JP2016153464A - (meth)acrylic polymer and manufacturing method - Google Patents

(meth)acrylic polymer and manufacturing method Download PDF

Info

Publication number
JP2016153464A
JP2016153464A JP2015032233A JP2015032233A JP2016153464A JP 2016153464 A JP2016153464 A JP 2016153464A JP 2015032233 A JP2015032233 A JP 2015032233A JP 2015032233 A JP2015032233 A JP 2015032233A JP 2016153464 A JP2016153464 A JP 2016153464A
Authority
JP
Japan
Prior art keywords
meth
acrylic
weight
group
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015032233A
Other languages
Japanese (ja)
Other versions
JP6465685B2 (en
Inventor
訓康 坂上
Noriyasu Sakagami
訓康 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015032233A priority Critical patent/JP6465685B2/en
Publication of JP2016153464A publication Critical patent/JP2016153464A/en
Application granted granted Critical
Publication of JP6465685B2 publication Critical patent/JP6465685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer having a (meth)acrylic polymer containing a (meth)acrylic monomer with ester groups having 8 to 22 carbon atoms in (meth)acrylic acid ester at high monomer conversion rate and high functionality by using an atom transfer radical polymerization.SOLUTION: There is provided a (meth)acrylic polymer by containing a (meth)acrylic monomer with ester groups having 8 to 22 carbon atoms in (meth)acrylic acid ester of 1 to 100 wt.% based on 100 wt.% of total mass of the vinyl monomer and polymerizing with methanol as a solvent in a living radical polymerization using a transition metal compound as a catalyst and having functionality of functional groups at terminals of 1.4 to 2.0.SELECTED DRAWING: None

Description

(メタ)アクリル系重合体および製造方法に関する。さらに詳しくは、原子移動ラジカル重合を活用し、長鎖のエステル基を有する(メタ)アクリル酸エステルを含有し、末端に官能基を有する(メタ)アクリル系重合体に関する。   The present invention relates to a (meth) acrylic polymer and a production method. More specifically, the present invention relates to a (meth) acrylic polymer having a (meth) acrylic acid ester having a long-chain ester group and having a functional group at the terminal by utilizing atom transfer radical polymerization.

(メタ)アクリル系重合体の製造方法として、例えば重合触媒に遷移金属又は遷移金属化合物と多座アミンからなる遷移金属錯体を用いたリビングラジカル重合法である原子移動ラジカル重合;Atom Transfer Radical Polymerization:ATRPが見出されている(特許文献1,2参照)。しかし、大量の遷移金属又は遷移金属化合物、及び遷移金属錯体を触媒として用いるため、重合体の着色原因となる。また、官能基導入時の反応阻害を引き起こすため、除去する必要がある。しかし、これら遷移金属化合物を除去するためには手間とコストを要することになる(特許文献3〜5)。   As a method for producing a (meth) acrylic polymer, for example, atom transfer radical polymerization, which is a living radical polymerization method using a transition metal complex composed of a transition metal or a transition metal compound and a polydentate amine as a polymerization catalyst; Atom Transfer Radical Polymerization: ATRP has been found (see Patent Documents 1 and 2). However, since a large amount of transition metal or transition metal compound and transition metal complex are used as a catalyst, it causes coloring of the polymer. Moreover, since reaction inhibition at the time of functional group introduction | transduction is caused, it is necessary to remove. However, it takes time and cost to remove these transition metal compounds (Patent Documents 3 to 5).

そこで、高酸化遷移金属錯体に還元剤を作用させ、触媒サイクルを回すことを特徴とするActivators Regenerated by Electron Transfer Atom Transfer Radical Polymerization:ARGET ATRP(特許文献6)やSingle Electron Transfer Living Radical Polymerization:SET LRP(特許文献7)重合法により、重合触媒をモノマー重量に対して数十ppmで重合が進行することが報告されている。J.Am.Chem.Soc.,124,4940(2002)によれば、このような重合には、水やアルコール等のプロトン性極性溶媒やDMSOやイオン性液体などの極性溶媒中で非常に速い速度でCu(0)とCu(II)の不均化が進行することから、極性溶媒が重要である。   Therefore, Activators Regenerated by Electron Transfer Atom Transfer Rad Polymerization: ARGET AT L (Let's NR), and ET (Patent Document 7) It has been reported that polymerization proceeds at several tens of ppm with respect to the monomer weight by a polymerization method. J. et al. Am. Chem. Soc. , 124, 4940 (2002), such a polymerization involves Cu (0) and Cu at a very fast rate in a protic polar solvent such as water or alcohol, or in a polar solvent such as DMSO or ionic liquid. Since disproportionation of (II) proceeds, a polar solvent is important.

一方、(メタ)アクリル酸エステルのエステル基の炭素数が8以上の長鎖(メタ)アクリル系単量体の重合においては、極性溶媒に対して溶解性が限定的であり、必要に応じて大量の極性溶媒を使用する必要がある公知のATRP法を用いて重合させることは困難であった(特許文献8)。また、極性溶媒であるアセトニトリルを用いたリビングラジカル重合が報告されているが、大量の遷移金属又は遷移金属化合物、および遷移金属錯体が必要であり、末端の官能化率も低く、改善の余地があった(特許文献9)。   On the other hand, in the polymerization of a long-chain (meth) acrylic monomer having 8 or more carbon atoms in the ester group of (meth) acrylic acid ester, the solubility in a polar solvent is limited. It was difficult to perform polymerization using a known ATRP method that requires the use of a large amount of polar solvent (Patent Document 8). Although living radical polymerization using acetonitrile, which is a polar solvent, has been reported, a large amount of transition metal or transition metal compound and transition metal complex are required, and the functionalization rate of the terminal is low, so there is room for improvement. (Patent Document 9).

最近、アクリル酸n−ブチル((メタ)アクリル酸エステルのエステル基の炭素数が4)の重合において、極性溶媒であるアルコール溶媒を用い、銅原子を30ppm以下にまで減量し、銅触媒に対して多座アミンの物質量を等モル量程度にまで低減した低濃度銅触媒の条件下で反応が進行することが見出されている(特許文献10)ものの、(メタ)アクリル酸エステルのエステル基の炭素数が8以上の長鎖(メタ)アクリル系単量体の重合においては、長鎖になるほど、反応重合制御や溶解性といった点で課題があり、末端の反応性を維持したまま高い重合率で制御することは困難であった。   Recently, in polymerization of n-butyl acrylate (the ester group of (meth) acrylic acid ester has 4 carbon atoms), an alcohol solvent, which is a polar solvent, is used to reduce the copper atom to 30 ppm or less, It has been found that the reaction proceeds under conditions of a low concentration copper catalyst in which the amount of polydentate amine is reduced to an equimolar amount (Patent Document 10), but an ester of (meth) acrylic acid ester In the polymerization of a long chain (meth) acrylic monomer having 8 or more carbon atoms in the group, the longer the chain, the more problematic it is in terms of reaction polymerization control and solubility, and the higher the terminal reactivity is maintained. It was difficult to control the polymerization rate.

WO96/30421号WO96 / 30421 WO97/18247号WO97 / 18247 特開2004−155846号Japanese Patent Application Laid-Open No. 2004-155846 特開2005−307220号JP 2005-307220 A 特開平11−193307号JP-A-11-193307 WO2005/087819号WO2005 / 087819 WO2008/019100号WO2008 / 019100 WO2002/038633号WO2002 / 038633 特開2010−126680号JP 2010-126680 A WO2012/020545号WO2012 / 020545

特許文献10記載の極性溶媒であるアルコールを用いたARGET ATRP法において、(メタ)アクリル酸エステルのエステル基の炭素数が4のアクリル酸n−ブチル単量体では公知であるものの、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の長鎖(メタ)アクリル系単量体を1〜100重量%含有したポリマーの重合技術は未だ確立されていなかった。   In the ARGET ATRP method using an alcohol which is a polar solvent described in Patent Document 10, a vinyl-based single monomer is known for an n-butyl acrylate monomer having an ester group of 4 (meth) acrylate ester. Polymerization of a polymer containing 1 to 100% by weight of a long chain (meth) acrylic monomer having 8 to 22 carbon atoms in the ester group of (meth) acrylic acid ester with respect to 100% by weight of the total mass of the monomer. The technology was not yet established.

更に、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を1〜100重量%含有したポリマーを高モノマー転化率で、尚且つ高い官能化率を有するポリマーの重合技術も確立されていなかった。   Furthermore, 1 to 100% by weight of (meth) acrylic monomer having 8 to 22 carbon atoms in the ester group of (meth) acrylic acid ester was contained with respect to 100% by weight of the total mass of vinyl monomer. Polymerization techniques for polymers having a high monomer conversion rate and a high functionalization rate have not been established.

本発明は、原子移動ラジカル重合を活用し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を含む(メタ)アクリル系重合体を高モノマー転化率で尚且つ、高い官能化率を有する重合体を得ることを目的とする。   The present invention utilizes atom transfer radical polymerization to convert a (meth) acrylic polymer containing a (meth) acrylic monomer having 8 to 22 carbon atoms in the ester group of (meth) acrylic acid ester into a high monomer. The object is to obtain a polymer with a high rate of functionalization at a high rate.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.

すなわち本発明は、遷移金属化合物を触媒とするリビングラジカル重合法において、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を1〜100重量%含有し、メタノールを溶媒として重合し、末端の官能基の官能化率が1.4〜2.0であることを特徴とする(メタ)アクリル系重合体に関する。   That is, according to the present invention, in the living radical polymerization method using a transition metal compound as a catalyst, the ester group of the (meth) acrylic acid ester has 8 to 22 carbon atoms with respect to 100% by weight of the total mass of the vinyl monomer. (Meth) acrylic monomer is contained in an amount of 1 to 100% by weight, polymerized using methanol as a solvent, and the functionalization rate of the terminal functional group is 1.4 to 2.0 (meth) The present invention relates to an acrylic polymer.

好ましい実施態様としては、末端の官能基が、アクリロイル基であることを特徴とする(メタ)アクリル系重合体に関する。   As a preferred embodiment, the present invention relates to a (meth) acrylic polymer, wherein the terminal functional group is an acryloyl group.

好ましい実施態様としては、官能化率が1.6〜2.0であることを特徴とする(メタ)アクリル系重合体に関する。   A preferred embodiment relates to a (meth) acrylic polymer characterized by a functionalization rate of 1.6 to 2.0.

好ましい実施態様としては、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を80〜20重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を20〜80重量%含有することを特徴とする(メタ)アクリル系重合体に関する。   As a preferable embodiment, 80 to 20 (meth) acrylic monomers having 1 to 7 carbon atoms in the ester group of (meth) acrylic acid ester are used with respect to 100% by weight of the total mass of the vinyl monomer. (Meth) acrylic polymer containing 20% to 80% by weight of (meth) acrylic monomer having 8 to 18 carbon atoms in the ester group of (meth) acrylic acid ester About.

好ましい実施態様としては、(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を60〜40重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を40〜60重量%含有することを特徴とする(メタ)アクリル系重合体に関する。   As a preferable embodiment, 60 to 40% by weight of a (meth) acrylic monomer having 1 to 7 carbon atoms in the ester group of (meth) acrylic acid ester is contained, and the ester group of (meth) acrylic acid ester is The present invention relates to a (meth) acrylic polymer comprising 40 to 60% by weight of a (meth) acrylic monomer having 8 to 18 carbon atoms.

好ましい実施態様としては、遷移金属化合物が銅の化合物であり、ビニル系単量体の仕込み総重量に対して銅濃度が5ppm〜10ppmであることを特徴とする(メタ)アクリル系重合体に関する。   As a preferred embodiment, the present invention relates to a (meth) acrylic polymer, wherein the transition metal compound is a copper compound, and the copper concentration is 5 ppm to 10 ppm with respect to the total weight of the vinyl monomer.

好ましい実施態様としては、銅原子に対して多座アミンを混合し、重合前に銅錯体を形成し触媒とすることを特徴とする(メタ)アクリル系重合体に関する。   A preferred embodiment relates to a (meth) acrylic polymer characterized in that a polydentate amine is mixed with a copper atom to form a copper complex before polymerization to serve as a catalyst.

好ましい実施態様としては、多座アミンが、二座配位のアミン、三座配位のアミン、四座配位のアミンの群から選ばれる少なくとも1種であることを特徴とする(メタ)アクリル系重合体に関する。   In a preferred embodiment, the polydentate amine is at least one member selected from the group consisting of bidentate amines, tridentate amines, and tetradentate amines. It relates to a polymer.

好ましい実施態様としては、還元剤が有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物の群から選ばれる少なくとも1種であることを特徴とする(メタ)アクリル系重合体に関する。   In a preferred embodiment, the reducing agent is at least one selected from the group consisting of an organotin compound, ascorbic acid, ascorbic acid ester, ascorbate, hydrazine, and boron hydride. It relates to a polymer.

好ましい実施態様としては、還元剤に対して、100 mol%以上の塩基が反応系中に存在することを特徴とする(メタ)アクリル系重合体に関する。   As a preferred embodiment, the present invention relates to a (meth) acrylic polymer characterized in that 100 mol% or more of the base is present in the reaction system with respect to the reducing agent.

好ましい実施態様としては、(メタ)アクリル系重合体の重合率が85〜100%であることを特徴とする(メタ)アクリル系重合体に関する。   As a preferred embodiment, the present invention relates to a (meth) acrylic polymer, wherein the polymerization rate of the (meth) acrylic polymer is 85 to 100%.

また、本発明は、上記のいずれかに記載の(メタ)アクリル系重合体の製造方法に関する。   Moreover, this invention relates to the manufacturing method of the (meth) acrylic-type polymer in any one of said.

通常、高いモノマー転化率まで追い込んだ場合、カップリング反応や連鎖移動反応が進行しやすくなることから、反応末端が失活し、高い官能化率を保持することが困難であるが、本発明によれば、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を含む単量体を重合する場合、溶媒としてメタノールを使用することにより、1.6〜2.0の高い官能化率で官能化(アクリロイル化)を行うことができる。また、溶媒量、銅触媒、塩基の使用量が少ないため、生産工程短縮、生産性向上を達成した。   Usually, when driven to a high monomer conversion rate, the coupling reaction or chain transfer reaction is likely to proceed, so the reaction ends are deactivated and it is difficult to maintain a high functionalization rate. According to the present invention, when a monomer containing a (meth) acrylic monomer having 8 to 22 carbon atoms in the ester group of (meth) acrylic acid ester is polymerized, by using methanol as a solvent, 1.6. Functionalization (acryloylation) can be performed at a high functionalization rate of ˜2.0. In addition, the amount of solvent, copper catalyst, and base used was small, so the production process was shortened and productivity was improved.

また、工業的な面において、例えば特開2010−126680記載の重合・精製工程より十分短縮可能であることから生産性も向上した。   Further, in terms of industrial aspects, productivity can be improved because it can be sufficiently shortened from the polymerization / purification process described in JP2010-126680A, for example.

本発明は、遷移金属化合物を触媒とするリビングラジカル重合法において、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を1〜100重量%含有し、メタノールを溶媒として重合し、末端の官能基の官能化率が1.4〜2.0であることを特徴とする(メタ)アクリル系重合体である。   In the living radical polymerization method using a transition metal compound as a catalyst, the present invention has (meth) acrylic acid ester group having 8 to 22 carbon atoms in the total mass of 100% by weight of the vinyl monomer ( (Meth) acrylic containing 1 to 100% by weight of a (meth) acrylic monomer, polymerized with methanol as a solvent, and having a functionalization rate of the terminal functional group of 1.4 to 2.0 Based polymer.

以下に、本発明に含有される構成につき詳述する。   Below, it explains in full detail about the structure contained in this invention.

<リビングラジカル重合>
本発明は、遷移金属または遷移金属化合物および配位子から成る遷移金属錯体を触媒とする(メタ)アクリル系単量体のリビングラジカル重合方法に関する。
遷移金属錯体を触媒とするリビングラジカル重合は現在、原子移動ラジカル重合;Atom Transfer Radical Polymerization:ATRP(J.Am.Chem.Soc.1995,117,5614、Macromolecules.1995,28,1721)とSigle Electron Transfer Polymerization:SET−LRP(J.Am.Chem.Soc.2006,128,14156、JPSChem 2007,45,1607)の二通りの解釈が考えられている。ATRPは、例えば銅錯体では、1価銅錯体が重合体末端のハロゲンを引き抜いてラジカルを発生させて2価銅錯体になる。2価銅錯体は重合末端のラジカルに対してハロゲンを戻して1価銅錯体になる。これら平衡からなるリビングラジカル重合がATRPである。一方、SET LRPは、銅錯体の場合、0価の金属銅あるいは銅錯体が重合体末端のハロゲンを引き抜いてラジカルを発生させて2価銅錯体になる。2価銅錯体は重合末端のラジカルに対してハロゲンを戻して0価銅錯体になる。1価銅錯体は不均化して0価と2価の銅錯体になる。これら平衡からなるリビングラジカル重合がSETLRPである。本発明系もいずれかのリビングラジカル重合系として解釈されうるが、本発明では特に区別せず、触媒に遷移金属又は遷移金属化合物と配位子を用いたリビングラジカル重合系を本発明の範疇として取り扱う。
<Living radical polymerization>
The present invention relates to a living radical polymerization method of a (meth) acrylic monomer using a transition metal complex composed of a transition metal or a transition metal compound and a ligand as a catalyst.
Living radical polymerization catalyzed by transition metal complexes is currently atom transfer radical polymerization; Atom Transfer Radical Polymerization: ATRP (J. Am. Chem. Soc. 1995, 117, 5614, Macromolecules. 1995, 28, 1721) and Single Electron. Two interpretations of Transfer Polymerization: SET-LRP (J. Am. Chem. Soc. 2006, 128, 14156, JP Chem Chem 2007, 45, 1607) are considered. ATRP is, for example, a copper complex, and the monovalent copper complex extracts a halogen at the end of the polymer to generate radicals to become a divalent copper complex. The divalent copper complex returns a halogen to the radical at the polymerization end to become a monovalent copper complex. Living radical polymerization consisting of these equilibrium is ATRP. On the other hand, in the case of SET LRP, in the case of a copper complex, zero-valent metal copper or a copper complex extracts a halogen at a polymer terminal to generate a radical to form a divalent copper complex. The divalent copper complex returns a halogen to the radical at the polymerization terminal to become a zero-valent copper complex. The monovalent copper complex is disproportionated to become zero-valent and divalent copper complexes. Living radical polymerization consisting of these equilibrium is SETLRP. Although the present invention system can also be interpreted as any living radical polymerization system, the present invention does not particularly distinguish it, and a living radical polymerization system using a transition metal or a transition metal compound and a ligand as a catalyst falls within the scope of the present invention. handle.

また、還元剤を用いて重合遅延、停止の原因となる高酸化遷移金属錯体を減らすことで、遷移金属錯体が少ない低触媒条件であっても速やかに、高反応率まで重合反応を進行させることができるActivators Regenerated by Electron Transfer:ARGET(Macromolecules.2006,39,39)はATRPの改良処方として報告されているが、上記のように本発明ではATRPとSETを特に区別せず、触媒に遷移金属又は遷移金属化合物と配位子を用いたリビングラジカル重合系を本発明の範疇として取り扱う。   In addition, by reducing the number of highly oxidized transition metal complexes that cause polymerization delay and termination using a reducing agent, the polymerization reaction can be rapidly advanced to a high reaction rate even under low catalyst conditions with few transition metal complexes. ACTIVATORS REGENERATED BY ELECTRON TRANSFER: ARGET (Macromolecules. 2006, 39, 39) has been reported as an improved formulation of ATRP. However, as described above, in the present invention, ATRP and SET are not particularly distinguished from each other. Alternatively, a living radical polymerization system using a transition metal compound and a ligand is treated as a category of the present invention.

<重合触媒>
重合触媒としては、金属銅又は銅化合物、及び配位子から成る銅錯体が用いられる。銅化合物について塩化物、臭素化物、ヨウ素化物、シアン化物、酸化物、水酸化物、酢酸化物、硫酸化物、硝酸化物等が例として挙げられるが、それらに限定されたものではない。
<Polymerization catalyst>
As the polymerization catalyst, a copper complex composed of metallic copper or a copper compound and a ligand is used. Examples of copper compounds include chlorides, bromides, iodides, cyanides, oxides, hydroxides, acetates, sulfates and nitrates, but are not limited thereto.

銅原子は電子状態によって0価、1価、2価の価数をとりうるが、価数は限定されるものではない。   The copper atom can have a valence of 0, 1, or 2 depending on the electronic state, but the valence is not limited.

銅原子の重量は(メタ)アクリル系単量体の仕込み総重量に対して、0.1ppm〜1000ppmが好ましく、0.5ppm〜500ppmがより好ましく、1ppm〜100ppmがさらに好ましく、2ppm〜50ppmが特に好ましく、5ppm〜10ppmが最も好ましい。   The weight of the copper atom is preferably 0.1 ppm to 1000 ppm, more preferably 0.5 ppm to 500 ppm, still more preferably 1 ppm to 100 ppm, particularly 2 ppm to 50 ppm, based on the total weight of the (meth) acrylic monomer charged. Preferably, 5 ppm to 10 ppm is most preferable.

<多座アミン>
配位子として使用される多座アミンを以下に例示するが、これらに限られるものではない。
<Multidental amine>
Although the polydentate amine used as a ligand is illustrated below, it is not restricted to these.

二座配位の多座アミン:2,2−ビピリジン、4,4’−ジ−(5−ノニル)−2,2’−ビピリジン、N−(n−プロピル)ピリジルメタンイミン、N−(n−オクチル)ピリジルメタンイミン
三座配位の多座アミン:N,N,N’,N’’,N’’−ペンタメチルジエチレントリアミン、N−プロピル−N,N−ジ(2−ピリジルメチル)アミン
四座配位の多座アミン:ヘキサメチルトリス(2−アミノエチル)アミン、N,N−ビス(2−ジメチルアミノエチル)−N,N’−ジメチルエチレンジアミン、2,5,9,12−テトラメチル−2,5,9,12−テトラアザテトラデカン、2,6,9,13−テトラメチル−2,6,9,13−テトラアザテトラデカン、4,11−ジメチル−1,4,8,11−テトラアザビシクロヘキサデカン、N’,N’’−ジメチル−N’,N’’−ビス((ピリジン−2−イル)メチル)エタン−1,2−ジアミン、トリス[(2−ピリジル)メチル]アミン、2,5,8,12−テトラメチル−2,5,8,12−テトラアザテトラデカン
五座配位の多座アミン:N,N,N’,N’’,N’’’,N’’’’,N’’’’−ヘプタメチルテトラエチレンテトラミン
六座配位の多座アミン:N,N,N’,N’−テトラキス(2−ピリジルメチル)エチレンジアミン
ポリアミン:ポリエチレンイミンなどが挙がられる。
Bidentate polydentate amines: 2,2-bipyridine, 4,4′-di- (5-nonyl) -2,2′-bipyridine, N- (n-propyl) pyridylmethanimine, N- (n -Octyl) pyridylmethanimine Tridentate polydentate amines: N, N, N ', N ", N" -pentamethyldiethylenetriamine, N-propyl-N, N-di (2-pyridylmethyl) amine Tetradentate polydentate amine: hexamethyltris (2-aminoethyl) amine, N, N-bis (2-dimethylaminoethyl) -N, N′-dimethylethylenediamine, 2,5,9,12-tetramethyl -2,5,9,12-tetraazatetradecane, 2,6,9,13-tetramethyl-2,6,9,13-tetraazatetradecane, 4,11-dimethyl-1,4,8,11- Tetraazabicyclohexadecane, N ', N ″ -dimethyl-N ′, N ″ -bis ((pyridin-2-yl) methyl) ethane-1,2-diamine, tris [(2-pyridyl) methyl] amine, 2,5,8 , 12-tetramethyl-2,5,8,12-tetraazatetradecane pentadentate polydentate amine: N, N, N ′, N ″, N ′ ″, N ″ ″, N ′ '''-Heptamethyltetraethylenetetramine Hexadentate polydentate amine: N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine Polyamine: Polyethyleneimine

このうち、入手性および触媒活性の観点から二座配位、三座配位、四座配位の多座アミンが好ましく、また、遷移金属原子の総重量が(メタ)アクリル系単量体の仕込み総重量に対して10ppm以下の低濃度触媒条件下で、十分な反応速度で重合を進行させ、分子量分布の狭く、高モノマー転化率の重合体を得るためには一般式(1)で表される四座配位の多座アミンがより好ましい。   Of these, bidentate, tridentate and tetradentate polydentate amines are preferable from the viewpoint of availability and catalytic activity, and the total weight of transition metal atoms is charged with a (meth) acrylic monomer. In order to obtain a polymer having a narrow molecular weight distribution and a high monomer conversion rate under a low concentration catalyst condition of 10 ppm or less with respect to the total weight, a polymer having a narrow molecular weight distribution and a high monomer conversion ratio is obtained. More preferred is a tetradentate polydentate amine.

Figure 2016153464
Figure 2016153464

(式中、R、RおよびRは、それぞれ独立して、一般式(2)または一般式(3)を表す。) (In the formula, R 1 , R 2 and R 3 each independently represent General Formula (2) or General Formula (3).)

Figure 2016153464
Figure 2016153464

(式中、R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1〜3のアルキル基を表す。) (In the formula, R 4 , R 5 , R 6 and R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

Figure 2016153464
Figure 2016153464

(式中、R、R、R10、R11およびR12は、それぞれ独立して、水素原子または炭素数1〜3のアルキル基を表す。)
また、多座アミンは、精製・コストの面からも、必要最小限の量が好ましく、銅原子に対して120mol%以下が好ましく、110mol%以下がさらに好ましく、100mol%以下が特に好ましい。
(In formula, R < 8 >, R < 9 >, R < 10 >, R < 11 > and R < 12 > represent a hydrogen atom or a C1-C3 alkyl group each independently.)
In addition, the minimum amount of polydentate amine is preferable from the viewpoint of purification and cost, preferably 120 mol% or less, more preferably 110 mol% or less, and particularly preferably 100 mol% or less with respect to the copper atom.

本発明においては、銅原子に対して多座アミンを混合し、重合前に銅錯体を形成することが、ARGET ATRP法において、効率良く2価の銅錯体を形成させるという理由から好ましい。   In the present invention, it is preferable that a polydentate amine is mixed with a copper atom to form a copper complex before polymerization because the divalent copper complex is efficiently formed in the ARGET ATRP method.

<還元剤>
銅錯体を触媒とするリビングラジカル重合において、還元剤を併用することで、活性が向上し、少ない銅触媒で重合が進行することが見出されている(ARGET ATRP)。このARGET ATRPは重合中にラジカル同士のカップリング等で生じた、反応遅延・停止の原因となる高酸化遷移金属錯体を還元して減少させることで活性が向上すると考えられており、通常数百〜数千ppm必要な遷移金属触媒を数十〜数百ppmまで減らすことを可能にしている。本発明においても還元剤はARGET ATRPと同様の働きをしている。
<Reducing agent>
In living radical polymerization using a copper complex as a catalyst, it has been found that by using a reducing agent in combination, the activity is improved and the polymerization proceeds with a small amount of copper catalyst (ARGET ATRP). This ARGET ATRP is thought to improve its activity by reducing and reducing highly oxidized transition metal complexes that are caused by coupling of radicals during polymerization and causing reaction delay and termination. It is possible to reduce the necessary transition metal catalyst to several tens of ppm to several tens to several hundred ppm. In the present invention, the reducing agent functions in the same manner as ARGET ATRP.

本発明で用いる還元剤を以下に例示するが、これらの還元剤は限定されるものではない。   Although the reducing agent used by this invention is illustrated below, these reducing agents are not limited.

(銅錯体を還元する際に酸を発生させない還元剤)
金属:リチウム、ナトリウム、カリウム等のアルカリ金属類;ベリリウム、マグネシウム、カルシウム、バリウム等のアルカリ土類金属類;アルミニウム;亜鉛等の典型金属;銅、ニッケル、ルテニウム、鉄等の遷移金属等が挙げられる。
(Reducing agent that does not generate acid when reducing copper complex)
Metals: Alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium and barium; aluminum; typical metals such as zinc; transition metals such as copper, nickel, ruthenium and iron It is done.

金属化合物:典型金属又は遷移金属の塩や典型元素との塩、さらに一酸化炭素、オレフィン、含窒素化合物、含酸素化合物、含リン化合物、含硫黄化合物等が配位した錯体等が挙げられる。具体的には、金属とアンモニア/アミンとの化合物、三塩化チタン、チタンアルコキシド、塩化クロム、硫酸クロム、酢酸クロム、塩化鉄、塩化銅、臭化銅、塩化スズ、酢酸亜鉛、水酸化亜鉛等が挙げられる。   Metal compounds: Examples include salts of typical metals or transition metals and salts with typical elements, and complexes in which carbon monoxide, olefins, nitrogen-containing compounds, oxygen-containing compounds, phosphorus-containing compounds, sulfur-containing compounds and the like are coordinated. Specifically, compounds of metal and ammonia / amine, titanium trichloride, titanium alkoxide, chromium chloride, chromium sulfate, chromium acetate, iron chloride, copper chloride, copper bromide, tin chloride, zinc acetate, zinc hydroxide, etc. Is mentioned.

有機スズ化合物:オクチル酸スズ、2−エチルヘキシル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズメルカプチド、ジブチルスズチオカルボキシレート、ジブチルスズジマレエート、ジオクチルスズチオカルボキシレート等が挙げられる。   Organotin compounds: tin octylate, tin 2-ethylhexylate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate and the like.

リン又はリン化合物:リン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、ヘキサメチルホスフォラストリアミド、ヘキサエチルホスフォラストリアミド等が挙げられる。   Phosphorus or phosphorus compound: Phosphorus, trimethylphosphine, triethylphosphine, triphenylphosphine, trimethylphosphite, triethylphosphite, triphenylphosphite, hexamethylphosphorustriamide, hexaethylphosphorustriamide and the like.

(銅錯体を還元する際に酸を発生させる還元剤(水素化物還元剤))
金属水素化物。具体例としては、水素化ナトリウム;水素化ゲルマニウム;水素化タングステン;水素化ジイソブチルアルミニウム、水素化アルミニウムリチウム、水素アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム等のアルミニウム水素化物;水素化トリフェニルスズ、水素化トリ−n−ブチルスズ、水素化ジフェニルスズ、水素化ジ−n−ブチルスズ、水素化トリエチルスズ、水素化トリメチルスズ等の有機スズ水素化物等が挙げられる。
(Reducing agent that generates acid when reducing copper complex (hydride reducing agent))
Metal hydride. Specific examples include sodium hydride; germanium hydride; tungsten hydride; diisobutylaluminum hydride, lithium aluminum hydride, sodium aluminum hydride, sodium triethoxyaluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, etc. And aluminum hydrides such as triphenyltin hydride, tri-n-butyltin hydride, diphenyltin hydride, di-n-butyltin hydride, triethyltin hydride, and trimethyltin hydride. .

還元作用を示す有機化合物:アルコール、アルデヒド、フェノール類及び有機酸化合物等が挙げられる。アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール等が挙げられる。アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ギ酸等が挙げられる。フェノール類としては、フェノール、ハイドロキノン、ジブチルヒドロキシトルエン、トコフェロール等が挙げられる。有機酸化合物としては、クエン酸、シュウ酸、アスコルビン酸、アスコルビン酸塩、アスコルビン酸エステル等が挙げられる。   Organic compounds exhibiting a reducing action: alcohols, aldehydes, phenols, organic acid compounds and the like. Examples of the alcohol include methanol, ethanol, propanol, and isopropanol. Examples of the aldehyde include formaldehyde, acetaldehyde, benzaldehyde, formic acid and the like. Examples of phenols include phenol, hydroquinone, dibutylhydroxytoluene, tocopherol and the like. Examples of the organic acid compound include citric acid, oxalic acid, ascorbic acid, ascorbate, ascorbate ester and the like.

ケイ素水素化物:トリクロロシラン、トリメチルシラン、トリエチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシロキサン等が挙げられる。   Silicon hydride: trichlorosilane, trimethylsilane, triethylsilane, diphenylsilane, phenylsilane, polymethylhydrosiloxane and the like.

ホウ素水素化物:ボラン、ジボラン、水素化ホウ素ナトリウム、水素化トリメトキシホウ酸ナトリウム、硫化水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、シアン化水素化ホウ素リチウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ−s−ブチルホウ素リチウム、水素化トリ−t−ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラ−n−ブチルアンモニウム等が挙げられる
窒素水素化合物:ヒドラジン、ジイミド等が挙げられる。
Boron hydride: borane, diborane, sodium borohydride, sodium trimethoxyborate, sodium borohydride, sodium borohydride, sodium borohydride, lithium borohydride, lithium borohydride, lithium triethylborohydride, hydrogenated Examples include lithium tri-s-butylborohydride, lithium tri-t-butylborohydride, calcium borohydride, potassium borohydride, zinc borohydride, tetra-n-butylammonium borohydride and the like. Examples include hydrazine and diimide.

また、還元剤の還元力が強いほど重合も速く進めることが可能になる。即ち、アミンを還元剤として用いている例(US2009/0156771号)は還元能力が低いため、十分な反応速度が得られていない。そのため、アミンよりも還元能力が高い、つまり電子供与性の還元剤が好ましい。中でも有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物の群から選ばれる少なくとも1種であることがより好ましい。さらに、工業化を考えると、できるだけ安価で重合後、容易に除去できるアスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩が特に好ましい。これら還元剤は単独で用いてもよいし、2種以上を併用してもかまわない。   Also, the stronger the reducing power of the reducing agent, the faster the polymerization can proceed. That is, an example using an amine as a reducing agent (US2009 / 0156771) has a low reducing ability, so that a sufficient reaction rate is not obtained. Therefore, a reducing agent having a higher reducing ability than that of an amine, that is, an electron donating reducing agent is preferable. Among these, at least one selected from the group consisting of an organic tin compound, ascorbic acid, ascorbic acid ester, ascorbate, hydrazine, and boron hydride is more preferable. Furthermore, in view of industrialization, ascorbic acid, ascorbic acid ester, and ascorbate that can be easily removed after polymerization at a low cost are particularly preferable. These reducing agents may be used alone or in combination of two or more.

還元剤の添加量は(メタ)アクリレート単量体の仕込み総量に対して10〜1000ppmが好ましく、10〜800ppmがより好ましく、10〜600ppmが更に好ましく、10〜500ppmが特に好ましい。   The amount of the reducing agent added is preferably 10 to 1000 ppm, more preferably 10 to 800 ppm, still more preferably 10 to 600 ppm, and particularly preferably 10 to 500 ppm with respect to the total charged amount of the (meth) acrylate monomer.

還元剤の添加方法は特に限定されず、一括添加、分割添加、断続添加、連続添加のいずれでもよいが、ARGET ATRPの機構からわかるように、還元剤を一度に過剰量添加するとラジカルを制御するための2価銅錯体が不足し、カップリング等によって分子量分布が広がる。そのため、還元剤は重合の進行に伴い少量ずつ添加すること、具体的には銅錯体に対して、10〜900mol%/Hrで添加することが好ましく、20〜700mol%/Hrで添加することがより好ましく、30〜500mol%/Hrで添加するのが特に好ましい。   The method of adding the reducing agent is not particularly limited, and any of batch addition, divided addition, intermittent addition, and continuous addition may be used, but as can be seen from the mechanism of ARGET ATRP, radicals are controlled when an excessive amount of reducing agent is added at once. Therefore, the bivalent copper complex is insufficient, and the molecular weight distribution is widened by coupling or the like. Therefore, it is preferable to add a reducing agent little by little with progress of superposition | polymerization, specifically, it is preferable to add at 10-900 mol% / Hr with respect to a copper complex, and to add at 20-700 mol% / Hr. More preferably, adding at 30 to 500 mol% / Hr is particularly preferable.

<塩基>
アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩のような銅錯体を還元した際に酸を発生させる還元剤を使用する場合、塩基を併用しない場合、重合速度の低下と重合制御の悪化による分子量分布の広がりを招くため、塩基の併用がより効果的である。また、塩基は重合系中に存在する酸あるいは発生する酸を中和し、酸の蓄積を防ぐ効果もある。しかし、多量の塩基を反応系中に投入した場合、連鎖移動反応が進行し、反応の停止・遅延を引き起こす要因となり得る。
<Base>
When using a reducing agent that generates an acid when reducing a copper complex such as ascorbic acid, ascorbic acid ester or ascorbate, when not using a base, the molecular weight distribution decreases due to a decrease in polymerization rate and deterioration in polymerization control. In combination with a base is more effective because it leads to spread. The base also has the effect of neutralizing the acid present in the polymerization system or the acid generated to prevent acid accumulation. However, when a large amount of base is introduced into the reaction system, the chain transfer reaction proceeds, which may cause the reaction to stop or be delayed.

発明者らは、還元剤に対して必要最小限の塩基を添加することで、高モノマー転化率・高い官能化率を達成した。   The inventors have achieved a high monomer conversion ratio and a high functionalization ratio by adding a necessary minimum base to the reducing agent.

塩基はブレンステッド塩基あるいはルイス塩基化合物であれば良く、下に例示するがそれに限定されるものではない。   The base may be a Bronsted base or a Lewis base compound and is exemplified below but is not limited thereto.

モノアミン系:モノアミンは1分子中に上記で定義される塩基として作用する部位が1つしかない化合物を示し、以下に例示するがそれに限定されるものではない。メチルアミン、アニリン、リシン等の一級アミン、ジメチルアミン、ピペリジン等の二級アミン、トリメチルアミン、トリエチルアミン等の三級アミン、ピリジン、ピロール等の芳香族系、およびアンモニアが挙げられる。   Monoamine type: Monoamine is a compound having only one site acting as a base as defined above in one molecule, and is exemplified below, but is not limited thereto. Examples include primary amines such as methylamine, aniline and lysine, secondary amines such as dimethylamine and piperidine, tertiary amines such as trimethylamine and triethylamine, aromatics such as pyridine and pyrrole, and ammonia.

ポリアミン系:エチレンジアミン、テトラメチルエチレンジアミン等のジアミン、ジエチレントリアミン、ペンタメチルジエチレントリアミン等のトリアミン、トリエチレンテトラミン、ヘキサメチルトリエチレンテトラミン、ヘキサメチレンテトラミン等のテトラミン、ポリエチレンイミン等が上げられる。   Polyamines: Examples include diamines such as ethylenediamine and tetramethylethylenediamine, triamines such as diethylenetriamine and pentamethyldiethylenetriamine, tetramines such as triethylenetetramine, hexamethyltriethylenetetramine and hexamethylenetetramine, and polyethyleneimine.

無機塩基:無機塩基は周期表の一族と二族の単体あるいは化合物を示し、下記に例示するがそれに限定されるものではない。リチウム、ナトリウム、カルシウム等の周期表の一族と二族の単体。ナトリウムメトキシド、カリウムエトキシド、メチルリチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸三カリウム、リン酸水素二カリウム、酢酸ナトリウム、酢酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、フェノキシナトリウム、フェノキシカリウム、アスコルビン酸ナトリウム、アスコルビン酸カリウム等の周期表の一族と二族の化合物。水酸化アンモニウム弱酸と強塩基の塩などが挙げられる。   Inorganic base: An inorganic base represents a simple substance or a compound of Groups 1 and 2 of the periodic table, and is exemplified below, but is not limited thereto. A simple group of groups 1 and 2 of the periodic table, such as lithium, sodium, and calcium. Sodium methoxide, potassium ethoxide, methyl lithium, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonium bicarbonate, trisodium phosphate, disodium hydrogen phosphate, tripotassium phosphate, dihydrogen phosphate Compounds of Groups 1 and 2 of the periodic table such as potassium, sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, phenoxy sodium, phenoxy potassium, sodium ascorbate, and potassium ascorbate. Examples include salts of weak ammonium hydroxide and strong base.

これらは、単独で用いても良いし、複数を併用しても構わない。また、塩基は、直接反応系に添加してもよいし、反応系中で発生させてもよい。   These may be used alone or in combination. The base may be added directly to the reaction system or may be generated in the reaction system.

また、精製・コストの面からも、(メタ)アクリル重合体から除去しやすく、安価な低沸点のモノアミンがより好ましい。   Further, from the viewpoint of purification and cost, monoamine having a low boiling point that is easy to remove from the (meth) acrylic polymer and is inexpensive is more preferable.

還元剤に対して、100 mol%以上の塩基が反応系中に存在することが好ましく、100〜500ppmがより好ましく、100〜300ppmが好ましく、100〜130ppmが特に好ましい。   It is preferable that 100 mol% or more of the base is present in the reaction system with respect to the reducing agent, 100 to 500 ppm is more preferable, 100 to 300 ppm is preferable, and 100 to 130 ppm is particularly preferable.

塩基は、還元剤を調整する時に同時に添加することが望ましい。ただし、ここで言う「同時」とはおおよそ同じタイミングで混合させることを示しており、厳密なものではない。   It is desirable to add the base at the same time as adjusting the reducing agent. However, “simultaneous” as used herein indicates mixing at approximately the same timing, and is not exact.

<(メタ)アクリル系単量体(モノマー)>
本発明は、遷移金属化合物を触媒とするリビングラジカル重合法において、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を1〜100重量%含有している。
<(Meth) acrylic monomer (monomer)>
In the living radical polymerization method using a transition metal compound as a catalyst, the present invention has (meth) acrylic acid ester group having 8 to 22 carbon atoms in the total mass of 100% by weight of the vinyl monomer ( 1 to 100% by weight of a (meth) acrylic monomer is contained.

また本発明は、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を80〜20重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を20〜80重量%含有することが、低極性ポリマーを得るために好ましい。さらに、伸縮率の観点から(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を60〜40重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を40〜60重量%含有することが好ましい。   In the present invention, the (meth) acrylic monomer having 1 to 7 carbon atoms in the (meth) acrylic acid ester group is 80 to 20% by weight based on 100% by weight of the total weight of the vinyl monomer. In order to obtain a low-polar polymer, it is preferable to contain 20 to 80% by weight of a (meth) acrylic monomer having 8 to 18 carbon atoms in the ester group of the (meth) acrylic acid ester. Furthermore, from the viewpoint of the expansion / contraction rate, 60 to 40% by weight of (meth) acrylic monomer having 1 to 7 carbon atoms in the ester group of (meth) acrylic acid ester is contained, and the ester group of (meth) acrylic acid ester It is preferable to contain 40 to 60% by weight of a (meth) acrylic monomer having 8 to 18 carbon atoms.

(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体としては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル等が挙げられる。   Specific examples of the (meth) acrylic monomer having 1 to 7 carbon atoms in the ester group of (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Acrylic acid-n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid-n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid-tert-butyl, (meth) acrylic acid-n-pentyl , (Meth) acrylic acid-n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-n-heptyl, and the like.

(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の脂肪族アルキル基を有する(メタ)アクリル系単量体は、アクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーがより好ましく、アクリル酸エステルモノマーがさらに好ましい。具体的には、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシプロピル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等が挙げられる。これらは、2種類以上併用しても構わない。   The (meth) acrylic monomer having an aliphatic alkyl group having 8 to 22 carbon atoms in the ester group of the (meth) acrylic acid ester is more preferably an acrylic acid ester monomer and / or a methacrylic acid ester monomer, and acrylic acid. More preferred are ester monomers. Specifically, (meth) acrylic acid-n-octyl, (meth) acrylic acid-2-ethylhexyl, (meth) acrylic acid nonyl, (meth) acrylic acid decyl, (meth) acrylic acid dodecyl, (meth) acrylic Acid phenyl, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (Meth) acrylic acid-2-hydroxypropyl, stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, γ- (methacryloyloxypropyl) trimethoxysilane, (meth) acrylic Ethylene oxide adduct of acid, trifluoromethyl methyl (meth) acrylate, (meth 2-trifluoromethylethyl acrylate, 2-perfluoroethylethyl (meth) acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, 2-perfluoroethyl (meth) acrylate, (Meth) acrylic acid perfluoromethyl, (meth) acrylic acid diperfluoromethyl methyl, (meth) acrylic acid 2-perfluoromethyl-2-perfluoroethyl methyl, (meth) acrylic acid 2-perfluorohexyl ethyl, Examples thereof include 2-perfluorodecylethyl (meth) acrylate and 2-perfluorohexadecylethyl (meth) acrylate. Two or more of these may be used in combination.

<重合溶媒>
本発明においては、重合溶媒はメタノールである。
<Polymerization solvent>
In the present invention, the polymerization solvent is methanol.

還元剤、特に有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物の群から選ばれる少なくとも1種を用いる場合、その溶解性がその還元力に大きく影響を及ぼすことから、重合に用いる溶媒は上記還元剤を溶解できる溶媒が好ましく、尚且つ高い官能化率を達成でき、アルコール溶媒の中でも極性が高く、また連鎖移動定数が少ないアルコール系溶媒であるメタノールに限定される。エタノール、イソプロパノールおよびt−ブチルアルコール等のアルコール溶媒では、連鎖移動反応が起こりやすく、末端の官能化率がかなり低下する。一方、メタノールを使用した場合は、連鎖移動反応が起こりにくいため、末端の官能化率が高くなるため、本発明ではメタノールに限定される。   When using at least one selected from the group consisting of reducing agents, especially organotin compounds, ascorbic acid, ascorbic acid esters, ascorbate, hydrazine, and boron hydride, the solubility greatly affects the reducing power. Therefore, the solvent used for the polymerization is preferably a solvent capable of dissolving the above reducing agent, and can achieve a high functionalization rate, and is limited to methanol, which is an alcohol solvent having a high polarity and a low chain transfer constant among alcohol solvents. The In alcohol solvents such as ethanol, isopropanol and t-butyl alcohol, a chain transfer reaction is likely to occur, and the functionalization rate of the terminal is considerably lowered. On the other hand, when methanol is used, the chain transfer reaction is unlikely to occur, and the functionalization rate of the terminal is increased. Therefore, the present invention is limited to methanol.

溶媒量は、還元剤が析出してこない最小量、(メタ)アクリレート単量体の仕込み総量に対して0.5〜60重量部が好ましく、1〜40重量部がより好ましく、2〜20重量部が更に好ましく、5〜10重量部が最も好ましい。また、より溶媒量が少ない方が、重合後の蒸発脱揮工程において、短時間で蒸発できることから、5〜10重量部が特に好ましい。   The amount of the solvent is preferably 0.5 to 60 parts by weight, more preferably 1 to 40 parts by weight, and more preferably 2 to 20 parts by weight based on the minimum amount from which the reducing agent does not precipitate, and the total charged amount of the (meth) acrylate monomer. More preferred is 5 to 10 parts by weight. Moreover, since the one where the amount of solvent is smaller can evaporate in a short time in the evaporation devolatilization step after polymerization, 5 to 10 parts by weight is particularly preferable.

<開始剤>
有機ハロゲン化物は重合開始剤であって、反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物である。例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物、あるいはハロゲン化スルホニル化合物等が例示される。
<Initiator>
The organic halide is a polymerization initiator and is an organic halide having a highly reactive carbon-halogen bond. For example, a carbonyl compound having a halogen at the α-position, a compound having a halogen at the benzyl-position, a halogenated sulfonyl compound, or the like is exemplified.

具体的には、C−CHX、C−C(H)(X)CH、C−C(X)(CH(ただし、上の化学式中、Cはフェニル基、Xは塩素、臭素、またはヨウ素)
−C(H)(X)−CO、R−C(CH)(X)−CO、R−C(H)(X)−C(O)R、R−C(CH)(X)−C(O)R
(式中、R、Rは水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)
−C−SO
(式中、R3は水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)等が挙げられる。
Specifically, C 6 H 5 -CH 2 X , C 6 H 5 -C (H) (X) CH 3, C 6 H 5 -C (X) (CH 3) 2 ( where in the above formula , C 6 H 5 is a phenyl group, X is chlorine, bromine, or iodine)
R 3 -C (H) (X ) -CO 2 R 4, R 3 -C (CH 3) (X) -CO 2 R 4, R 3 -C (H) (X) -C (O) R 4 , R 3 -C (CH 3) (X) -C (O) R 4,
(Wherein R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine)
R 3 —C 6 H 4 —SO 2 X
(Wherein R 3 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine).

また、2つ以上の開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤として使用してもよい。   An organic halide having two or more starting points or a sulfonyl halide compound may be used as an initiator.

単量体と開始剤量の比を調整することにより、所望の重合体分子量に設定することができることがリビングラジカル重合の特徴である。   It is a feature of living radical polymerization that the desired polymer molecular weight can be set by adjusting the ratio of the monomer and the initiator amount.

<重合温度>
重合温度は、限定はされないが、低すぎると反応速度が遅くなる恐れがあり、一方温度が高いと副反応(連鎖移動反応)が起こりやすくなるため、20〜100℃の範囲が好ましく、30〜90℃がより好ましく、40〜80℃がさらに好ましく、50〜70℃が特に好ましい。
<Polymerization temperature>
The polymerization temperature is not limited, but if it is too low, the reaction rate may be slow. On the other hand, if the temperature is high, side reactions (chain transfer reactions) are likely to occur. 90 degreeC is more preferable, 40-80 degreeC is further more preferable, and 50-70 degreeC is especially preferable.

<反応時間>
本発明の製造方法で得られる(メタ)アクリル系重合体の遷移金属錯体、塩基および還元剤を全て混合し始めてからの時間は特に限定されないが、好ましくは360分以下であり、好ましくは300分以下であり、より好ましくは240分以下である。
<Reaction time>
The time from the start of mixing all of the transition metal complex of the (meth) acrylic polymer obtained by the production method of the present invention, the base and the reducing agent is not particularly limited, but is preferably 360 minutes or less, preferably 300 minutes. Or less, more preferably 240 minutes or less.

<本発明で得られる(メタ)アクリル系重合体>
本発明の製造方法で得られるビニル系重合体主鎖は直鎖状でもよいし、枝分かれがあってもよい。
<(Meth) acrylic polymer obtained in the present invention>
The vinyl polymer main chain obtained by the production method of the present invention may be linear or branched.

(分子量)
本発明の製造方法で得られる(メタ)アクリル系重合体の数平均分子量は特に制限はなく、重合体に要求される物性に応じて決めることができるが、1000〜1000000の範囲が好ましく、5000〜500000の範囲がより好ましく、10000〜300000の範囲がさらに好ましく、30000〜200000の範囲が特に好ましく、40000〜150000の範囲が特別に好ましい。分子量が低いと重合体に要求される物性が発現されない恐れがあり、一方、分子量が高いと重合過程での副反応も起こりやすくなる傾向にある。
(Molecular weight)
The number average molecular weight of the (meth) acrylic polymer obtained by the production method of the present invention is not particularly limited and can be determined according to the physical properties required for the polymer, but is preferably in the range of 1,000 to 1,000,000. The range of ˜500000 is more preferred, the range of 10000 to 300000 is further preferred, the range of 30000 to 200000 is particularly preferred, and the range of 40000 to 150,000 is particularly preferred. If the molecular weight is low, physical properties required for the polymer may not be expressed. On the other hand, if the molecular weight is high, side reactions in the polymerization process tend to occur.

(分子量分布)
本発明の製造方法で得られる(メタ)アクリル系重合体の分子量分布、すなわち、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mn)と数平均分子量(Mw)の比は、1.1〜1.6であるが、好ましくは1.1〜1.5であり、より好ましくは1.1〜1.4であり、さらに好ましくは1.1〜1.3である。本発明のGPC測定においては、通常、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにて行い、数平均分子量等はポリスチレン換算で求めることができる。
(Molecular weight distribution)
The molecular weight distribution of the (meth) acrylic polymer obtained by the production method of the present invention, that is, the ratio of the weight average molecular weight (Mn) and the number average molecular weight (Mw) measured by gel permeation chromatography is 1.1 to Although it is 1.6, Preferably it is 1.1-1.5, More preferably, it is 1.1-1.4, More preferably, it is 1.1-1.3. In the GPC measurement of the present invention, chloroform is usually used as the mobile phase, the measurement is performed with a polystyrene gel column, and the number average molecular weight and the like can be determined in terms of polystyrene.

(重合率)
本発明の製造方法で得られる(メタ)アクリル系重合体の重合率は、特に限定されないが、好ましくは85%〜100%であり、好ましくは90%〜100%であり、より好ましくは95%〜100%である。
(Polymerization rate)
The polymerization rate of the (meth) acrylic polymer obtained by the production method of the present invention is not particularly limited, but is preferably 85% to 100%, preferably 90% to 100%, more preferably 95%. ~ 100%.

(官能化率)
本発明は、(メタ)アクリル系重合体の末端に官能基を有し、その官能化率が1.4〜2.0である。さらに、官能化率が高い程、反応性が向上するため1.6〜2.0が好ましい。
(Functionalization rate)
This invention has a functional group at the terminal of a (meth) acrylic-type polymer, and the functionalization rate is 1.4-2.0. Furthermore, since the reactivity improves as the functionalization rate increases, 1.6 to 2.0 is preferable.

官能化率とは、(メタ)アクリル系重合体に官能基の導入を行い、官能化率を算出した値であり、最大で2.0である。   The functionalization rate is a value obtained by introducing a functional group into the (meth) acrylic polymer and calculating the functionalization rate, and is 2.0 at the maximum.

末端の官能基としては、特に限定されないが、好ましくは、(メタ)アクリロイル基、シリル基、ビニル基、イソシアネート基、スルホン基、水酸基であり、より好ましくはシリル基、ビニル基であり、特に好ましくはアクリロイル基である。容易にポリマーに導入可能であり、効果的にラジカルを発生させることができる理由からアクリロイル基であることが好ましい。   The terminal functional group is not particularly limited, but is preferably a (meth) acryloyl group, a silyl group, a vinyl group, an isocyanate group, a sulfone group, or a hydroxyl group, more preferably a silyl group or a vinyl group, particularly preferably. Is an acryloyl group. An acryloyl group is preferred because it can be easily introduced into a polymer and can effectively generate radicals.

以下に本発明の具体的な実施例を示すが、本発明は、下記実施例に限定されるものではない。下記実施例、および比較例中「部」および「ppm」はそれぞれ「重量部」および「重量百分率」を表す。   Specific examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following examples and comparative examples, “parts” and “ppm” represent “parts by weight” and “weight percentage”, respectively.

(測定法)
「重合率」はガスクロマトグラフィー(GC)を用いて算出した。ただし、GCカラムとして、ポリエチレングリコールカラム(Supelcowax 10;シグマアルドリッチ製)を、GC測定溶媒としてp−キシレンを用いた。
(Measurement method)
The “polymerization rate” was calculated using gas chromatography (GC). However, a polyethylene glycol column (Supelcoux 10; manufactured by Sigma Aldrich) was used as the GC column, and p-xylene was used as the GC measurement solvent.

「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、標準ポリスチレン換算法により算出した。ただし、GPCカラムとして、ポリスチレン架橋ゲルを充填したもの(shodex GPC K−804;昭和電工(株)製)を、GPC測定溶媒としてクロロホルムを用いた。   “Number average molecular weight” and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)” were calculated by standard polystyrene conversion using gel permeation chromatography (GPC). However, a GPC column filled with polystyrene cross-linked gel (shodex GPC K-804; manufactured by Showa Denko KK) was used as the GPC measurement solvent with chloroform.

下記実施例中、「官能化率(重合体1分子当たりに導入されたアクリロイル基数)は、1H−NMR分析及びGPCにより求められた数平均分子量より算出した。ただし、1H−NMRはBruker社製ASX−400を使用し、溶媒として重クロロホルムを用いて23℃にて測定した。   In the following examples, “functionalization ratio (the number of acryloyl groups introduced per molecule of polymer) was calculated from the number average molecular weight determined by 1H-NMR analysis and GPC. However, 1H-NMR was manufactured by Bruker. Measurement was performed at 23 ° C. using ASX-400 and deuterated chloroform as a solvent.

(実施例1)
アクリル酸n−ブチル(BA)50重量部、アクリル酸2−エチルヘキシル(EHA)50重量部、メタノール10重量部、酢酸ブチル0.1重量部、トリエチルアミン(EtN)170ppm、および2,5−ジブロモアジピン酸ジエチル(DBAE)0.60重量部を仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)、CuBr29ppm (Cu量=8ppm)をメタノール0.12重量部に溶解させ、純度96%のトリス[2−(ジメチルアミノ)エチル]アミン(MeTREN)29ppmを混合した溶液)を混合し、窒素気流下55Cで攪拌した。別途、アスコルビン酸(VC)0.04重量部(400ppm)をメタノール3.2重量部、およびトリエチルアミン505ppmを混合させた溶液を調整し、このアスコルビン酸溶液を滴下して重合を開始した。重合途中、反応溶液の温度が55〜65Cとなるように加熱攪拌を行い、重合開始から240分後、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルの平均重合率が99.1%に到達したところで、アスコルビン酸の滴下を停止し、反応溶液を減圧にし、溶媒を留去して重合体[1]を得た。なお、ここまでのアスコルビン酸の総量は312ppm、トリエチルアミンの総量は564ppmであった。重合体[1]の数平均分子量は60500、分子量分布は1.19であった。
Example 1
N-butyl acrylate (BA) 50 parts by weight, 2-ethylhexyl acrylate (EHA) 50 parts by weight, methanol 10 parts by weight, butyl acetate 0.1 parts by weight, triethylamine (Et 3 N) 170 ppm, and 2,5- 0.60 part by weight of diethyl dibromoadipate (DBAE) was added, and a separately prepared copper complex solution (copper bromide (II), 29 ppm of CuBr 2 (Cu content = 8 ppm)) was dissolved in 0.12 part by weight of methanol. And a 96% pure tris [2- (dimethylamino) ethyl] amine (Me 6 TREN) mixed solution of 29 ppm) was mixed and stirred at 55 ° C. under a nitrogen stream. Separately, a solution in which 0.04 parts by weight (VC) of ascorbic acid (VC) was mixed with 3.2 parts by weight of methanol and 505 ppm of triethylamine was prepared, and this ascorbic acid solution was dropped to initiate polymerization. During the polymerization, the mixture was heated and stirred so that the temperature of the reaction solution became 55 to 65 ° C., and after 240 minutes from the start of polymerization, the average polymerization rate of n-butyl acrylate and 2-ethylhexyl acrylate was 99.1%. When it reached, dropping of ascorbic acid was stopped, the reaction solution was decompressed, and the solvent was distilled off to obtain a polymer [1]. The total amount of ascorbic acid so far was 312 ppm, and the total amount of triethylamine was 564 ppm. The number average molecular weight of the polymer [1] was 60500, and the molecular weight distribution was 1.19.

得られた重合体[1]を酢酸ブチル125重量部に溶解させ、アクリル酸カリウム(AcOK)0.70重量部、テトラブチルアンモニウムブロミド(TBABr)0.11重量部4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(H−TEMPO)0.01重量部、キョーワード700SEN−S(KW700)0.4重量部を仕込み、120Cで3時間反応させた。反応処理後、NMR測定を行った結果、官能化率は1.64であった。 The obtained polymer [1] was dissolved in 125 parts by weight of butyl acetate, 0.70 part by weight of potassium acrylate (AcOK), 0.11 part by weight of tetrabutylammonium bromide (TBABr) 4-hydroxy-2,2, 0.01 part by weight of 6,6-tetramethylpiperidine-1-oxyl (H-TEMPO) and 0.4 part by weight of KYOWARD 700SEN-S (KW700) were charged and reacted at 120 ° C. for 3 hours. As a result of conducting NMR measurement after the reaction treatment, the functionalization rate was 1.64.

(実施例2)
アクリル酸n−ブチル50重量部、アクリル酸2−エチルヘキシル50重量部、メタノール10重量部、酢酸ブチル0.1重量部、および2,5−ジブロモアジピン酸ジエチル(DBAE)0.58重量部を仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)、CuBr29ppm (Cu量=8ppm)をメタノール0.12重量部に溶解させ、純度96%のトリス[2−(ジメチルアミノ)エチル]アミン(MeTREN)29ppmを混合した溶液)を混合し、窒素気流下55Cで攪拌した。別途、アスコルビン酸0.04部(400ppm)をメタノール3.2重量部、およびトリエチルアミン505ppmを混合させた溶液を調整し、このアスコルビン酸溶液を滴下して重合を開始した。重合途中、反応溶液の温度が55〜65Cとなるように加熱攪拌を行い、重合開始から240分後、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルの平均重合率が98.9%に到達したところで、アスコルビン酸の滴下を停止し、反応溶液を減圧にし、溶媒を留去して重合体[2]を得た。なお、ここまでのアスコルビン酸の総量は312ppm、トリエチルアミンの総量は394ppmであった。重合体[2]の数平均分子量は63100、分子量分布は1.24であった。
(Example 2)
Charge 50 parts by weight of n-butyl acrylate, 50 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of methanol, 0.1 part by weight of butyl acetate, and 0.58 parts by weight of diethyl 2,5-dibromoadipate (DBAE). In this, a separately prepared copper complex solution (copper bromide (II), CuBr 2 29 ppm (Cu amount = 8 ppm)) was dissolved in 0.12 part by weight of methanol, and tris [2- (dimethylamino) having a purity of 96% was dissolved. Ethyl] amine (solution mixed with 29 ppm of Me 6 TREN) was mixed and stirred at 55 ° C. under a nitrogen stream. Separately, a solution in which 0.04 part (400 ppm) of ascorbic acid was mixed with 3.2 parts by weight of methanol and 505 ppm of triethylamine was prepared, and this ascorbic acid solution was dropped to initiate polymerization. During the polymerization, the mixture was heated and stirred so that the temperature of the reaction solution became 55 to 65 ° C., and after 240 minutes from the start of polymerization, the average polymerization rate of n-butyl acrylate and 2-ethylhexyl acrylate was 98.9%. When it reached, dropping of ascorbic acid was stopped, the reaction solution was decompressed, and the solvent was distilled off to obtain a polymer [2]. The total amount of ascorbic acid so far was 312 ppm, and the total amount of triethylamine was 394 ppm. The number average molecular weight of the polymer [2] was 63100, and the molecular weight distribution was 1.24.

得られた重合体[2]を酢酸ブチル125重量部に溶解させ、アクリル酸カリウム(AcOK)0.70重量部、テトラブチルアンモニウムブロミド(TBABr)0.11重量部4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(H−TEMPO)0.01重量部、キョーワード700SEN−S(KW700)0.4重量部を仕込み、120Cで3時間反応させた。反応処理後、NMR測定を行った結果、官能化率は1.81であった。 The obtained polymer [2] was dissolved in 125 parts by weight of butyl acetate, 0.70 part by weight of potassium acrylate (AcOK), 0.11 part by weight of tetrabutylammonium bromide (TBABr) 4-hydroxy-2,2, 0.01 part by weight of 6,6-tetramethylpiperidine-1-oxyl (H-TEMPO) and 0.4 part by weight of KYOWARD 700SEN-S (KW700) were charged and reacted at 120 ° C. for 3 hours. As a result of performing NMR measurement after the reaction treatment, the functionalization rate was 1.81.

(実施例3)
アクリル酸n−ブチル51重量部、アクリル酸2−エチルヘキシル49重量部、メタノール10重量部、酢酸ブチル0.1重量部、および2,5−ジブロモアジピン酸ジエチル(DBAE)0.58部を仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)、CuBr29ppm (Cu量=8ppm)をメタノール0.12重量部に溶解させ、純度96%のトリス[2−(ジメチルアミノ)エチル]アミン(MeTREN)29ppmを混合した溶液)を混合し、窒素気流下55Cで攪拌した。別途、アスコルビン酸0.04重量部(400ppm)をメタノール3.2重量部、およびトリエチルアミン505ppmを混合させた溶液を調整し、このアスコルビン酸溶液を滴下して重合を開始した。重合途中、反応溶液の温度が55〜65Cとなるように加熱攪拌を行い、重合開始から240分後、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルの平均重合率が98.9%に到達したところで、アスコルビン酸の滴下を停止し、反応溶液を減圧にし、溶媒を留去して重合体[3]を得た。なお、ここまでのアスコルビン酸の総量は312ppm、トリエチルアミンの総量は394ppmであった。重合体[3]の数平均分子量は63600、分子量分布は1.21であった。
(Example 3)
Charge 51 parts by weight of n-butyl acrylate, 49 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of methanol, 0.1 part by weight of butyl acetate, and 0.58 parts of diethyl 2,5-dibromoadipate (DBAE) To this, a separately prepared copper complex solution (copper bromide (II), CuBr 2 29 ppm (Cu content = 8 ppm)) was dissolved in 0.12 parts by weight of methanol, and tris [2- (dimethylamino) ethyl with a purity of 96% was obtained. ] (A solution in which 29 ppm of Me 6 TREN) was mixed, and the mixture was stirred at 55 ° C. under a nitrogen stream. Separately, a solution prepared by mixing 0.04 part by weight (400 ppm) of ascorbic acid with 3.2 parts by weight of methanol and 505 ppm of triethylamine was prepared, and this ascorbic acid solution was dropped to initiate polymerization. During the polymerization, the mixture was heated and stirred so that the temperature of the reaction solution became 55 to 65 ° C., and after 240 minutes from the start of polymerization, the average polymerization rate of n-butyl acrylate and 2-ethylhexyl acrylate was 98.9%. When it reached, dropping of ascorbic acid was stopped, the reaction solution was decompressed, and the solvent was distilled off to obtain a polymer [3]. The total amount of ascorbic acid so far was 312 ppm, and the total amount of triethylamine was 394 ppm. The number average molecular weight of the polymer [3] was 63600, and the molecular weight distribution was 1.21.

得られた重合体[3]を酢酸ブチル125重量部に溶解させ、アクリル酸カリウム(AcOK)0.70重量部、テトラブチルアンモニウムブロミド(TBABr)0.11重量部4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(H−TEMPO)0.01重量部、キョーワード700SEN−S(KW700)0.4重量部を仕込み、120Cで3時間反応させた。反応処理後、NMR測定を行った結果、官能化率は1.82であった。 The obtained polymer [3] was dissolved in 125 parts by weight of butyl acetate, 0.70 part by weight of potassium acrylate (AcOK), 0.11 part by weight of tetrabutylammonium bromide (TBABr) 4-hydroxy-2,2, 0.01 part by weight of 6,6-tetramethylpiperidine-1-oxyl (H-TEMPO) and 0.4 part by weight of KYOWARD 700SEN-S (KW700) were charged and reacted at 120 ° C. for 3 hours. As a result of performing NMR measurement after the reaction treatment, the functionalization rate was 1.82.

(比較例1)
アクリル酸n−ブチル50重量部、アクリル酸2−エチルヘキシル50重量部、エタノール10重量部、酢酸ブチル0.1重量部、トリエチルアミン170ppmおよび2,5−ジブロモアジピン酸ジエチル(DBAE)0.58部を仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)、CuBr29ppm (Cu量=8ppm)をエタノール0.12重量部に溶解させ、純度96%のトリス[2−(ジメチルアミノ)エチル]アミン(MeTREN)29ppmを混合した溶液)を混合し、窒素気流下55Cで攪拌した。別途、アスコルビン酸0.04重量部(400ppm)をエタノール3.2重量部、およびトリエチルアミン505ppmを混合させた溶液を調整し、このアスコルビン酸溶液を滴下して重合を開始した。重合途中、反応溶液の温度が55〜65Cとなるように加熱攪拌を行い、重合開始から270分後、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルの平均重合率が99.0%に到達したところで、アスコルビン酸の滴下を停止し、反応溶液を減圧にし、溶媒を留去して重合体[4]を得た。なお、ここまでのアスコルビン酸の総量は326ppm、トリエチルアミンの総量は582ppmであった。重合体[4]の数平均分子量は62300、分子量分布は1.32であった。
(Comparative Example 1)
50 parts by weight of n-butyl acrylate, 50 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of ethanol, 0.1 part by weight of butyl acetate, 170 ppm of triethylamine and 0.58 parts of diethyl 2,5-dibromoadipate (DBAE) A copper complex solution (copper (II) bromide, CuBr 2 29 ppm (Cu amount = 8 ppm)) prepared separately was dissolved in 0.12 part by weight of ethanol, and tris [2- (dimethylamino ) Ethyl] amine (Me 6 TREN) mixed solution of 29 ppm) was mixed and stirred at 55 ° C. under a nitrogen stream. Separately, 0.04 parts by weight (400 ppm) of ascorbic acid was mixed with 3.2 parts by weight of ethanol and 505 ppm of triethylamine, and this ascorbic acid solution was added dropwise to initiate polymerization. During the polymerization, the mixture was heated and stirred so that the temperature of the reaction solution became 55 to 65 ° C., and after 270 minutes from the start of polymerization, the average polymerization rate of n-butyl acrylate and 2-ethylhexyl acrylate was 99.0%. When it reached, dropping of ascorbic acid was stopped, the reaction solution was decompressed, and the solvent was distilled off to obtain a polymer [4]. The total amount of ascorbic acid so far was 326 ppm, and the total amount of triethylamine was 582 ppm. The number average molecular weight of the polymer [4] was 62300, and the molecular weight distribution was 1.32.

得られた重合体[4]を酢酸ブチル125重量部に溶解させ、アクリル酸カリウム(AcOK)0.70重量部、テトラブチルアンモニウムブロミド(TBABr)0.11重量部4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(H−TEMPO)0.01重量部、キョーワード700SEN−S(KW700)0.4重量部を仕込み、120Cで3時間反応させた。反応処理後、NMR測定を行った結果、官能化率は1.31であった。 The obtained polymer [4] was dissolved in 125 parts by weight of butyl acetate, 0.70 part by weight of potassium acrylate (AcOK), 0.11 part by weight of tetrabutylammonium bromide (TBABr) 4-hydroxy-2,2, 0.01 part by weight of 6,6-tetramethylpiperidine-1-oxyl (H-TEMPO) and 0.4 part by weight of KYOWARD 700SEN-S (KW700) were charged and reacted at 120 ° C. for 3 hours. As a result of performing NMR measurement after the reaction treatment, the functionalization rate was 1.31.

(比較例2)
アクリル酸n−ブチル50重量部、アクリル酸2−エチルヘキシル50重量部、t−ブチルアルコール10重量部、酢酸ブチル0.1重量部、トリエチルアミン170ppmおよび2,5−ジブロモアジピン酸ジエチル(DBAE)0.58部を仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)、CuBr29ppm (Cu量=8ppm)をt−ブチルアルコール0.12重量部に溶解させ、純度96%のトリス[2−(ジメチルアミノ)エチル]アミン(MeTREN)29ppmを混合した溶液)を混合し、窒素気流下55Cで攪拌した。別途、アスコルビン酸0.04重量部(400ppm)をt−ブチルアルコール3.2重量部、およびトリエチルアミン505ppmを混合させた溶液を調整し、このアスコルビン酸溶液を滴下して重合を開始した。重合途中、反応溶液の温度が55〜65Cとなるように加熱攪拌を行い、重合開始から300分後、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルの平均重合率が99.0%に到達したところで、アスコルビン酸の滴下を停止し、反応溶液を減圧にし、溶媒を留去して重合体[5]を得た。なお、ここまでのアスコルビン酸の総量は400ppm、トリエチルアミンの総量は675ppmであった。重合体[5]の数平均分子量は49000、分子量分布は5.84であった。
(Comparative Example 2)
50 parts by weight of n-butyl acrylate, 50 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of t-butyl alcohol, 0.1 part by weight of butyl acetate, 170 ppm of triethylamine and diethyl 2,5-dibromoadipate (DBAE) 58 parts was added, and a separately prepared copper complex solution (copper bromide (II), CuBr 2 29 ppm (Cu amount = 8 ppm)) was dissolved in 0.12 parts by weight of t-butyl alcohol to obtain a tris having a purity of 96%. [2- (Dimethylamino) ethyl] amine (solution mixed with 29 ppm of Me 6 TREN) was mixed and stirred at 55 ° C. under a nitrogen stream. Separately, a solution in which 0.04 part by weight (400 ppm) of ascorbic acid was mixed with 3.2 parts by weight of t-butyl alcohol and 505 ppm of triethylamine was prepared, and this ascorbic acid solution was added dropwise to initiate polymerization. During the polymerization, the mixture was heated and stirred so that the temperature of the reaction solution was 55 to 65 ° C., and after 300 minutes from the start of polymerization, the average polymerization rate of n-butyl acrylate and 2-ethylhexyl acrylate was 99.0%. When it reached, dropping of ascorbic acid was stopped, the reaction solution was decompressed, and the solvent was distilled off to obtain a polymer [5]. The total amount of ascorbic acid so far was 400 ppm, and the total amount of triethylamine was 675 ppm. The number average molecular weight of the polymer [5] was 49000, and the molecular weight distribution was 5.84.

得られた重合体[5]を酢酸ブチル125重量部に溶解させ、アクリル酸カリウム(AcOK)0.70重量部、テトラブチルアンモニウムブロミド(TBABr)0.11重量部4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(H−TEMPO)0.01重量部、キョーワード700SEN−S(KW700)0.4重量部を仕込み、120Cで3時間反応させた。反応処理後、NMR測定を行った結果、官能化率は0.21であった。 The obtained polymer [5] was dissolved in 125 parts by weight of butyl acetate, 0.70 part by weight of potassium acrylate (AcOK), 0.11 part by weight of tetrabutylammonium bromide (TBABr) 4-hydroxy-2,2, 0.01 part by weight of 6,6-tetramethylpiperidine-1-oxyl (H-TEMPO) and 0.4 part by weight of KYOWARD 700SEN-S (KW700) were charged and reacted at 120 ° C. for 3 hours. As a result of conducting NMR measurement after the reaction treatment, the functionalization rate was 0.21.

(比較例3)
アクリル酸n−ブチル100重量部、メタノール80重量部、2,5−ジブロモアジピン酸ジエチル1.76重量部、及びトリエチルアミン955ppmを仕込み、窒素気流下45℃で撹拌した。これに、臭化銅(II)53ppm(Cu量=15ppm)を純度96%のヘキサメチルトリス(2−アミノエチル)アミン54ppm(Cuに対して等量)、及びN,N−ジメチルアセトアミド0.27容量部で溶解させた溶液と、アスコルビン酸17ppmをメタノール0.13容量部で溶解させた溶液を別途準備し、それらを添加して反応を開始した。途中、アスコルビン酸をメタノールに溶解させた溶液を適宜添加しながら反応溶液の温度が45℃〜60℃となるように加熱攪拌を続けた。重合開始から175分後アクリル酸n−ブチルの反応率が94.0%に達したところで、反応容器内を減圧にし、揮発分を除去して重合体を得た。なおここまでのアスコルビン酸の総添加量は258ppm、メタノールの総添加量は82.1容量部であった。このときの重合体の数平均分子量は20200、分子量分布は1.15であった。
(Comparative Example 3)
100 parts by weight of n-butyl acrylate, 80 parts by weight of methanol, 1.76 parts by weight of diethyl 2,5-dibromoadipate and 955 ppm of triethylamine were charged and stirred at 45 ° C. under a nitrogen stream. To this, copper bromide (II) 53 ppm (Cu content = 15 ppm), hexamethyltris (2-aminoethyl) amine 54 ppm (equivalent to Cu) with a purity of 96%, and N, N-dimethylacetamide 0. A solution prepared by dissolving 27 parts by volume and a solution prepared by dissolving 17 ppm of ascorbic acid in 0.13 parts by volume of methanol were separately prepared, and the reaction was started by adding them. In the middle of the reaction, heating and stirring were continued so that the temperature of the reaction solution was 45 ° C. to 60 ° C. while appropriately adding a solution in which ascorbic acid was dissolved in methanol. 175 minutes after the start of polymerization, when the reaction rate of n-butyl acrylate reached 94.0%, the inside of the reaction vessel was depressurized to remove the volatile matter to obtain a polymer. The total addition amount of ascorbic acid so far was 258 ppm, and the total addition amount of methanol was 82.1 parts by volume. The number average molecular weight of the polymer at this time was 20200, and the molecular weight distribution was 1.15.

Figure 2016153464
Figure 2016153464

比較例1、2のようにエタノールやt−ブチルアルコールを用いた系に対して実施例1、2、3の方が、分子量分布が狭い。t−ブチルアルコールの系では重合が設計通りに進行していないことがわかる。特に官能化率の観点において、大きな差があり、特異的にメタノールを用いた系では、官能化率が1.6以上を達成した。更に、トリエチルアミンの添加を軽減することにより、官能化率が向上し、1.8以上を達成した。   The molecular weight distribution is narrower in Examples 1, 2, and 3 than in systems using ethanol or t-butyl alcohol as in Comparative Examples 1 and 2. It can be seen that the polymerization does not proceed as designed in the t-butyl alcohol system. In particular, there was a large difference in terms of the functionalization rate, and in the system using methanol specifically, the functionalization rate reached 1.6 or more. Furthermore, by reducing the addition of triethylamine, the functionalization rate was improved, achieving 1.8 or more.

比較例3は、C8以上の長鎖エステルモノマーを使用しておらず、また使用しているメタノール量が非常に多い。一方、本実施例では、C8以上の長鎖エステルモノマーを含有することが可能であり、使用しているメタノールも少ないことから、製造工程において生産性向上に繋がる。   Comparative Example 3 does not use a long-chain ester monomer of C8 or higher, and the amount of methanol used is very large. On the other hand, in this example, it is possible to contain a long-chain ester monomer of C8 or higher and less methanol is used, which leads to an improvement in productivity in the production process.

Claims (12)

遷移金属化合物を触媒とするリビングラジカル重合法において、ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が8〜22の(メタ)アクリル系単量体を1〜100重量%含有し、メタノールを溶媒として重合し、末端の官能基の官能化率が1.4〜2.0であることを特徴とする(メタ)アクリル系重合体。 In the living radical polymerization method using a transition metal compound as a catalyst, the (meth) acrylic group in which the ester group of the (meth) acrylic acid ester has 8 to 22 carbon atoms with respect to 100% by weight of the total weight of the vinyl monomer. A (meth) acrylic polymer containing 1 to 100% by weight of a monomer, polymerized using methanol as a solvent, and having a functionalization rate of a terminal functional group of 1.4 to 2.0. 末端の官能基が、アクリロイル基であることを特徴とする請求項1に記載の(メタ)アクリル系重合体。 The (meth) acrylic polymer according to claim 1, wherein the terminal functional group is an acryloyl group. 官能化率が1.6〜2.0であることを特徴とする請求項1または2に記載の(メタ)アクリル系重合体。 The (meth) acrylic polymer according to claim 1 or 2, wherein the functionalization rate is 1.6 to 2.0. ビニル系単量体の全質量100重量%に対して、(メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を80〜20重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を20〜80重量%含有することを特徴とする請求項1〜3のいずれかに記載の(メタ)アクリル系重合体。 80 to 20% by weight of a (meth) acrylic monomer having 1 to 7 carbon atoms in the ester group of the (meth) acrylic acid ester is contained with respect to 100% by weight of the total mass of the vinyl monomer, The (meth) acrylic acid ester containing 20 to 80% by weight of a (meth) acrylic monomer having 8 to 18 carbon atoms in the ester group of the (meth) acrylic acid ester, according to any one of claims 1 to 3 ) Acrylic polymer. (メタ)アクリル酸エステルのエステル基の炭素数が1〜7の(メタ)アクリル系単量体を60〜40重量%含有し、(メタ)アクリル酸エステルのエステル基の炭素数が8〜18の(メタ)アクリル系単量体を40〜60重量%含有することを特徴とする請求項4に記載の(メタ)アクリル系重合体。 60 to 40% by weight of a (meth) acrylic monomer having 1 to 7 carbon atoms in the ester group of the (meth) acrylic acid ester, and 8 to 18 carbon atoms in the ester group of the (meth) acrylic acid ester The (meth) acrylic polymer according to claim 4, comprising 40 to 60% by weight of the (meth) acrylic monomer. 遷移金属化合物が銅の化合物であり、ビニル系単量体の仕込み総重量に対して銅濃度が5ppm〜10ppmであることを特徴とする請求項1〜5のいずれかに記載の(メタ)アクリル系重合体。 The (meth) acryl according to any one of claims 1 to 5, wherein the transition metal compound is a copper compound, and the copper concentration is 5 ppm to 10 ppm with respect to the total weight of the vinyl monomer charged. Polymer. 銅原子に対して多座アミンを混合し、重合前に銅錯体を形成し触媒とすることを特徴とする請求項1〜6のいずれかに記載の(メタ)アクリル系重合体。 The (meth) acrylic polymer according to any one of claims 1 to 6, wherein a polydentate amine is mixed with a copper atom to form a copper complex before polymerization to serve as a catalyst. 多座アミンが、二座配位のアミン、三座配位のアミン、四座配位のアミンの群から選ばれる少なくとも1種であることを特徴とする請求項1〜7のいずれかに記載の(メタ)アクリル系重合体。 The multidentate amine is at least one member selected from the group consisting of bidentate amines, tridentate amines, and tetradentate amines. (Meth) acrylic polymer. 還元剤が有機スズ化合物、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、ヒドラジン、およびホウ素水素化物の群から選ばれる少なくとも1種であることを特徴とする請求項1〜8のいずれかに記載の(メタ)アクリル系重合体。 The reducing agent is at least one selected from the group consisting of an organic tin compound, ascorbic acid, ascorbic acid ester, ascorbate, hydrazine, and boron hydride, according to any one of claims 1 to 8. (Meth) acrylic polymer. 還元剤に対して、100 mol%以上の塩基が反応系中に存在することを特徴とする請求項1〜9のいずれかに記載の(メタ)アクリル系重合体。 The (meth) acrylic polymer according to any one of claims 1 to 9, wherein 100 mol% or more of the base is present in the reaction system with respect to the reducing agent. (メタ)アクリル系重合体の重合率が85〜100%であることを特徴とする請求項1〜10のいずれかに記載の(メタ)アクリル系重合体。 The (meth) acrylic polymer according to any one of claims 1 to 10, wherein the polymerization rate of the (meth) acrylic polymer is 85 to 100%. 請求項1〜11のいずれかに記載の(メタ)アクリル系重合体の製造方法。

The manufacturing method of the (meth) acrylic-type polymer in any one of Claims 1-11.

JP2015032233A 2015-02-20 2015-02-20 (Meth) acrylic polymer and production method Active JP6465685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032233A JP6465685B2 (en) 2015-02-20 2015-02-20 (Meth) acrylic polymer and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032233A JP6465685B2 (en) 2015-02-20 2015-02-20 (Meth) acrylic polymer and production method

Publications (2)

Publication Number Publication Date
JP2016153464A true JP2016153464A (en) 2016-08-25
JP6465685B2 JP6465685B2 (en) 2019-02-06

Family

ID=56760421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032233A Active JP6465685B2 (en) 2015-02-20 2015-02-20 (Meth) acrylic polymer and production method

Country Status (1)

Country Link
JP (1) JP6465685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189665A1 (en) * 2019-03-20 2020-09-24 株式会社カネカ Method for producing vinyl polymer
JP7500282B2 (en) 2020-06-02 2024-06-17 株式会社カネカ Vinyl Polymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112420A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Curable composition, adhesive composition containing such curable composition, and adhesive
JP2010126680A (en) * 2008-11-28 2010-06-10 Kaneka Corp Curable composition and cured product of the same
JP2013241541A (en) * 2012-05-22 2013-12-05 Kaneka Corp Method of manufacturing vinyl polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112420A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Curable composition, adhesive composition containing such curable composition, and adhesive
JP2010126680A (en) * 2008-11-28 2010-06-10 Kaneka Corp Curable composition and cured product of the same
JP2013241541A (en) * 2012-05-22 2013-12-05 Kaneka Corp Method of manufacturing vinyl polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189665A1 (en) * 2019-03-20 2020-09-24 株式会社カネカ Method for producing vinyl polymer
JP7500282B2 (en) 2020-06-02 2024-06-17 株式会社カネカ Vinyl Polymers

Also Published As

Publication number Publication date
JP6465685B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5841054B2 (en) Method for producing (meth) acrylic polymer
Barboiu et al. Metal catalyzed living radical polymerization of acrylonitrile initiated with sulfonyl chlorides
Kwak et al. Dibromotrithiocarbonate iniferter for concurrent ATRP and RAFT polymerization. Effect of monomer, catalyst, and chain transfer agent structure on the polymerization mechanism
JP2007070453A (en) Method for producing block copolymer
EP3106472B1 (en) Living radical polymerization catalyst, and polymer production method using same
CN103936907A (en) Ferric bromide-catalyzed ligand-free photoinduced controllable free radical polymerization method
JP2008297558A (en) Manufacturing method of star polymer
JP6465685B2 (en) (Meth) acrylic polymer and production method
AU2011281008B2 (en) SET-LRP polymerization of acrylates in the presence of acids
JP6787824B2 (en) Method for Producing Poly (Meta) Acrylate Containing Hydrolyzable Cyril Group
JP5932142B2 (en) Method for producing vinyl polymer
WO2020189665A1 (en) Method for producing vinyl polymer
US20160046743A1 (en) Production Method for Vinyl Ether Polymer
JP6659593B2 (en) Vinyl polymer having terminal hydrolyzable silyl group, method for producing the same, and curable composition
JP5583924B2 (en) Method for producing (meth) acrylic polymer
JP2016204455A (en) Method for producing (meth)acrylic polymer
JP5890324B2 (en) Process for producing carboxyl group-containing polymer
JP7377489B2 (en) Method for producing β-substituted unsaturated carboxylic acid ester polymer
US20210309783A1 (en) Synthesis of polymer under conditions of enhanced catalyzed radical termination
JP5495736B2 (en) Improved polymerization process
JP2011208047A (en) Method for producing polymer
JP6967226B2 (en) Method for Producing Hydrocarbon Group-Containing Vinyl Ether Polymer by Radical Polymerization
Fang et al. Reversible complexation mediated polymerization (RCMP) starting with a complex of iodine with organic salt andthermal initiators
JP2011148977A (en) Method for manufacturing (meth)acrylic polymer
JP5090793B2 (en) Method for producing polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190108

R150 Certificate of patent or registration of utility model

Ref document number: 6465685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250