JP7500981B2 - 画像符号化装置、画像復号装置、及び画像処理システム - Google Patents

画像符号化装置、画像復号装置、及び画像処理システム Download PDF

Info

Publication number
JP7500981B2
JP7500981B2 JP2020018232A JP2020018232A JP7500981B2 JP 7500981 B2 JP7500981 B2 JP 7500981B2 JP 2020018232 A JP2020018232 A JP 2020018232A JP 2020018232 A JP2020018232 A JP 2020018232A JP 7500981 B2 JP7500981 B2 JP 7500981B2
Authority
JP
Japan
Prior art keywords
image format
image
block
prediction mode
encoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020018232A
Other languages
English (en)
Other versions
JP2021125801A (ja
Inventor
章弘 屋森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2020018232A priority Critical patent/JP7500981B2/ja
Publication of JP2021125801A publication Critical patent/JP2021125801A/ja
Application granted granted Critical
Publication of JP7500981B2 publication Critical patent/JP7500981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

本発明は、画像符号化装置、画像復号装置、及び画像処理システムに関する。
情報漏えいの抑制又はセキュリティの向上のため、クラウド上のサーバ又は仮想マシンを使用する仮想デスクトップが普及してきている。仮想デスクトップでは、クライアント端末からサーバを遠隔操作するために、リモートデスクトップシステムが使用されている。
図1は、リモートデスクトップシステムの例を示している。図1のリモートデスクトップシステムは、クライアント端末101及びサーバ102を含み、クライアント端末101とサーバ102は、通信ネットワーク103を介して通信する。サーバ102はクラウド等の遠隔環境に設けられ、サーバ102内ではOS(Operating System)及びアプリケーションプログラムが動作する。
サーバ102は、デスクトップ画像をクライアント端末101へ送信し、クライアント端末101は、受信したデスクトップ画像を画面上に表示する。ユーザがキーボード又はマウスを用いて操作を行うと、クライアント端末101は、ユーザが行った操作の操作情報をサーバ102へ送信する。サーバ102は、受信した操作情報に応じてデスクトップ画像を変更し、変更後のデスクトップ画像をクライアント端末101へ送信する。
リモートデスクトップシステムに関連して、シンクライアントの汎用性を維持しつつ、操作レスポンスを向上させることができる情報処理装置が知られている(例えば、特許文献1を参照)。色差フォーマットに応じた輝度信号と色差信号のイントラ予測により画像信号を効率良く復号することのできる画像復号装置も知られている(例えば、特許文献2を参照)。映像符号化に関連して、HEVC(High Efficiency Video Coding)も知られている(例えば、非特許文献1を参照)。
特開2012-15868号公報 特開2016-154353号公報
ITU-T H.265 (11/2019), "High efficiency video coding", Recommendation ITU-T H.265, ISO/IEC 23008-2
仮想デスクトップでは、ユーザが画面操作を行うことが多い。サーバから転送されるデスクトップ画像には、CAD(Computer-Aided Design)等の高精細映像からインターネット動画等に至るまで、様々な映像が含まれる。この場合、映像の違いに応じて、適切な符号化処理を行うことが望ましい。
しかしながら、デスクトップ画像を複数のブロックに分割し、ブロック毎に画像フォーマットを切り替えて符号化処理を行う場合、各ブロックの画像フォーマットを示す識別情報の符号量が増大する。
なお、かかる問題は、リモートデスクトップシステムにおけるデスクトップ画像の符号化処理に限らず、様々な画像の符号化処理において生ずるものである。
1つの側面において、本発明は、画像内のブロック毎に画像フォーマットを選択可能な符号化処理において、発生する符号量を抑制することを目的とする。
1つの案では、画像符号化装置は、選択部及び符号化部を含む。選択部は、画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマット及び第2画像フォーマットから、符号化対象ブロックの符号化処理に適用される第3画像フォーマットを選択する。第2画像フォーマットは、第1画像フォーマットの情報量よりも少ない情報量を有する。符号化部は、第3画像フォーマットを用いたイントラ予測符号化により、符号化対象ブロックを符号化する。
1つの側面によれば、画像内のブロック毎に画像フォーマットを選択可能な符号化処理において、発生する符号量を抑制することができる。
リモートデスクトップシステムを示す図である。 YUV4:4:4及びYUV4:2:0を示す図である。 デスクトップ画像を示す図である。 画像符号化装置の機能的構成図である。 画像復号装置の機能的構成図である。 画像処理システムの機能的構成図である。 隣接ブロック内の隣接画素を示す図である。 映像符号化処理のフローチャート(その1)である。 映像符号化処理のフローチャート(その2)である。 映像復号処理のフローチャート(その1)である。 映像復号処理のフローチャート(その2)である。 情報処理装置のハードウェア構成図である。
以下、図面を参照しながら、実施形態を詳細に説明する。
特許文献1のサーバ装置は、画面を複数の領域に分割し、領域毎に変更の頻度を監視する。そして、サーバ装置は、変更の頻度が閾値を超える高頻度変更領域のデータを、動画向けの圧縮方式のデータに圧縮して、高頻度変更領域を特定する属性情報とともに、クライアント端末へ送信する。また、サーバ装置は、高頻度変更領域以外の領域については、更新矩形の画像を生成して、更新矩形を特定する属性情報とともに、クライアント端末へ送信する。
クライアント端末は、高頻度変更領域については、受信した動画向けの圧縮方式のデータを復号して、受信した属性情報により特定される領域に表示する。また、クライアント端末は、高頻度変更領域以外の領域については、受信した更新矩形の画像を、受信した属性情報により特定される領域に表示する。
特許文献1のサーバ装置によれば、クライアント端末へ送信される画像のうち、操作レスポンスを悪化させる画像に重点を置いてデータ量を低減しつつ、圧縮処理及び復号処理の負荷を最小限にできる。したがって、シンクライアントの汎用性を維持しつつ、操作レスポンスを向上させることが可能になる。
ところで、特許文献1の技術を応用して、デスクトップ画像を高頻度変更領域と低頻度変更領域とに分割し、高頻度変更領域に動画像符号化を適用し、低頻度変更領域に静止画符号化を適用することも可能である。高頻度変更領域は、例えば、動画領域のように、変更の頻度が閾値を超える領域である。低頻度変更領域は、例えば、静止画領域のように、変更の頻度が閾値以下の領域である。
高頻度変更領域では、低頻度変更領域と比較して、画質劣化が認識されにくいので、サーバ装置は、画像の圧縮信号を符号化する。一方、低頻度変更領域では、高頻度変更領域と比較して、画質劣化が認識されやすいので、画像の非圧縮信号を符号化する。これにより、高頻度変更領域の符号量を削減するとともに、低頻度変更領域の画質を維持することができる。
動画像符号化では、映像に含まれる複数の時刻の画像各々が複数のブロックに分割され、ブロック単位で符号化処理が行われる。符号化対象ブロックとしては、通常、YUV色空間のブロックが用いられる。YUV色空間の成分Yは、輝度信号を表し、成分U及び成分Vは、色差信号を表す。
画像の非圧縮信号としては、例えば、YUV4:4:4の画像フォーマットの信号を用いることができ、画像の圧縮信号としては、例えば、YUV4:2:0の画像フォーマットの信号用いることができる。低頻度変更領域のブロックをYUV4:4:4で符号化し、高頻度変更領域のブロックをYUV4:2:0で符号化することで、デスクトップ画像全体をYUV4:4:4で符号化する場合と比較して、主観的画質の低下を抑制しつつ、ネットワーク帯域を削減することが可能になる。
図2は、YUV4:4:4及びYUV4:2:0の例を示している。YUV4:4:4は、成分Y、成分U、及び成分Vの各成分のブロックが均等のサイズを有する画像フォーマットである。一方、YUV4:2:0は、成分U及び成分Vのブロックの水平方向及び垂直方向のサイズが、成分Yのブロックの1/2のサイズを有する画像フォーマットである。動画像符号化では、色差信号の劣化が認知されにくい、という人間の視覚特性を生かして、YUV4:2:0のブロックが用いられることがある。
以下では、YUV4:4:4を用いた符号化をYUV4:4:4符号化と記載し、YUV4:2:0を用いた符号化をYUV4:2:0符号化と記載することがある。
図3は、図1のリモートデスクトップシステムにおいて、クライアント端末101の画面上に表示されるデスクトップ画像の例を示している。図3のデスクトップ画像は、例えば、映像編集アプリケーションプログラムの操作画面を表し、静止画領域301、動画領域302、及び動画領域303を含む。静止画領域301には、テキスト等が表示され、動画領域302及び動画領域303には、編集対象の映像が表示される。この場合、静止画領域301に対しては、YUV4:4:4符号化が適用され、動画領域302及び動画領域303に対しては、YUV4:2:0符号化が適用される。
YUV4:4:4符号化は、YUV4:2:0符号化と比較して、符号化後の画質は良くなるものの発生符号量が増大する。したがって、符号化対象の領域に応じてYUV4:4:4符号化とYUV4:2:0符号化とを適応的に切り替えることは、主観的画質と発生符号量の双方の観点から見て好ましいと言える。
しかしながら、YUV4:4:4符号化又はYUV4:2:0符号化のうち、いずれの符号化が適用されるかを示すフラグを、ブロックのような小領域毎に付加する場合、符号化されたデスクトップ画像のビットストリームに含まれるフラグの符号量が増大する。
図4は、実施形態の画像符号化装置の機能的構成例を示している。図4の画像符号化装置401は、選択部411及び符号化部412を含む。
選択部411は、画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマット及び第2画像フォーマットから、符号化対象ブロックの符号化処理に適用される第3画像フォーマットを選択する。第2画像フォーマットは、第1画像フォーマットの情報量よりも少ない情報量を有する。符号化部412は、第3画像フォーマットを用いたイントラ予測符号化により、符号化対象ブロックを符号化する。
図4の画像符号化装置401によれば、画像内のブロック毎に画像フォーマットを選択可能な符号化処理において、発生する符号量を抑制することができる。
図5は、実施形態の画像復号装置の機能的構成例を示している。図5の画像復号装置501は、選択部511及び復号部512を含む。
選択部511は、画像内の復号対象ブロックのイントラ予測モードに基づいて、第1画像フォーマット及び第2画像フォーマットから、復号対象ブロックの復号処理に適用される第3画像フォーマットを選択する。第2画像フォーマットは、第1画像フォーマットの情報量よりも少ない情報量を有する。復号部512は、第3画像フォーマットを用いたイントラ予測復号により、復号対象ブロックの符号情報を復号する。
図5の画像復号装置501によれば、画像内のブロック毎に画像フォーマットを選択可能な符号化処理において、発生する符号量を抑制することができる。
図6は、図4の画像符号化装置401及び図5の画像復号装置501を含む画像処理システムの機能的構成例を示している。図6の画像処理システムは、例えば、リモートデスクトップシステムであり、クライアント端末601及びサーバ602を含む。クライアント端末601は、図5の画像復号装置501に対応し、サーバ602は、図4の画像符号化装置401に対応する。
クライアント端末601とサーバ602は、通信ネットワーク603を介して通信する。通信ネットワーク603は、例えば、WAN(Wide Area Network)又はLAN(Local Area Network)である。クライアント端末601は、例えば、パーソナルコンピュータ又は携帯端末装置である。携帯端末装置としては、例えば、スマートフォン、タブレット、又はノート型パーソナルコンピュータが用いられる。
クライアント端末601は、入力部611、選択部612、復号部613、フレームメモリ614、表示部615、及び通信部616を含む。選択部612及び復号部613は、図5の選択部511及び復号部512にそれぞれ対応する。選択部612は、第2選択部の一例である。
サーバ602は、映像生成部621、選択部622、符号化部623、フレームメモリ624、及び通信部625を含む。選択部622及び符号化部623は、図4の選択部411及び符号化部412にそれぞれ対応する。選択部622は、第1選択部の一例である。
クライアント端末601の入力部611は、ユーザから操作入力を受け付け、通信部616は、受け付けられた操作入力の操作情報をサーバ602へ送信する。
サーバ602の通信部625は、クライアント端末601から操作情報を受信する。映像生成部621は、受信した操作情報に応じて、クライアント端末601の画面上に表示される映像を生成し、生成された映像を符号化部623へ出力する。映像は、時系列の複数の画像を含む。各画像は、符号化対象画像に対応し、ピクチャ又はフレームと呼ばれることもある。
符号化部623は、映像に含まれる各画像を複数のブロックに分割し、ブロック単位で符号化処理を行う。各ブロックは、符号化対象ブロックに対応し、インター予測符号化又はイントラ予測符号化によって符号化される。インター予測符号化は、符号化対象画像を符号化済み画像の情報を用いて符号化する符号化方式であり、イントラ予測符号化は、符号化対象画像が持つ情報のみを用いて符号化対象画像を符号化する符号化方式である。ブロックとしては、例えば、CU(Coding Unit)を用いることができる。
イントラ予測符号化の詳細については、例えば、非特許文献1の8.4章等に記載されている。イントラ予測自体は、HEVCの1つ前の標準化であるMPEG-AVC(Moving Picture Experts Group-Advanced Video Coding)/H.264から採用されている。
符号化部623は、符号化済み画像から参照画像を生成して、フレームメモリ624に格納し、参照画像を用いてインター予測符号化を行う。また、符号化部623は、符号化対象画像内の符号化済みブロックから参照画素を生成して、フレームメモリ624に格納し、参照画素を用いてイントラ予測符号化を行う。符号化部623は、符号化済み画像又は符号化済みブロックの符号情報に対して局所復号処理を行うことで、参照画像又は参照画素を生成する。
符号化部623は、各ブロックに適用される予測モードを決定し、決定された予測モードに基づいてブロックを符号化する。このとき、選択部622は、決定された予測モードに応じて、画像フォーマットF1及び画像フォーマットF2から、ブロックの符号化処理に適用される画像フォーマットを選択する。
画像フォーマットF1及び画像フォーマットF2は、第1画像フォーマット及び第2画像フォーマットにそれぞれ対応する。画像フォーマットF2の画素数は、画像フォーマットF1の画素数よりも少ない。したがって、画像フォーマットF1は、高解像度の画像フォーマットであり、画像フォーマットF2は、画像フォーマットF1よりも解像度が低い低解像度の画像フォーマットである。YUV4:4:4は、画像フォーマットF1の一例であり、YUV4:2:0は、画像フォーマットF2の一例である。
例えば、符号化対象画像の画像フォーマットが画像フォーマットF1である場合、符号化部623は、符号化対象ブロックの画像をダウンサンプリングにより圧縮することで、画像フォーマットF2のブロックを生成することができる。
決定された予測モードがイントラ予測モードである場合、選択部622は、決定されたイントラ予測モードに基づいて、画像フォーマットF1又は画像フォーマットF2を選択する。そして、符号化部623は、選択された画像フォーマットを用いたイントラ予測符号化により、ブロックを符号化する。
一方、決定された予測モードがインター予測モードである場合、選択部622は、画像フォーマットF2を選択し、符号化部623は、画像フォーマットF2を用いたインター予測符号化により、ブロックを符号化する。インター予測モードが適用されるブロックに対して画像フォーマットF2を選択することで、インター予測符号化により符号化されるブロックの符号量を削減することができる。
強いエッジを含む画像は、弱いエッジのみを含む画像と比較して、圧縮による画質劣化が認識されやすい。そこで、ブロック内に強いエッジが存在する場合には、画像フォーマットF1を適用することで主観的画質の低下を抑制し、ブロック内に強いエッジが存在しない場合には、画像フォーマットF2を適用することで発生符号量の増加を抑制することが望ましい。
イントラ予測モードは、Planar予測、DC(Direct Current)予測、又は角度予測のいずれかを表している。このうち、Planar予測及びDC予測は、角度予測以外のイントラ予測に対応する。
イントラ予測モードがPlanar予測又はDC予測を表す場合、符号化対象ブロック内に強いエッジが存在しないと考えられるため、選択部622は、画像フォーマットF2を選択する。一方、イントラ予測モードが角度予測を表す場合、符号化対象ブロック内に強いエッジが存在する可能性があるため、選択部622は、画像フォーマットF1を選択する。
イントラ予測モードがPlanar予測、DC予測、又は角度予測のいずれを表すかに応じて画像フォーマットを選択することで、決定されたイントラ予測モードを参照するだけで、容易に画像フォーマットを決定することができる。
ところで、イントラ予測モードが角度予測を表す場合、選択部622は、符号化対象ブロックに隣接する隣接ブロック内の画素の画素値に基づいて、画像フォーマットF1又は画像フォーマットF2のいずれかを選択することも可能である。隣接ブロック内の画素の画素値に基づいて画像フォーマットを選択することで、符号化済みブロックの参照画素の画素値を、画像フォーマットの選択基準として利用することができる。
例えば、選択部622は、隣接ブロック内で符号化対象ブロックに隣接している隣接画素の画素値を用いて、エッジ強度を計算する。隣接画素のエッジ強度が閾値よりも大きい場合、符号化対象ブロック内にも同様の強いエッジが存在すると推定できる。
図7は、隣接ブロック内の隣接画素の例を示している。符号化対象ブロック701の左側には左隣接ブロック702が隣接しており、符号化対象ブロック701の上側には上隣接ブロック703が隣接している。左隣接ブロック702内の左隣接画素712は、符号化対象ブロック701の左側に隣接しており、上隣接ブロック703内の上隣接画素713は、符号化対象ブロック701の上側に隣接している。
例えば、符号化対象ブロック701のサイズがN×Nである場合、イントラ予測では、左隣接ブロック702とその上下のブロック(左上ブロック及び左下ブロック)内の2N+1個の画素が、左隣接の参照画素として用いられる。また、上隣接ブロック703とその左右のブロック(左上ブロック及び右上ブロック)内の2N+1個の画素が、上隣接の参照画素として用いられる。このとき、左下ブロックのように、ラスタースキャン順で未処理のブロック位置に関しては、符号化済みブロックの端の画素がコピーされて利用される。
図7に示すように、水平方向の座標をx座標とし、垂直方向の座標をy座標とし、符号化対象ブロック701の左上画素711の座標を(x,y)=(0,0)とする。この場合、イントラ予測では、左隣接画素712及び上隣接画素713のみではなく、左上ブロック内の座標(-1,-1)の画素と、右上ブロック内の座標(N+1,-1)~座標(2N,-1)の画素も、参照画素として用いることが可能である。しかし、エッジ強度を計算するためには、左隣接画素712及び上隣接画素713を用いるだけでも十分である。
イントラ予測モードが角度予測を表す場合、イントラ予測モードのモード番号により、イントラ予測において左隣接画素712又は上隣接画素713のいずれが参照されるかが判明する。左隣接画素712が参照される場合、選択部622は、フレームメモリ624に参照画素として格納されている左隣接画素712の画素値を用いて、エッジ強度を計算する。また、上隣接画素713が参照される場合、選択部622は、フレームメモリ624に参照画素として格納されている上隣接画素713の画素値を用いて、エッジ強度を計算する。
エッジ強度が閾値よりも大きい場合、選択部622は、符号化対象ブロック701内に強いエッジが存在すると推定し、画像フォーマットF1を選択する。一方、エッジ強度が閾値よりも小さい場合、選択部622は、符号化対象ブロック701内に強いエッジが存在しないと推定し、画像フォーマットF2を選択する。
このように、隣接画素の画素値を用いて計算されたエッジ強度を閾値と比較することで、符号化済みブロックの参照画素の画素値から、符号化対象ブロック内の強いエッジの有無を推定することができる。したがって、画像フォーマットF1又は画像フォーマットF2のうち、符号化対象ブロックに適した画像フォーマットを選択することが可能になる。
画像のエッジは、成分Y、成分U、及び成分Vのうち成分Yに最も顕著に現れるので、成分Yの画素値を用いてエッジ強度を計算することが有効である。この場合、選択部622は、y座標が示す左隣接画素712のエッジ強度EL(y)を、座標(x,y)における成分Yの画素値Y(x,y)を用いて、次式により計算することができる。
EL(y)=|Y(-1,y-1)-Y(-1,y)|
+|Y(-1,y)-Y(-1,y+1)| (1)
EL(y)は、垂直方向に隣接する2つの左隣接画素712の画素値の差分に基づいて計算される。符号化対象ブロック701内に強いエッジが存在するか否かを推定する目的でEL(y)を計算する場合、左隣接画素712の画素値を用いるだけで十分であり、左隣接ブロック702内の他の画素を必ずしも用いる必要はない。EL(y)は、符号化対象ブロック701の高さに対応するすべてのyの値に対して計算される。
選択部622は、いずれかのEL(y)が閾値THL以上である場合、画像フォーマットF1を選択し、すべてのEL(y)が閾値THLよりも小さい場合、画像フォーマットF2を選択する。選択部622は、EL(y)を閾値THLと比較する代わりに、すべてのEL(y)の統計値を閾値THLと比較してもよい。統計値としては、平均値、中央値、最頻値、最大値等が用いられる。
同様にして、選択部622は、x座標が示す上隣接画素713のエッジ強度EU(x)を、次式により計算することができる。
EU(x)=|Y(x-1,-1)-Y(x,-1)|
+|Y(x,-1)-Y(x+1,-1)| (2)
EU(x)は、水平方向に隣接する2つの上隣接画素713の画素値の差分に基づいて計算される。符号化対象ブロック701内に強いエッジが存在するか否かを推定する目的でEU(x)を計算する場合、上隣接画素713の画素値を用いるだけで十分であり、上隣接ブロック703内の他の画素を必ずしも用いる必要はない。EU(x)は、符号化対象ブロック701の幅に対応するすべてのxの値に対して計算される。
選択部622は、いずれかのEU(x)が閾値THU以上である場合、画像フォーマットF1を選択し、すべてのEU(x)が閾値THUよりも小さい場合、画像フォーマットF2を選択する。選択部622は、EU(x)を閾値THUと比較する代わりに、すべてのEU(x)の統計値を閾値THUと比較してもよい。
なお、選択部622は、イントラ予測モードが角度予測を表す場合、符号化対象ブロック701内に強いエッジが存在するか否かを、エッジ強度以外の指標に基づいて推定することも可能である。エッジ強度以外の指標としては、例えば、角度予測により参照される隣接ブロックの符号化処理に適用された画像フォーマットを用いることができる。
隣接ブロックの符号化処理に画像フォーマットF1が適用されている場合、選択部622は、符号化対象ブロック701内に強いエッジが存在すると推定し、画像フォーマットF1を選択する。一方、隣接ブロックの符号化処理に画像フォーマットF2が適用されている場合、選択部622は、符号化対象ブロック701内に強いエッジが存在しないと推定し、画像フォーマットF2を選択する。
符号化対象ブロックが画像内で最初に符号化されるブロックである場合、選択部622は、例えば、特許文献1の技術を用いて、画像フォーマットF1又は画像フォーマットF2を選択することができる。選択部622は、符号化対象ブロックが高頻度変更領域に対応する場合、画像フォーマットF2を選択し、符号化対象ブロックが低頻度変更領域に対応する場合、画像フォーマットF1を選択する。
符号化部623は、映像に含まれる各画像の各ブロックを符号化して、符号化されたブロックの符号情報を生成するとともに、符号化されたブロックの予測モードを示す予測モード情報を生成する。通信部625は、各ブロックの符号情報及び予測モード情報を含むビットストリームを、クライアント端末601へ送信する。
クライアント端末601の通信部616は、サーバ602からビットストリームを受信し、受信したビットストリームを復号部613へ出力する。
復号部613は、ビットストリームに含まれる符号情報をブロック単位で復号する。各ブロックは、復号対象ブロックに対応し、各ブロックの符号情報は、インター予測復号又はイントラ予測復号によって復号される。復号部613は、復号画像をフレームメモリ614に格納し、復号画像を参照画像として用いてインター予測復号を行う。また、復号部613は、復号対象画像内の復号済みブロックの画素をフレームメモリ614に格納し、復号済みブロックの画素を参照画素として用いてイントラ予測復号を行う。
復号部613は、各ブロックの予測モード情報を復号することで予測モードを取得し、取得された予測モードに基づいて、ブロックの符号情報を復号する。このとき、選択部612は、取得された予測モードに応じて、サーバ602と同じ選択方法により、画像フォーマットF1及び画像フォーマットF2から、ブロックの復号処理に適用される画像フォーマットを選択する。
サーバ602と同じ選択方法により画像フォーマットを選択することで、各ブロックについて、符号化処理と同じ画像フォーマットを選択することが可能になる。したがって、各ブロックの符号情報に、画像フォーマットF1又は画像フォーマットF2のいずれが適用されたかを示すフラグを含める必要がなく、ビットストリームの符号量の増加を抑制することができる。
取得された予測モードがイントラ予測モードである場合、選択部612は、取得されたイントラ予測モードに基づいて、画像フォーマットF1又は画像フォーマットF2を選択する。そして、復号部613は、選択された画像フォーマットを用いたイントラ予測復号により、ブロックの符号情報を復号する。
例えば、選択部612は、イントラ予測モードがPlanar予測又はDC予測を表す場合、画像フォーマットF2を選択し、イントラ予測モードが角度予測を表す場合、画像フォーマットF1を選択する。
イントラ予測モードが角度予測を表す場合、選択部612は、復号対象ブロックに隣接する隣接ブロック内の画素の画素値に基づいて、画像フォーマットF1又は画像フォーマットF2のいずれかを選択することも可能である。この場合、選択部612は、サーバ602と同様に、隣接ブロック内で復号対象ブロックに隣接している隣接画素の画素値を用いて、エッジ強度を計算する。そして、選択部612は、エッジ強度が閾値よりも大きい場合、画像フォーマットF1を選択し、エッジ強度が閾値よりも小さい場合、画像フォーマットF2を選択する。
一方、取得された予測モードがインター予測モードである場合、選択部612は、画像フォーマットF2を選択し、復号部613は、画像フォーマットF2を用いたインター予測復号により、ブロックの符号情報を復号する。
表示部615は、フレームメモリ614内の復号画像を画面上に表示することで、映像を再生する。
図8A及び図8Bは、図6のサーバ602が行う映像符号化処理の例を示すフローチャートである。まず、符号化部623は、映像に含まれる画像を複数のブロックに分割し(ステップ801)、符号化対象ブロックと、符号化対象ブロックの予測モードとを決定する(ステップ802)。
次に、選択部622は、符号化対象ブロックの予測モードをチェックする(ステップ803)。予測モードがインター予測モードである場合(ステップ803,NO)、選択部622は、画像フォーマットF2を選択する(ステップ810)。一方、予測モードがイントラ予測モードである場合(ステップ803,YES)、選択部622は、イントラ予測モードがPlanar予測、DC予測、又は角度予測のうちいずれを表すかをチェックする(ステップ804)。
イントラ予測モードがPlanar予測又はDC予測を表す場合(ステップ804,NO)、選択部622は、画像フォーマットF2を選択する(ステップ810)。一方、イントラ予測モードが角度予測を表す場合(ステップ804,YES)、選択部622は、符号化対象ブロックに隣接している隣接画素の画素値を用いて、エッジ強度を計算する(ステップ805)。そして、選択部622は、エッジ強度を閾値と比較する(ステップ806)。
エッジ強度が閾値以上である場合(ステップ806,YES)、選択部622は、画像フォーマットF1を選択する(ステップ807)。エッジ強度が閾値よりも小さい場合(ステップ806,NO)、選択部622は、画像フォーマットF2を選択する(ステップ810)。
例えば、式(1)のEL(y)をエッジ強度として用いた場合、選択部622は、符号化対象ブロックの高さに対応するすべてのyの値に対してEL(y)を計算し、各EL(y)を閾値THLと比較する。そして、選択部622は、いずれかのEL(y)が閾値THL以上である場合、画像フォーマットF1を選択し、すべてのEL(y)が閾値THLよりも小さい場合、画像フォーマットF2を選択する。
また、式(2)のEU(x)をエッジ強度として用いた場合、選択部622は、符号化対象ブロックの幅に対応するすべてのxの値に対してEU(x)を計算し、各EU(x)を閾値THUと比較する。そして、選択部622は、いずれかのEU(x)が閾値THU以上である場合、画像フォーマットF1を選択し、すべてのEU(x)が閾値THUよりも小さい場合、画像フォーマットF2を選択する。
なお、符号化対象ブロックが画像内の最初のブロックである場合、選択部622は、特許文献1の技術を用いて、画像フォーマットF1又は画像フォーマットF2を選択する。
次に、符号化部623は、選択された画像フォーマットを用いて、決定された予測モードが示す予測符号化により、符号化対象ブロックを符号化し、符号化対象ブロックの符号情報を生成する(ステップ808)。そして、通信部625は、符号化対象ブロックの符号情報及び予測モード情報を、クライアント端末601へ送信する(ステップ809)。
次に、符号化部623は、符号化されたブロックが画像内の最後のブロックであるか否かをチェックする(ステップ811)。符号化されたブロックが最後のブロックではない場合(ステップ811,NO)、サーバ602は、次のブロックについてステップ802以降の処理を繰り返す。
符号化されたブロックが最後のブロックである場合(ステップ811,YES)、符号化部623は、符号化された画像が映像に含まれる最後の画像であるか否かをチェックする(ステップ812)。符号化された画像が最後の画像ではない場合(ステップ812,NO)、サーバ602は、次の画像についてステップ801以降の処理を繰り返す。符号化された画像が最後の画像である場合(ステップ812,YES)、サーバ602は、処理を終了する。
図9A及び図9Bは、図6のクライアント端末601が行う映像復号処理の例を示すフローチャートである。まず、通信部616は、サーバ602から、復号対象ブロックの符号情報及び予測モード情報を受信する(ステップ901)。
次に、復号部613は、予測モード情報を復号することで、復号対象ブロックの予測モードを取得し、取得された予測モードをチェックする(ステップ902)。予測モードがインター予測モードである場合(ステップ902,NO)、選択部612は、画像フォーマットF2を選択する(ステップ908)。一方、予測モードがイントラ予測モードである場合(ステップ902,YES)、選択部612は、イントラ予測モードがPlanar予測、DC予測、又は角度予測のうちいずれを表すかをチェックする(ステップ903)。
イントラ予測モードがPlanar予測又はDC予測を表す場合(ステップ903,NO)、選択部612は、画像フォーマットF2を選択する(ステップ908)。一方、イントラ予測モードが角度予測を表す場合(ステップ903,YES)、選択部612は、符号化対象ブロックに隣接している隣接画素の画素値を用いて、エッジ強度を計算する(ステップ904)。そして、選択部612は、エッジ強度を閾値と比較する(ステップ905)。
エッジ強度が閾値以上である場合(ステップ905,YES)、選択部612は、画像フォーマットF1を選択する(ステップ906)。エッジ強度が閾値よりも小さい場合(ステップ905,NO)、選択部612は、画像フォーマットF2を選択する(ステップ908)。
なお、復号対象ブロックが画像内の最初のブロックである場合、選択部612は、特許文献1の技術を用いて、画像フォーマットF1又は画像フォーマットF2を選択する。
次に、復号部613は、選択された画像フォーマットを用いて、取得された予測モードが示す予測復号により、復号対象ブロックの符号情報を復号する(ステップ907)。そして、復号部613は、復号対象ブロックの復号画素をフレームメモリ614に格納する。
次に、復号部613は、復号された符号情報が、画像内の最後のブロックの符号情報であるか否かをチェックする(ステップ909)。復号されたブロックが最後のブロックの符号情報ではない場合(ステップ909,NO)、クライアント端末601は、次の符号情報についてステップ901以降の処理を繰り返す。
復号された符号情報が最後のブロックの符号情報である場合(ステップ909,YES)、表示部615は、フレームメモリ614内の復号画像を画面上に表示する(ステップ910)。そして、復号部613は、復号された符号情報が、ビットストリームに含まれる最後の符号情報であるか否かをチェックする(ステップ911)。
復号された符号情報が最後の符号情報ではない場合(ステップ911,NO)、クライアント端末601は、次の符号情報についてステップ901以降の処理を繰り返す。復号された符号情報が最後の符号情報である場合(ステップ911,YES)、クライアント端末601は、処理を終了する。
図4の画像符号化装置401の構成は一例に過ぎず、画像符号化装置401の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。図5の画像復号装置501の構成は一例に過ぎず、画像復号装置501の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。
図6の画像処理システムの構成は一例に過ぎず、画像処理システムの用途又は条件に応じて一部の構成要素を省略又は変更してもよい。例えば、クライアント端末601及びサーバ602が双方向の映像通信を行う場合は、クライアント端末601に映像生成部621、選択部622、及び符号化部623を追加し、サーバ602に選択部612及び復号部613を追加することができる。図4の画像符号化装置401及び図5の画像復号装置501は、リモートデスクトップシステム以外の映像通信に利用することもできる。
図8A~図9Bに示したフローチャートは一例に過ぎず、画像処理システムの構成又は条件に応じて一部の処理を省略又は変更してもよい。例えば、イントラ予測モードが角度予測を表す場合に、エッジ強度を計算することなく画像フォーマットF1を選択する場合は、図8Aのステップ805及びステップ806の処理を省略することができる。この場合、図9Aのステップ904及びステップ905の処理も省略することができる。
図1に示したリモートデスクトップシステムは一例に過ぎず、リモートデスクトップシステムの用途又は条件に応じて一部の構成要素を省略又は変更してもよい。図2に示したYUV4:4:4及びYUV4:2:0は一例に過ぎず、画像処理システムの構成又は条件に応じて別の画像フォーマットを用いてもよい。例えば、YUV4:2:0の代わりに、YUV4:2:2又はYUV4:1:1を用いても構わない。
図3に示した静止画領域及び動画領域は一例に過ぎず、静止画領域及び動画領域は、デスクトップ画像に応じて変化する。図7に示した符号化対象ブロック及び隣接ブロックは一例に過ぎず、各ブロックの形状は画像の分割方法に応じて変化する。
式(1)及び式(2)は一例に過ぎず、画像処理システムの構成又は条件に応じて別の計算式を用いてもよい。
図10は、図4の画像符号化装置401、図5の画像復号装置501、図6のクライアント端末601及びサーバ602として用いられる情報処理装置(コンピュータ)のハードウェア構成例を示している。図10の情報処理装置は、CPU(Central Processing Unit)1001、メモリ1002、入力装置1003、出力装置1004、補助記憶装置1005、媒体駆動装置1006、及びネットワーク接続装置1007を含む。これらの構成要素はハードウェアであり、バス1008により互いに接続されている。
メモリ1002は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリであり、処理に用いられるプログラム及びデータを記憶する。メモリ1002は、図6のフレームメモリ614又はフレームメモリ624として用いることができる。
CPU1001(プロセッサ)は、例えば、メモリ1002を利用してプログラムを実行することにより、図4の選択部411及び符号化部412として動作する。CPU1001は、メモリ1002を利用してプログラムを実行することにより、図5の選択部511及び復号部512としても動作する。
CPU1001は、メモリ1002を利用してプログラムを実行することにより、図6の選択部612及び復号部613としても動作する。CPU1001は、メモリ1002を利用してプログラムを実行することにより、図6の映像生成部621、選択部622、及び符号化部623としても動作する。
入力装置1003は、例えば、キーボード、ポインティングデバイス等であり、ユーザ又はオペレータからの指示や情報の入力に用いられる。出力装置1004は、例えば、表示装置、プリンタ、スピーカ等であり、ユーザ又はオペレータへの問い合わせ及び処理結果の出力に用いられる。入力装置1003及び出力装置1004は、それぞれ、図6の入力部611及び表示部615として用いることができる。処理結果は、画面上に表示される復号画像であってもよい。
補助記憶装置1005は、例えば、磁気ディスク装置、光ディスク装置、光磁気ディスク装置、テープ装置等である。補助記憶装置1005は、ハードディスクドライブ又はフラッシュメモリであってもよい。情報処理装置は、補助記憶装置1005にプログラム及びデータを格納しておき、それらをメモリ1002にロードして使用することができる。
媒体駆動装置1006は、可搬型記録媒体1009を駆動し、その記録内容にアクセスする。可搬型記録媒体1009は、メモリデバイス、フレキシブルディスク、光ディスク、光磁気ディスク等である。可搬型記録媒体1009は、CD-ROM(Compact Disk Read Only Memory)、DVD(Digital Versatile Disk)、又はUSB(Universal Serial Bus)メモリであってもよい。ユーザ又はオペレータは、可搬型記録媒体1009にプログラム及びデータを格納しておき、それらをメモリ1002にロードして使用することができる。
このように、処理に用いられるプログラム及びデータを格納するコンピュータ読み取り可能な記録媒体は、メモリ1002、補助記憶装置1005、及び可搬型記録媒体1009のような、物理的な(非一時的な)記録媒体である。
ネットワーク接続装置1007は、通信ネットワーク603に接続され、通信に伴うデータ変換を行う通信インタフェース回路である。ネットワーク接続装置1007は、図6の通信部616又は通信部625として用いることができる。情報処理装置は、プログラム及びデータを外部の装置からネットワーク接続装置1007を介して受け取り、それらをメモリ1002にロードして使用することができる。
なお、情報処理装置が図10のすべての構成要素を含む必要はなく、用途又は条件に応じて一部の構成要素を省略することも可能である。例えば、情報処理装置がサーバ602であり、かつ、ユーザ又はオペレータとのインタフェースが不要である場合は、入力装置1003及び出力装置1004を省略してもよい。また、可搬型記録媒体1009を利用しない場合は、媒体駆動装置1006を省略してもよい。
開示の実施形態とその利点について詳しく説明したが、当業者は、特許請求の範囲に明確に記載した本発明の範囲から逸脱することなく、様々な変更、追加、省略をすることができるであろう。
図2乃至図10を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記1)
画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとの中から、前記符号化対象ブロックの符号化処理に適用される第3画像フォーマットを選択する選択部と、
前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化する符号化部と、
を備えることを特徴とする画像符号化装置。
(付記2)
前記選択部は、前記イントラ予測モードが角度予測を表す場合、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、前記イントラ予測モードが前記角度予測以外のイントラ予測を表す場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記1記載の画像符号化装置。
(付記3)
前記選択部は、前記イントラ予測モードが角度予測を表す場合、前記画像内において前記符号化対象ブロックに隣接する隣接ブロック内の画素の画素値に基づいて、前記第1画像フォーマット又は前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記イントラ予測モードが前記角度予測以外のイントラ予測を表す場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記1記載の画像符号化装置。
(付記4)
前記選択部は、前記隣接ブロック内の画素の画素値を用いてエッジ強度を計算し、前記エッジ強度が閾値よりも大きい場合、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、前記エッジ強度が前記閾値よりも小さい場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記3記載の画像符号化装置。
(付記5)
前記符号化対象ブロックに前記イントラ予測モードが適用される場合、前記選択部は、前記第1画像フォーマット又は前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記符号化部は、前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化し、
前記符号化対象ブロックにインター予測モードが適用される場合、前記選択部は、前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記符号化部は、前記第3画像フォーマットを用いたインター予測符号化により、前記符号化対象ブロックを符号化することを特徴とする付記1乃至4のいずれか1項に記載の画像符号化装置。
(付記6)
画像内の復号対象ブロックのイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとの中から、前記復号対象ブロックの復号処理に適用される第3画像フォーマットを選択する選択部と、
前記第3画像フォーマットを用いたイントラ予測復号により、前記復号対象ブロックの符号情報を復号する復号部と、
を備えることを特徴とする画像復号装置。
(付記7)
前記選択部は、前記イントラ予測モードが角度予測を表す場合、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、前記イントラ予測モードが前記角度予測以外のイントラ予測を表す場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記6記載の画像復号装置。
(付記8)
前記選択部は、前記イントラ予測モードが角度予測を表す場合、前記画像内において前記復号対象ブロックに隣接する隣接ブロック内の画素の画素値に基づいて、前記第1画像フォーマット又は前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記イントラ予測モードが前記角度予測以外のイントラ予測を表す場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記6記載の画像復号装置。
(付記9)
前記選択部は、前記隣接ブロック内の画素の画素値を用いてエッジ強度を計算し、前記エッジ強度が閾値よりも大きい場合、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、前記エッジ強度が前記閾値よりも小さい場合、前記第2画像フォーマットを前記第3画像フォーマットとして選択することを特徴とする付記8記載の画像復号装置。
(付記10)
前記復号対象ブロックに前記イントラ予測モードが適用される場合、前記選択部は、前記第1画像フォーマット又は前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記復号部は、前記第3画像フォーマットを用いたイントラ予測復号により、前記復号対象ブロックの符号情報を復号し、
前記復号対象ブロックにインター予測モードが適用される場合、前記選択部は、前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記復号部は、前記第3画像フォーマットを用いたインター予測復号により、前記復号対象ブロックの符号情報を復号することを特徴とする付記6乃至9のいずれか1項に記載の画像復号装置。
(付記11)
画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとの中から、前記符号化対象ブロックの符号化処理に適用される第3画像フォーマットを選択する第1選択部と、
前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化して、符号化されたブロックの符号情報を生成する符号化部と、
前記符号化されたブロックのイントラ予測モードに基づいて、前記第1画像フォーマット及び前記第2画像フォーマットから前記第3画像フォーマットを選択する第2選択部と、
前記第3画像フォーマットを用いたイントラ予測復号により、前記符号化されたブロックの符号情報を復号する復号部と、
を備えることを特徴とする画像処理システム。
101、601 クライアント端末
102、602 サーバ
103、603 通信ネットワーク
301 静止画領域
302、303 動画領域
401 画像符号化装置
411、511、612、622 選択部
412、623 符号化部
501 画像復号装置
512、613 復号部
611 入力部
614、624 フレームメモリ
615 表示部
616、625 通信部
621 映像生成部
701 符号化対象ブロック
702 左隣接ブロック
703 上隣接ブロック
711 左上画素
712 左隣接画素
713 上隣接画素
1001 CPU
1002 メモリ
1003 入力装置
1004 出力装置
1005 補助記憶装置
1006 媒体駆動装置
1007 ネットワーク接続装置
1008 バス
1009 可搬型記録媒体

Claims (5)

  1. 画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとのうちのいずれかを、前記符号化対象ブロックの符号化処理に適用される第3画像フォーマットとして選択する選択部と、
    前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化する符号化部と、
    を備え、
    前記選択部は、
    前記イントラ予測モードが角度予測を表す場合には、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、
    前記イントラ予測モードが前記角度予測以外を表す場合には、前記第2画像フォーマットを前記第3画像フォーマットとして選択する、
    ことを特徴とする画像符号化装置
  2. 画像内の符号化対象ブロックに適用されるイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとのうちのいずれかを、前記符号化対象ブロックの符号化処理に適用される第3画像フォーマットとして選択する選択部と、
    前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化する符号化部と、
    を備え、
    前記選択部は、
    前記イントラ予測モードが角度予測を表す場合には、前記画像内において前記符号化対象ブロックに隣接する隣接ブロック内の画素の画素値からエッジ強度を計算し、
    前記エッジ強度が閾値よりも大きい場合には、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、
    前記イントラ予測モードが前記角度予測ではない場合又は前記エッジ強度が前記閾値よりも小さい場合には、前記第2画像フォーマットを前記第3画像フォーマットとして選択する
    ことを特徴とする画像符号化装置。
  3. 記符号化対象ブロックにインター予測モードが適用される場合、前記選択部は、前記第2画像フォーマットを前記第3画像フォーマットとして選択し、前記符号化部は、前記第3画像フォーマットを用いたインター予測符号化により、前記符号化対象ブロックを符号化することを特徴とする請求項1または2に記載の画像符号化装置。
  4. 画像内の復号対象ブロックのイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとのうちのいずれかを、前記復号対象ブロックの復号処理に適用される第3画像フォーマットとして選択する選択部と、
    前記第3画像フォーマットを用いたイントラ予測復号により、前記復号対象ブロックの符号情報を復号する復号部と、
    を備え、
    前記選択部は、
    前記イントラ予測モードが角度予測を表す場合には、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、
    前記イントラ予測モードが前記角度予測以外を表す場合には、前記第2画像フォーマットを前記第3画像フォーマットとして選択する、
    ことを特徴とする画像復号装置。
  5. 画像内の符号化対象ブロックに適用される第1のイントラ予測モードに基づいて、第1画像フォーマットと、前記第1画像フォーマットの情報量よりも少ない情報量を有する第2画像フォーマットとのうちのいずれかを、前記符号化対象ブロックの符号化処理に適用される第3画像フォーマットとして選択する第1選択部と、
    前記第3画像フォーマットを用いたイントラ予測符号化により、前記符号化対象ブロックを符号化して、符号化されたブロックの符号情報を生成する符号化部と、
    前記符号化されたブロックの第2のイントラ予測モードに基づいて、前記第1画像フォーマット及び前記第2画像フォーマットのうちのいずれかを前記第3画像フォーマットとして選択する第2選択部と、
    前記第3画像フォーマットを用いたイントラ予測復号により、前記符号化されたブロックの符号情報を復号する復号部と、
    を備え、
    前記第1選択部は、
    前記第1のイントラ予測モードが角度予測を表す場合には、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、
    前記第1のイントラ予測モードが前記角度予測以外を表す場合には、前記第2画像フォーマットを前記第3画像フォーマットとして選択し、
    前記第2選択部は、
    前記第2のイントラ予測モードが角度予測を表す場合には、前記第1画像フォーマットを前記第3画像フォーマットとして選択し、
    前記第2のイントラ予測モードが前記角度予測以外を表す場合には、前記第2画像フォーマットを前記第3画像フォーマットとして選択する、
    ことを特徴とする画像処理システム。
JP2020018232A 2020-02-05 2020-02-05 画像符号化装置、画像復号装置、及び画像処理システム Active JP7500981B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018232A JP7500981B2 (ja) 2020-02-05 2020-02-05 画像符号化装置、画像復号装置、及び画像処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018232A JP7500981B2 (ja) 2020-02-05 2020-02-05 画像符号化装置、画像復号装置、及び画像処理システム

Publications (2)

Publication Number Publication Date
JP2021125801A JP2021125801A (ja) 2021-08-30
JP7500981B2 true JP7500981B2 (ja) 2024-06-18

Family

ID=77459636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018232A Active JP7500981B2 (ja) 2020-02-05 2020-02-05 画像符号化装置、画像復号装置、及び画像処理システム

Country Status (1)

Country Link
JP (1) JP7500981B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051010A1 (ja) 2007-10-15 2009-04-23 Mitsubishi Electric Corporation 画像符号化装置、画像復号装置、画像符号化方法、および画像復号方法
JP2014531154A (ja) 2011-09-15 2014-11-20 ヴィド スケール インコーポレイテッド 空間的予測のためのシステムおよび方法
JP2017512439A (ja) 2014-03-04 2017-05-18 マイクロソフト テクノロジー ライセンシング,エルエルシー 色空間、色サンプリングレート、及び/又は色深度の適応切り替え
JP2019537365A (ja) 2017-03-21 2019-12-19 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド ビデオ符号化方法、ビデオ復号方法、コンピュータ装置および記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051010A1 (ja) 2007-10-15 2009-04-23 Mitsubishi Electric Corporation 画像符号化装置、画像復号装置、画像符号化方法、および画像復号方法
JP2014531154A (ja) 2011-09-15 2014-11-20 ヴィド スケール インコーポレイテッド 空間的予測のためのシステムおよび方法
JP2017512439A (ja) 2014-03-04 2017-05-18 マイクロソフト テクノロジー ライセンシング,エルエルシー 色空間、色サンプリングレート、及び/又は色深度の適応切り替え
JP2019537365A (ja) 2017-03-21 2019-12-19 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド ビデオ符号化方法、ビデオ復号方法、コンピュータ装置および記憶媒体

Also Published As

Publication number Publication date
JP2021125801A (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP4955216B2 (ja) グレイアルファチャンネルを含んだ映像の符号化/復号化装置および方法
US11706426B2 (en) Method for decoding image on basis of CCLM prediction in image coding system, and device therefor
JP5216710B2 (ja) 復号化処理方法
US11943434B2 (en) Method and device for image decoding on basis of CCLM prediction in image coding system
US20210144399A1 (en) Image decoding method and apparatus based on motion prediction in sub-block unit in image coding system
US10448034B2 (en) Video image encoding device, video image coding method, video image decoding device, video image decoding method, and non-transitory computer-readable storage medium
CN113491115A (zh) 基于cclm预测的图像解码方法及其装置
CN106028031B (zh) 视频编码装置和方法、视频解码装置和方法
US20240305814A1 (en) Cclm prediction-based image decoding method and apparatus in image coding system
US20210203926A1 (en) Video coding apparatus, video coding method, video decoding apparatus, and video decoding method
JP2024019434A (ja) デブロッキングフィルタリングに基づく映像コーディング方法及びその装置
US20170201767A1 (en) Video encoding device and video encoding method
JP7500981B2 (ja) 画像符号化装置、画像復号装置、及び画像処理システム
US11683480B2 (en) Method and device for decoding images using CCLM prediction in image coding system
US20120195511A1 (en) Lossless image compression and decompression method for high definition image and electronic device using the same
WO2013073138A1 (en) Motion vector coding apparatus, method and program
KR20200004348A (ko) 타겟 영역 수정을 통해 비디오 신호를 처리하는 방법 및 장치
US12126797B2 (en) Method and device for decoding images using CCLM prediction in image coding system
RU2781172C1 (ru) Кодирование видео или изображений на основе отображения яркости
KR20240149888A (ko) 영상 인코딩/디코딩 방법 및 장치, 그리고 비트스트림을 저장한 기록 매체
KR20240131329A (ko) 영상 인코딩/디코딩 방법 및 장치, 그리고 비트스트림을 저장한 기록 매체
KR20240121215A (ko) 영상 인코딩/디코딩 방법 및 장치, 그리고 비트스트림을 저장한 기록 매체
KR20240157137A (ko) 영상 코딩 시스템에서 서브 블록 단위의 움직임 예측에 기반한 영상 디코딩 방법 및 장치
JP2005294967A (ja) 映像符号化装置
JP2013223149A (ja) 画像符号化装置、画像復号装置、画像符号化プログラム及び画像復号プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520

R150 Certificate of patent or registration of utility model

Ref document number: 7500981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150