JP7506951B2 - Method for recovering valuable metals from discarded lithium-ion batteries - Google Patents

Method for recovering valuable metals from discarded lithium-ion batteries Download PDF

Info

Publication number
JP7506951B2
JP7506951B2 JP2023523131A JP2023523131A JP7506951B2 JP 7506951 B2 JP7506951 B2 JP 7506951B2 JP 2023523131 A JP2023523131 A JP 2023523131A JP 2023523131 A JP2023523131 A JP 2023523131A JP 7506951 B2 JP7506951 B2 JP 7506951B2
Authority
JP
Japan
Prior art keywords
valuable metals
extraction
cobalt
nickel
ion batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023523131A
Other languages
Japanese (ja)
Other versions
JPWO2023054621A1 (en
Inventor
泰輔 下垣内
寅男 厳
真行 黒滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Publication of JPWO2023054621A1 publication Critical patent/JPWO2023054621A1/ja
Priority to JP2024031012A priority Critical patent/JP2024059931A/en
Application granted granted Critical
Publication of JP7506951B2 publication Critical patent/JP7506951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、廃リチウムイオン電池から有価金属を回収する方法に関する。 The present invention relates to a method for recovering valuable metals from discarded lithium-ion batteries.

近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からリチウム、マンガン、ニッケル、コバルト等の有価金属を回収し、前記リチウムイオン電池の正極活物質として再利用する方法が検討されている。In recent years, with the widespread use of lithium-ion batteries, methods are being considered for recovering valuable metals such as lithium, manganese, nickel, and cobalt from used lithium-ion batteries and reusing them as positive electrode active materials for the lithium-ion batteries.

従来、前記廃リチウムイオン電池から前記有価金属を回収する際には、前記廃リチウムイオン電池を加熱処理(焙焼)して、ないし加熱処理せずに粉砕、分級する等して得られた前記有価金属を含む粉末(以下、電池粉という)を酸に溶解し、該有価金属を酸により浸出して得られた浸出液を溶媒抽出に供することが行われている(例えば、特許文献1~3参照)。
前記浸出液がコバルトを含む場合、前記浸出液からコバルトを溶媒抽出した後、硫酸により逆抽出することにより硫酸コバルト水溶液を得ることができ、該硫酸コバルト水溶液を晶析することにより硫酸コバルトを得ることができる(例えば、特許文献4参照)。
Conventionally, when recovering the valuable metals from the waste lithium-ion batteries, the waste lithium-ion batteries are subjected to a heat treatment (roasting), or are crushed and classified without being subjected to a heat treatment to obtain a powder containing the valuable metals (hereinafter, referred to as battery powder), which is dissolved in an acid, and the valuable metals are leached with the acid, and the obtained leachate is subjected to a solvent extraction (see, for example, Patent Documents 1 to 3).
When the leachate contains cobalt, the cobalt is extracted from the leachate with a solvent, and then back-extracted with sulfuric acid to obtain an aqueous cobalt sulfate solution. Cobalt sulfate can be obtained by crystallizing the aqueous cobalt sulfate solution (see, for example, Patent Document 4).

また、前記浸出液がニッケルを含む場合、前記浸出液からニッケルを溶媒抽出した後、硫酸により逆抽出することにより硫酸ニッケル水溶液を得ることができる(例えば、特許文献6参照)。In addition, when the leachate contains nickel, the nickel can be extracted from the leachate with a solvent and then back-extracted with sulfuric acid to obtain an aqueous nickel sulfate solution (see, for example, Patent Document 6).

さらに硫酸ニッケルに含有される、有価金属の浸出後の中和時に使用される水酸化ナトリウムに由来するNaを低減するために、粗硫酸ニッケル溶液からニッケルを酸性有機抽出剤によりpH6.0~7.0の範囲で抽出し、抽出後の有機相中のニッケル含有量を、前記酸性有機抽出剤が有するニッケル保持化学量論量の0.6~1.7倍に保持し、抽出後のニッケル保持有機相を洗浄した後、硫酸による逆抽出を行う方法が知られている(例えば、特許文献7参照)。Furthermore, in order to reduce the amount of Na contained in nickel sulfate originating from sodium hydroxide used in neutralization after leaching of valuable metals, a method is known in which nickel is extracted from a crude nickel sulfate solution using an acidic organic extractant at a pH range of 6.0 to 7.0, the nickel content in the organic phase after extraction is maintained at 0.6 to 1.7 times the stoichiometric amount of nickel retained by the acidic organic extractant, the nickel-retaining organic phase after extraction is washed, and then back-extraction with sulfuric acid is performed (see, for example, Patent Document 7).

しかしながら、特許文献1に記載の方法により、前記浸出液からマンガン、コバルト、ニッケルを順次溶媒抽出すると、該浸出液に含まれるリチウムの一部もマンガン、コバルト、ニッケルに伴われて共抽出されることとなる。この結果、最終的な抽出残液としてのリチウム塩水溶液におけるリチウムの含有量が前記浸出液におけるリチウムの含有量より少なくなるという不都合がある。However, when manganese, cobalt, and nickel are successively extracted from the leachate using a solvent according to the method described in Patent Document 1, some of the lithium contained in the leachate is also co-extracted together with the manganese, cobalt, and nickel. This results in the inconvenience that the lithium content in the lithium salt aqueous solution as the final extraction residue is less than the lithium content in the leachate.

特許文献4に記載された方法により製造された硫酸コバルトは、リチウムイオン電池の正極活物質とするには、有価金属の浸出後の中和時に使用される水酸化ナトリウムに由来するNa、有価金属の浸出時に使用される塩酸に由来するCl等の不純物を所定の範囲以下にする必要があるという問題がある。これらの不純物が硫酸コバルトに所定の範囲を超えて含まれていると、電池特性及び安全性の確保に不都合が生じ、更に正極材を焼成する際に炉体を痛めてしまう。そこで、前記逆抽出により得られた硫酸コバルト水溶液を電解液として電気分解して電気コバルトを得た後、該電気コバルトを酸に溶解し、得られたコバルト溶解液から更にコバルトを溶媒抽出し、逆抽出することにより、前記硫酸コバルトに含有される不純物を所定の範囲以下にする方法が提案されている(例えば、特許文献5参照)。しかしながら、特許文献5に記載の方法の操作は煩雑である。Cobalt sulfate produced by the method described in Patent Document 4 has a problem that impurities such as Na derived from sodium hydroxide used in neutralization after leaching of valuable metals and Cl derived from hydrochloric acid used in leaching valuable metals must be kept below a specified range in order to be used as a positive electrode active material for lithium ion batteries. If these impurities are contained in cobalt sulfate beyond the specified range, it will cause inconvenience in ensuring battery characteristics and safety, and will also damage the furnace body when firing the positive electrode material. Therefore, a method has been proposed in which the cobalt sulfate aqueous solution obtained by the back extraction is electrolyzed as an electrolyte to obtain electrolytic cobalt, the electrolytic cobalt is dissolved in acid, and cobalt is further extracted from the obtained cobalt solution with a solvent and back extracted to reduce the impurities contained in the cobalt sulfate to a specified range or less (see Patent Document 5, for example). However, the operation of the method described in Patent Document 5 is complicated.

特許文献6に記載の方法は、硫化剤を使用するため、窒息の危険があり、かつ操作が煩雑であり、特許文献7に記載の方法は、ニッケルをpH6.0~7.0の範囲で抽出するため、抽出に伴って水酸化ニッケルが析出する可能性が高い。しかも、どちらの方法もNa及びClのそれぞれをニッケル1kg当たり100mg未満にすることができないという不都合がある。The method described in Patent Document 6 uses a sulfurizing agent, which poses a risk of suffocation and requires complicated operations, while the method described in Patent Document 7 extracts nickel at a pH range of 6.0 to 7.0, which means there is a high possibility that nickel hydroxide will precipitate during extraction. Moreover, both methods have the disadvantage that it is not possible to reduce the concentrations of Na and Cl to less than 100 mg per kg of nickel.

特許第4865745号公報Patent No. 4865745 特許第6835820号公報Patent No. 6835820 特許第6869444号公報Patent No. 6869444 国際公開第2013/099551号International Publication No. 2013/099551 特開2020-105597号公報JP 2020-105597 A 特許第5904459号公報Japanese Patent No. 5904459 特許第3546912号公報Japanese Patent No. 3546912

本発明は、かかる不都合を解消して、廃リチウムイオン電池から高純度の各有価金属を回収できる方法を提供することを目的とする。 The present invention aims to eliminate such inconveniences and provide a method for recovering valuable metals with high purity from waste lithium-ion batteries.

本発明者らは上記課題に鑑み検討を重ね、廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解した酸溶解液から、該活物質粉に含まれる有価金属のうち、マンガン、コバルト、及びニッケルを溶媒抽出によりそれぞれ高い純度で分離し、該溶媒抽出の残液として回収された第1のリチウム塩水溶液から高純度のリチウムを回収できることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。The inventors of the present invention have conducted extensive research in light of the above problems and have discovered that it is possible to separate, at high purity, manganese, cobalt, and nickel from the valuable metals contained in the active material powder obtained by pretreating waste lithium-ion batteries, dissolved in a mineral acid, by solvent extraction from the acid solution, and to recover high-purity lithium from the first lithium salt aqueous solution recovered as the residual liquid of the solvent extraction. The present invention has been completed based on these findings.

本発明は、廃リチウムイオン電池から有価金属を回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を第1の鉱酸中に溶解して酸溶解液を得る溶解工程と、該酸溶解液から、該活物質粉に含まれる金属のうち、マンガン、コバルト、及びニッケルを溶媒抽出によりそれぞれ分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程を含み、当該第1の鉱酸は塩酸を含む、廃リチウムイオン電池から有価金属を回収する方法に関する。
前記溶媒抽出工程は、好ましくは、2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む第1の抽出溶媒を使用してコバルトを抽出するコバルト抽出工程、該コバルト抽出工程で得られた有機相をコバルト用第2の鉱酸によりスクラビングするコバルト用第1のスクラビング工程、及び、コバルト用第3の鉱酸によりコバルトを逆抽出するコバルト逆抽出工程を含む。
前記溶媒抽出工程は、好ましくは、前記コバルト用第1のスクラビング工程で得られる有機相をコバルト用第3の鉱酸又は水によりスクラビングするコバルト用第2のスクラビング工程を更に含む。
前記溶媒抽出工程は、好ましくは、ビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む抽出溶媒を使用してニッケルを抽出するニッケル抽出工程、該ニッケル抽出工程で得られた有機相をニッケル用第2の鉱酸によりスクラビングするニッケル用第1のスクラビング工程、及び、ニッケル用第3の鉱酸によりニッケルを逆抽出するニッケル逆抽出工程を含む。
本発明の廃リチウムイオン電池から有価金属を回収する方法は、好ましくは、前記ニッケル用第1のスクラビング工程で得られる有機相をニッケル用第3の鉱酸又は水によりスクラビングするニッケル用第2のスクラビング工程を更に含む。
さらに前記溶媒抽出工程は、好ましくは、前記酸溶解液を第1の正抽出液として第1の有機溶媒によるマンガンの溶媒抽出を行い、マンガン含有有機相と第1の抽出残液とを得るマンガン抽出工程と、該第1の抽出残液を第2の正抽出液として第2の有機溶媒によるコバルトの溶媒抽出を行い、コバルト含有有機相と第2の抽出残液とを得るコバルト抽出工程と、該第2の抽出残液を第3の正抽出液として第3の有機溶媒によるニッケルの溶媒抽出を行い、ニッケル含有有機相と第3の抽出残液としての前記第1のリチウム塩水溶液とを得るニッケル抽出工程と、該第1~3のいずれかの少なくとも1つの有機相を有価金属用第2の鉱酸によりスクラビングする、少なくとも1つの、有価金属用第1のスクラビング工程と、有価金属用第3の鉱酸により、マンガン、コバルト、及びニッケルからなる群から選ばれる少なくとも1つの有価金属を逆抽出する、少なくとも1つの、有価金属逆抽出工程を含み、かつ少なくとも1つの該有価金属用第1のスクラビング工程後の該有価金属用第2の鉱酸を、少なくとも1つの該有価金属用第1のスクラビング工程における有機相に対応する該第1~3のいずれかの正抽出液に戻す。
本発明の廃リチウムイオン電池から有価金属を回収する方法は、好ましくは、少なくとも1つの、前記有価金属用第1のスクラビング工程で得られる、少なくとも1つの有機相を有価金属用第3の鉱酸又は水によりスクラビングする、少なくとも1つの、有価金属用第2のスクラビング工程を更に含む。
前記第1の有機溶媒は、好ましくはリン酸水素ビス(2-エチルヘキシル)を含み、前記第2の有機溶媒は2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含み、前記第3の有機溶媒はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む。
The present invention relates to a method for recovering valuable metals from waste lithium-ion batteries, the method comprising: a dissolving step of dissolving an active material powder obtained by pretreating the waste lithium-ion batteries in a first mineral acid to obtain an acid solution; and a solvent extraction step of separating manganese, cobalt, and nickel from the acid solution by solvent extraction, among the metals contained in the active material powder, to obtain a first aqueous lithium salt solution as a residual liquid of the solvent extraction, the first mineral acid including hydrochloric acid .
The solvent extraction step preferably includes a cobalt extraction step of extracting cobalt using a first extraction solvent containing 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid, a first cobalt scrubbing step of scrubbing the organic phase obtained in the cobalt extraction step with a second mineral acid for cobalt, and a cobalt stripping step of stripping cobalt with a third mineral acid for cobalt.
The solvent extraction step preferably further comprises a second scrubbing step for cobalt, in which the organic phase obtained in the first scrubbing step for cobalt is scrubbed with a third mineral acid for cobalt or water.
The solvent extraction step preferably includes a nickel extraction step of extracting nickel using an extraction solvent containing bis(2,4,4-trimethylpentyl)phosphinic acid, a first scrubbing step for nickel of scrubbing the organic phase obtained in the nickel extraction step with a second mineral acid for nickel, and a nickel stripping step of stripping nickel with a third mineral acid for nickel.
The method for recovering valuable metals from waste lithium ion batteries of the present invention preferably further includes a second scrubbing step for nickel, in which the organic phase obtained in the first scrubbing step for nickel is scrubbed with a third mineral acid for nickel or water.
The solvent extraction step preferably further comprises a manganese extraction step of performing solvent extraction of manganese with a first organic solvent using the acid solution as a first main extractant to obtain a manganese-containing organic phase and a first extraction residue, a cobalt extraction step of performing solvent extraction of cobalt with a second organic solvent using the first extraction residue as a second main extractant to obtain a cobalt-containing organic phase and a second extraction residue, and a nickel extraction step of performing solvent extraction of nickel with a third organic solvent using the second extraction residue as a third main extractant to obtain a nickel-containing organic phase and the first lithium salt aqueous solution as a third extraction residue. the at least one first scrubbing step for valuable metals in which at least one organic phase of any one of the first to third steps is scrubbed with a second mineral acid for valuable metals, and at least one valuable metal stripping step in which at least one valuable metal selected from the group consisting of manganese, cobalt and nickel is stripped with a third mineral acid for valuable metals, and the second mineral acid for valuable metals after the at least one first scrubbing step for valuable metals is returned to any one of the first to third forward extraction solutions corresponding to the organic phase in the at least one first scrubbing step for valuable metals .
The method for recovering valuable metals from waste lithium ion batteries of the present invention preferably further comprises at least one second scrubbing step for valuable metals, in which at least one organic phase obtained in the at least one first scrubbing step for valuable metals is scrubbed with a third mineral acid for valuable metals or water.
The first organic solvent preferably comprises bis(2-ethylhexyl) hydrogen phosphate, the second organic solvent comprises 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid, and the third organic solvent comprises bis(2,4,4-trimethylpentyl)phosphinic acid.

コバルトの前記溶媒抽出に使用される抽出溶媒は、好ましくは、ノナン、デカン、及びウンデカンからなる群から選ばれる少なくとも1つの直鎖状炭化水素化合物を含む。
ニッケルの前記溶媒抽出に使用される抽出溶媒は、好ましくはデカンを含む。
前記コバルト用第3の鉱酸、ニッケル用第3の鉱酸のそれぞれは、好ましくは硫酸を含む。
The extraction solvent used in said solvent extraction of cobalt preferably comprises at least one linear hydrocarbon compound selected from the group consisting of nonane, decane, and undecane.
The extraction solvent used for said solvent extraction of nickel preferably comprises decane.
Each of the third mineral acid for cobalt and the third mineral acid for nickel preferably contains sulfuric acid.

前記溶解工程は、好ましくは、前記活物質粉を、50~150g/Lの範囲の濃度の塩酸に、該塩酸中の塩化水素に対して250~1000%の範囲の質量比で攪拌して、前記活物質粉の塩酸懸濁液を得る工程と、該塩酸懸濁液に所定量の塩酸を加えることにより、該塩酸懸濁液中の塩酸の濃度を150~350g/Lの範囲とし、且つ該塩酸懸濁液中の前記活物質粉が、該塩酸懸濁液中の塩化水素に対して50~200%の範囲の質量比になるよう調整し、攪拌する工程を含む。The dissolving step preferably includes a step of stirring the active material powder in hydrochloric acid having a concentration in the range of 50 to 150 g/L at a mass ratio in the range of 250 to 1000% relative to the hydrogen chloride in the hydrochloric acid to obtain a hydrochloric acid suspension of the active material powder, and a step of adding a predetermined amount of hydrochloric acid to the hydrochloric acid suspension so that the concentration of hydrochloric acid in the hydrochloric acid suspension is in the range of 150 to 350 g/L and the mass ratio of the active material powder in the hydrochloric acid suspension is in the range of 50 to 200% relative to the hydrogen chloride in the hydrochloric acid suspension, and stirring the mixture.

次に、本発明の実施の形態について更に詳しく説明する。
本発明の廃リチウムイオン電池から有価金属を回収する方法は、廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して酸溶解液を得る溶解工程を含む。前記溶解工程では、廃リチウムイオン電池から得られた各種有価金属を含む粉末(電池粉)を鉱酸により浸出し、マンガン、コバルト、及びニッケルを含む各種有価金属が溶解している酸溶解液を得る。
Next, the embodiment of the present invention will be described in more detail.
The method for recovering valuable metals from used lithium ion batteries of the present invention includes a dissolving step in which an active material powder obtained by pretreating used lithium ion batteries is dissolved in a mineral acid to obtain an acid solution. In the dissolving step, a powder containing various valuable metals (battery powder) obtained from the used lithium ion batteries is leached with the mineral acid to obtain an acid solution in which various valuable metals including manganese, cobalt, and nickel are dissolved.

本発明の廃リチウムイオン電池から有価金属を回収する方法(以下、「有価金属回収方法」という場合がある)において、前記廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、製造工程において製品化に用いられた残余の正極材料等を意味する。In the method of recovering valuable metals from used lithium-ion batteries of the present invention (hereinafter sometimes referred to as the "valuable metal recovery method"), the used lithium-ion batteries refer to used lithium-ion batteries that have reached the end of their life as battery products, lithium-ion batteries that have been discarded as defective products during the manufacturing process, residual positive electrode materials used in the manufacture of products during the manufacturing process, etc.

前記有価金属を含む粉末は、例えば、次のようにして得ることができる。まず、リチウムイオン電池の製造工程において製品化に用いられた残余の正極材料である正極箔(集電体であるアルミニウム箔に正極活物質を含む正極合剤が塗布されたもの)を、電気炉中、例えば100~450℃の範囲の温度で加熱処理(焙焼)した後、又は加熱処理せずにハンマーミル、ジョークラッシャー等の粉砕機で粉砕し、該廃リチウムイオン電池を構成する筐体、集電体等を篩分けにより除去(分級)して、有価金属を含む粉末として、電池粉を得ることができる。The powder containing the valuable metals can be obtained, for example, as follows. First, the positive electrode foil (a positive electrode mixture containing a positive electrode active material is applied to an aluminum foil current collector) that is the residual positive electrode material used in the manufacturing process of lithium-ion batteries is heat-treated (roasted) in an electric furnace at a temperature in the range of, for example, 100 to 450°C, or is crushed with a crusher such as a hammer mill or jaw crusher without being heat-treated, and the casing, current collector, etc. that constitute the waste lithium-ion battery are removed (classified) by sieving to obtain a battery powder containing valuable metals.

あるいは、放電処理後又は加熱処理していない廃リチウムイオン電池を前記粉砕機で粉砕し、筐体、集電体等を篩分けにより除去した後、前記範囲の温度で加熱処理することにより、前記電池粉を得るようにしてもよい。Alternatively, used lithium ion batteries that have not been discharged or heated may be crushed in the crusher, the casing, current collectors, etc. may be removed by sieving, and then the battery powder may be obtained by heat treatment at a temperature within the above range.

本発明の有価金属回収方法では、前記電極粉を第1の鉱酸により浸出する。この結果、前記各種有価金属の酸溶解液が得られる。前記第1の鉱酸は、好ましくは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含み、より好ましくは塩酸を含む。In the valuable metal recovery method of the present invention, the electrode powder is leached with a first mineral acid. As a result, an acid solution of the various valuable metals is obtained. The first mineral acid preferably includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, and more preferably includes hydrochloric acid.

前記溶解工程は、前記活物質粉を、50~150g/Lの範囲の濃度の塩酸に、該塩酸中の塩化水素に対して250~1000%の範囲の質量比で供給し、攪拌して、前記活物質粉の塩酸懸濁液を得る工程と、該塩酸懸濁液に所定量の塩酸を加えることにより、該塩酸懸濁液中の塩酸の濃度を150~350g/Lの範囲とし、且つ該塩酸懸濁液中の前記活物質粉が、該塩酸懸濁液中の塩化水素に対して50~200%の範囲の質量比になるよう調整し、攪拌する工程を含んでいてよい。The dissolving step may include a step of supplying the active material powder to hydrochloric acid having a concentration in the range of 50 to 150 g/L in a mass ratio in the range of 250 to 1000% relative to the hydrogen chloride in the hydrochloric acid, stirring to obtain a hydrochloric acid suspension of the active material powder, and a step of adding a predetermined amount of hydrochloric acid to the hydrochloric acid suspension so that the concentration of hydrochloric acid in the hydrochloric acid suspension is in the range of 150 to 350 g/L and the mass ratio of the active material powder in the hydrochloric acid suspension is in the range of 50 to 200% relative to the hydrogen chloride in the hydrochloric acid suspension, and stirring the mixture.

本発明の有価金属回収方法は、好ましくは、前記酸溶解液をアルカリで中和する中和工程を含む。前記アルカリは、例えばアルカリ金属の水酸化物を含む。前記アルカリ金属は、好ましくは、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、及びフランシウムからなる群から選ばれる少なくとも1つを含み、より好ましくは、リチウム、ナトリウム、及びカリウムからなる群から選ばれる少なくとも1つを含む。前記アルカリは、水溶液として前記酸溶解液に添加されてよく、固体として前記酸溶解液に添加されてもよく、水溶液及び固体の両方の状態で前記酸溶解液に添加されてもよい。The valuable metal recovery method of the present invention preferably includes a neutralization step of neutralizing the acid solution with an alkali. The alkali includes, for example, a hydroxide of an alkali metal. The alkali metal preferably includes at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium, and more preferably includes at least one selected from the group consisting of lithium, sodium, and potassium. The alkali may be added to the acid solution as an aqueous solution, may be added to the acid solution as a solid, or may be added to the acid solution in both an aqueous solution and a solid state.

本発明の有価金属回収方法は、前記酸溶解液から、前記活物質粉に含まれる金属のうち、マンガン、コバルト、及びニッケルを溶媒抽出によりそれぞれ分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程を含む。The valuable metal recovery method of the present invention includes a solvent extraction step in which manganese, cobalt, and nickel, among the metals contained in the active material powder, are separated from the acid solution by solvent extraction, and a first lithium salt aqueous solution is obtained as the residual liquid of the solvent extraction.

本発明の第1の実施形態の有価金属回収方法では、前記溶媒抽出工程が、2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む第1の抽出溶媒を使用してコバルトを抽出するコバルト抽出工程を含む。前記コバルト抽出工程では、前記酸溶解液から、リン酸水素ビス(2-エチルヘキシル)を抽出溶媒としてマンガンを溶媒抽出し、得られた抽出残液をコバルト塩水溶液とできる。前記マンガンの溶媒抽出は、例えば、前記有価金属の浸出液に、ケロシンで希釈した1モル/Lのリン酸水素ビス(2-エチルヘキシル)(ナカライテスク株式会社製)を添加し、調整して行うことができる。In the valuable metal recovery method according to the first embodiment of the present invention, the solvent extraction step includes a cobalt extraction step in which cobalt is extracted using a first extraction solvent containing 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid. In the cobalt extraction step, manganese is solvent-extracted from the acid solution using bis(2-ethylhexyl) hydrogen phosphate as an extraction solvent, and the resulting extraction residue can be an aqueous cobalt salt solution. The manganese solvent extraction can be performed by, for example, adding 1 mol/L of bis(2-ethylhexyl) hydrogen phosphate (manufactured by Nacalai Tesque, Inc.) diluted with kerosene to the valuable metal leachate and adjusting it.

前記抽出残液であるコバルト塩水溶液には、ノナン、デカン、及びウンデカンからなる群から選ばれる少なくとも1つの直鎖状炭化水素化合物で希釈されたビス(2,4,4-トリメチルペンチル)ホスフィン酸を添加して、コバルトの溶媒抽出を実施してよい。例えば、デカンで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)を添加して、コバルトの溶媒抽出を行うことができる。 To the cobalt salt aqueous solution, which is the extraction residue, bis(2,4,4-trimethylpentyl)phosphinic acid diluted with at least one straight-chain hydrocarbon compound selected from the group consisting of nonane, decane, and undecane may be added to perform solvent extraction of cobalt. For example, 1 mol/L of bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with decane may be added to perform solvent extraction of cobalt.

本発明の第1の実施形態の有価金属回収方法は、前記コバルト抽出工程で得られた有機相をコバルト用第2の鉱酸によりスクラビングするコバルト用第1のスクラビング工程、及び、コバルト用第3の鉱酸によりコバルトを逆抽出するコバルト逆抽出工程を含む。さらに本発明の第1の実施形態の有価金属回収方法は、前記コバルト用第1のスクラビング工程で得られる有機相をコバルト用第3の鉱酸又は水によりスクラビングするコバルト用第2のスクラビング工程を更に含んでいてよい。前記コバルト用第2の鉱酸及びコバルト用第3の鉱酸のそれぞれは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含み、より好ましくは塩酸又は硫酸を含み、更に好ましくは塩酸又は硫酸である。コバルトを抽出した前記有機相について、コバルト用第2の鉱酸を用いてコバルト用第1のスクラビングを行い、当該コバルト用第1のスクラビング後の有機相について、コバルト用第3の鉱酸を用いて逆抽出を行うことにより、コバルト塩水溶液が得られる。前記コバルト塩水溶液は、不純物としてのNa及びClの含有量がリチウムイオン電池の正極活物質として要求される範囲よりも低減されている。The valuable metal recovery method of the first embodiment of the present invention includes a first scrubbing step for cobalt in which the organic phase obtained in the cobalt extraction step is scrubbed with a second mineral acid for cobalt, and a cobalt stripping step in which cobalt is stripped with a third mineral acid for cobalt. The valuable metal recovery method of the first embodiment of the present invention may further include a second scrubbing step for cobalt in which the organic phase obtained in the first scrubbing step for cobalt is scrubbed with a third mineral acid for cobalt or water. Each of the second mineral acid for cobalt and the third mineral acid for cobalt includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, more preferably includes hydrochloric acid or sulfuric acid, and even more preferably is hydrochloric acid or sulfuric acid. The organic phase from which the cobalt has been extracted is subjected to a first scrubbing for cobalt using a second mineral acid for cobalt, and the organic phase after the first scrubbing for cobalt is subjected to back extraction using a third mineral acid for cobalt, thereby obtaining an aqueous cobalt salt solution, the aqueous cobalt salt solution having reduced contents of Na and Cl as impurities below the range required for a positive electrode active material of a lithium ion battery.

なお、前記コバルト塩水溶液に含まれる有価金属及びNaの濃度は、例えば誘導結合プラズマ発光分光分析装置(パーキンエルマー社製、商品名:Optima-8300、以下、「ICP-OES」と称する場合がある)により、測定することができる。また、前記コバルト塩水溶液に含まれるClの濃度はイオンクロマトグラフ装置(メトローム社製、商品名:930 コンパクトIC Flex、以下、「IC」と称する場合がある)により測定できる。The concentrations of valuable metals and Na contained in the cobalt salt aqueous solution can be measured, for example, by an inductively coupled plasma optical emission spectrometer (PerkinElmer, product name: Optima-8300, hereinafter sometimes referred to as "ICP-OES"). The concentration of Cl contained in the cobalt salt aqueous solution can be measured by an ion chromatograph (Metrhom, product name: 930 Compact IC Flex, hereinafter sometimes referred to as "IC").

本発明の第2の実施形態の有価金属回収方法では、前記溶媒抽出工程が、ビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む抽出溶媒を使用してニッケルを抽出するニッケル抽出工程を含む。前記ニッケル抽出工程では、前記酸溶解液からニッケルを抽出することもできるが、該酸溶解液からリン酸水素ビス(2-エチルヘキシル)を抽出溶媒としてマンガンを溶媒抽出したマンガン抽出残液から、更に2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を抽出溶媒としてコバルトを抽出し、コバルト抽出残液からニッケルを抽出することもできる。前記マンガンの溶媒抽出は、例えば、前記酸溶解液に、ケロシンで希釈した1モル/Lのリン酸水素ビス(2-エチルヘキシル)(ナカライテスク株式会社製)を添加し、行うことができる。In the valuable metal recovery method according to the second embodiment of the present invention, the solvent extraction step includes a nickel extraction step in which nickel is extracted using an extraction solvent containing bis(2,4,4-trimethylpentyl)phosphinic acid. In the nickel extraction step, nickel can be extracted from the acid solution, but it is also possible to extract cobalt from the manganese extraction residue obtained by solvent-extracting manganese from the acid solution using bis(2-ethylhexyl) hydrogen phosphate as an extraction solvent, and further extract nickel from the cobalt extraction residue using 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid as an extraction solvent. The manganese solvent extraction can be performed, for example, by adding 1 mol/L of bis(2-ethylhexyl) hydrogen phosphate (manufactured by Nacalai Tesque, Inc.) diluted with kerosene to the acid solution.

また、前記コバルトの溶媒抽出は、例えば、前記マンガン抽出残液に対して中和処理を行い、前記マンガンの溶媒抽出で抽出されなかったマンガンを沈殿させて該沈殿を濾別した後、ノナン、デカン、及びウンデカンからなる群から選ばれる少なくとも1つの直鎖状炭化水素化合物で希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)を添加して行うことができる。 The cobalt can be extracted with a solvent, for example, by neutralizing the manganese extraction residue, precipitating the manganese that was not extracted in the manganese solvent extraction, filtering off the precipitate, and then adding 1 mol/L of bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with at least one linear hydrocarbon compound selected from the group consisting of nonane, decane, and undecane.

前記コバルト抽出残液からのニッケルの抽出は、該コバルト抽出残液に対し、デカンで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)を添加して行うことができる。Nickel can be extracted from the cobalt extraction residue by adding 1 mol/L of bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with decane to the cobalt extraction residue.

本発明の第2の実施形態の有価金属回収方法は、前記ニッケル抽出工程で得られた有機相をニッケル用第2の鉱酸によりスクラビングするニッケル用第1のスクラビング工程、及び、ニッケル用第3の鉱酸によりニッケルを逆抽出するニッケル逆抽出工程を含む。さらに本発明の第2の実施形態の有価金属回収方法は、前記ニッケル用第1のスクラビング工程で得られる有機相をニッケル用第3の鉱酸又は水によりスクラビングするニッケル用第2のスクラビング工程を更に含んでいてよい。前記ニッケル用第2の鉱酸及びニッケル用第3の鉱酸のそれぞれは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含み、より好ましくは硫酸を含み、更に好ましくは硫酸である。ニッケルを抽出した前記有機相について、ニッケル用第2の鉱酸を用いてニッケル用第1のスクラビングを行い、当該ニッケル用第1のスクラビング後の有機相について、ニッケル用第3の鉱酸を用いて逆抽出を行うことにより、コバルト塩水溶液が得られる。前記ニッケル塩水溶液の、不純物としてのNa及びClそれぞれの含有量は、好ましくは、リチウムイオン電池の正極活物質として要求されるニッケル1kg当たり100mg未満の範囲に低減されている。The valuable metal recovery method of the second embodiment of the present invention includes a first scrubbing step for nickel in which the organic phase obtained in the nickel extraction step is scrubbed with a second mineral acid for nickel, and a nickel stripping step in which nickel is stripped with a third mineral acid for nickel. Furthermore, the valuable metal recovery method of the second embodiment of the present invention may further include a second scrubbing step for nickel in which the organic phase obtained in the first scrubbing step for nickel is scrubbed with a third mineral acid for nickel or water. Each of the second mineral acid for nickel and the third mineral acid for nickel includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, more preferably sulfuric acid, and even more preferably sulfuric acid. The organic phase from which nickel has been extracted is subjected to a first scrubbing for nickel using the second mineral acid for nickel, and the organic phase after the first scrubbing for nickel is stripped using the third mineral acid for nickel, thereby obtaining an aqueous cobalt salt solution. The contents of Na and Cl as impurities in the nickel salt aqueous solution are preferably reduced to a range of less than 100 mg per kg of nickel required as a positive electrode active material for lithium ion batteries.

なお、前記ニッケル塩水溶液に含まれる有価金属及びNaの濃度は、例えば、誘導結合プラズマ発光分光分析装置(ICP-OES)により、測定することができる。また、前記ニッケル塩水溶液に含まれるClの濃度はイオンクロマトグラフ装置(IC)により測定することができる。The concentrations of valuable metals and Na contained in the nickel salt aqueous solution can be measured, for example, by an inductively coupled plasma optical emission spectrometry (ICP-OES). The concentration of Cl contained in the nickel salt aqueous solution can be measured by an ion chromatography (IC).

本発明の第3の実施形態の有価金属回収方法では、前記溶媒抽出工程が、前記酸溶解液を第1の正抽出液として第1の有機溶媒によるマンガンの溶媒抽出を行い、マンガン含有有機相と第1の抽出残液とを得るマンガン抽出工程(a)と、該第1の抽出残液を第2の正抽出液として第2の有機溶媒によるコバルトの溶媒抽出を行い、コバルト含有有機相と第2の抽出残液とを得るコバルト抽出工程(b)と、該第2の抽出残液を第3の正抽出液として第3の有機溶媒によるニッケルの溶媒抽出を行い、ニッケル含有有機相と第3の抽出残液としての前記第1のリチウム塩水溶液とを得るニッケル抽出工程(c)を含む。In the valuable metal recovery method of the third embodiment of the present invention, the solvent extraction process includes a manganese extraction process (a) in which manganese is solvent extracted with a first organic solvent using the acid solution as a first positive extraction liquid to obtain a manganese-containing organic phase and a first extraction residue, a cobalt extraction process (b) in which cobalt is solvent extracted with a second organic solvent using the first extraction residue as a second positive extraction liquid to obtain a cobalt-containing organic phase and a second extraction residue, and a nickel extraction process (c) in which nickel is solvent extracted with a third organic solvent using the second extraction residue as a third positive extraction liquid to obtain a nickel-containing organic phase and the first lithium salt aqueous solution as the third extraction residue.

前記第1の有機溶媒は好ましくはリン酸水素ビス(2-エチルヘキシル)を含み、前記第2の有機溶媒は好ましくは2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含み、更に前記第3の有機溶媒は好ましくはビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む。The first organic solvent preferably comprises bis(2-ethylhexyl) hydrogen phosphate, the second organic solvent preferably comprises 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid, and the third organic solvent preferably comprises bis(2,4,4-trimethylpentyl)phosphinic acid.

本発明の第3の実施形態の有価金属回収方法は、前記第1~3のいずれかの少なくとも1つの有機相を有価金属用第2の鉱酸によりスクラビングする、少なくとも1つの、有価金属用第1のスクラビング工程と、有機相用第3の鉱酸により、マンガン、コバルト、及びニッケルからなる群から選ばれる少なくとも1つの有価金属を逆抽出する、少なくとも1つの、有価金属逆抽出工程を含む。さらに本発明の第3の実施形態の有価金属回収方法は、少なくとも1つの、前記有価金属用第1のスクラビング工程で得られる、少なくとも1つの有機相を有価金属用第3の鉱酸又は水によりスクラビングする、少なくとも1つの、有価金属用第2のスクラビング工程を更に含んでいてよい。前記有価金属用第2の鉱酸及び有価金属用第3の鉱酸のそれぞれは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含み、より好ましくは硫酸を含み、更に好ましくは硫酸である。有価金属を抽出した前記有機相について、有価金属用第2の鉱酸を用いて有価金属用第1のスクラビングを行い、当該有価金属用第1のスクラビング後の有機相について、有価金属用第3の鉱酸を用いて逆抽出を行うことにより、有価金属塩水溶液が得られる。The valuable metal recovery method of the third embodiment of the present invention includes at least one first scrubbing step for valuable metals, in which at least one organic phase of any one of the first to third methods is scrubbed with a second mineral acid for valuable metals, and at least one valuable metal stripping step for stripping at least one valuable metal selected from the group consisting of manganese, cobalt, and nickel with a third mineral acid for the organic phase. Furthermore, the valuable metal recovery method of the third embodiment of the present invention may further include at least one second scrubbing step for valuable metals, in which at least one organic phase obtained in the first scrubbing step for valuable metals is scrubbed with a third mineral acid for valuable metals or water. Each of the second mineral acid for valuable metals and the third mineral acid for valuable metals includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, more preferably includes sulfuric acid, and even more preferably is sulfuric acid. The organic phase from which the valuable metals have been extracted is subjected to a first scrubbing for valuable metals using a second mineral acid for valuable metals, and the organic phase after the first scrubbing for valuable metals is subjected to back extraction using a third mineral acid for valuable metals, thereby obtaining an aqueous solution of a valuable metal salt.

前記抽出工程(a)~(c)は、例えば以下の通りに実施される。
前記酸溶解液としての有価金属溶液75Lを第1の正抽出液として、ケロシンで希釈した1モル/Lのリン酸水素ビス(2-エチルヘキシル)(ナカライテスク株式会社製)75Lを添加し、マンガンの溶媒抽出を行い、第1の抽出残液としてコバルト塩水溶液80Lを得る。前記コバルト塩水溶液80Lに対して中和処理を行い、生成した沈殿を濾別してコバルト塩水溶液83Lを得る。
The extraction steps (a) to (c) are carried out, for example, as follows.
75 L of the valuable metal solution as the acid dissolution solution is used as a first main extraction solution, and 75 L of 1 mol/L bis(2-ethylhexyl) hydrogen phosphate (manufactured by Nacalai Tesque, Inc.) diluted with kerosene is added to perform a solvent extraction of manganese, and 80 L of an aqueous cobalt salt solution is obtained as a first extraction residue. The 80 L of the aqueous cobalt salt solution is neutralized, and the resulting precipitate is filtered off to obtain 83 L of an aqueous cobalt salt solution.

前記第1の抽出残液としてのコバルト塩水溶液83Lを第2の正抽出液として、ノナン、デカン、及びウンデカンからなる群から選ばれる少なくとも1つで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)83Lを添加し、コバルトの溶媒抽出を行う。得られた第2の有機相について、塩酸16.6Lを用いて、スクラビングを行い、スクラビング後の塩酸を前記第2の正抽出液に戻す。また、スクラビング後の第2の有機相について、硫酸11Lを用いて、逆抽出操作を行う。 83 L of the aqueous cobalt salt solution as the first extraction residue is used as the second positive extraction liquid, and 83 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (Solvay) diluted with at least one selected from the group consisting of nonane, decane, and undecane is added to perform solvent extraction of cobalt. The obtained second organic phase is scrubbed using 16.6 L of hydrochloric acid, and the hydrochloric acid after scrubbing is returned to the second positive extraction liquid. In addition, the second organic phase after scrubbing is subjected to a back extraction operation using 11 L of sulfuric acid.

前記第2の抽出残液としてのニッケル塩水溶液83Lを第2の正抽出液として、デカンで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)83Lを添加し、ニッケルの溶媒抽出を行う。 83 L of the nickel salt aqueous solution as the second extraction residue is used as the second main extraction liquid, and 83 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with decane is added to perform solvent extraction of nickel.

本発明の第3の実施形態の廃リチウムイオン電池からリチウムを回収する方法では、前記第1~3のいずれかの有機相に対し塩酸によるスクラビングを行い、該スクラビング後の塩酸を、該スクラビングを行った有機相に対応する該第1~3のいずれかの正抽出液に戻す。例えば、前記第3の有機相について、塩酸溶液16.6Lを用いて、スクラビング操作を行い、スクラビング後の塩酸を前記第2の正抽出液に戻す。また、スクラビング後の第3の有機相について、硫酸溶液15Lを用いて、逆抽出操作を行う。In the method for recovering lithium from waste lithium-ion batteries according to the third embodiment of the present invention, any one of the first to third organic phases is scrubbed with hydrochloric acid, and the hydrochloric acid after the scrubbing is returned to any one of the first to third positive extracts corresponding to the organic phase that was scrubbed. For example, the third organic phase is scrubbed using 16.6 L of hydrochloric acid solution, and the hydrochloric acid after the scrubbing is returned to the second positive extract. In addition, the third organic phase after scrubbing is back-extracted using 15 L of sulfuric acid solution.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。The present invention will now be described in further detail with reference to examples, but the present invention is not limited to these.

実施例において、各種物性は以下のとおりに測定ないし算出された。
<有価金属塩水溶液に含まれる有価金属及びNaの質量の測定>
各有価金属塩水溶液に含まれる有価金属及びNaの質量は、誘導結合プラズマ発光分光分析装置(ICP-OES)により、測定された。
In the examples, various physical properties were measured or calculated as follows.
<Measurement of the mass of valuable metals and Na contained in the aqueous solution of valuable metal salts>
The masses of the valuable metals and Na contained in each aqueous solution of valuable metal salt were measured by an inductively coupled plasma optical emission spectrometer (ICP-OES).

<有価金属塩水溶液に含まれるClの質量の測定>
各有価金属塩水溶液に含まれるClの質量はイオンクロマトグラフ装置(IC)により測定された。
<Measurement of the mass of Cl contained in the aqueous solution of valuable metal salt>
The mass of Cl contained in each aqueous solution of valuable metal salt was measured by an ion chromatograph (IC).

実施例1
リチウムイオン電池の製造工程において製品化に用いられた残余の正極材料である正極箔(集電体であるアルミニウム箔に正極活物質を含む正極合剤が塗布されたもの)を、電気炉中、空気雰囲気下で400℃の温度に10分間維持して加熱した。次に、前記正極箔を、ジョークラッシャーを用いて粉砕した後、目開き1mmの篩でアルミニウム箔を分離し、正極粉(電池粉末)を得た。
次に、前記正極粉10kgを、塩酸48kg(40L)と水35kg(35L)との混合液に溶解し、酸溶解液75Lを得た。前記75Lの前記酸溶解液に、ケロシンで希釈した1モル/Lのリン酸水素ビス(2-エチルヘキシル)(ナカライテスク株式会社製)75Lを添加し、更に20質量%水酸化ナトリウム水溶液を添加して、マンガンの溶媒抽出を行い、抽出残液として80Lの粗コバルト塩水溶液を得た。
次に、得られた0.5Lの前記粗コバルト塩水溶液から、0.025Lを採取し、ノナンで調整した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)0.025Lを添加し、Coの溶媒抽出操作を行い、20質量%の水酸化ナトリウム水溶液を添加した。
抽出した有機相から0.020Lを採取し、pH0.2に調整した2.3質量%の塩酸0.0010Lを用いて、スクラビング操作を行った。スクラビング後の有機相から0.012Lを採取し、1.8Mの硫酸液0.0020Lを用いて逆抽出し、逆抽出液を得た。
前記逆抽出液に含まれる金属の質量をICP-OES及びICをより測定したところ、18mgのCoと、0.014mgのNaと、0.020mg(1100mg/kg)のClを含んでいた。すなわち前記逆抽出液は、1kgのCo当たり770mgのNaと、1kgのCo当たり1100mgのClを含んでいた。
Example 1
A positive electrode foil (a positive electrode mixture containing a positive electrode active material is applied to an aluminum foil current collector) that is a residual positive electrode material used in the manufacturing process of a lithium ion battery was heated in an electric furnace in an air atmosphere at a temperature of 400° C. for 10 minutes. Next, the positive electrode foil was crushed using a jaw crusher, and the aluminum foil was separated using a sieve with a mesh size of 1 mm to obtain a positive electrode powder (battery powder).
Next, 10 kg of the positive electrode powder was dissolved in a mixed solution of 48 kg (40 L) of hydrochloric acid and 35 kg (35 L) of water to obtain 75 L of an acid solution. 75 L of 1 mol/L bis(2-ethylhexyl) hydrogen phosphate (manufactured by Nacalai Tesque, Inc.) diluted with kerosene was added to the 75 L of the acid solution, and a 20 mass % aqueous sodium hydroxide solution was further added to perform solvent extraction of manganese, and 80 L of an aqueous crude cobalt salt solution was obtained as an extraction residue.
Next, 0.025 L was sampled from the obtained 0.5 L of the crude cobalt salt aqueous solution, and 0.025 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) adjusted with nonane was added thereto, Co was subjected to a solvent extraction operation, and a 20 mass % aqueous sodium hydroxide solution was added thereto.
0.020 L of the extracted organic phase was sampled and scrubbed with 0.0010 L of 2.3% by mass hydrochloric acid adjusted to pH 0.2. 0.012 L of the scrubbed organic phase was sampled and stripped with 0.0020 L of 1.8 M sulfuric acid to obtain a stripped solution.
The masses of metals contained in the stripped solution were measured by ICP-OES and IC, and were found to contain 18 mg of Co, 0.014 mg of Na, and 0.020 mg (1100 mg/kg) of Cl. In other words, the stripped solution contained 770 mg of Na per kg of Co and 1100 mg of Cl per kg of Co.

実施例2
0.5Lの前記粗コバルト塩水溶液から、0.025Lを採取し、デカンで調整した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)0.025Lを添加し、Coの溶媒抽出操作を行い、20質量%水酸化ナトリウム水溶液を添加した。
抽出した有機相から0.020Lを採取し、pH0.2に調整した希釈硫酸0.0010Lを用いて、スクラビング操作を行った。スクラビング後の有機相から0.012L採取し、1.8Mの硫酸液0.0020Lを用いて逆抽出し、逆抽出液を得た。
前記逆抽出液に含まれる金属の質量をICP-OES及びICをより測定したところ、18mgのCoと、0.044mgのNaと、0.057mgのClを含んでいた。すなわち前記逆抽出液は、1kgのCo当たり2400mgのNaと、1kgのCo当たり3100mgのClを含んでいた。
Example 2
From 0.5 L of the crude cobalt salt aqueous solution, 0.025 L was taken, and 0.025 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) adjusted with decane was added thereto, Co was subjected to a solvent extraction operation, and a 20 mass % aqueous sodium hydroxide solution was added thereto.
0.020 L of the extracted organic phase was collected and scrubbed with 0.0010 L of diluted sulfuric acid adjusted to pH 0.2. 0.012 L of the scrubbed organic phase was stripped with 0.0020 L of 1.8 M sulfuric acid to obtain a stripped solution.
The masses of metals contained in the stripped solution were measured by ICP-OES and IC, and were found to contain 18 mg of Co, 0.044 mg of Na, and 0.057 mg of Cl. In other words, the stripped solution contained 2400 mg of Na per kg of Co and 3100 mg of Cl per kg of Co.

実施例3
0.5Lの前記粗コバルト塩水溶液から、0.025Lを採取し、ウンデカンで調整した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)0.025Lを添加し、Coの溶媒抽出操作を行った。平衡pHが3.9になるまで20質量%水酸化ナトリウム水溶液を添加した。
抽出した有機相から0.020Lを採取し、pH0.2に調整した希釈硫酸0.0010Lを用いて、スクラビング操作を行った。スクラビング後の有機相から0.012Lを採取し、1.8Mの硫酸液0.0020Lを用いて逆抽出し、逆抽出液を得た。
前記逆抽出液に含まれる金属の質量をICP-OES及びICをより測定したところ、19mgのCoと、0.046mgのNaと、0.061mgのClを含んでいた。すなわち前記逆抽出液は、1kgのCo当たり2400mgのNaと、1kgのCo当たり3200mgのClを含んでいた。
Example 3
From 0.5 L of the crude cobalt salt aqueous solution, 0.025 L was taken, and 0.025 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) adjusted with undecane was added to perform a solvent extraction operation of Co. A 20 mass % aqueous sodium hydroxide solution was added until the equilibrium pH reached 3.9.
0.020 L of the extracted organic phase was collected and scrubbed with 0.0010 L of diluted sulfuric acid adjusted to pH 0.2. 0.012 L of the scrubbed organic phase was collected and stripped with 0.0020 L of 1.8 M sulfuric acid to obtain a stripped solution.
The masses of metals contained in the stripped solution were measured by ICP-OES and IC, and were found to contain 19 mg of Co, 0.046 mg of Na, and 0.061 mg of Cl. In other words, the stripped solution contained 2400 mg of Na per kg of Co and 3200 mg of Cl per kg of Co.

実施例4
0.5Lの前記粗コバルト塩水溶液から、0.025Lを採取し、ケロシンで調整した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)0.025Lを添加し、Coの溶媒抽出操作を行った。平衡pHが3.9になるまで20質量%水酸化ナトリウム水溶液を添加した。
抽出した有機相から0.020Lを採取し、pH0.2に調整した希釈硫酸0.0010Lを用いて、スクラビング操作を行った。スクラビング後の有機相から0.012Lを採取し、1.8Mの硫酸液0.0020Lを用いて逆抽出し、逆抽出液を得た。
前記逆抽出液に含まれ金属の質量をICP-OES及びICをより測定したところ、20mgのCoと、0.15mgのNaと、0.20mgのClを含んでいた。すなわち前記逆抽出液は、1kgのCo当たり7700mgのNaと、1kgのCo当たり10000mgのClを含んでいた。
Example 4
From 0.5 L of the crude cobalt salt aqueous solution, 0.025 L was taken, and 0.025 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) adjusted with kerosene was added to perform a solvent extraction operation of Co. A 20 mass % aqueous sodium hydroxide solution was added until the equilibrium pH reached 3.9.
0.020 L of the extracted organic phase was collected and scrubbed with 0.0010 L of diluted sulfuric acid adjusted to pH 0.2. 0.012 L of the scrubbed organic phase was collected and stripped with 0.0020 L of 1.8 M sulfuric acid to obtain a stripped solution.
The masses of metals contained in the stripped solution were measured by ICP-OES and IC, and were found to contain 20 mg of Co, 0.15 mg of Na, and 0.20 mg of Cl. In other words, the stripped solution contained 7,700 mg of Na per kg of Co and 10,000 mg of Cl per kg of Co.

実施例5
リチウムイオン電池の製造工程において製品化に用いられた残余の正極材料である正極箔(集電体であるアルミニウム箔に正極活物質を含む正極合剤が塗布されたもの)を、電気炉中、空気雰囲気下で400℃の温度に10分間維持して加熱した。次に、前記正極箔を、ジョークラッシャーを用いて粉砕した後、目開き1mmの篩でアルミニウム箔を分離し、正極粉(電池粉末)を得た。
次に、前記正極粉10kgを、塩酸48kg(40L)と水35kg(35L)との混合液に溶解し、酸溶解液75Lを得た。
次に、75Lの前記粗有価金属溶液に、ケロシンで希釈した1モル/Lのリン酸水素ビス(2-エチルヘキシル)(ナカライテスク株式会社製)75Lを添加し、20質量%水酸化ナトリウム水溶液を添加して調整して、マンガンの溶媒抽出を行い、抽出残液としてコバルト塩水溶液80Lを得た。
前記コバルト塩水溶液80Lに対して20質量%水酸化ナトリウム水溶液を添加して中和処理を行い、該沈殿を濾別してコバルト塩水溶液83Lを得た。
前記抽出残液83Lに、デカンで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)83Lを添加し、Coの溶媒抽出操作を行った。抽出した有機相について、2.3質量%の塩酸16.6Lを用いて、スクラビング操作を行った。スクラビング後の有機相について、硫酸溶液11Lを用いて、逆抽出操作を行った。
前記抽出残液83Lに、デカンで希釈した1モル/Lのビス(2,4,4-トリメチルペンチル)ホスフィン酸(Solvay社製)83Lを添加し、Niの溶媒抽出操作を行った。抽出した有機相について、2.3質量%の塩酸16.6Lを用いて、スクラビング操作を行った。スクラビング後の有機相について、硫酸溶液15Lを用いて、逆抽出操作を行った。逆抽出後のニッケル塩水溶液は980g(65g/kg)のNiと、10mg(10mg/kg)のLiと、10mg(10mg/kg)のNaを含んでいた。
Example 5
A positive electrode foil (a positive electrode mixture containing a positive electrode active material is applied to an aluminum foil current collector) that is a residual positive electrode material used in the manufacturing process of a lithium ion battery was heated in an electric furnace in an air atmosphere at a temperature of 400° C. for 10 minutes. Next, the positive electrode foil was crushed using a jaw crusher, and the aluminum foil was separated using a sieve with a mesh size of 1 mm to obtain a positive electrode powder (battery powder).
Next, 10 kg of the positive electrode powder was dissolved in a mixture of 48 kg (40 L) of hydrochloric acid and 35 kg (35 L) of water to obtain 75 L of an acid solution.
Next, 75 L of 1 mol/L bis(2-ethylhexyl) hydrogen phosphate (manufactured by Nacalai Tesque, Inc.) diluted with kerosene was added to 75 L of the crude valuable metal solution, and a 20 mass% aqueous sodium hydroxide solution was added to adjust the amount, to perform solvent extraction of manganese, and 80 L of an aqueous cobalt salt solution was obtained as an extraction residue.
A 20% by mass aqueous solution of sodium hydroxide was added to 80 L of the aqueous cobalt salt solution to carry out neutralization, and the precipitate was separated by filtration to obtain 83 L of an aqueous cobalt salt solution.
To 83 L of the extraction residue, 83 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with decane was added to perform a solvent extraction operation of Co. The extracted organic phase was subjected to a scrubbing operation using 16.6 L of 2.3 mass % hydrochloric acid. The organic phase after scrubbing was subjected to a back extraction operation using 11 L of a sulfuric acid solution.
To 83 L of the extraction residue, 83 L of 1 mol/L bis(2,4,4-trimethylpentyl)phosphinic acid (manufactured by Solvay) diluted with decane was added, and a Ni solvent extraction operation was performed. The extracted organic phase was scrubbed using 16.6 L of 2.3 mass% hydrochloric acid. The organic phase after scrubbing was back-extracted using 15 L of sulfuric acid solution. The nickel salt aqueous solution after back extraction contained 980 g (65 g/kg) of Ni, 10 mg (10 mg/kg) of Li, and 10 mg (10 mg/kg) of Na.

Claims (13)

廃リチウムイオン電池から有価金属を回収する方法であって、
該廃リチウムイオン電池を前処理して得られた活物質粉を第1の鉱酸中に溶解して酸溶解液を得る溶解工程と、
該酸溶解液から、該活物質粉に含まれる金属のうち、マンガン、コバルト、及びニッケルを溶媒抽出によりそれぞれ分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程を含み、
該第1の鉱酸は塩酸を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
A method for recovering valuable metals from waste lithium ion batteries, comprising:
a dissolving step of dissolving the active material powder obtained by pretreating the waste lithium ion batteries in a first mineral acid to obtain an acid solution;
a solvent extraction step of separating manganese, cobalt, and nickel from the acid solution by solvent extraction, among the metals contained in the active material powder, and obtaining a first lithium salt aqueous solution as a residue of the solvent extraction ;
The method for recovering valuable metals from waste lithium ion batteries, wherein the first mineral acid comprises hydrochloric acid .
請求項1に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記溶媒抽出工程が、2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む第1の抽出溶媒を使用してコバルトを抽出するコバルト抽出工程、
該コバルト抽出工程で得られた有機相をコバルト用第2の鉱酸によりスクラビングするコバルト用第1のスクラビング工程、及び、コバルト用第3の鉱酸によりコバルトを逆抽出するコバルト逆抽出工程を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 1,
a cobalt extraction step, the solvent extraction step extracting cobalt using a first extraction solvent comprising 2-ethylhexyl (2-ethylhexyl) phosphonate or bis(2,4,4-trimethylpentyl) phosphinic acid;
The method for recovering valuable metals from waste lithium-ion batteries comprises a first cobalt scrubbing step in which the organic phase obtained in the cobalt extraction step is scrubbed with a second mineral acid for cobalt, and a cobalt stripping step in which cobalt is stripped with a third mineral acid for cobalt.
請求項2に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記コバルト用第1のスクラビング工程で得られる有機相をコバルト用第3の鉱酸又は水によりスクラビングするコバルト用第2のスクラビング工程を更に含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 2,
A method for recovering valuable metals from waste lithium ion batteries, further comprising a second scrubbing step for cobalt, in which the organic phase obtained in the first scrubbing step for cobalt is scrubbed with a third mineral acid for cobalt or water.
請求項1に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記溶媒抽出工程が、ビス(2,4,4-トリメチルペンチル)ホスフィン酸を含む抽出溶媒を使用してニッケルを抽出するニッケル抽出工程、
該ニッケル抽出工程で得られた有機相をニッケル用第2の鉱酸によりスクラビングするニッケル用第1のスクラビング工程、及び
ニッケル用第3の鉱酸によりニッケルを逆抽出するニッケル逆抽出工程を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 1,
The solvent extraction step is a nickel extraction step in which nickel is extracted using an extraction solvent containing bis(2,4,4-trimethylpentyl)phosphinic acid;
The method for recovering valuable metals from waste lithium-ion batteries comprises: a first scrubbing step for nickel in which the organic phase obtained in the nickel extraction step is scrubbed with a second mineral acid for nickel; and a nickel stripping step in which nickel is stripped with a third mineral acid for nickel.
請求項4に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記ニッケル用第1のスクラビング工程で得られる有機相を前記ニッケル用第3の鉱酸又は水によりスクラビングするニッケル用第2のスクラビング工程を更に含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 4,
A method for recovering valuable metals from waste lithium-ion batteries, further comprising a second scrubbing step for nickel, in which the organic phase obtained in the first scrubbing step for nickel is scrubbed with the third mineral acid for nickel or water.
請求項1に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記溶媒抽出工程が、前記酸溶解液を第1の正抽出液として第1の有機溶媒によるマンガンの溶媒抽出を行い、マンガン含有有機相と第1の抽出残液とを得るマンガン抽出工程と、
該第1の抽出残液を第2の正抽出液として第2の有機溶媒によるコバルトの溶媒抽出を行い、コバルト含有有機相と第2の抽出残液とを得るコバルト抽出工程と、
該第2の抽出残液を第3の正抽出液として第3の有機溶媒によるニッケルの溶媒抽出を行い、ニッケル含有有機相と第3の抽出残液としての前記第1のリチウム塩水溶液とを得るニッケル抽出工程と、
該第1~3のいずれかの少なくとも1つの有機相を有価金属用第2の鉱酸によりスクラビングする、少なくとも1つの、有価金属用第1のスクラビング工程と、
有価金属用第3の鉱酸により、マンガン、コバルト、及びニッケルからなる群から選ばれる少なくとも1つの有価金属を逆抽出する、少なくとも1つの、有価金属逆抽出工程を含み、かつ
少なくとも1つの該有価金属用第1のスクラビング工程後の該有価金属用第2の鉱酸を、少なくとも1つの該有価金属用第1のスクラビング工程における有機相に対応する該第1~3のいずれかの正抽出液に戻すことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 1,
the solvent extraction step includes a manganese extraction step of performing solvent extraction of manganese with a first organic solvent using the acid solution as a first main extract to obtain a manganese-containing organic phase and a first extraction residue;
a cobalt extraction step of performing solvent extraction of cobalt with a second organic solvent using the first extraction residue as a second main extraction liquid to obtain a cobalt-containing organic phase and a second extraction residue;
a nickel extraction step of performing a solvent extraction of nickel with a third organic solvent using the second extraction bottom solution as a third extraction bottom solution to obtain a nickel-containing organic phase and the first lithium salt aqueous solution as a third extraction bottom solution;
At least one first scrubbing step for valuable metals, in which at least one of the organic phases of any one of the first to third steps is scrubbed with a second mineral acid for valuable metals;
A method for recovering valuable metals from waste lithium-ion batteries, comprising at least one valuable metal stripping step in which at least one valuable metal selected from the group consisting of manganese, cobalt, and nickel is stripped with a third mineral acid for valuable metals , and the second mineral acid for valuable metals after the at least one first scrubbing step for valuable metals is returned to any one of the first to third forward extraction solutions corresponding to the organic phase in the at least one first scrubbing step for valuable metals.
請求項6に記載の廃リチウムイオン電池から有価金属を回収する方法において、
少なくとも1つの、前記有価金属用第1のスクラビング工程で得られる、少なくとも1つの有機相を有価金属用第3の鉱酸又は水によりスクラビングする、少なくとも1つの、有価金属用第2のスクラビング工程を更に含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 6,
1. A method for recovering valuable metals from waste lithium ion batteries, comprising the steps of: scrubbing at least one organic phase obtained in said at least one first scrubbing step for valuable metals with a third mineral acid for valuable metals or water;
請求項6に記載の廃リチウムイオン電池から有価金属を回収する方法において、
前記第1の有機溶媒はリン酸水素ビス(2-エチルヘキシル)を含み、前記第2の有機溶媒は2-エチルヘキシル(2-エチルヘキシル)ホスホネート又はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含み、前記第3の有機溶媒はビス(2,4,4-トリメチルペンチル)ホスフィン酸を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to claim 6,
A method for recovering valuable metals from waste lithium ion batteries, characterized in that the first organic solvent contains bis(2-ethylhexyl) hydrogen phosphate, the second organic solvent contains 2-ethylhexyl(2-ethylhexyl)phosphonate or bis(2,4,4-trimethylpentyl)phosphinic acid, and the third organic solvent contains bis(2,4,4-trimethylpentyl)phosphinic acid.
請求項1~3及び6~8のいずれか1項に記載の廃リチウムイオン電池から有価金属を回収する方法において、
コバルトの前記溶媒抽出に使用される抽出溶媒が、ノナン、デカン、及びウンデカンからなる群から選ばれる少なくとも1つの直鎖状炭化水素化合物を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to any one of claims 1 to 3 and 6 to 8,
1. A method for recovering valuable metals from waste lithium ion batteries, characterized in that the extraction solvent used in the solvent extraction of cobalt contains at least one linear hydrocarbon compound selected from the group consisting of nonane, decane, and undecane.
請求項1及び4~8のいずれか1項に記載の廃リチウムイオン電池から有価金属を回収する方法において、
ニッケルの前記溶媒抽出に使用される抽出溶媒が、デカンを含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
The method for recovering valuable metals from waste lithium ion batteries according to any one of claims 1 and 4 to 8,
2. A method for recovering valuable metals from waste lithium ion batteries, characterized in that the extraction solvent used for the solvent extraction of nickel contains decane.
請求項2又は3に記載の廃リチウムイオン電池から有価金属を回収する方法において、前記コバルト用第3の鉱酸は硫酸を含むこと特徴とする、廃リチウムイオン電池から有価金属を回収する方法。 4. The method for recovering valuable metals from waste lithium ion batteries according to claim 2 or 3 , wherein the third mineral acid for cobalt contains sulfuric acid . 請求項4又は5に記載の廃リチウムイオン電池から有価金属を回収する方法において、前記ニッケル用第3の鉱酸は硫酸を含むことを特徴とする、廃リチウムイオン電池からリチウムを回収する方法。 6. The method for recovering valuable metals from waste lithium ion batteries according to claim 4 or 5 , wherein the third mineral acid for nickel contains sulfuric acid . 請求項1~8のいずれか1項記載の廃リチウムイオン電池から有価金属を回収する方法において、前記溶解工程が、
前記活物質粉を、50~150g/Lの範囲の濃度の塩酸に、該塩酸中の塩化水素に対して250~1000%の範囲の質量比で供給し、前記活物質粉の塩酸懸濁液を得る工程と、
該塩酸懸濁液に所定量の塩酸を加えることにより、該塩酸懸濁液中の塩酸の濃度を150~350g/Lの範囲とし、且つ該塩酸懸濁液中の前記活物質粉が、該塩酸懸濁液中の塩化水素に対して50~200%の範囲の質量比になるよう調整し、攪拌する工程を含むことを特徴とする、廃リチウムイオン電池から有価金属を回収する方法。
In the method for recovering valuable metals from waste lithium ion batteries according to any one of claims 1 to 8, the dissolving step comprises:
supplying the active material powder to hydrochloric acid having a concentration in the range of 50 to 150 g/L in a mass ratio in the range of 250 to 1000% relative to hydrogen chloride in the hydrochloric acid to obtain a hydrochloric acid suspension of the active material powder;
a step of adding a predetermined amount of hydrochloric acid to the hydrochloric acid suspension to adjust the concentration of hydrochloric acid in the hydrochloric acid suspension to a range of 150 to 350 g/L and adjusting the mass ratio of the active material powder in the hydrochloric acid suspension to the hydrogen chloride in the hydrochloric acid suspension to a range of 50 to 200%, and stirring the mixture.
JP2023523131A 2021-09-29 2022-09-29 Method for recovering valuable metals from discarded lithium-ion batteries Active JP7506951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024031012A JP2024059931A (en) 2021-09-29 2024-03-01 Method for recovering valuable metal from waste lithium-ion battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2021159027 2021-09-29
JP2021159042 2021-09-29
JP2021159019 2021-09-29
JP2021159027 2021-09-29
JP2021159019 2021-09-29
JP2021159042 2021-09-29
PCT/JP2022/036538 WO2023054621A1 (en) 2021-09-29 2022-09-29 Method for recovering valuable metal from waste lithium-ion battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024031012A Division JP2024059931A (en) 2021-09-29 2024-03-01 Method for recovering valuable metal from waste lithium-ion battery

Publications (2)

Publication Number Publication Date
JPWO2023054621A1 JPWO2023054621A1 (en) 2023-04-06
JP7506951B2 true JP7506951B2 (en) 2024-06-27

Family

ID=85782940

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023523131A Active JP7506951B2 (en) 2021-09-29 2022-09-29 Method for recovering valuable metals from discarded lithium-ion batteries
JP2024031012A Pending JP2024059931A (en) 2021-09-29 2024-03-01 Method for recovering valuable metal from waste lithium-ion battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024031012A Pending JP2024059931A (en) 2021-09-29 2024-03-01 Method for recovering valuable metal from waste lithium-ion battery

Country Status (2)

Country Link
JP (2) JP7506951B2 (en)
WO (1) WO2023054621A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307983A (en) 2003-04-10 2004-11-04 National Institute Of Advanced Industrial & Technology Method for recovering nickel from nickel-containing aqueous solution
JP2009193778A (en) 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
JP2011195948A (en) 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device
WO2018181816A1 (en) 2017-03-31 2018-10-04 Jx金属株式会社 Lithium ion battery scrap treatment method
JP2020105597A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method
JP2020105598A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water
JP2701284B2 (en) * 1988-01-27 1998-01-21 住友金属工業株式会社 Treatment method for metal-containing water
JPH09209054A (en) * 1996-02-08 1997-08-12 Sumitomo Metal Mining Co Ltd Separation of nickel from cobalt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307983A (en) 2003-04-10 2004-11-04 National Institute Of Advanced Industrial & Technology Method for recovering nickel from nickel-containing aqueous solution
JP2009193778A (en) 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
JP2011195948A (en) 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device
WO2018181816A1 (en) 2017-03-31 2018-10-04 Jx金属株式会社 Lithium ion battery scrap treatment method
JP2020105597A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method
JP2020105598A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method

Also Published As

Publication number Publication date
WO2023054621A1 (en) 2023-04-06
JP2024059931A (en) 2024-05-01
JPWO2023054621A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP3688834B1 (en) Lithium-ion batteries recycling process
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
KR102154599B1 (en) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
JP5791917B2 (en) Lithium recovery method
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
TWI746818B (en) Process for the recovery of lithium
JP6448684B2 (en) Lithium recovery method
JP2017115179A (en) Recovery method of valuable substance
CA2868086C (en) Method for producing high-purity nickel sulfate
JP6290633B2 (en) Lithium ion battery waste treatment method and metal recovery method using the same
JP7008904B2 (en) How to separate cobalt from copper and aluminum
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
JP5004106B2 (en) Method for separating and recovering nickel and lithium
KR20190065882A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
CN115210390A (en) Method for producing metal mixed solution and method for producing mixed metal salt
JP2013112859A (en) Method for manufacturing manganese sulfate
JP2022182229A (en) Metal recovery method from lithium ion battery
JP2019011518A (en) Lithium recovery method
CN115087622A (en) Process for producing mixed metal salt
KR102324910B1 (en) Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
JP6682480B2 (en) Method for dissolving lithium compound and method for producing lithium carbonate
JP7506951B2 (en) Method for recovering valuable metals from discarded lithium-ion batteries
JP2013209267A (en) Method of manufacturing manganese sulfate
JP7453727B1 (en) How to extract aluminum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240610