obtained by the manufacturing method according to one embodiment of the present invention preferably has repeating units derived from a (meth)acrylic monomer in an amount of 5% by weight or more of the total repeating units, more preferably 50% by weight or more, and even more preferably 80% by weight or more. This configuration has the advantage of obtaining a polymer with a narrow molecular weight distribution.

本発明の一実施形態は、以下の様な構成であってもよい。An embodiment of the present invention may have the following configuration:

〔1〕以下の(A)~(E)の存在下でリビングラジカル重合をおこなうことを特徴とするビニル系重合体の製造方法:金属銅又は銅化合物(A)、ポリアミン(B)、ポリアミン以外の塩基(C)、還元剤(D)、および高酸化の銅以外の金属化合物(E)。 [1] A method for producing a vinyl polymer, characterized by carrying out living radical polymerization in the presence of the following (A) to (E): metallic copper or a copper compound (A), a polyamine (B), a base other than a polyamine (C), a reducing agent (D), and a highly oxidized metal compound other than copper (E).

〔2〕以下の(A)、(B)、(D)および(E)の存在下でリビングラジカル重合をおこない、なおかつ(A)中の遷移金属原子と(E)中の遷移金属原子との合計モル数に対して、モル数で0.8~1.5倍の(B)を使用することを特徴とするビニル系重合体の製造方法:金属銅又は銅化合物(A)、ポリアミン(B)、還元剤(D)、および高酸化の銅以外の金属化合物(E)。 [2] A method for producing a vinyl polymer, comprising carrying out living radical polymerization in the presence of the following (A), (B), (D) and (E), and using 0.8 to 1.5 times the molar amount of (B) relative to the total molar amount of the transition metal atoms in (A) and the transition metal atoms in (E): metallic copper or a copper compound (A), a polyamine (B), a reducing agent (D), and a metal compound other than highly oxidized copper (E).

〔3〕前記ビニル系重合体が(メタ)アクリル系重合体である〔1〕または〔2〕に記載のビニル系重合体の製造方法。[3] The method for producing a vinyl polymer according to [1] or [2], wherein the vinyl polymer is a (meth)acrylic polymer.

〔4〕前記高酸化の銅以外の金属化合物(E)が三価の鉄化合物である〔1〕~〔3〕のいずれか1つに記載のビニル系重合体の製造方法。[4] A method for producing a vinyl polymer described in any one of [1] to [3], wherein the metal compound (E) other than highly oxidized copper is a trivalent iron compound.

〔5〕前記三価の鉄化合物が、塩化鉄、臭化鉄、ヨウ化鉄および三酸化二鉄(Fe)からなる群より選ばれる1種以上の化合物であることを特徴とする〔4〕に記載のビニル系重合体の製造方法。 [5] The method for producing a vinyl polymer according to [4], wherein the trivalent iron compound is one or more compounds selected from the group consisting of iron chloride, iron bromide, iron iodide and diiron trioxide (Fe 2 O 3 ).

〔6〕前記金属銅又は銅化合物(A)/前記高酸化の銅以外の金属化合物(E)のモル比が、0.9/0.1~0.2/0.8であることを特徴とする〔1〕~〔5〕のいずれか1つに記載のビニル系重合体の製造方法。[6] A method for producing a vinyl polymer described in any one of [1] to [5], characterized in that the molar ratio of metallic copper or copper compound (A) to metal compound other than highly oxidized copper (E) is 0.9/0.1 to 0.2/0.8.

〔7〕前記ビニル系単量体の総仕込みに対して、金属原子の重量に換算して1~40ppmとなる前記高酸化の銅以外の金属化合物(E)を使用することを特徴とする〔1〕~〔6〕のいずれか1つに記載のビニル系重合体の製造方法。[7] A method for producing a vinyl polymer according to any one of [1] to [6], characterized in that the highly oxidized metal compound (E) other than copper is used in an amount of 1 to 40 ppm, calculated as the weight of metal atoms, relative to the total amount of the vinyl monomer charged.

〔8〕前記金属銅又は銅化合物(A)と前記ポリアミン(B)と前記高酸化の銅以外の金属化合物(E)とを混合した後、前記還元剤(D)を添加することを特徴とする〔1〕~〔7〕のいずれか1つに記載のビニル系重合体の製造方法。[8] A method for producing a vinyl polymer according to any one of [1] to [7], characterized in that the metallic copper or copper compound (A), the polyamine (B), and the highly oxidized metal compound other than copper (E) are mixed, and then the reducing agent (D) is added.

〔9〕前記還元剤(D)が有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物からなる群から選ばれる少なくとも1種の還元剤であることを特徴とする〔1〕~〔8〕のいずれか1つに記載のビニル系重合体の製造方法。[9] A method for producing a vinyl polymer described in any one of [1] to [8], characterized in that the reducing agent (D) is at least one reducing agent selected from the group consisting of organic tin compounds, ascorbic acid, ascorbic acid esters, ascorbate salts, hydrazine, and boron hydrides.

本発明の一実施形態は、以下の様な構成であってもよい。An embodiment of the present invention may have the following configuration:

〔1〕銅錯体(A)を触媒とする(メタ)アクリル系単量体のリビングラジカル重合法において、(メタ)アクリル系単量体に対して、多座アミン(B)、多座アミン以外の塩基(C)、還元剤(D)および高酸化の銅以外の金属化合物(E)を反応系中に含むことを特徴とする(メタ)アクリル系重合体の製造方法。 [1] A method for producing a (meth)acrylic polymer, in which a copper complex (A) is used as a catalyst to polymerize a (meth)acrylic monomer in a living radical polymerization process, the method being characterized in that a polydentate amine (B), a base other than a polydentate amine (C), a reducing agent (D), and a highly oxidized metal compound other than copper (E) are contained in the reaction system relative to the (meth)acrylic monomer.

〔2〕高酸化の金属化合物(E)が三価の鉄化合物である〔1〕記載の(メタ)アクリル系重合体の製造方法。[2] A method for producing a (meth)acrylic polymer according to [1], wherein the highly oxidized metal compound (E) is a trivalent iron compound.

〔3〕三価の鉄化合物(E)が、塩化鉄、臭化鉄、ヨウ化鉄および三酸化二鉄(Fe2O3)からなる群より選ばれた1種以上の化合物であることを特徴とする〔2〕に記載の(メタ)アクリル系重合体の製造方法。[3] A method for producing a (meth)acrylic polymer according to [2], characterized in that the trivalent iron compound (E) is one or more compounds selected from the group consisting of iron chloride, iron bromide, iron iodide and iron trioxide (Fe2O3).

〔4〕銅錯体/高酸化の銅以外の金属化合物(E)のモル比が、0.9/0.1~0.2/0.8であることを特徴とする〔1〕~〔3〕のいずれかに記載の(メタ)アクリル系重合体の製造方法。[4] A method for producing a (meth)acrylic polymer described in any one of [1] to [3], characterized in that the molar ratio of copper complex/highly oxidized metal compound other than copper (E) is 0.9/0.1 to 0.2/0.8.

〔5〕(メタ)アクリル系単量体の総仕込みに対して、重量にして1~40ppmの高酸化の銅以外の金属化合物(E)の金属原子を含むことを特徴とする〔1〕~〔4〕のいずれかに記載の(メタ)アクリル系重合体の製造方法。 [5] A method for producing a (meth)acrylic polymer according to any one of [1] to [4], characterized in that the metal atom of a metal compound (E) other than highly oxidized copper is contained in an amount of 1 to 40 ppm by weight relative to the total amount of (meth)acrylic monomer charged.

〔6〕銅錯体および高酸化の銅以外の金属化合物(E)に対して、還元剤(C)を後に混合させることを特徴とする〔1〕~〔5〕のいずれかに記載の(メタ)アクリル系重合体の製造方法。[6] A method for producing a (meth)acrylic polymer according to any one of [1] to [5], characterized in that a reducing agent (C) is subsequently mixed with the copper complex and the highly oxidized metal compound other than copper (E).

〔7〕還元剤(D)が有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物からなる群から選ばれる少なくとも1種であることを特徴とする〔1〕~〔6〕のいずれかに記載の(メタ)アクリル系重合体。[7] A (meth)acrylic polymer according to any one of [1] to [6], characterized in that the reducing agent (D) is at least one selected from the group consisting of organic tin compounds, ascorbic acid, ascorbic acid esters, ascorbate salts, hydrazine, and boron hydrides.

以下に、本発明の具体的な実施例を示すが、本発明は、下記実施例に限定されるものではない。下記実施例および比較例中、「部」および「ppm」は、それぞれ「重量部」、および「重量百万分率」を表す。「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量との比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K-804;昭和電工(株)製)を、GPC溶媒としてクロロホルムを、それぞれ用いた。 Specific examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following examples and comparative examples, "parts" and "ppm" represent "parts by weight" and "parts per million by weight", respectively. "Number average molecular weight" and "molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)" were calculated by standard polystyrene conversion method using gel permeation chromatography (GPC). However, a GPC column filled with polystyrene crosslinked gel (Shodex GPC K-804; Showa Denko K.K.) was used, and chloroform was used as the GPC solvent.

また、下記実施例および比較例において用いた試薬は工業化を意識して、大量生産されているものを入手後、精製等の処理を一切行なわずに反応に用いた。In addition, the reagents used in the following examples and comparative examples were obtained from mass producers with an eye toward industrialization, and were used in the reactions without any purification or other processing.

(実施例1)
反応容器に、アクリル酸2-メトキシエチル40部、メタノール(MeOH)12部、2―ブロモ酪酸エチル3.33部、及びトリエチルアミン0.41部を仕込み、仕込んだ原料を窒素気流下40℃で撹拌した。続いて、臭化銅(II)(CuBr)0.015部(アスコルビン酸溶液を除いた反応系の総重量に対するCu量=35ppm)および臭化鉄(III)0.005部(アスコルビン酸溶液を除いた反応系の総重量に対するFe量=7ppm)をメタノール8部で溶解させた溶解物、およびヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)0.020部(CuおよびFeの合計モル量(100mol%)に対して等量(103.2mol%))を別途準備し、これらを反応系に添加し、反応系中の原料を混合した。さらに、アスコルビン酸0.015部およびトリエチルアミン0.017部をメタノール3.0部で調製し、得られたアスコルビン酸溶液を反応系に滴下開始した。アスコルビン酸溶液を滴下開始後、1分以内に反応溶液が発熱し重合が開始した。重合途中は、反応溶液の温度が40~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から30分後、アクリル酸2-メトキシエチルの反応率(重合転化率)は27モル%、数平均分子量は1,200、および分子量分布は1.30であった。この時点で(すなわち重合開始から30分後に)、アクリル酸2-メトキシエチル60部を2時間かけて反応系に滴下添加した。その後もアスコルビン酸溶液を反応系に滴下添加しながら反応溶液の温度が40℃~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から240分後、アクリル酸2-メトキシエチルの反応率は81モル%、数平均分子量は4,800、分子量分布は1.16、アスコルビン酸の総滴下量はアスコルビン酸溶液を除いた反応系の総重量に対して32ppmであった。かかる操作により、ビニル系重合体を得た。
Example 1
In a reaction vessel, 40 parts of 2-methoxyethyl acrylate, 12 parts of methanol (MeOH), 3.33 parts of ethyl 2-bromobutyrate, and 0.41 parts of triethylamine were charged, and the charged raw materials were stirred under a nitrogen stream at 40° C. Next, a solution obtained by dissolving 0.015 parts of copper bromide (II) (CuBr 2 ) (Cu amount relative to the total weight of the reaction system excluding the ascorbic acid solution = 35 ppm) and 0.005 parts of iron (III) bromide (Fe amount relative to the total weight of the reaction system excluding the ascorbic acid solution = 7 ppm) in 8 parts of methanol, and 0.020 parts of hexamethyltris(2-aminoethyl)amine (Me 6 TREN) (equivalent amount (103.2 mol%) relative to the total molar amount (100 mol%) of Cu and Fe) were separately prepared, and these were added to the reaction system, and the raw materials in the reaction system were mixed. Further, 0.015 parts of ascorbic acid and 0.017 parts of triethylamine were prepared with 3.0 parts of methanol, and the resulting ascorbic acid solution was started to be dropped into the reaction system. After the start of the dropwise addition of the ascorbic acid solution, the reaction solution was heated within 1 minute, and polymerization was started. During the polymerization, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40 to 60°C. 30 minutes after the start of the dropwise addition of the ascorbic acid solution, the reaction rate (polymerization conversion rate) of 2-methoxyethyl acrylate was 27 mol%, the number average molecular weight was 1,200, and the molecular weight distribution was 1.30. At this point (i.e., 30 minutes after the start of polymerization), 60 parts of 2-methoxyethyl acrylate was added dropwise to the reaction system over 2 hours. Thereafter, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40°C to 60°C while the ascorbic acid solution was added dropwise to the reaction system. 240 minutes after the start of the dropwise addition of the ascorbic acid solution, the reaction rate of 2-methoxyethyl acrylate was 81 mol%, the number average molecular weight was 4,800, the molecular weight distribution was 1.16, and the total amount of ascorbic acid dropped was 32 ppm based on the total weight of the reaction system excluding the ascorbic acid solution.

実施例1において、(a)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、金属銅又は銅化合物(A)である臭化銅中の銅原子(Cu)量は42.7ppmであり、(b)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、高酸化の銅以外の金属化合物(E)である臭化鉄(III)中の鉄原子(Fe)量は9.4ppmであり、(c)アクリル酸2-メトキシエチルの総仕込(100mol%)に対するヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)(ポリアミン(B))の物質量は11mmol%であり、(d)アスコルビン酸(還元剤(D))により移動する電子に対するトリエチルアミン(ポリアミン以外の塩基(C))の物質量は常に100mol%であり、(e)銅錯体(100mol%)に対するアスコルビン酸溶液の添加速度は8.3mol%/時間であり、(f)金属銅又は銅化合物(A)/高酸化の銅以外の金属化合物(E)のモル比は0.8/0.2であり、かつ(g)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対するアスコルビン酸の総滴下量は26ppmであった。 In Example 1, (a) the amount of copper atoms (Cu) in copper bromide, which is the metallic copper or copper compound (A), relative to the total amount of 2-methoxyethyl acrylate, which is the vinyl monomer, was 42.7 ppm, (b) the amount of iron atoms (Fe) in iron (III) bromide, which is the highly oxidized metal compound other than copper (E), relative to the total amount of 2-methoxyethyl acrylate, which is the vinyl monomer, was 9.4 ppm, and (c) the amount of hexamethyltris(2-aminoethyl)amine (Me 6 (d) the amount of substance of triethylamine (a base other than a polyamine (C)) relative to the electrons transferred by ascorbic acid (a reducing agent (D)) was always 100 mol %, (e) the addition rate of the ascorbic acid solution to the copper complex (100 mol %) was 8.3 mol %/hour, (f) the molar ratio of metallic copper or copper compound (A)/highly oxidized metal compound other than copper (E) was 0.8/0.2, and (g) the total amount of ascorbic acid dropped relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 26 ppm.

(実施例2)
反応容器に、アクリル酸2-メトキシエチル40部、メタノール(MeOH)12部、2―ブロモ酪酸エチル3.33部、及びトリエチルアミン0.41部を仕込み、仕込んだ原料を窒素気流下40℃で撹拌した。続いて、臭化銅(II)(CuBr)0.017部(アスコルビン酸溶液を除いた反応系の総重量に対するCu量=39ppm)および三酸化二鉄(Fe)(III)0.0007部(アスコルビン酸溶液を除いた反応系の総重量に対するFe量=4ppm)をメタノール8部で溶解させた溶解物、およびヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)0.020部(CuおよびFeの合計モル量(100mol%)に対して等量(101.2mol%))を別途準備し、これらを反応系に添加し、反応系中の原料を混合した。さらに、アスコルビン酸0.015部およびトリエチルアミン0.017部をメタノール3.0部で調製し、得られたアスコルビン酸溶液を反応系に滴下開始した。アスコルビン酸溶液の滴下開始から、添加したアスコルビン酸量がアスコルビン酸溶液を除いた反応系の総重量に対して8ppmに達したとき(アスコルビン酸溶液の滴下開始から20分経過後)に反応溶液が発熱し重合が開始した。重合途中は、反応溶液の温度が40~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から60分後、アクリル酸2-メトキシエチルの反応率(重合転化率)は24モル%、数平均分子量は1,200、および分子量分布は1.30であった。この時点で(すなわち重合開始から40分後に)、アクリル酸2-メトキシエチル60部を2時間かけて反応系に滴下添加した。その後もアスコルビン酸溶液を反応系に滴下添加しながら反応溶液の温度が40℃~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から320分後、アクリル酸2-メトキシエチルの反応率は95モル%、数平均分子量は5,200、分子量分布は1.14、アスコルビン酸の総滴下量はアスコルビン酸溶液を除いた反応系の総重量に対して、33ppmであった。かかる操作により、ビニル系重合体を得た。
Example 2
A reaction vessel was charged with 40 parts of 2-methoxyethyl acrylate, 12 parts of methanol (MeOH), 3.33 parts of ethyl 2-bromobutyrate, and 0.41 parts of triethylamine, and the charged raw materials were stirred at 40° C. under a nitrogen stream. Next, 0.017 parts of copper bromide (II) (CuBr 2 ) (Cu amount relative to the total weight of the reaction system excluding the ascorbic acid solution = 39 ppm) and 0.0007 parts of iron trioxide (Fe 2 O 3 ) (III) (Fe amount relative to the total weight of the reaction system excluding the ascorbic acid solution = 4 ppm) were dissolved in 8 parts of methanol, and 0.020 parts of hexamethyltris(2-aminoethyl)amine (Me 6 TREN) (equivalent amount (101.2 mol%) to the total molar amount (100 mol%) of Cu and Fe) were separately prepared and added to the reaction system to mix the raw materials in the reaction system. Furthermore, 0.015 parts of ascorbic acid and 0.017 parts of triethylamine were prepared with 3.0 parts of methanol, and the resulting ascorbic acid solution was started to be dropped into the reaction system. When the amount of ascorbic acid added reached 8 ppm relative to the total weight of the reaction system excluding the ascorbic acid solution from the start of the dropwise addition of the ascorbic acid solution (20 minutes after the start of the dropwise addition of the ascorbic acid solution), the reaction solution generated heat and polymerization was initiated. During the polymerization, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40 to 60°C. 60 minutes after the start of the dropwise addition of the ascorbic acid solution, the reaction rate (polymerization conversion rate) of 2-methoxyethyl acrylate was 24 mol%, the number average molecular weight was 1,200, and the molecular weight distribution was 1.30. At this point (i.e., 40 minutes after the start of the polymerization), 60 parts of 2-methoxyethyl acrylate was added dropwise to the reaction system over a period of 2 hours. Thereafter, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40 to 60°C while the ascorbic acid solution was added dropwise to the reaction system. After 320 minutes from the start of the dropwise addition of the ascorbic acid solution, the reaction rate of 2-methoxyethyl acrylate was 95 mol%, the number average molecular weight was 5,200, the molecular weight distribution was 1.14, and the total amount of ascorbic acid dropped was 33 ppm based on the total weight of the reaction system excluding the ascorbic acid solution.

実施例2において、(a)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、金属銅又は銅化合物(A)である臭化銅中の銅原子(Cu)量は49ppmであり、(b)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、高酸化の銅以外の金属化合物(E)である三酸化二鉄(III)中の鉄原子(Fe)量は4.9ppmであり、(c)アクリル酸2-メトキシエチルの総仕込(100mol%)に対するヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)(ポリアミン(B))の物質量は11mmol%であり、(d)アスコルビン酸(還元剤(D))により移動する電子に対するトリエチルアミン(ポリアミン以外の塩基(C))の物質量は常に100mol%であり、(e)銅錯体(100mol%)に対するアスコルビン酸溶液の添加速度は、重合開始まで(すなわちアスコルビン酸溶液の滴下開始から20分経過まで)は22.0mol%/時間であり、重合開始後は4.6mol%/時間であり、(f)金属銅又は銅化合物(A)/高酸化の銅以外の金属化合物(E)のモル比は0.9/0.1であり、かつ(g)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対するアスコルビン酸の総滴下量は27ppmであった。 In Example 2, (a) the amount of copper atoms (Cu) in copper bromide, which is the metallic copper or copper compound (A), relative to the total amount of 2-methoxyethyl acrylate, which is the vinyl monomer, was 49 ppm, (b) the amount of iron atoms (Fe) in iron trioxide (III), which is the highly oxidized metal compound other than copper (E), relative to the total amount of 2-methoxyethyl acrylate, which is the vinyl monomer, was 4.9 ppm, and (c) the amount of hexamethyltris(2-aminoethyl)amine (Me 6 (d) the amount of substance of triethylamine (a base other than a polyamine (C)) relative to the electrons transferred by ascorbic acid (a reducing agent (D)) was always 100 mol %, (e) the addition rate of the ascorbic acid solution to the copper complex (100 mol %) was 22.0 mol %/hour until the initiation of polymerization (i.e., until 20 minutes have elapsed since the initiation of dropwise addition of the ascorbic acid solution) and 4.6 mol %/hour after the initiation of polymerization, (f) the molar ratio of metallic copper or copper compound (A)/highly oxidized metal compound other than copper (E) was 0.9/0.1, and (g) the total amount of ascorbic acid added dropwise relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 27 ppm.

(比較例1)
反応容器に、アクリル酸2-メトキシエチル40部、メタノール(MeOH)12部、2―ブロモ酪酸エチル3.33部、及びトリエチルアミン0.41部を仕込み、仕込んだ原料を窒素気流下40℃で撹拌した。続いて、臭化銅(II)(CuBr)0.019部(アスコルビン酸溶液を除いた反応系の総重量に対するCu量=44ppm)をメタノール8部で溶解させた溶解物、およびヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)0.020部(Cuのモル量(100mol%)に対して等量(102.0mol%))を別途準備し、これらを反応系に添加し、反応系中の原料を混合した。さらに、アスコルビン酸0.015部およびトリエチルアミン0.017部をメタノール3.0部で調製し、得られたアスコルビン酸溶液を反応系に滴下して重合を開始した。アスコルビン酸溶液の滴下開始から、アスコルビン酸量がアスコルビン酸溶液を除いた反応系の総重量に対して10ppmに達したとき(アスコルビン酸溶液の滴下開始から50分経過後)に反応系溶液が発熱し重合が開始した。重合途中は、反応溶液の温度が40~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から95分後、アクリル酸2-メトキシエチルの反応率(重合転化率)は21モル%、数平均分子量は1,600、および分子量分布は1.30であった。この時点で(すなわち重合開始から45分後に)、アクリル酸2-メトキシエチル60部を2時間かけて反応系に滴下添加した。その後もアスコルビン酸溶液を反応系に滴下添加しながら反応溶液の温度が40℃~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から395分後、アクリル酸2-メトキシエチルの反応率は96モル%、数平均分子量は5,600、分子量分布は1.08、アスコルビン酸の総滴下量はアスコルビン酸溶液を除いた反応系の総重量に対して、52ppmであった。かかる操作により、ビニル系重合体を得た。
(Comparative Example 1)
A reaction vessel was charged with 40 parts of 2-methoxyethyl acrylate, 12 parts of methanol (MeOH), 3.33 parts of ethyl 2-bromobutyrate, and 0.41 parts of triethylamine, and the charged raw materials were stirred under a nitrogen stream at 40° C. Next, a solution obtained by dissolving 0.019 parts of copper bromide (II) (CuBr 2 ) (Cu amount relative to the total weight of the reaction system excluding the ascorbic acid solution=44 ppm) in 8 parts of methanol, and 0.020 parts of hexamethyltris(2-aminoethyl)amine (Me 6 TREN) (equivalent amount (102.0 mol%) relative to the molar amount of Cu (100 mol%)) were separately prepared, and these were added to the reaction system, and the raw materials in the reaction system were mixed. Further, 0.015 parts of ascorbic acid and 0.017 parts of triethylamine were prepared in 3.0 parts of methanol, and the resulting ascorbic acid solution was added dropwise to the reaction system to initiate polymerization. When the amount of ascorbic acid reached 10 ppm relative to the total weight of the reaction system excluding the ascorbic acid solution (50 minutes after the start of the addition of the ascorbic acid solution), the reaction system solution generated heat and polymerization was initiated. During the polymerization, the reaction solution was heated and stirred so that the temperature of the reaction solution was 40 to 60°C. 95 minutes after the start of the addition of the ascorbic acid solution, the reaction rate (polymerization conversion rate) of 2-methoxyethyl acrylate was 21 mol%, the number average molecular weight was 1,600, and the molecular weight distribution was 1.30. At this point (i.e., 45 minutes after the start of polymerization), 60 parts of 2-methoxyethyl acrylate was added dropwise to the reaction system over a period of 2 hours. Thereafter, the reaction solution was continued to be heated and stirred while the ascorbic acid solution was added dropwise to the reaction system so that the temperature of the reaction solution was 40° C. to 60° C. After 395 minutes from the start of the dropwise addition of the ascorbic acid solution, the reaction rate of 2-methoxyethyl acrylate was 96 mol%, the number average molecular weight was 5,600, the molecular weight distribution was 1.08, and the total amount of ascorbic acid dropped was 52 ppm based on the total weight of the reaction system excluding the ascorbic acid solution. By this operation, a vinyl polymer was obtained.

比較例1において、(a)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、金属銅又は銅化合物である臭化銅中の銅原子(Cu)量は54.1ppmであり、(b)アクリル酸2-メトキシエチルの総仕込(100mol%)に対するヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)(ポリアミン)の物質量は11mmol%であり、(c)アスコルビン酸(還元剤)により移動する電子に対するトリエチルアミン(ポリアミン以外の塩基)の物質量は常に100mol%であり、(d)銅錯体(100mol%)に対するアスコルビン酸溶液の添加速度は、重合開始まで(すなわちアスコルビン酸溶液の滴下開始から50分経過まで)は9.9mol%/時間であり、重合開始後は6.0mol%/時間であり、かつ(e)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対するアスコルビン酸の総滴下量は42ppmであった。 In Comparative Example 1, (a) the amount of copper atoms (Cu) in the metallic copper or copper bromide, which is a copper compound, relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 54.1 ppm, and (b) the amount of hexamethyltris(2-aminoethyl)amine (Me 6 (c) the amount of substance of triethylamine (a base other than polyamine) relative to the electrons transferred by ascorbic acid (reducing agent) was always 100 mol %, (d) the addition rate of the ascorbic acid solution to the copper complex (100 mol %) was 9.9 mol %/hour until the initiation of polymerization (i.e., until 50 minutes have elapsed since the initiation of dropwise addition of the ascorbic acid solution) and 6.0 mol %/hour after the initiation of polymerization, and (e) the total amount of ascorbic acid added dropwise relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 42 ppm.

(比較例2)
反応容器に、アクリル酸2-メトキシエチル40部、メタノール(MeOH)12部、2―ブロモ酪酸エチル3.33部、及びトリエチルアミン0.41部を仕込み、仕込んだ原料を窒素気流下40℃で撹拌した。続いて、臭化鉄(III)0.025部(アスコルビン酸溶液を除いた反応系の総重量に対するFe量=39ppm)をメタノール8部で溶解させた溶解物、およびヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)0.020部(Feのモル量(100mol%)に対して等量(102.6mol%))を別途準備し、これらを反応系に添加し、反応系中の原料を混合した。さらに、アスコルビン酸0.015部およびトリエチルアミン0.017部をメタノール3.0部で調製し、得られたアスコルビン酸溶液を反応系に滴下開始した。アスコルビン酸溶液の滴下開始から、1分以内に反応溶液が発熱し重合が開始した。重合途中は、反応溶液の温度が40~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から40分後、アクリル酸2-メトキシエチルの反応率(重合転化率)は14モル%、数平均分子量は86,400、および分子量分布は2.29であった。この時点で(すなわち重合開始から40分後に)、アクリル酸2-メトキシエチル60部を2時間かけて反応系に滴下添加した。その後もアスコルビン酸溶液を反応系に滴下添加しながら反応溶液の温度が40℃~60℃となるように反応溶液の加熱および撹拌を続けた。アスコルビン酸溶液の滴下開始から250分後、アクリル酸2-メトキシエチルの反応率は91モル%、数平均分子量は86,370、分子量分布は2.51、アスコルビン酸の総滴下量はアスコルビン酸溶液を除いた反応系の総重量に対して、52ppmであった。かかる操作により、ビニル系重合体を得た。
(Comparative Example 2)
In a reaction vessel, 40 parts of 2-methoxyethyl acrylate, 12 parts of methanol (MeOH), 3.33 parts of ethyl 2-bromobutyrate, and 0.41 parts of triethylamine were charged, and the charged raw materials were stirred at 40°C under a nitrogen stream. Subsequently, a solution obtained by dissolving 0.025 parts of iron (III) bromide (Fe amount relative to the total weight of the reaction system excluding the ascorbic acid solution = 39 ppm) in 8 parts of methanol, and 0.020 parts of hexamethyltris(2-aminoethyl)amine (Me 6 TREN) (equivalent amount (102.6 mol%) to the molar amount (100 mol%) of Fe) were separately prepared, and these were added to the reaction system, and the raw materials in the reaction system were mixed. Furthermore, 0.015 parts of ascorbic acid and 0.017 parts of triethylamine were prepared with 3.0 parts of methanol, and the resulting ascorbic acid solution was started to be dropped into the reaction system. Within 1 minute after the start of the dropwise addition of the ascorbic acid solution, the reaction solution was heated and polymerization was initiated. During the polymerization, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40 to 60°C. 40 minutes after the start of the dropwise addition of the ascorbic acid solution, the reaction rate (polymerization conversion rate) of 2-methoxyethyl acrylate was 14 mol%, the number average molecular weight was 86,400, and the molecular weight distribution was 2.29. At this point (i.e., 40 minutes after the start of polymerization), 60 parts of 2-methoxyethyl acrylate was added dropwise to the reaction system over 2 hours. Thereafter, the reaction solution was continued to be heated and stirred so that the temperature of the reaction solution was 40 to 60°C while the ascorbic acid solution was added dropwise to the reaction system. 250 minutes after the start of the dropwise addition of the ascorbic acid solution, the reaction rate of 2-methoxyethyl acrylate was 91 mol%, the number average molecular weight was 86,370, the molecular weight distribution was 2.51, and the total amount of ascorbic acid dropped was 52 ppm based on the total weight of the reaction system excluding the ascorbic acid solution.

比較例2において、(a)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対する、高酸化の銅以外の金属化合物である臭化鉄(III)中の鉄原子(Fe)量は47.2ppmであり、(b)アクリル酸2-メトキシエチルの総仕込(100mol%)に対するヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)(ポリアミン)の物質量は11mmol%であり、(c)アスコルビン酸(還元剤)により移動する電子に対するトリエチルアミン(ポリアミン以外の塩基)の物質量は常に100mol%であり、(d)銅錯体(100mol%)に対するアスコルビン酸溶液の添加速度は10.3mol%/時間であり、かつ(e)ビニル系単量体であるアクリル酸2-メトキシエチルの仕込み総量に対するアスコルビン酸の総滴下量は42ppmであった。 In Comparative Example 2, (a) the amount of iron atoms (Fe) in iron (III) bromide, which is a highly oxidized metal compound other than copper, relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 47.2 ppm, (b) the amount of hexamethyltris(2-aminoethyl)amine (Me 6 TREN) (polyamine) relative to the total amount of 2-methoxyethyl acrylate (100 mol%) was 11 mmol%, (c) the amount of triethylamine (a base other than polyamine) relative to the electrons transferred by ascorbic acid (reducing agent) was always 100 mol%, (d) the addition rate of the ascorbic acid solution relative to the copper complex (100 mol%) was 10.3 mol%/hour, and (e) the total amount of ascorbic acid dropped relative to the total amount of 2-methoxyethyl acrylate, which is a vinyl monomer, was 42 ppm.

比較例1は金属銅又は銅化合物を単独使用した系(製造方法)、すなわち金属銅又は銅化合物を使用しているものの高酸化の銅以外の金属化合物を使用していない系(製造方法)である。比較例1の系には還元剤であるアスコルビン酸を添加しても重合反応が進行しない領域(誘導期)が存在する。この誘導期は所定のアスコルビン酸量を添加することで終了し重合反応が開始する。反応容器の種類および/または形状などの諸条件の違いにより、誘導期の終了時間、換言すればアスコルビン酸の添加から重合反応開始までの時間がわずかに前後する。そのため、誘導期を終了させるために必要なアスコルビン酸の量を正確に定めることは難しい。誘導期直後のアスコルビン酸の滴下速度が速くアスコルビン酸を過剰に入れてしまった場合は急な重合発熱が生じ、反応制御ができなくなる。そして、その急な発熱を避けるためにアスコルビン酸の滴下速度を遅くした場合は誘導期が長期化し生産性が著しく低下するといったことなどが生じる。そのため、比較例1のように高酸化の銅以外の金属化合物(E)を使用しない場合には、この誘導期の存在が発熱などの重合制御と生産性との両立を困難にしていた。Comparative Example 1 is a system (production method) in which metallic copper or a copper compound is used alone, that is, a system (production method) in which metallic copper or a copper compound is used but no metal compound other than highly oxidized copper is used. In the system of Comparative Example 1, there is a region (induction period) in which the polymerization reaction does not proceed even if ascorbic acid, which is a reducing agent, is added. This induction period ends when a predetermined amount of ascorbic acid is added, and the polymerization reaction starts. Depending on the various conditions such as the type and/or shape of the reaction vessel, the end time of the induction period, in other words, the time from the addition of ascorbic acid to the start of the polymerization reaction, varies slightly. Therefore, it is difficult to accurately determine the amount of ascorbic acid required to end the induction period. If the dripping speed of ascorbic acid is too fast immediately after the induction period and too much ascorbic acid is added, a sudden polymerization heat will occur and the reaction will not be controllable. If the dripping speed of ascorbic acid is slowed down to avoid the sudden heat generation, the induction period will be prolonged and productivity will drop significantly. Therefore, when no metal compound (E) other than highly oxidized copper was used as in Comparative Example 1, the presence of this induction period made it difficult to achieve both polymerization control, such as heat generation, and productivity.

比較例1の金属銅又は銅化合物の単独使用の系(製造方法)に対し、実施例1および2は銅(銅化合物)の一部を、高酸化の銅以外の金属化合物(E)である臭化鉄(III)または三酸化二鉄(III)に置き換えた系(製造方法)である。実施例1および2は、すなわち、金属銅又は銅化合物(A)である臭化銅(II)と、高酸化の銅以外の金属化合物(E)である臭化鉄(III)または三酸化二鉄(III)と、を使用している系(製造方法)である。実施例1および2のいずれの場合も、誘導期を終了させるのに必要なアスコルビン酸(還元剤(D))の量が比較例1よりも少なくなっていることがわかる。とくに、実施例1はアスコルビン酸の添加とほぼ同時に重合が開始した。また、実施例1および2では、高酸化の銅以外の金属化合物(E)である鉄化合物を金属銅又は銅化合物(A)である銅化合物と併用しているものの、反応制御は維持されており、分子量分布は1.2以下であった。 In contrast to the system (production method) of Comparative Example 1 in which metallic copper or a copper compound is used alone, Examples 1 and 2 are systems (production methods) in which part of the copper (copper compound) is replaced with iron bromide (III) or iron trioxide (III), which is a highly oxidized metal compound (E) other than copper. Examples 1 and 2 are systems (production methods) in which copper bromide (II), which is metallic copper or a copper compound (A), and iron bromide (III) or iron trioxide (III), which is a highly oxidized metal compound (E) other than copper, are used. In both Examples 1 and 2, it can be seen that the amount of ascorbic acid (reducing agent (D)) required to terminate the induction period is less than that in Comparative Example 1. In particular, in Example 1, polymerization began almost simultaneously with the addition of ascorbic acid. In Examples 1 and 2, although an iron compound, which is a highly oxidized metal compound (E) other than copper, is used in combination with a copper compound, which is metallic copper or a copper compound (A), reaction control was maintained and the molecular weight distribution was 1.2 or less.

比較例2は、銅錯体を用いず、すなわち金属銅又は銅化合物を用いず、高酸化の銅以外の金属化合物である臭化鉄(III)のみを使用した系(製造方法)である。比較例2の系では、実施例1と同様に誘導期は観測されず、アスコルビン酸の添加と同時に重合が開始した。しかしながら、比較例2の製造方法では、得られる重合体の分子量および分子量分布は大きく広がり、反応制御はできなかった。Comparative Example 2 is a system (production method) that does not use a copper complex, i.e., does not use metallic copper or a copper compound, but uses only iron (III) bromide, a highly oxidized metal compound other than copper. In the system of Comparative Example 2, as in Example 1, no induction period was observed, and polymerization began simultaneously with the addition of ascorbic acid. However, in the production method of Comparative Example 2, the molecular weight and molecular weight distribution of the obtained polymer were significantly broadened, and the reaction could not be controlled.

以上の結果より、反応制御能は高いが誘導期が存在する銅触媒と反応制御能は低いが誘導期が存在しない鉄触媒とを併用することによって、反応制御能が高く誘導期が短縮可能なビニル系重合体の重合方法を達成することができたことがわかる。

From the above results, it is evident that a method for polymerizing a vinyl polymer having high reaction controllability and capable of shortening the induction period has been achieved by using in combination a copper catalyst having high reaction controllability but an induction period and an iron catalyst having low reaction controllability but no induction period.

Claims (8)

以下の(A)、(B)、(D)および(E)の存在下でビニル系単量体のリビングラジカル重合をおこない、なおかつ(A)中の遷移金属原子と(E)中の遷移金属原子との合計モル数に対して、モル数で0.8~1.5倍の(B)を使用することを特徴とするビニル系重合体の製造方法:
金属銅又は銅化合物(A)、
ポリアミン(B)、
還元剤(D)、および
高酸化の銅以外の金属化合物(E);
ここで、前記高酸化の銅以外の金属化合物(E)とは、以下の2つの条件を共に満たす金属化合物をい
(ア)複数の酸化数を持つことができる銅以外の金属原子を含んでいる
(イ)上記の銅以外の金属原子の酸化数は、高い方の値になっている
前記高酸化の銅以外の金属化合物(E)が三価の鉄化合物である
A method for producing a vinyl polymer, comprising carrying out living radical polymerization of a vinyl monomer in the presence of the following (A), (B), (D) and (E), and using 0.8 to 1.5 times the molar amount of (B) relative to the total molar amount of the transition metal atoms in (A) and the transition metal atoms in (E):
Metallic copper or a copper compound (A),
Polyamine (B),
a reducing agent (D), and a highly oxidized non-copper metal compound (E);
Here, the highly oxidized metal compound (E) other than copper refers to a metal compound that satisfies both of the following two conditions:
(a) It contains metal atoms other than copper that can have multiple oxidation numbers. (b) The oxidation numbers of the metal atoms other than copper are the higher values ;
The highly oxidized metal compound other than copper (E) is a trivalent iron compound .
前記リビングラジカル重合は、さらに、ポリアミン以外の塩基(C)の存在下で行う、請求項1に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to claim 1, wherein the living radical polymerization is further carried out in the presence of a base (C) other than a polyamine. 前記ビニル系重合体が(メタ)アクリル系重合体である請求項1または2に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to claim 1 or 2, wherein the vinyl polymer is a (meth)acrylic polymer. 前記三価の鉄化合物が、塩化鉄、臭化鉄、ヨウ化鉄および三酸化二鉄(Fe)からなる群より選ばれる1種以上の化合物であることを特徴とする請求項に記載のビニル系重合体の製造方法。 2. The method for producing a vinyl polymer according to claim 1 , wherein the trivalent iron compound is at least one compound selected from the group consisting of iron chloride, iron bromide, iron iodide and diiron trioxide (Fe 2 O 3 ). 前記金属銅又は銅化合物(A)/前記高酸化の銅以外の金属化合物(E)のモル比が、0.9/0.1~0.2/0.8であることを特徴とする請求項1~のいずれか1項に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to any one of claims 1 to 4 , characterized in that a molar ratio of the metallic copper or copper compound (A) to the highly oxidized metal compound other than copper (E) is 0.9/0.1 to 0.2/0.8. 前記ビニル系単量体の総仕込みに対して、金属原子の重量に換算して1~40ppmとなる前記高酸化の銅以外の金属化合物(E)を使用することを特徴とする請求項1~のいずれか1項に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to any one of claims 1 to 5, characterized in that the highly oxidized metal compound other than copper (E) is used in an amount of 1 to 40 ppm in terms of the weight of metal atoms relative to the total amount of the vinyl monomers charged. 前記金属銅又は銅化合物(A)と前記ポリアミン(B)と前記高酸化の銅以外の金属化合物(E)とを混合した後、前記還元剤(D)を添加することを特徴とする請求項1~のいずれか1項に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to any one of claims 1 to 6, characterized in that the metallic copper or copper compound (A), the polyamine ( B ) and the highly oxidized metal compound other than copper (E) are mixed together, and then the reducing agent (D) is added. 前記還元剤(D)が有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物からなる群から選ばれる少なくとも1種の還元剤であることを特徴とする請求項1~のいずれか1項に記載のビニル系重合体の製造方法。 The method for producing a vinyl polymer according to any one of claims 1 to 7, wherein the reducing agent ( D ) is at least one reducing agent selected from the group consisting of organotin compounds, ascorbic acid, ascorbic acid esters, ascorbate salts, hydrazine, and boron hydrides.
JP2021507361A 2019-03-20 2020-03-17 Method for producing vinyl polymer Active JP7516347B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019053767 2019-03-20
JP2019053767 2019-03-20
PCT/JP2020/011639 WO2020189665A1 (en) 2019-03-20 2020-03-17 Method for producing vinyl polymer

Publications (2)

Publication Number Publication Date
JPWO2020189665A1 JPWO2020189665A1 (en) 2020-09-24
JP7516347B2 true JP7516347B2 (en) 2024-07-16

Family

ID=72520823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021507361A Active JP7516347B2 (en) 2019-03-20 2020-03-17 Method for producing vinyl polymer

Country Status (2)

Country Link
JP (1) JP7516347B2 (en)
WO (1) WO2020189665A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114461A (en) 1997-03-11 2009-05-28 Carnegie Mellon Univ Improvement of atom or atomic group transition radical polymerization
CN101775090A (en) 2010-02-09 2010-07-14 苏州大学 Polymerization system for double metal catalyzed atom transfer radical polymerization
WO2012020545A1 (en) 2010-08-10 2012-02-16 株式会社カネカ Manufacturing method of (meth) acrylic polymer
JP2016153464A (en) 2015-02-20 2016-08-25 株式会社カネカ (meth)acrylic polymer and manufacturing method
CN107880229A (en) 2017-12-08 2018-04-06 万华化学集团股份有限公司 A kind of preparation method of the polyacrylic acid ester block copolymer of terminal groups modification and its obtained polyacrylic acid ester block copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114461A (en) 1997-03-11 2009-05-28 Carnegie Mellon Univ Improvement of atom or atomic group transition radical polymerization
CN101775090A (en) 2010-02-09 2010-07-14 苏州大学 Polymerization system for double metal catalyzed atom transfer radical polymerization
WO2012020545A1 (en) 2010-08-10 2012-02-16 株式会社カネカ Manufacturing method of (meth) acrylic polymer
JP2016153464A (en) 2015-02-20 2016-08-25 株式会社カネカ (meth)acrylic polymer and manufacturing method
CN107880229A (en) 2017-12-08 2018-04-06 万华化学集团股份有限公司 A kind of preparation method of the polyacrylic acid ester block copolymer of terminal groups modification and its obtained polyacrylic acid ester block copolymer

Also Published As

Publication number Publication date
WO2020189665A1 (en) 2020-09-24
JPWO2020189665A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5841054B2 (en) Method for producing (meth) acrylic polymer
Kickelbick et al. 4, 4′, 4 ″‐Tris (5‐nonyl)‐2, 2′: 6′, 2 ″‐terpyridine as ligand in atom transfer radical polymerization (ATRP)
CA2730262C (en) Apparatus and methods for controlled radical polymerization
JP2007527463A (en) Atom transfer radical polymerization
WO2007075817A1 (en) Preparation of block copolymers
JP5252492B2 (en) Production method of block copolymer
US20110060157A1 (en) Apparatus and methods for controlled radical polymerization
JP7516347B2 (en) Method for producing vinyl polymer
JP6754124B2 (en) Method for manufacturing multi-branched polymer and multi-branched polymer
JP2003147015A (en) Method for removing copper metal complex from polymer
JP6465685B2 (en) (Meth) acrylic polymer and production method
CN111051357B (en) Novel polymer initiator, method for producing same, and method for producing block copolymer
WO2014149411A9 (en) Methods and apparatus for controlled single electron transfer living radical polymerization
JP5090792B2 (en) Method for producing polymer
JP6659593B2 (en) Vinyl polymer having terminal hydrolyzable silyl group, method for producing the same, and curable composition
Zhou et al. Zero‐valent bimetallic iron/copper catalyzed SET‐LRP: A dual activation by zero‐valent iron
Ambade Controlled radical polymerization
JP2003238609A (en) Method for producing polymer from radical- polymerizable monomer
KR20140069032A (en) Production of polymers by means of controlled radical polymerisation
JP2008222821A (en) Initiator having radical polymerization starting point and cationic polymerization starting point, and block copolymer synthesized using the initiator
JP5932142B2 (en) Method for producing vinyl polymer
JP2011208047A (en) Method for producing polymer
CN112154161A (en) Polymerization process for the synthesis of vinylaromatic polymers with controlled structure
JP2004211079A (en) Method for producing polymer
Bultz et al. Ferrocene cocatalysis for ruthenium-catalyzed radical miniemulsion polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240703

R150 Certificate of patent or registration of utility model

Ref document number: 7516347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150