JP7506383B1 - How to recover rare metals from waste optical glass - Google Patents

How to recover rare metals from waste optical glass Download PDF

Info

Publication number
JP7506383B1
JP7506383B1 JP2023191668A JP2023191668A JP7506383B1 JP 7506383 B1 JP7506383 B1 JP 7506383B1 JP 2023191668 A JP2023191668 A JP 2023191668A JP 2023191668 A JP2023191668 A JP 2023191668A JP 7506383 B1 JP7506383 B1 JP 7506383B1
Authority
JP
Japan
Prior art keywords
solution
optical glass
nitric acid
dissolving
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023191668A
Other languages
Japanese (ja)
Inventor
尚之 菅井
弘 菅井
Original Assignee
株式会社スリー・アール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリー・アール filed Critical 株式会社スリー・アール
Priority to JP2023191668A priority Critical patent/JP7506383B1/en
Application granted granted Critical
Publication of JP7506383B1 publication Critical patent/JP7506383B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】光学ガラス廃材から比較的簡易な方法でかつ経済的にTa、Nb、La、またはGdを回収する方法を提供する。【解決手段】本発明の方法は、(a)光学ガラス廃材を硝酸を用いて溶解して第1溶解液を得るステップと、(b)第1溶解液をろ過して第1沈殿物と第2溶解液を得るステップと、(c)第1沈殿物を水酸化ナトリウムと過酸化水素を用いて溶解して第3溶解液を得るステップと、(d)第3溶解液をろ過して不溶残渣と第4溶解液を得るステップと、(e)第4溶解液を結晶化してTaとNbを含む結晶化物を得るステップと、を含む。【選択図】図1[Problem] To provide a method for recovering Ta, Nb, La, or Gd from waste optical glass in a relatively simple and economical manner. [Solution] The method of the present invention includes the steps of (a) dissolving the waste optical glass with nitric acid to obtain a first solution, (b) filtering the first solution to obtain a first precipitate and a second solution, (c) dissolving the first precipitate with sodium hydroxide and hydrogen peroxide to obtain a third solution, (d) filtering the third solution to obtain an insoluble residue and a fourth solution, and (e) crystallizing the fourth solution to obtain a crystallized material containing Ta and Nb. [Selected Figure] Figure 1

Description

本発明は、光学ガラス廃材からレアメタルを回収する方法に関し、より具体的には、光学ガラス廃材からTa、Nb、La、またはGdを回収する方法に関する。 The present invention relates to a method for recovering rare metals from waste optical glass, and more specifically, to a method for recovering Ta, Nb, La, or Gd from waste optical glass.

Ta、Nb、La、Gd等といった希少金属元素(以下、本明細書において「レアメタル」と呼ぶ)は、消費量のほぼ全量を海外からの輸入に頼っている。そのため、安定な供給の確保が困難であり、また価格変動の影響を大きく受ける。一方で、レアメタルは様々な用途に用いられた後に廃棄されている現状にある。例えば、光学ガラスには上記したレアメタルを含む多種類のレアメタルが含まれているものの、製造工程でその大部分が廃棄されており、製品となるのは原料の半分以下である。こういった現状から、レアメタルを含む廃棄物からレアメタルを効率的かつ経済的に分離し回収する技術が必要とされている。 The consumption of rare metal elements such as Ta, Nb, La, Gd, etc. (hereinafter referred to as "rare metals" in this specification) is almost entirely dependent on imports from overseas. This makes it difficult to ensure a stable supply and is greatly affected by price fluctuations. Meanwhile, rare metals are currently discarded after being used for various purposes. For example, although optical glass contains many types of rare metals, including the rare metals mentioned above, most of them are discarded during the manufacturing process, and less than half of the raw materials become products. Given this current situation, there is a need for technology to efficiently and economically separate and recover rare metals from waste materials that contain rare metals.

レアメタルを回収する技術として、特許文献1は、塩化揮発法による光学ガラス廃材からのレアメタルの分離回収方法を開示する。また、特許文献2は、光学ガラス研磨・洗浄工程およびこれに付帯する排水処理装置から発生する光学ガラス汚泥から硫酸処理等を用いてレアメタル成分を回収する方法を開示する。 As a technique for recovering rare metals, Patent Document 1 discloses a method for separating and recovering rare metals from waste optical glass using a chlorination volatilization method. Patent Document 2 discloses a method for recovering rare metal components from optical glass sludge generated in the optical glass polishing and cleaning process and the associated wastewater treatment equipment using sulfuric acid treatment, etc.

しかし、特許文献1に記載の方法は塩素供給や加熱温度の制御が複雑であり、特許文献2に記載の方法は光学ガラス汚泥を原料とするものであり、いずれも光学ガラス廃材から効率的でかつ経済的に、言い換えれば比較的簡易な方法により高い回収率で、Ta、Nb、La、またはGdを回収する方法を開示するものではない。 However, the method described in Patent Document 1 requires complicated control of chlorine supply and heating temperature, and the method described in Patent Document 2 uses optical glass sludge as the raw material. Neither method discloses a method for recovering Ta, Nb, La, or Gd from optical glass waste efficiently and economically, in other words, with a relatively simple method and at a high recovery rate.

特許第5504531号公報Patent No. 5504531 特開平11-50168号公報Japanese Patent Application Laid-Open No. 11-50168

本願発明は、光学ガラス廃材から比較的簡易な方法でかつ安く(経済的に)Ta、Nb、La、またはGdを回収する方法を提供することを目的とする The objective of this invention is to provide a relatively simple and inexpensive (economical) method for recovering Ta, Nb, La, or Gd from waste optical glass.

本発明は、光学ガラス廃材からレアメタルを回収する方法を提供する。その方法は、(a)光学ガラス廃材を硝酸を用いて溶解して第1溶解液を得るステップと、(b)第1溶解液をろ過して第1沈殿物と第2溶解液を得るステップと、(c)第1沈殿物を水酸化ナトリウムと過酸化水素を用いて溶解して第3溶解液を得るステップと、(d)第3溶解液をろ過して不溶残渣と第4溶解液を得るステップと、(e)第4溶解液を結晶化してTaとNbを含む結晶化物を得るステップと、を含む。 The present invention provides a method for recovering rare metals from waste optical glass. The method includes the steps of (a) dissolving the waste optical glass with nitric acid to obtain a first solution, (b) filtering the first solution to obtain a first precipitate and a second solution, (c) dissolving the first precipitate with sodium hydroxide and hydrogen peroxide to obtain a third solution, (d) filtering the third solution to obtain an insoluble residue and a fourth solution, and (e) crystallizing the fourth solution to obtain a crystallized material containing Ta and Nb.

本発明によれば、比較的簡易な酸とアルカリを用いた化学処理により、高い回収率でTaとNbをそれらを含む結晶化物として回収することができる。 According to the present invention, Ta and Nb can be recovered as crystallized materials containing them with a high recovery rate by a relatively simple chemical treatment using acid and alkali.

本発明の一態様では、第1溶解液を得るステップ(a)は、(a1)光学ガラス廃材を高濃度の硝酸を用いて溶解するステップと、(a2)高濃度の硝酸による溶解液をさらに高濃度の硝酸よりも低濃度の硝酸を用いて溶解するステップと、を含む。その際、例えば高濃度の硝酸は低濃度の硝酸の略2倍の濃度(M)とすることができる。 In one aspect of the present invention, the step (a) of obtaining the first dissolving solution includes the steps of (a1) dissolving the optical glass waste material using high-concentration nitric acid, and (a2) dissolving the solution obtained by dissolving the high-concentration nitric acid using nitric acid of a lower concentration than the high-concentration nitric acid. In this case, for example, the high-concentration nitric acid can have a concentration (M) that is approximately twice that of the low-concentration nitric acid.

本発明の一態様によれば、光学ガラス廃材の溶解を高濃度及び低濃度の硝酸による溶解の2段階の処理とすることにより、光学ガラス廃材の溶解度を向上されることができる。 According to one aspect of the present invention, the dissolution of optical glass waste can be improved by carrying out a two-stage process of dissolving the waste using high-concentration and low-concentration nitric acid.

本発明の一態様では、水酸化ナトリウムは略1Mの濃度に、過酸化水素は略5-7重量%の濃度にすることができる。 In one embodiment of the present invention, the sodium hydroxide can be at a concentration of approximately 1M and the hydrogen peroxide can be at a concentration of approximately 5-7% by weight.

本発明の一態様によれば、第3溶解液中のTaとNbの回収率をそれぞれ略95%以上、略40%以上にすることができる。 According to one aspect of the present invention, the recovery rates of Ta and Nb in the third solution can be approximately 95% or more and approximately 40% or more, respectively.

本発明の一態様では、第2溶解液を結晶化するステップは、第4溶解液を常温から略80度の範囲の温度で保持するステップを含む。 In one aspect of the present invention, the step of crystallizing the second solution includes a step of maintaining the fourth solution at a temperature in the range from room temperature to approximately 80 degrees.

本発明の一態様によれば、第4溶解液を常温での放置、あるいは加熱温度に応じた加熱及びその冷却処理をするといった、比較的簡易な処理により、TaとNbを含む結晶化物を得ることができる。 According to one aspect of the present invention, a crystallized material containing Ta and Nb can be obtained by a relatively simple process, such as leaving the fourth solution at room temperature or heating it according to the heating temperature and then cooling it.

本発明の一態様では、第2溶解液のpHをアンモニア水、水酸化ナトリウム等を用いて所定値に調整するステップと、pHの調整後の第2溶解液をろ過して第5溶解液を得るステップと、第5溶解液に硫酸ナトリウムを加えて、LaとGaを含む硫酸塩を得るステップと、をさらに含む。その際、例えばpH=3とすることができる。 In one aspect of the present invention, the method further includes the steps of adjusting the pH of the second solution to a predetermined value using ammonia water, sodium hydroxide, or the like, filtering the second solution after the pH adjustment to obtain a fifth solution, and adding sodium sulfate to the fifth solution to obtain a sulfate salt containing La and Ga. In this case, the pH can be set to, for example, 3.

本発明の一態様によれば、比較的簡易な酸とアルカリを用いた化学処理により、TaとNbに加えて、さらにLaとGgをこれらを含む硫酸塩として回収することができる。 According to one aspect of the present invention, a relatively simple chemical treatment using acid and alkali can be used to recover not only Ta and Nb, but also La and Gd as sulfates containing these elements.

本発明の一態様では、アンモニア水は略20重量%の濃度にすることができ、また、硫酸ナトリウムは略30重量%の濃度にすることができる。 In one aspect of the invention, the ammonia water can be at a concentration of approximately 20% by weight, and the sodium sulfate can be at a concentration of approximately 30% by weight.

本発明の一態様によれば硫酸塩中のLaとGdの回収率をそれぞれ例えば略85%以上、略79%以上にすることができる。 According to one aspect of the present invention, the recovery rates of La and Gd in sulfate can be, for example, approximately 85% or more and approximately 79% or more, respectively.

本発明の一実施形態の方法の全体工程を示す図である。FIG. 1 illustrates the overall steps of a method according to one embodiment of the present invention. 本発明の一実施形態の方法の一部工程(TaとNbの回収工程)を示す図である。FIG. 2 is a diagram showing a part of a process (Ta and Nb recovery process) of a method according to one embodiment of the present invention. 本発明の一実施形態の方法の一部工程(LaとGdの回収工程)を示す図である。FIG. 2 is a diagram showing a part of a process (a La and Gd recovery process) of a method according to one embodiment of the present invention.

図面を参照しながら本発明の実施の形態を説明する。図1から図3は、本発明の一実施形態の方法の工程を示す図である。図1は、本発明の一実施形態の方法の工程の全体(概要)を示す。図2は、図1の工程S4の内容に相当し、本発明の一実施形態の方法のTaとNbを回収する一連の工程を示す。図3は、図1の工程S5の内容に相当し、本発明の一実施形態の方法のLaとGdを回収する一連の工程を示す。図2と図3の工程は、別々に実施可能であり、あるいは並行して実施可能であり、連続してまたは不連続に(時間を空けて)実施可能である。 The embodiment of the present invention will be described with reference to the drawings. Figures 1 to 3 are diagrams showing the steps of a method according to one embodiment of the present invention. Figure 1 shows the overall steps (overview) of a method according to one embodiment of the present invention. Figure 2 corresponds to the content of step S4 in Figure 1 and shows a series of steps for recovering Ta and Nb in a method according to one embodiment of the present invention. Figure 3 corresponds to the content of step S5 in Figure 1 and shows a series of steps for recovering La and Gd in a method according to one embodiment of the present invention. The steps in Figures 2 and 3 can be carried out separately or in parallel, and can be carried out continuously or discontinuously (with a time gap).

図1の工程S1において、光学ガラス廃材を準備する。光学ガラス廃材は、光学ガラスの製造工程で出てくるガラス廃材であって、レアメタルを含む希少元素が含まれている。本発明の一実施形態では、回収の対象となるTa、Nb、La、Gdに加えて、例えば、Zn、Zr、B、Siの4つの元素が含まれる光学ガラス廃材を準備する。なお、Ta、Nb、La、Gdに加えて含まれる元素は、この4つの元素に限定されるものではなく、光学ガラスの種類に応じて、それらの元素の一部あるいは他の元素が含まれる場合であっても本発明の方法は適用可能である。 In step S1 of FIG. 1, waste optical glass is prepared. The waste optical glass is glass waste that is generated during the manufacturing process of optical glass and contains rare elements including rare metals. In one embodiment of the present invention, in addition to the Ta, Nb, La, and Gd to be recovered, waste optical glass is prepared that contains, for example, four elements: Zn, Zr, B, and Si. Note that the elements contained in addition to Ta, Nb, La, and Gd are not limited to these four elements, and the method of the present invention can be applied even if some of these elements or other elements are contained depending on the type of optical glass.

工程S2において、準備した光学ガラス廃材を硝酸(HNO)を用いて溶解して第1溶解液を得る。その際、2段階で溶解することもできる。すなわち、第1溶解液を得る工程S2を、光学ガラス廃材を高濃度の硝酸を用いて溶解する工程と、高濃度の硝酸による溶解液をさらに高濃度の硝酸よりも低濃度の硝酸を用いて溶解する工程に分けることができる。 In step S2, the prepared optical glass waste is dissolved using nitric acid (HNO 3 ) to obtain a first solution. At this time, the dissolution can be performed in two stages. That is, step S2 for obtaining the first solution can be divided into a step of dissolving the optical glass waste using high-concentration nitric acid and a step of dissolving the solution using high-concentration nitric acid using nitric acid with a lower concentration than the high-concentration nitric acid.

低濃度の硝酸を用いて溶解する工程は、高濃度の硝酸による溶解液に水を加えて硝酸の濃度を低濃度に下げることにより、あるいは高濃度の硝酸による溶解液に低濃度の硝酸溶液を加えることにより行うことができる。その際、例えば高濃度の硝酸は低濃度の硝酸の略2倍の濃度(M)とすることができる。この2段階の溶解処理を採用した場合、光学ガラス廃材の溶解度をさらに向上されることができる。 The process of dissolving using low-concentration nitric acid can be carried out by adding water to a dissolving solution made with high-concentration nitric acid to reduce the concentration of nitric acid to a low concentration, or by adding a low-concentration nitric acid solution to a dissolving solution made with high-concentration nitric acid. In this case, for example, the high-concentration nitric acid can have a concentration (M) that is approximately twice that of the low-concentration nitric acid. When this two-stage dissolving process is adopted, the solubility of the optical glass waste can be further improved.

工程S3において、得られた第1溶解液をろ過して、第1沈殿物を回収し(工程S4)、そのろ過液に相当する第2溶解液を得る。第1沈殿物は次の工程S4のTaとNbを回収する工程で処理される。第2溶解液は、次の工程S5のLaとGdを回収する工程で処理される。 In step S3, the first solution obtained is filtered to recover the first precipitate (step S4), and a second solution corresponding to the filtrate is obtained. The first precipitate is then processed in step S4, which is a step for recovering Ta and Nb. The second solution is then processed in step S5, which is a step for recovering La and Gd.

図2の工程S41~S43は、図1のTaとNbを回収する工程S4の詳細を示す。工程S41において、第1沈殿物を水酸化ナトリウム(NaOH)と過酸化水素(H)を用いて溶解して第3溶解液を得る。その際、例えば水酸化ナトリウムは略1M程度の濃度に、過酸化水素は略5-7重量%の濃度にすることができる。工程S42において、第3溶解液をろ過し、不溶残渣を除去して第4溶解液を得る。 Steps S41 to S43 in Fig. 2 show details of step S4 for recovering Ta and Nb in Fig. 1. In step S41, the first precipitate is dissolved using sodium hydroxide (NaOH) and hydrogen peroxide (H 2 O 2 ) to obtain a third solution. In this case, for example, the sodium hydroxide can be adjusted to a concentration of about 1 M, and the hydrogen peroxide can be adjusted to a concentration of about 5-7 wt %. In step S42, the third solution is filtered to remove insoluble residues to obtain a fourth solution.

工程S43において、得られた第4溶解液を結晶化(再結晶化)する。その結晶化は、例えば第4溶解液を常温で放置、あるいは所定の加熱温度での加熱及びその冷却の処理により行うことができる。加熱温度は常温から略80度の範囲である。すなわち、沸騰しない温度により第4溶解液中の水分(液分)を徐々に蒸発させる。以上の酸とアルカリを用いた比較的簡易な化学処理により、TaとNbを含む結晶化物を得ることができる。 In step S43, the obtained fourth solution is crystallized (recrystallized). The crystallization can be performed, for example, by leaving the fourth solution at room temperature, or by heating it at a predetermined heating temperature and then cooling it. The heating temperature is in the range of room temperature to approximately 80 degrees. In other words, the water (liquid) in the fourth solution is gradually evaporated at a temperature that does not boil. A crystallized material containing Ta and Nb can be obtained by the above-mentioned relatively simple chemical treatment using acid and alkali.

図3のS51~S54は、図1のLaとGdを回収する工程S5の詳細を示す。工程S51において、第2溶解液のpHをアンモニア(NHOH)水を用いて所定値に調整する。その際の所定値は、例えばpH=3である。工程S52において、pHの調整後の第2溶解液をろ過し、不溶残渣を除去して第5溶解液を得る。工程S53において、第5溶解液に硫酸ナトリウム(NaSO)を加えて、LaとGaを含む硫酸塩を得る。工程S54において、LaとGaを含む硫酸塩を焼成してLaとGaを含む酸化物を得る。以上の酸とアルカリを用いた比較的簡易な化学処理により、LaとGaを含む硫酸塩/酸化物を得ることができる。 S51 to S54 in FIG. 3 show the details of step S5 of recovering La and Gd in FIG. 1. In step S51, the pH of the second solution is adjusted to a predetermined value using ammonia (NH 4 OH) water. The predetermined value is, for example, pH=3. In step S52, the second solution after the pH adjustment is filtered to remove insoluble residue to obtain a fifth solution. In step S53, sodium sulfate (Na 2 SO 4 ) is added to the fifth solution to obtain a sulfate containing La and Ga. In step S54, the sulfate containing La and Ga is calcined to obtain an oxide containing La and Ga. By the above-mentioned relatively simple chemical treatment using an acid and an alkali, a sulfate/oxide containing La and Ga can be obtained.

図1~図3の本発明の一実施形態の方法(工程)を用いて実際にTaとNbを含む結晶化物と、LaとGaを含む硫酸塩を生成(回収)した結果を実施例として以下に示す。 The results of actually producing (recovering) a crystallized material containing Ta and Nb, and a sulfate containing La and Ga, using the method (steps) of one embodiment of the present invention shown in Figures 1 to 3 are shown below as examples.

光学ガラス廃材として、Ta、Nb、La、Gdに加えて、Zn、Zr、B、Siの4つの元素が含まれる光学ガラス廃材1000kgを準備した。その光学ガラス廃材1000kg中の各元素の含有量(kg)とその割合(%)を下記の表1に示す。

Figure 0007506383000002
As the waste optical glass, 1000 kg of waste optical glass was prepared, which contained four elements, Zn, Zr, B, and Si, in addition to Ta, Nb, La, and Gd. The content (kg) and ratio (%) of each element in the 1000 kg of waste optical glass is shown in Table 1 below.
Figure 0007506383000002

表1の組成の光学ガラス廃材1000kgを硝酸(HNO)を用いて溶解して第1溶解液を得た。その際に、6M(mol/L)の濃度のHNOと3M(mol/L)の濃度のHNOを用いて2段階で溶解させた。溶解温度は70度であった。得られた第1溶解液をろ過して、第1沈殿物(不溶残渣)と、ろ液に相当する第2溶解液を得た。第1沈殿物中の元素の含有量(kg)とその回収率(%)を下記の表2に示す。回収率(%)は、表1の各元素の含有量(kg)に対する残存率を意味する。表2からTaとNbが溶解せずに100%第1沈殿物中に存在することがわかる。

Figure 0007506383000003
1000 kg of the optical glass waste material having the composition shown in Table 1 was dissolved using nitric acid (HNO 3 ) to obtain a first solution. At that time, the material was dissolved in two stages using HNO 3 having a concentration of 6 M (mol/L) and HNO 3 having a concentration of 3 M (mol/L). The dissolution temperature was 70 degrees. The obtained first solution was filtered to obtain a first precipitate (insoluble residue) and a second solution corresponding to the filtrate. The contents (kg) of elements in the first precipitate and their recovery rates (%) are shown in Table 2 below. The recovery rate (%) means the remaining rate relative to the contents (kg) of each element in Table 1. It can be seen from Table 2 that Ta and Nb are 100% present in the first precipitate without dissolving.
Figure 0007506383000003

第2溶解液中の元素の含有量(kg)とその回収率(%)を下記の表3に示す。回収率(%)は、表1の各元素の含有量(kg)に対する残存率を意味する。表3からLaとGdがそれぞれ100%と85.5%の割合で第2溶解液中に溶けていることがわかる。

Figure 0007506383000004
The contents (kg) of elements in the second solution and their recovery rates (%) are shown in Table 3 below. The recovery rate (%) means the remaining rate relative to the content (kg) of each element in Table 1. It can be seen from Table 3 that La and Gd are dissolved in the second solution at a ratio of 100% and 85.5%, respectively.
Figure 0007506383000004

表2の組成の第1沈殿物を水酸化ナトリウム(NaOH)と過酸化水素(H)を用いて溶解して第3溶解液を得た。その際、水酸化ナトリウムは1Mの濃度に、過酸化水素は6重量%の濃度とした。第3溶解液をろ過し、不溶残渣を除去して第4溶解液(ろ液)を得た。第4溶解液中の元素の含有量(kg)とその回収率(%)を下記の表4に示す。回収率(%)は、表2の第1沈殿物の各元素の含有量(kg)に対する残存率を意味する。表4からTaとNbがそれぞれ96.4%と40.7%の割合で第2溶解液中に溶けていることがわかる。

Figure 0007506383000005
The first precipitate having the composition shown in Table 2 was dissolved using sodium hydroxide (NaOH) and hydrogen peroxide (H 2 O 2 ) to obtain a third solution. At that time, the sodium hydroxide was adjusted to a concentration of 1M, and the hydrogen peroxide was adjusted to a concentration of 6 wt %. The third solution was filtered to remove the insoluble residue to obtain a fourth solution (filtrate). The contents (kg) of elements in the fourth solution and their recovery rates (%) are shown in Table 4 below. The recovery rate (%) means the remaining rate relative to the contents (kg) of each element in the first precipitate shown in Table 2. It can be seen from Table 4 that Ta and Nb are dissolved in the second solution at a ratio of 96.4% and 40.7%, respectively.
Figure 0007506383000005

表3の組成の第2溶解液のpHを20重量%の濃度のアンモニア(NHOH)水を用いてpH=3になるように調整した。第2溶解液のpHの調整後にろ過し不溶残渣を除去して第5溶解液(ろ液)を得た。第5溶解液中の元素の含有量(kg)とその回収率(%)を下記の表5に示す。表6中の回収率(%)は、表3の第2溶解液中の各元素の含有量(kg)に対する残存率を意味する。表5からLaとGdがそれぞれ88.2%と81.8%の割合で残存していることがわかる。

Figure 0007506383000006
The pH of the second solution having the composition shown in Table 3 was adjusted to pH=3 using 20 wt% aqueous ammonia (NH 4 OH). After adjusting the pH of the second solution, the solution was filtered to remove insoluble residues to obtain a fifth solution (filtrate). The contents (kg) of elements in the fifth solution and their recovery rates (%) are shown in Table 5 below. The recovery rates (%) in Table 6 refer to the remaining rates relative to the contents (kg) of each element in the second solution shown in Table 3. It can be seen from Table 5 that La and Gd remain at a ratio of 88.2% and 81.8%, respectively.
Figure 0007506383000006

表5の第5溶解液に30重量%の濃度の硫酸ナトリウム(NaSO)を加えて、LaとGaを含む硫酸塩を得た。得られた硫酸塩中の元素の含有量(kg)とその回収率(%)を下記の表6に示す。表6中の回収率1(%)は、表5の第5溶解液中の各元素の含有量(kg)に対する残存率を意味する。LaとGdがそれぞれ97.1%と77.4%、表5の第5溶解液中から回収されていることがわかる。回収率2(%)は、表3の第2溶解液中の各元素の含有量(kg)に対する残存率を意味する。LaとGdがそれぞれ85.6%と79.6%、表5の第5溶解液中から回収されていることがわかる。回収率3(%)は、表1の光学ガラス廃材中の各元素の含有量(kg)に対する残存率を意味する。回収率3(%)からLaとGdがそれぞれ85.6%と68.1%の割合で表1の光学ガラス廃材から回収されていることがわかる。

Figure 0007506383000007
Sodium sulfate (Na 2 SO 4 ) having a concentration of 30% by weight was added to the fifth dissolution solution of Table 5 to obtain a sulfate containing La and Ga. The contents (kg) of elements in the obtained sulfate and their recovery rates (%) are shown in Table 6 below. Recovery rate 1 (%) in Table 6 means the remaining rate relative to the content (kg) of each element in the fifth dissolution solution of Table 5. It can be seen that 97.1% and 77.4% of La and Gd were recovered from the fifth dissolution solution of Table 5, respectively. Recovery rate 2 (%) means the remaining rate relative to the content (kg) of each element in the second dissolution solution of Table 3. It can be seen that 85.6% and 79.6% of La and Gd were recovered from the fifth dissolution solution of Table 5, respectively. Recovery rate 3 (%) means the remaining rate relative to the content (kg) of each element in the optical glass waste material of Table 1. From the recovery rate 3 (%), it can be seen that La and Gd were recovered from the waste optical glass materials in Table 1 at rates of 85.6% and 68.1%, respectively.
Figure 0007506383000007

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. The present invention can be implemented in various forms with improvements, modifications, and variations based on the knowledge of those skilled in the art, without departing from the spirit of the invention.

Claims (3)

光学ガラス廃材からレアメタルを回収する方法であって、
光学ガラス廃材を硝酸を用いて溶解して第1溶解液を得るステップと、
前記第1溶解液をろ過して第1沈殿物と第2溶解液を得るステップと、
前記第1沈殿物を水酸化ナトリウムと過酸化水素を用いて溶解して第3溶解液を得るステップと、
前記第3溶解液をろ過して不溶残渣と第4溶解液を得るステップと、
前記第4溶解液を結晶化してTaとNbを含む結晶化物を得るステップと、を含む方法。
A method for recovering rare metals from waste optical glass, comprising the steps of:
Dissolving the optical glass waste material using nitric acid to obtain a first solution;
filtering the first solution to obtain a first precipitate and a second solution;
dissolving the first precipitate using sodium hydroxide and hydrogen peroxide to obtain a third dissolved solution;
filtering the third solution to obtain an insoluble residue and a fourth solution;
and crystallizing the fourth solution to obtain a crystallized product containing Ta and Nb.
前記第1溶解液を得るステップは、
前記光学ガラス廃材を高濃度の硝酸を用いて溶解するステップと、
前記高濃度の硝酸による溶解液をさらに前記高濃度の硝酸よりも低濃度の硝酸を用いて溶解するステップと、を含む請求項1に記載の方法。
The step of obtaining the first solution includes:
dissolving the optical glass waste using concentrated nitric acid;
The method according to claim 1 , further comprising a step of dissolving the solution dissolved by the high concentration nitric acid using nitric acid having a lower concentration than the high concentration nitric acid.
前記第2溶解液のpHをアンモニア水を用いて所定値に調整するステップと、
前記pHの調整後の前記第2溶解液をろ過して第5溶解液を得るステップと、
前記第5溶解液に硫酸ナトリウムを加えて、LaとGaを含む硫酸塩を得るステップと、をさらに含む、請求項1に記載の方法。
adjusting the pH of the second solution to a predetermined value using aqueous ammonia;
filtering the second solution after the pH adjustment to obtain a fifth solution;
The method of claim 1 , further comprising the step of adding sodium sulfate to the fifth solution to obtain sulfates containing La and Ga.
JP2023191668A 2023-11-09 2023-11-09 How to recover rare metals from waste optical glass Active JP7506383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023191668A JP7506383B1 (en) 2023-11-09 2023-11-09 How to recover rare metals from waste optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023191668A JP7506383B1 (en) 2023-11-09 2023-11-09 How to recover rare metals from waste optical glass

Publications (1)

Publication Number Publication Date
JP7506383B1 true JP7506383B1 (en) 2024-06-26

Family

ID=91586604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023191668A Active JP7506383B1 (en) 2023-11-09 2023-11-09 How to recover rare metals from waste optical glass

Country Status (1)

Country Link
JP (1) JP7506383B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528938A (en) 2003-12-19 2007-10-18 アプライド マテリアルズ インコーポレイテッド Cleaning tantalum-containing deposits from process chamber components
JP2012211048A (en) 2011-03-31 2012-11-01 Mitsui Mining & Smelting Co Ltd Method for separating and refining niobium, and method for producing the same
CN105567979A (en) 2016-02-02 2016-05-11 江西理工大学 Method for separating tantalum and niobium from red mud by utilizing ultrasonic wave
CN111057879A (en) 2020-01-02 2020-04-24 荆门德威格林美钨资源循环利用有限公司 Process method for separating tantalum and niobium elements from hard alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528938A (en) 2003-12-19 2007-10-18 アプライド マテリアルズ インコーポレイテッド Cleaning tantalum-containing deposits from process chamber components
JP2012211048A (en) 2011-03-31 2012-11-01 Mitsui Mining & Smelting Co Ltd Method for separating and refining niobium, and method for producing the same
CN105567979A (en) 2016-02-02 2016-05-11 江西理工大学 Method for separating tantalum and niobium from red mud by utilizing ultrasonic wave
CN111057879A (en) 2020-01-02 2020-04-24 荆门德威格林美钨资源循环利用有限公司 Process method for separating tantalum and niobium elements from hard alloy

Similar Documents

Publication Publication Date Title
JP5329615B2 (en) Tungsten recovery method
WO2014115686A1 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
CN114890889B (en) Purification method of electronic grade citric acid
JP3943583B2 (en) High purity copper sulfate and method for producing the same
JP6218598B2 (en) Method for producing high purity sodium hypochlorite pentahydrate and sodium hypochlorite aqueous solution
JP7506383B1 (en) How to recover rare metals from waste optical glass
CN113336268A (en) Method for producing ammonium paratungstate based on tungstic acid
JP2009209421A (en) Method for producing high purity silver
JPH0624739A (en) Method of separating sulfate
JP2005206456A (en) High purity calcium carbonate and its manufacturing method
JPH0977516A (en) Production of high purity strontium carbonate
JP4275939B2 (en) Method for recovering tantalum compound and / or niobium compound
JPH092819A (en) Production of highly pure zirconium oxychloride crystal
JP2010053416A (en) Recovering method an recovering apparatus for thallium and potassium nitrate
JPH10226831A (en) Treatment of waste liquid of molybdenum dissolution
US6652603B2 (en) Process for removing sodium sulfate from nickel hydroxide effluent streams
JP2000211906A (en) Production of aqueous solution of free hydroxylamine
JP2011093748A (en) Method for purifying rhodium nitrite complex ion, and method for producing ammonium salt of the complex ion
JP2002080919A (en) Method for producing high purity silver
JPH04198017A (en) Purification of scandium oxide
JP4779163B2 (en) Method for producing copper sulfate solution
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP5569415B2 (en) Process for separating copper and rhodium from a raw material containing copper and rhodium
JP2004203694A (en) Recovery method of tantalum compound and/or niobium compound
JPS6046049B2 (en) Method for purifying nickel chloride aqueous solution