JP7497588B2 - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP7497588B2
JP7497588B2 JP2020052952A JP2020052952A JP7497588B2 JP 7497588 B2 JP7497588 B2 JP 7497588B2 JP 2020052952 A JP2020052952 A JP 2020052952A JP 2020052952 A JP2020052952 A JP 2020052952A JP 7497588 B2 JP7497588 B2 JP 7497588B2
Authority
JP
Japan
Prior art keywords
cutting edge
drill
axis
drill body
main cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020052952A
Other languages
Japanese (ja)
Other versions
JP2021151681A (en
Inventor
匡 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020052952A priority Critical patent/JP7497588B2/en
Publication of JP2021151681A publication Critical patent/JP2021151681A/en
Application granted granted Critical
Publication of JP7497588B2 publication Critical patent/JP7497588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

本発明は、軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルに関するものである。 The present invention relates to a drill in which a chip discharge groove is formed on the outer periphery of the tip of an axial drill body that is rotated around an axis in the direction of drill rotation, and a cutting edge is formed at the intersection ridge between the wall surface of the chip discharge groove that faces the direction of drill rotation and the tip relief surface of the drill body.

このようなドリルによる穴明け加工において、金属や炭素繊維強化プラスチック(CFRP)、あるいは金属とCFRPを積層した積層材等に貫通穴をあける際に、貫通穴の抜け際の開口部に発生するバリを低減することが課題となる。 When drilling holes using this type of drill, the challenge is to reduce the burrs that form at the opening of the through hole when drilling through metal, carbon fiber reinforced plastic (CFRP), or a laminated material made of metal and CFRP.

このようなバリを低減する手段として、切屑排出溝の捩れ角を大きくして切刃の軸方向すくい角を正角側に大きくすることにより、加工方向とは反対側の力を増大させてスラスト加重を抑えるとともに、切刃の刃物角を小さくして切れ味を向上させることが考えられる。 One way to reduce these burrs is to increase the twist angle of the chip discharge groove and increase the axial rake angle of the cutting edge toward the positive side, thereby increasing the force opposite to the machining direction and reducing the thrust load, while reducing the cutting edge angle to improve sharpness.

ところが、切屑排出溝の捩れ角を大きくすると、切屑排出溝の全長が長くなってしまって切屑排出性が損なわれ、切屑詰まりを生じるおそれがある。また、切刃の刃物角が小さくなると切刃強度が低下してしまい、切刃の欠損やチッピングによって早期にドリル寿命を迎えるおそれもある。 However, if the twist angle of the chip discharge groove is increased, the overall length of the chip discharge groove increases, impairing chip discharge performance and causing chip clogging. In addition, if the cutting edge angle is reduced, the strength of the cutting edge decreases, and there is a risk of the drill reaching the end of its life sooner due to chipping or damage to the cutting edge.

そこで、例えば特許文献1には、棒状のドリル本体と、このドリル本体の先端部に位置して、先端部に向かって見た場合に直線部を有する主切刃と、ドリル本体の外周に設けられた、主切刃の後方からドリル本体の後端部側に向かってドリル本体の回転軸の周りに螺旋状に延びている切屑排出溝と、主切刃に沿って主切刃と切屑排出溝との間に設けられた主すくい面とを備え、この主すくい面は、直線部に沿って設けられた平坦部と、この平坦部と切屑排出溝との間に位置して、切屑排出溝よりも凹んでいる凹部とを有しているドリルが記載されている。 For example, Patent Document 1 describes a drill that includes a rod-shaped drill body, a main cutting edge that is located at the tip of the drill body and has a straight portion when viewed toward the tip, a chip discharge groove that is provided on the outer periphery of the drill body and extends in a spiral shape around the rotation axis of the drill body from the rear of the main cutting edge toward the rear end side of the drill body, and a main rake face that is provided along the main cutting edge and between the main cutting edge and the chip discharge groove, and the main rake face has a flat portion that is provided along the straight portion and a recess that is located between the flat portion and the chip discharge groove and is recessed further than the chip discharge groove.

このようなドリルでは、主すくい面に設けられた平坦部が切屑排出溝よりも凹んだ凹部に連なることにより、この平坦部における主切刃の直線部の軸方向すくい角は、切屑排出溝の捩れ角よりも正角側に大きくなる。従って、切屑排出溝の全長を長くすることなく、主切刃の直線部の切れ味を鋭くすることができる。 In such drills, the flat portion on the main rake face is connected to a recess that is recessed deeper than the chip discharge groove, so that the axial rake angle of the straight portion of the main cutting edge at this flat portion is larger on the positive side than the twist angle of the chip discharge groove. Therefore, the straight portion of the main cutting edge can be sharpened without increasing the overall length of the chip discharge groove.

特許第6343005号公報Patent No. 6343005

ところが、この特許文献1に記載されたドリルでは、主切刃に隣接してドリル本体の後端部側に位置する副切刃を有しており、主すくい面の直線部に沿って設けられた上記平坦部は、この副切刃から離れていて、主切刃の外周端に達するように形成されてはおらず、主切刃の外周部で発生したバリを副切刃によって除去するようにしている。 However, the drill described in Patent Document 1 has a minor cutting edge located adjacent to the main cutting edge toward the rear end of the drill body, and the flat portion provided along the straight portion of the main rake face is away from this minor cutting edge and is not formed to reach the outer periphery of the main cutting edge, so that burrs generated on the outer periphery of the main cutting edge are removed by the minor cutting edge.

しかしながら、上述のような貫通穴の穴明け加工では、バリが生じ易いのは貫通穴の抜け際の開口部の周縁部分であり、このような部分を切削する主切刃の外周部に上記平坦部が形成されずに軸方向すくい角が正角側に大きくされていないと、主として貫通穴を形成する主切刃の切れ味が鈍ってしまい、発生したバリを副切刃によって完全に除去することは困難となる。 However, in drilling through holes as described above, burrs are likely to occur on the peripheral portion of the opening where the through hole exits. If the flat portion described above is not formed on the outer periphery of the main cutting edge that cuts such a portion and the axial rake angle is not increased to the positive side, the sharpness of the main cutting edge that mainly forms the through hole will become dull, making it difficult to completely remove the burrs that occur with the secondary cutting edge.

その一方で、軸線回りの周速が遅いために大きなスラスト荷重が作用するドリル本体の内周部では、主切刃の直線部に平坦部が形成されているために刃物角は小さくなる。このため、このドリル本体内周部の主切刃の直線部に欠損やチッピング等が発生し易くなるおそれもある。 On the other hand, at the inner circumference of the drill body, where a large thrust load acts due to the slow peripheral speed around the axis, the straight portion of the main cutting edge has a flat portion, so the cutting edge angle is small. For this reason, there is a risk that the straight portion of the main cutting edge on the inner circumference of the drill body may be more susceptible to breakage or chipping.

本発明は、このような背景の下になされたもので、切刃の欠損やチッピング、切屑排出溝における切屑詰まりを生じることなく、貫通穴の抜け際の開口部におけるバリの発生を効果的に抑制することが可能なドリルを提供することを目的としている。 The present invention was made against this background, and aims to provide a drill that can effectively suppress the generation of burrs at the opening of the through hole without causing damage or chipping of the cutting edge or clogging of the chip discharge groove.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きいことを特徴とする。 In order to solve the above problems and achieve the above object, the present invention provides a drill in which a chip discharge groove is formed on the outer periphery of the tip of an axial drill body centered on the axis, which is rotated in the drill rotation direction around the axis, and a cutting edge is formed at the intersection ridge between the wall surface of the chip discharge groove facing the drill rotation direction and the tip relief surface of the drill body, and the cutting edge comprises a main cutting edge formed on the inner periphery side of the drill body and a minor cutting edge connected to the main cutting edge on the outer periphery side of the drill body, and the axial rake angle of the minor cutting edge is larger on the positive angle side than the axial rake angle of the main cutting edge.

このように構成されたドリルでは、切刃のうち主切刃のドリル本体外周側に連なる副切刃の軸方向すくい角が主切刃の軸方向すくい角よりも正角側に大きいので、切刃の外周端側において切れ味を鋭くすることができ、金属やCFRP、あるいは金属とCFRPを積層した積層材に貫通穴をあける際に、この貫通穴の抜け際の開口部に発生するバリを削り取って抑制することができる。 In a drill configured in this way, the axial rake angle of the minor cutting edge that is connected to the main cutting edge on the outer periphery of the drill body is larger on the positive side than the axial rake angle of the main cutting edge, so that the cutting edge can be sharpened on the outer periphery side, and when drilling through holes in metal, CFRP, or a laminated material made of metal and CFRP, burrs that occur at the opening of the through hole can be removed and suppressed.

その一方で、切刃のうちドリル本体内周側の主切刃では、副切刃に比べて軸方向すくい角が負角側に大きいので刃物角を大きく確保して切刃強度を維持することができる。このため、大きなスラスト荷重が作用しても、欠損やチッピングが生じるのを防ぐことができて、ドリル寿命の延長を図ることが可能となる。また、切屑排出溝の捩れ角は、この主切刃の軸方向すくい角に合わせて設定すればよいので、切屑排出溝の全長が長くなるのも防ぐことができて、切屑詰まりも防止することができる。 On the other hand, the main cutting edge on the inner circumference of the drill body has a larger axial rake angle on the negative side compared to the minor cutting edge, so the cutting edge strength can be maintained by ensuring a large cutting angle. This makes it possible to prevent breakage or chipping even when a large thrust load is applied, and to extend the drill's life. In addition, the twist angle of the chip discharge groove can be set to match the axial rake angle of the main cutting edge, which prevents the overall length of the chip discharge groove from becoming too long and prevents chip clogging.

ここで、上記副切刃の上記軸線に対する径方向の幅は、上記切刃の直径Dの0.05×D~0.20×Dの範囲内とされていることが望ましい。この副切刃の軸線に対する径方向の幅が切刃の直径Dの0.05×Dを下回ると、貫通穴の抜け際の開口部に発生するバリを確実に除去することが困難となるおそれがある一方、切刃の直径Dの0.20×Dを上回ると、軸方向すくい角が正角側に大きくて刃物角が小さくなる副切刃が切刃の全長に占める部分が大きくなりすぎて欠損やチッピングを生じるおそれが生じる。 Here, it is desirable that the radial width of the minor cutting edge relative to the axis is within the range of 0.05 x D to 0.20 x D of the diameter D of the cutting edge. If the radial width of the minor cutting edge relative to the axis is less than 0.05 x D of the diameter D of the cutting edge, it may be difficult to reliably remove burrs that occur at the opening of the through hole, while if it exceeds 0.20 x D of the diameter D of the cutting edge, the minor cutting edge with a large axial rake angle on the positive side and a small cutting angle may take up too much of the total length of the cutting edge, causing chipping or breakage.

また、上記副切刃の軸方向すくい角が10°~50°の範囲内とされるとともに、上記主切刃の軸方向すくい角が0°~40°の範囲内とされていることが望ましい。これら副切刃と主切刃の軸方向すくい角が上記範囲内よりも正角側に大きいと、特に副切刃の刃物角が小さくなりすぎて欠損やチッピングが発生し易くなる一方、上記範囲内よりも負角側に大きいと、切削抵抗の増大を招くおそれがある。なお、これら副切刃と主切刃の軸方向すくい角はドリル本体の軸線に対する径方向に向けて変化していてもよく、この場合には副切刃と主切刃の外周端における軸方向すくい角が上記範囲内であればよい。 It is also desirable that the axial rake angle of the minor cutting edge is within the range of 10° to 50°, and that of the major cutting edge is within the range of 0° to 40°. If the axial rake angles of the minor cutting edge and the major cutting edge are larger on the positive angle side than the above range, the cutting angle of the minor cutting edge in particular becomes too small, making it easier for chipping and breakage to occur, while if they are larger on the negative angle side than the above range, there is a risk of increased cutting resistance. The axial rake angles of the minor cutting edge and the major cutting edge may change in the radial direction relative to the axis of the drill body, in which case it is sufficient that the axial rake angles at the outer circumferential ends of the minor cutting edge and the major cutting edge are within the above range.

ここで、上記副切刃のすくい面は、上記ドリル回転方向側から見て、三角形状または四角形状に形成されていてもよい。このように構成することにより、切刃の軸方向すくい角が主切刃の軸方向すくい角に合わせた通常のドリルを製造した後に、副切刃の部分にだけドリル回転方向から見て三角形状に副切刃のすくい面を研ぎ付けるだけで、容易に副切刃の軸方向すくい角を主切刃よりも正角側に大きくすることができる。 Here, the rake face of the minor cutting edge may be formed in a triangular or rectangular shape when viewed from the direction of rotation of the drill. By configuring it in this way, after manufacturing a normal drill in which the axial rake angle of the cutting edge matches the axial rake angle of the main cutting edge, the axial rake angle of the minor cutting edge can be easily made larger on the regular side than that of the main cutting edge by simply sharpening the rake face of the minor cutting edge into a triangular shape when viewed from the direction of rotation of the drill only at the minor cutting edge.

なお、このうち、副切刃のすくい面を、上記ドリル回転方向側から見て、四角形状に形成する場合には、上記軸線に対する径方向の幅が上記軸線方向の長さよりも大きくされた四角形状に形成することにより、切刃のうち軸方向すくい角が正角側に大きい部分を長くすることができるので、切削抵抗の低減を図ることができる。また、これとは逆に、上記軸線方向の長さが上記軸線に対する径方向の幅よりも大きくされた四角形状に形成した場合には、切刃に摩耗が生じたときに先端逃げ面を研磨して新たな切刃を研ぎ付ける再研磨量を大きく確保することができる。 When the rake face of the minor cutting edge is formed in a square shape when viewed from the drill rotation direction, the radial width relative to the axis is greater than the length in the axial direction. This makes it possible to lengthen the portion of the cutting edge where the axial rake angle is large on the positive side, thereby reducing the cutting resistance. Conversely, when the cutting edge is formed in a square shape where the length in the axial direction is greater than the width in the radial direction relative to the axis, it is possible to ensure a large amount of re-grinding by grinding the tip relief face to sharpen a new cutting edge when the cutting edge wears.

また、上記副切刃は上記軸線方向先端側から見て上記主切刃よりも上記ドリル回転方向側に延びていてもよいが、上記副切刃は上記軸線方向先端側から見て上記主切刃よりも上記ドリル回転方向とは反対側に延びていることが、特に上述のように通常のドリルを製造した後に副切刃のすくい面を研ぎ付けて副切刃の軸方向すくい角を主切刃よりも正角側に大きくする場合に製造が容易となって望ましい。 The minor cutting edge may extend further in the drill rotation direction than the main cutting edge when viewed from the axial tip side, but it is preferable for the minor cutting edge to extend further in the opposite direction to the drill rotation direction than the main cutting edge when viewed from the axial tip side, as this facilitates manufacturing, particularly when, as described above, a normal drill is manufactured and then the rake face of the minor cutting edge is sharpened to make the axial rake angle of the minor cutting edge larger than that of the main cutting edge.

なお、この場合には、上記主切刃と上記副切刃とは上記軸線方向先端側から見て段差をもっているとともに、上記副切刃と上記主切刃の間の段差部には上記軸線方向先端側から見て曲線状をなす接続部が形成されていることが、副切刃の径方向すくい角を主切刃と大きく変化させずに済むとともに、段差部が鋭くなって欠けが生じたりするのを防ぐことができて望ましい。 In this case, the main cutting edge and the minor cutting edge have a step when viewed from the tip side in the axial direction, and the step between the minor cutting edge and the main cutting edge has a curved connection when viewed from the tip side in the axial direction. This is desirable because it prevents the radial rake angle of the minor cutting edge from being significantly different from that of the main cutting edge and prevents the step from becoming too sharp and causing chipping.

ただし、上記副切刃は、上記軸線方向先端側から見て上記主切刃と折れ線状に連なっていたり、上記軸線方向先端側から見て上記主切刃に接する凸曲線状に形成されていたりしてもよい。この場合には、副切刃と主切刃の間に段差部が生じることがなくなるので、欠けを一層確実に防ぐことができるとともに、主切刃と副切刃によって生成される切屑が段差部で分断されることもなくなって、分断された切屑同士が絡まることによる切屑詰まりも防ぐことができる。 However, the minor cutting edge may be connected to the main cutting edge in a broken line shape when viewed from the tip side in the axial direction, or may be formed in a convex curve that is tangent to the main cutting edge when viewed from the tip side in the axial direction. In this case, a step is not generated between the minor cutting edge and the main cutting edge, so chipping can be prevented more reliably, and the chips generated by the main cutting edge and minor cutting edge are not divided by the step, so chip clogging caused by the divided chips becoming entangled can be prevented.

一方、上記副切刃は、上記軸線方向先端側から見て上記主切刃から上記ドリル回転方向とは反対側に凹む凹曲線状に形成されていてもよい。この場合には、切屑は主切刃と副切刃とで分断されて生成されることになるが、副切刃によって生成された切屑は凹曲線に沿ってドリル本体の内周側に流れ出ることになるので、加工穴の内周面を傷付けるようなことがない。 On the other hand, the minor cutting edge may be formed in a concave curve that is concave from the main cutting edge in the opposite direction to the drill rotation direction when viewed from the axial tip side. In this case, the chips are generated by being divided between the main cutting edge and the minor cutting edge, but the chips generated by the minor cutting edge flow out along the concave curve to the inner side of the drill body, so they do not damage the inner surface of the drilled hole.

以上説明したように、本発明によれば、切刃の欠損やチッピングを防いでドリル寿命の延長を図ることができるとともに、切屑排出溝における切屑詰まりを防止して安定した穴明け加工を行うことができ、さらに金属やCFRP、あるいは金属とCFRPを積層した積層材に貫通穴をあける際に、この貫通穴の抜け際の開口部に発生するバリを副切刃によって削り取って抑制し、高品位の穴明け加工を行うことが可能となる。 As explained above, according to the present invention, it is possible to prevent chipping and damage to the cutting edge, thereby extending the life of the drill, and to prevent chip clogging in the chip discharge groove, thereby enabling stable drilling. Furthermore, when drilling through holes in metal, CFRP, or a laminated material made of metal and CFRP, burrs that occur at the opening of the through hole at the exit are removed by the secondary cutting edge, thereby suppressing the burrs, enabling high-quality drilling.

本発明の第1の実施形態を示す軸線方向先端からから見たドリル本体の正面図である。1 is a front view of a drill body as viewed from the axial tip, showing a first embodiment of the present invention. FIG. 図1における矢線X方向視の平面図である。FIG. 2 is a plan view taken along the arrow X direction in FIG. 1 . 図1における矢線Y方向視の側面図である。FIG. 2 is a side view taken in the direction of the arrow Y in FIG. 1 . 本発明の第2の実施形態を示す軸線方向先端からから見たドリル本体の正面図である。FIG. 11 is a front view of a drill body as viewed from the axial tip, showing a second embodiment of the present invention. 図4における矢線X方向視の平面図である。FIG. 5 is a plan view seen in the direction of the arrow X in FIG. 4 . 本発明の第3の実施形態を示す平面図である。FIG. 11 is a plan view showing a third embodiment of the present invention. 本発明の第4の実施形態を示す軸線方向先端からから見たドリル本体の正面図である。FIG. 13 is a front view of a drill body as viewed from the axial tip, showing a fourth embodiment of the present invention. 本発明の第5の実施形態を示す軸線方向先端からから見たドリル本体の正面図である。FIG. 13 is a front view of a drill body as viewed from the axial tip, showing a fifth embodiment of the present invention. 本発明の第6の実施形態を示す軸線方向先端からから見たドリル本体の正面図である。FIG. 13 is a front view of a drill body as viewed from the axial tip, showing a sixth embodiment of the present invention.

図1~図3は、本発明の第1の実施形態を示すものである。本実施形態のドリルは、そのドリル本体1が、超硬合金等の硬質材料により軸線Oを中心とした概略円柱軸状を形成されており、図示されない後端部は円柱状のままのシャンク部とされるとともに、先端部は切刃部2とされている。 Figures 1 to 3 show a first embodiment of the present invention. In this embodiment, the drill body 1 is made of a hard material such as cemented carbide and has a generally cylindrical shaft shape centered on axis O, with the rear end (not shown) remaining cylindrical as a shank portion and the tip portion serving as a cutting edge portion 2.

このようなドリルは、上記シャンク部が工作機械の主軸に把持されて軸線O回りにドリル回転方向Tに回転させられつつ該軸線O方向先端側に送り出され、切刃部2の先端に設けられた切刃3によって金属やCFRP、あるいは金属とCFRPを積層した積層材に穴明け加工を行う。 The shank of this type of drill is held by the spindle of a machine tool and rotated around axis O in the drill rotation direction T while being fed toward the tip side in the direction of axis O. The cutting blade 3 at the tip of the cutting blade portion 2 drills holes in metal, CFRP, or a laminated material made of metal and CFRP.

切刃部2の外周には、ドリル本体1の先端面である先端逃げ面4に開口して後端側(図2および図3において右側)に向かう切屑排出溝5が形成されている。本実施形態では、複数条(2条)の切屑排出溝5が周方向に等間隔にドリル本体1の後端側に向かうに従いドリル回転方向Tとは反対側に捩れるように形成されている。 A chip discharge groove 5 is formed on the outer periphery of the cutting edge portion 2, opening on the tip flank 4, which is the tip surface of the drill body 1, and heading toward the rear end (the right side in Figures 2 and 3). In this embodiment, multiple (two) chip discharge grooves 5 are formed at equal intervals in the circumferential direction, twisting in the opposite direction to the drill rotation direction T as they head toward the rear end of the drill body 1.

切屑排出溝5のドリル回転方向Tを向く壁面の先端部は上記切刃3のすくい面6とされており、切刃3はこのすくい面6と先端逃げ面4との交差稜線部に切刃3が形成されている。ここで、先端逃げ面4は、ドリル本体1の外周側とドリル回転方向Tとは反対側に向かうに従いドリル本体1の後端側に向かうように傾斜しており、これによって切刃3には所定の先端角と逃げ角とが与えられる。 The tip of the wall surface of the chip discharge groove 5 facing the drill rotation direction T is the rake face 6 of the cutting edge 3, and the cutting edge 3 is formed at the intersection ridge between this rake face 6 and the tip relief face 4. Here, the tip relief face 4 is inclined toward the rear end of the drill body 1 as it moves toward the outer periphery of the drill body 1 and the opposite side to the drill rotation direction T, thereby giving the cutting edge 3 a predetermined tip angle and relief angle.

なお、先端逃げ面4は、本実施形態ではドリル回転方向Tとは反対側に向かうに従い逃げ角が段階的に大きくなる第1、第2先端逃げ面4a、4bによって形成されている。このうち、第2先端逃げ面4bには、周方向に切屑排出溝5の間を通ってドリル本体1に形成されたクーラント孔1aがそれぞれ開口している。 In this embodiment, the tip flank 4 is formed by first and second tip flanks 4a and 4b, whose flank angles gradually increase in the direction opposite to the drill rotation direction T. Of these, the second tip flank 4b has coolant holes 1a formed in the drill body 1 that open in the circumferential direction and pass between the chip discharge grooves 5.

また、切刃部2の外周面には、切屑排出溝5のドリル回転方向T側を向く壁面のドリル回転方向Tとは反対側に隣接してマージン部7aが形成されるとともに、このマージン部7aのドリル回転方向Tとは反対側は、マージン部7aよりも外径が僅かに小さくされた外周逃げ面7bとされている。 In addition, a margin portion 7a is formed on the outer peripheral surface of the cutting edge portion 2 adjacent to the wall surface of the chip discharge groove 5 facing the drill rotation direction T on the opposite side of the drill rotation direction T, and the opposite side of this margin portion 7a to the drill rotation direction T is an outer peripheral relief surface 7b whose outer diameter is slightly smaller than that of the margin portion 7a.

さらに、切屑排出溝5の先端内周部には、この先端内周部をドリル本体1の軸線O側に切り欠くようにしてシンニング部8が形成されている。このシンニング部8は、本実施形態では切刃3のすくい面の内周部から、切屑排出溝5のドリル回転方向Tとは反対側を向く壁面と外周逃げ面7bとが交差するヒール部にかけて延びている。 Furthermore, a thinning portion 8 is formed on the inner peripheral portion of the tip of the chip discharge groove 5 by cutting the inner peripheral portion toward the axis O of the drill body 1. In this embodiment, the thinning portion 8 extends from the inner peripheral portion of the rake face of the cutting edge 3 to the heel portion where the wall surface of the chip discharge groove 5 facing away from the drill rotation direction T intersects with the outer peripheral relief surface 7b.

さらにまた、上記切刃3は、すくい面6のうち上記シンニング部8に形成されたシンニングすくい面6aと先端逃げ面4との交差稜線部に形成されるシンニング刃3aと、このシンニング刃3aのドリル本体1の外周側に連なり、切屑排出溝5のドリル回転方向T側を向く壁面の内周側の主すくい面6bと先端逃げ面4との交差稜線部に形成される主切刃3bと、この主切刃3bのドリル本体1の外周側に連なり、切屑排出溝5のドリル回転方向T側を向く壁面の外周側の副すくい面6cと先端逃げ面4との交差稜線部に形成される副切刃3cとを備えている。 Furthermore, the cutting edge 3 includes a thinning edge 3a formed at the intersection ridge between the thinning rake surface 6a formed in the thinning portion 8 of the rake surface 6 and the tip flank 4, a main cutting edge 3b connected to the outer periphery of the drill body 1 of the thinning edge 3a and formed at the intersection ridge between the main rake surface 6b on the inner periphery of the wall surface facing the drill rotation direction T of the chip discharge groove 5 and the tip flank 4, and a secondary cutting edge 3c connected to the outer periphery of the main cutting edge 3b and formed at the intersection ridge between the secondary rake surface 6c on the outer periphery of the wall surface facing the drill rotation direction T of the chip discharge groove 5 and the tip flank 4.

ここで、上述のように切屑排出溝5はドリル本体1の後端側に向かうに従いドリル回転方向Tとは反対側に捩れているので、この切屑排出溝5のドリル回転方向T側を向く壁面をすくい面6とする主切刃3bと副切刃3cには正角の軸方向すくい角θ1、θ2が与えられる。そして、図3に示すように、副切刃3cの軸方向すくい角θ2は主切刃3bの軸方向すくい角θ1よりも正角側に大きくされている。 As described above, the chip discharge groove 5 twists in the opposite direction to the drill rotation direction T as it approaches the rear end of the drill body 1, so that the main cutting edge 3b and the minor cutting edge 3c, whose rake faces 6 are the wall surfaces of the chip discharge groove 5 facing the drill rotation direction T, are given positive axial rake angles θ1 and θ2. As shown in FIG. 3, the axial rake angle θ2 of the minor cutting edge 3c is set to be greater on the positive side than the axial rake angle θ1 of the main cutting edge 3b.

また、本実施形態では、このうち副切刃3cの軸方向すくい角θ2は10°~50°の範囲内とされるとともに、主切刃3bの軸方向すくい角θ1は40°以下の範囲内とされていて、これらの範囲内でθ2>θ1とされている。なお、主切刃3bの軸方向すくい角θ1と副切刃3cの軸方向すくい角θ2は、ドリル本体1の軸線Oに対する径方向に向けて変化していてもよく、図3に示したように主切刃3bと副切刃3cの外周端における軸方向すくい角θ1、θ2が上記範囲内であればよい。 In this embodiment, the axial rake angle θ2 of the minor cutting edge 3c is in the range of 10° to 50°, and the axial rake angle θ1 of the main cutting edge 3b is in the range of 40° or less, with θ2 > θ1 within these ranges. Note that the axial rake angle θ1 of the main cutting edge 3b and the axial rake angle θ2 of the minor cutting edge 3c may change in the radial direction relative to the axis O of the drill body 1, as long as the axial rake angles θ1 and θ2 at the outer circumferential ends of the main cutting edge 3b and the minor cutting edge 3c are within the above ranges as shown in FIG. 3.

また、本実施形態では軸線O方向先端側から見て、シンニング刃3aは、先端逃げ面4における内周側の軸線Oの近傍からドリル回転方向に凸となる凸曲線状にドリル本体1の外周側に延びて主切刃3bの内周端に接しており、主切刃3bはシンニング刃3aとの接点から直線状に外周側に延びている。これに対して、副切刃3cは軸線O方向先端側から見て主切刃3bよりもドリル回転方向Tとは反対側に延びている。 In addition, in this embodiment, when viewed from the tip side in the direction of the axis O, the thinning edge 3a extends from the vicinity of the axis O on the inner peripheral side of the tip flank 4 toward the outer periphery of the drill body 1 in a convex curve that is convex in the drill rotation direction and contacts the inner peripheral end of the main cutting edge 3b, and the main cutting edge 3b extends in a straight line toward the outer periphery from the contact point with the thinning edge 3a. In contrast, the minor cutting edge 3c extends in the opposite direction to the drill rotation direction T than the main cutting edge 3b when viewed from the tip side in the direction of the axis O.

より詳しくは、本実施形態では軸線O方向先端側から見て図1に示すように、副切刃3cは主切刃3bに対して段差をもってドリル回転方向Tとは反対側に位置して平行に延びるように形成されている。また、副切刃3cと主切刃3bの間の段差部には曲線状をなす接続部3dが形成されていて、この接続部3dは本実施形態では凹円弧等の凹曲線状に形成されている。すなわち、主切刃3bと副切刃3c、および主すくい面6bと副すくい面6cとは不連続である。 More specifically, in this embodiment, as shown in FIG. 1 when viewed from the tip side in the direction of axis O, the minor cutting edge 3c is formed to extend parallel to the main cutting edge 3b with a step on the opposite side of the drill rotation direction T. In addition, a curved connection portion 3d is formed at the step between the minor cutting edge 3c and the main cutting edge 3b, and in this embodiment, this connection portion 3d is formed in a concave curve such as a concave arc. In other words, the main cutting edge 3b and the minor cutting edge 3c, and the main cutting surface 6b and the minor cutting surface 6c are discontinuous.

さらに、ドリル回転方向T側から見て図2に示すように、副すくい面6cは三角形状に形成されている。この副すくい面6cは、主すくい面6bに対してドリル回転方向Tとは反対側に凹む凹面状に形成されており、副切刃3cから離れてドリル本体1の後端側に向かうに従い主すくい面6bよりも大きな傾斜角でドリル回転方向Tとは反対側に凹んだ後に、凹曲面を描いて主すくい面6bに切れ上がるように形成されている。 Furthermore, as shown in Figure 2 when viewed from the drill rotation direction T side, the auxiliary rake face 6c is formed in a triangular shape. This auxiliary rake face 6c is formed in a concave shape that is recessed in the opposite direction to the drill rotation direction T with respect to the main rake face 6b, and is formed so that as it moves away from the auxiliary cutting edge 3c and toward the rear end side of the drill body 1, it recesses in the opposite direction to the drill rotation direction T at a larger inclination angle than the main rake face 6b, and then cuts up to the main rake face 6b in a concave curved surface.

さらに、本実施形態では、副切刃3cの軸線Oに対する径方向の幅Wが、切刃3の直径(切刃3の外周端が軸線O回りになす円の直径)Dの0.05×D~0.20×Dの範囲内とされている。なお、この副切刃3cの軸線Oに対する径方向の幅Wは、上記接続部3dも含む主切刃3bの外周端から副切刃3cの外周端までの幅であり、また副切刃3cがシンニング刃3aに達することはない。 Furthermore, in this embodiment, the radial width W of the minor cutting edge 3c relative to the axis O is within the range of 0.05 x D to 0.20 x D of the diameter D of the cutting edge 3 (the diameter of the circle that the outer circumferential end of the cutting edge 3 forms around the axis O). Note that the radial width W of the minor cutting edge 3c relative to the axis O is the width from the outer circumferential end of the main cutting edge 3b, including the above-mentioned connecting portion 3d, to the outer circumferential end of the minor cutting edge 3c, and the minor cutting edge 3c does not reach the thinning edge 3a.

このように構成されたドリルにおいては、切刃3のうち主切刃3bのドリル本体1外周側に連なる副切刃3cの軸方向すくい角θ2が、主切刃3bの軸方向すくい角θ1よりも正角側に大きいので、切刃3の外周端側において切れ味を鋭くすることができる。このため、金属やCFRP、あるいは金属とCFRPを積層した積層材に貫通穴を穴明け加工する際に、この貫通穴の抜け際の開口部に発生するバリを副切刃3cによって削り取って抑制することができ、高品位の穴明け加工を行うことができる。 In a drill configured in this manner, the axial rake angle θ2 of the minor cutting edge 3c, which is connected to the main cutting edge 3b on the outer periphery of the drill body 1, is greater on the positive side than the axial rake angle θ1 of the main cutting edge 3b, so that the cutting edge 3 can be sharpened on the outer periphery side. Therefore, when drilling through holes in metal, CFRP, or a laminated material in which metal and CFRP are laminated, burrs that occur at the opening of the through hole can be removed and suppressed by the minor cutting edge 3c, and high-quality drilling can be performed.

その一方で、切刃3のうち副切刃3cよりもドリル本体1の内周側の主切刃3bでは、副切刃3cに比べて軸方向すくい角θ1が負角側に大きいので、刃物角を大きく確保することができる。従って、切刃強度を維持することができるので、大きなスラスト荷重が作用するドリル本体1の内周側でも、欠損やチッピングが生じるのを防ぐことができて、ドリル寿命の延長を図ることが可能となる。しかも、切屑排出溝5の捩れ角は、この主切刃3bの軸方向すくい角θ1に合わせて設定することができるので、切屑排出溝5の全長が長くなるのも防ぐことができ、切屑詰まりも防止することができる。 On the other hand, the main cutting edge 3b, which is closer to the inner circumference of the drill body 1 than the minor cutting edge 3c, has a larger negative axial rake angle θ1 than the minor cutting edge 3c, so a large cutting tool angle can be ensured. This allows the strength of the cutting edge to be maintained, so that even on the inner circumference of the drill body 1 where a large thrust load acts, damage and chipping can be prevented, making it possible to extend the life of the drill. Moreover, the twist angle of the chip discharge groove 5 can be set to match the axial rake angle θ1 of the main cutting edge 3b, so that the overall length of the chip discharge groove 5 can be prevented from becoming too long, and chip clogging can also be prevented.

また、本実施形態では、副切刃3cの軸線Oに対する径方向の幅Wが、切刃3の直径Dの0.05×D~0.20×Dの範囲内とされているので、バリの発生を確実に抑制しつつ、欠損やチッピングも防止することができる。 In addition, in this embodiment, the radial width W of the minor cutting edge 3c relative to the axis O is set within the range of 0.05 x D to 0.20 x D of the diameter D of the cutting edge 3, so that the occurrence of burrs can be reliably suppressed while also preventing breakage and chipping.

すなわち、この副切刃3cの幅Wが切刃3の直径Dの0.05×Dを下回ると、貫通穴の抜け際の開口部に発生するバリを確実に除去することが困難となるおそれがある。その一方で、この副切刃3cの幅Wが切刃3の直径Dの0.20×Dを上回ると、軸方向すくい角θ2が正角側に大きくて刃物角が小さくなる副切刃3cが切刃3の全長に占める部分が大きくなりすぎて欠損やチッピングを生じるおそれが生じる。 In other words, if the width W of the minor cutting edge 3c is less than 0.05 × D of the diameter D of the cutting edge 3, it may be difficult to reliably remove burrs that occur at the opening of the through hole. On the other hand, if the width W of the minor cutting edge 3c exceeds 0.20 × D of the diameter D of the cutting edge 3, the minor cutting edge 3c, which has a large axial rake angle θ2 on the positive side and a small cutting angle, will take up too much of the total length of the cutting edge 3, which may cause chipping or damage.

また、本実施形態では、副切刃3cの軸方向すくい角θ2が10°~50°の範囲内とされるとともに、主切刃3bの軸方向すくい角θ1が40°以下の範囲内とされており、これによっても主切刃3bや副切刃3cの欠損やチッピングを防ぎつつ、切削抵抗が必要以上に増大するのを防ぐことができる。 In addition, in this embodiment, the axial rake angle θ2 of the minor cutting edge 3c is set within the range of 10° to 50°, and the axial rake angle θ1 of the main cutting edge 3b is set within the range of 40° or less, which also prevents damage or chipping of the main cutting edge 3b and minor cutting edge 3c while preventing cutting resistance from increasing more than necessary.

すなわち、これら主切刃3bと副切刃3cの軸方向すくい角θ1、θ2がそれぞれ上記範囲内よりも正角側に大きいと、特に副切刃3cの刃物角が小さくなりすぎて欠損やチッピングが発生し易くなる一方、上記範囲内よりも負角側に大きいと、切削抵抗の増大を招くおそれがある。なお、主切刃3bの軸方向すくい角θ1は0°であってもよく、すなわち主切刃3bの軸方向すくい角θ1は、0°~40°の範囲であればよい。 In other words, if the axial rake angles θ1, θ2 of the main cutting edge 3b and the minor cutting edge 3c are larger on the positive side than within the above ranges, the cutting angle of the minor cutting edge 3c in particular will be too small, making chipping and breakage more likely to occur, while if they are larger on the negative side than within the above ranges, there is a risk of increased cutting resistance. Note that the axial rake angle θ1 of the main cutting edge 3b may be 0°, that is, the axial rake angle θ1 of the main cutting edge 3b may be in the range of 0° to 40°.

ところで、このようなドリルを製造する場合には、まず切刃3の軸方向すくい角を主切刃3bの軸方向すくい角θ1に合わせた通常のドリルを製造した後に、このドリルの副切刃3cの部分にだけドリル回転方向T側から見て副すくい面6cを研削によって研ぎ付けることにより、この副すくい面6cと先端逃げ面4との交差稜線部に副切刃3cを形成すればよい。 When manufacturing such a drill, first, a normal drill is manufactured in which the axial rake angle of the cutting edge 3 is adjusted to the axial rake angle θ1 of the main cutting edge 3b, and then the minor cutting edge 3c of this drill is sharpened by grinding the minor rake face 6c when viewed from the drill rotation direction T, thereby forming the minor cutting edge 3c at the intersection ridge between the minor rake face 6c and the tip clearance face 4.

そして、このような場合に、本実施形態では、副すくい面6cがドリル回転方向T側から見て三角形状に形成されているので、副すくい面6cを研ぎ付ける際の面積が小さくて済み、容易に副切刃3cの軸方向すくい角θ2を主切刃3bの軸方向すくい角θ1よりも正角側に大きくすることができる。 In this embodiment, in such a case, the auxiliary cutting surface 6c is formed in a triangular shape when viewed from the drill rotation direction T, so the area required to sharpen the auxiliary cutting surface 6c is small, and the axial rake angle θ2 of the auxiliary cutting edge 3c can be easily made larger on the positive side than the axial rake angle θ1 of the main cutting edge 3b.

ただし、本実施形態では、このように副すくい面6cがドリル回転方向T側から見て三角形状に形成されているが、四角形状に形成されていてもよい。この場合には、例えば図4および図5に示す本発明の第2の実施形態や、図6に示す第3の実施形態のように、ドリル回転方向T側から見て副すくい面6cが略一定の幅Wで延びる四角形(略平行四辺形)状に形成されていてもよい。このような第2、第3の実施形態でも、第1の実施形態と同様の効果を得ることができる。なお、これら第2、第3の実施形態や、後述する第4~第6の実施形態でも、第1の実施形態と共通する部分には同一の符号を配して説明を省略する。 However, in this embodiment, the sub-rake surface 6c is formed in a triangular shape as seen from the drill rotation direction T, but it may be formed in a rectangular shape. In this case, for example, as in the second embodiment of the present invention shown in Figures 4 and 5 and the third embodiment shown in Figure 6, the sub-rake surface 6c may be formed in a rectangular shape (approximately a parallelogram) extending with a substantially constant width W as seen from the drill rotation direction T. The second and third embodiments can also achieve the same effects as the first embodiment. Note that in these second and third embodiments and the fourth to sixth embodiments described later, the same reference numerals are used for parts common to the first embodiment, and explanations are omitted.

ここで、図4および図5に示す第2の実施形態では、副すくい面6cが、軸線Oに対する径方向の幅Wが軸線O方向の長さよりも大きくされた四角形状に形成されており、これによって切刃3のうち軸方向すくい角θ2が正角側に大きい副切刃3cを長くすることができるので、切削抵抗の低減を図ることができる。また、これとは逆に図6に示す第3の実施形態では、副すくい面6cが、軸線O方向の長さが軸線Oに対する径方向の幅Wよりも大きくされた四角形状に形成されており、切刃3に摩耗が生じたときに先端逃げ面4を研磨して新たな切刃3を研ぎ付ける再研磨を行うときに、再研磨量を大きく確保してドリル寿命を延長することができる。 Here, in the second embodiment shown in Figures 4 and 5, the auxiliary rake face 6c is formed in a square shape with a radial width W relative to the axis O larger than the length in the direction of the axis O, and this allows the auxiliary cutting edge 3c with a large axial rake angle θ2 on the positive side to be lengthened, thereby reducing the cutting resistance. Conversely, in the third embodiment shown in Figure 6, the auxiliary rake face 6c is formed in a square shape with a length in the direction of the axis O larger than the radial width W relative to the axis O, and when the cutting edge 3 is worn out and a new cutting edge 3 is sharpened by grinding the tip flank 4, a large amount of regrinding can be ensured, thereby extending the life of the drill.

また、これら第1~第3の実施形態では、副すくい面6cが主すくい面6bに対してドリル回転方向Tとは反対側に凹んだ凹面状に形成されて、副切刃3cは軸線O方向先端側から見て主切刃3bよりもドリル回転方向Tとは反対側に位置するように延びている。このため、上述のように通常のドリルを製造した後に、副すくい面6cを研削によって研ぎ付けることにより、容易に副切刃3cの軸方向すくい角θ2を主切刃3bの軸方向すくい角θ1よりも大きくすることができる。 In addition, in these first to third embodiments, the auxiliary cutting surface 6c is formed in a concave shape recessed in the opposite direction of the drill rotation direction T relative to the main cutting surface 6b, and the auxiliary cutting edge 3c extends so as to be positioned on the opposite side of the drill rotation direction T than the main cutting edge 3b when viewed from the tip side in the axis O direction. Therefore, after manufacturing a normal drill as described above, the auxiliary cutting surface 6c can be sharpened by grinding, so that the axial rake angle θ2 of the auxiliary cutting edge 3c can easily be made larger than the axial rake angle θ1 of the main cutting edge 3b.

ただし、このように副切刃3cを軸線O方向先端側から見て主切刃3bよりもドリル回転方向Tとは反対側に延びるように形成するのではなく、ドリル本体1を製造する際に、主すくい面6bの外周端部にドリル回転方向Tに突出する凸部を形成しておき、この凸部のドリル回転方向Tを向く壁面に副すくい面6cを形成して先端逃げ面4との交差稜線部に、主切刃3bの軸方向すくい角θ1よりも正角側に大きな軸方向すくい角θ2の副切刃3cを形成してもよい。 However, instead of forming the minor cutting edge 3c to extend further in the opposite direction to the drill rotation direction T than the main cutting edge 3b when viewed from the tip side in the direction of the axis O, when manufacturing the drill body 1, a convex portion that protrudes in the drill rotation direction T may be formed at the outer peripheral end of the main rake face 6b, and the minor rake face 6c may be formed on the wall surface of this convex portion facing the drill rotation direction T, so that the minor cutting edge 3c with an axial rake angle θ2 larger on the positive side than the axial rake angle θ1 of the main cutting edge 3b may be formed at the intersection ridge with the tip flank 4.

また、第1~第3の実施形態と同様に主すくい面6bの外周端部に主すくい面6bに対してドリル回転方向Tとは反対側に凹む凹面状の副すくい面6cを形成する場合でも、主すくい面6bに対して副すくい面6cが段差等を介して不連続となっていれば、副切刃3cは軸線O方向先端側から見て主切刃3bと一直線状に延びるように形成されていてもよい。 Also, as in the first to third embodiments, even if a concave sub-cutting surface 6c is formed at the outer peripheral end of the main cutting surface 6b, which is concave in the opposite direction to the drill rotation direction T relative to the main cutting surface 6b, if the sub-cutting surface 6c is discontinuous with the main cutting surface 6b via a step or the like, the sub-cutting edge 3c may be formed to extend in a straight line with the main cutting edge 3b when viewed from the tip side in the direction of the axis O.

さらに、上記第1~第3の実施形態では、主切刃3bと副切刃3cとが軸線O方向先端側から見て段差をもっていて、この副切刃3cと主切刃3bの間の段差部には軸線O方向先端側から見て曲線状をなす接続部3dが形成されている。このため、上述のように副切刃3cを軸線O方向先端側から見て主切刃3bと平行とすることができて、副切刃3cの径方向すくい角を主切刃3bの径方向すくい角に対して大きく変化させずに済むので、切屑の流出方向が主切刃3bと副切刃3cで異なる方向となるのを抑制することができるとともに、段差部(接続部3d)が鋭くなって欠けが生じたりするのを防ぐことが可能となる。 Furthermore, in the first to third embodiments, the main cutting edge 3b and the minor cutting edge 3c have a step when viewed from the tip side in the direction of the axis O, and the step between the minor cutting edge 3c and the main cutting edge 3b has a connection portion 3d that is curved when viewed from the tip side in the direction of the axis O. Therefore, as described above, the minor cutting edge 3c can be made parallel to the main cutting edge 3b when viewed from the tip side in the direction of the axis O, and the radial rake angle of the minor cutting edge 3c does not need to be significantly changed relative to the radial rake angle of the main cutting edge 3b. This makes it possible to prevent the chip flow direction from being different between the main cutting edge 3b and the minor cutting edge 3c, and also makes it possible to prevent the step portion (connection portion 3d) from becoming sharp and causing chipping.

なお、これら第1~第3の実施形態のように、主切刃3bと副切刃3cとが軸線O方向先端側から見て段差部を介して連なるように形成するのではなく、図7に示す第4の実施形態のように、副切刃3cを軸線O方向先端側から見て主切刃3bと折れ線状に連なってドリル回転方向Tとは反対側に延びていたり、図8に示す第5の実施形態のように、副切刃3cを軸線O方向先端側から見て主切刃3bに接する凸曲線状に形成されてドリル回転方向Tとは反対側に延びていたりしてもよい。 In addition, instead of forming the main cutting edge 3b and the minor cutting edge 3c so that they are connected via a step portion when viewed from the tip side in the direction of the axis O as in the first to third embodiments, the minor cutting edge 3c may be connected to the main cutting edge 3b in a broken line shape when viewed from the tip side in the direction of the axis O and extend in the opposite direction to the drill rotation direction T as in the fourth embodiment shown in Figure 7, or the minor cutting edge 3c may be formed in a convex curve tangent to the main cutting edge 3b when viewed from the tip side in the direction of the axis O and extend in the opposite direction to the drill rotation direction T as in the fifth embodiment shown in Figure 8.

このような第4、第5の実施形態によれば、副切刃3cと主切刃3bの間に、第1~第3の実施形態のような段差部(接続部3d)が形成されることがなくなるので、切刃3の欠けを一層確実に防ぐことができる。また、特に第4の実施形態では、主切刃3bと副切刃3cによって生成される切屑が段差部で分断されることもなくなるので、分断された切屑同士が絡まることによって切屑詰まりが生じるのも防ぐことができる。 According to the fourth and fifth embodiments, a step portion (connection portion 3d) is not formed between the minor cutting edge 3c and the main cutting edge 3b as in the first to third embodiments, so chipping of the cutting edge 3 can be more reliably prevented. In addition, particularly in the fourth embodiment, the chips generated by the main cutting edge 3b and the minor cutting edge 3c are not divided by the step portion, so chip clogging caused by the divided chips becoming entangled can be prevented.

一方、図9に示す第6の実施形態のように、副切刃3cは、軸線O方向先端側から見て主切刃3bからドリル回転方向Tとは反対側に凹む凹曲線状に形成されていてもよい。このような第6の実施形態によれば、切屑は主切刃3bと副切刃3cとで分断されて生成されることになるが、副切刃3cによって生成された切屑は凹曲線状の副切刃3cに沿ってドリル本体1の内周側に流れ出ることになるので、加工穴の内周面が切屑によって傷付けられるのを防ぐことができる。 On the other hand, as in the sixth embodiment shown in FIG. 9, the minor cutting edge 3c may be formed in a concave curved shape that is concave from the main cutting edge 3b on the opposite side of the drill rotation direction T when viewed from the tip side in the axial O direction. According to this sixth embodiment, the chips are generated by being divided between the main cutting edge 3b and the minor cutting edge 3c, but the chips generated by the minor cutting edge 3c flow out along the concave curved minor cutting edge 3c to the inner periphery of the drill body 1, so that the inner periphery of the drilled hole can be prevented from being damaged by the chips.

次に、本発明の実施例を挙げて、本発明の効果について説明する。本実施例では、上述した第1の実施形態に基づき、切刃3の直径Dが1/4inch(6.35mm)、主切刃3bの軸方向すくい角θ1が30°、副切刃3cの軸方向すくい角θ2が40°、副切刃3cの軸線Oに対する径方向の幅Wが切刃3の直径Dに対して0.12×Dのドリルを製造した。 Next, the effects of the present invention will be described with reference to an example of the present invention. In this example, based on the first embodiment described above, a drill was manufactured in which the diameter D of the cutting edge 3 is 1/4 inch (6.35 mm), the axial rake angle θ1 of the main cutting edge 3b is 30°, the axial rake angle θ2 of the minor cutting edge 3c is 40°, and the radial width W of the minor cutting edge 3c relative to the axis O is 0.12 x D with respect to the diameter D of the cutting edge 3.

また、この実施例に対する比較例として、副切刃3cおよび副すくい面6cが形成されていないこと以外は実施例と同じドリルも製造した。なお、これら実施例のドリルと比較例のドリルのドリル本体1の表面には、ダイヤモンドコーティングを施してある。 As a comparative example for this embodiment, a drill was also manufactured that was the same as the embodiment except that the minor cutting edge 3c and the minor rake face 6c were not formed. The surface of the drill body 1 of the drill of this embodiment and the comparative example was diamond coated.

そして、これら実施例のドリルと比較例のドリルを用いて、厚さ10mmのCFRPと厚さ5mmのアルミニウム板材とを積層した積層材に、まず切削速度100m/min、送り速度0.02mm/revの条件でノンステップ加工により貫通穴を同数ずつ形成する穴明け加工を行い、その際のバリの高さを測定した。なお、この穴明け加工の際には、クーラント孔1aから圧縮空気を噴出した。 Using the drills of the example and the comparative example, a laminated material made of 10 mm thick CFRP and 5 mm thick aluminum plate was first drilled by non-step machining at a cutting speed of 100 m/min and a feed rate of 0.02 mm/rev to form the same number of through holes, and the height of the burrs was measured. During this drilling process, compressed air was sprayed from the coolant hole 1a.

その結果、比較例のドリルによる穴明け加工では、バリの高さは0.01inch~0.015inchであったのに対して、実施例のドリルによる穴明け加工では、バリの高さは、バリが発生していないものも含めて0.01inch以下であった。この結果により、本発明によれば、上述のようにバリの発生を確実に抑制することが可能であることが分かる。なお、これら実施例のドリルおよび比較例のドリルでは、切刃3の欠損やチッピングは認められなかった。 As a result, in the case of drilling using the comparative example drill, the burr height was 0.01 inch to 0.015 inch, whereas in the case of drilling using the example drill, the burr height was 0.01 inch or less, including holes where no burrs were generated. This result shows that according to the present invention, it is possible to reliably suppress the generation of burrs as described above. Furthermore, no damage or chipping of the cutting edge 3 was observed in the example drills and the comparative example drills.

次に、これら実施例のドリルと比較例のドリルを用いて、上記と同じ積層材に、切削速度は100m/minのまま、送り速度を上記条件の5倍の0.10mm/revとした高能率条件で、同じくノンステップ加工により貫通穴を同数ずつ形成する穴明け加工を行い、その際のバリの高さを測定した。 Next, using the drills of the examples and the comparative example, drilling was performed on the same laminated material as above, with the cutting speed kept at 100 m/min and the feed rate set at 0.10 mm/rev, five times faster than the above conditions, under highly efficient conditions, to form the same number of through holes using the same non-step process, and the height of the burrs was measured.

その結果、比較例のドリルによる穴明け加工では、バリの高さは0.015inch~0.02inchと上記の場合よりも大きくなっていたのに対して、実施例のドリルによる穴明け加工では、バリの高さは、上記と同じくバリが発生していないものも含めて0.01inch以下であった。この結果により、本発明によれば、上述のような高能率条件における穴明け加工においても、バリの発生を確実に抑制することが可能であることが分かる。 As a result, in the case of drilling using the comparative example drill, the burr height was 0.015 inches to 0.02 inches, which was larger than the above case, whereas in the case of drilling using the example drill, the burr height was 0.01 inches or less, including cases where no burrs were generated, as in the above case. From these results, it can be seen that according to the present invention, it is possible to reliably suppress the generation of burrs even in drilling under the high efficiency conditions described above.

1 ドリル本体
1a クーラント孔
2 切刃部
3 切刃
3a シンニング刃
3b 主切刃
3c 副切刃
3d 接続部
4 先端逃げ面
4a 第1先端逃げ面
4b 第2先端逃げ面
5 切屑排出溝
6 すくい面
6a シンニングすくい面
6b 主すくい面
6c 副すくい面
7a マージン部
7b 外周逃げ面
8 シンニング部
O ドリル本体1の軸線
T ドリル回転方向
θ1 主切刃3bの軸方向すくい角
θ2 副切刃3cの軸方向すくい角
W 副切刃3cの軸線Oに対する径方向の幅
D 切刃3の直径
1 Drill body 1a Coolant hole 2 Cutting edge portion 3 Cutting edge 3a Thinning edge 3b Main cutting edge 3c Minor cutting edge 3d Connection portion 4 Tip flank 4a First tip flank 4b Second tip flank 5 Chip discharge groove 6 Rake face 6a Thinning rake face 6b Main rake face 6c Minor rake face 7a Margin portion 7b Outer flank 8 Thinning portion O Axis of drill body 1 T Drill rotation direction θ1 Axial rake angle of main cutting edge 3b θ2 Axial rake angle of minor cutting edge 3c W Radial width of minor cutting edge 3c relative to axis O D Diameter of cutting edge 3

Claims (12)

軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、
上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、
上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きく、
上記副切刃の上記軸線に対する径方向の幅が、上記切刃の直径Dの0.05×D~0.20×Dの範囲内とされている、ドリル。
A drill in which a chip discharge groove is formed on the outer periphery of a tip portion of an axis-shaped drill body centered on the axis and rotated in a drill rotation direction about an axis, and a cutting edge is formed on an intersection ridge between a wall surface of the chip discharge groove facing the drill rotation direction and a tip flank surface of the drill body,
The cutting edge includes a main cutting edge formed on the inner peripheral side of the drill body and a sub-cutting edge continuing from the main cutting edge on the outer peripheral side of the drill body,
The axial rake angle of the minor cutting edge is larger than the axial rake angle of the main cutting edge on the positive angle side,
The drill has a radial width of the minor cutting edge relative to the axis line within a range of 0.05×D to 0.20×D of the diameter D of the cutting edge .
軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、
上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、
上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きく、
上記副切刃のすくい面は、上記ドリル回転方向側から見て、三角形状または四角形状に形成されている、ドリル。
A drill in which a chip discharge groove is formed on the outer periphery of a tip portion of an axis-shaped drill body centered on the axis and rotated in a drill rotation direction about an axis, and a cutting edge is formed on an intersection ridge between a wall surface of the chip discharge groove facing the drill rotation direction and a tip flank surface of the drill body,
The cutting edge includes a main cutting edge formed on the inner peripheral side of the drill body and a sub-cutting edge continuing from the main cutting edge on the outer peripheral side of the drill body,
The axial rake angle of the minor cutting edge is larger than the axial rake angle of the main cutting edge on the positive angle side,
The drill , wherein the rake face of the minor cutting edge is formed in a triangular or rectangular shape when viewed from the side in the rotation direction of the drill .
軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、
上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、
上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きく、
上記副切刃のすくい面は、上記ドリル回転方向側から見て、上記軸線に対する径方向の幅が上記軸線に沿う方向の長さよりも大きくされた四角形状に形成されている、ドリル。
A drill in which a chip discharge groove is formed on the outer periphery of a tip portion of an axis-shaped drill body centered on the axis and rotated in a drill rotation direction about an axis, and a cutting edge is formed on an intersection ridge between a wall surface of the chip discharge groove facing the drill rotation direction and a tip flank surface of the drill body,
The cutting edge includes a main cutting edge formed on the inner peripheral side of the drill body and a sub-cutting edge continuing from the main cutting edge on the outer peripheral side of the drill body,
The axial rake angle of the minor cutting edge is larger than the axial rake angle of the main cutting edge on the positive angle side,
The drill has a rake face of the minor cutting edge formed in a quadrangle shape whose radial width relative to the axis is greater than its length in the direction along the axis when viewed from the side in the rotation direction of the drill.
軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、
上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、
上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きく、
上記副切刃のすくい面は、上記ドリル回転方向側から見て、上記軸線に沿う方向の長さが上記軸線に対する径方向の幅よりも大きくされた四角形状に形成されている、ドリル。
A drill in which a chip discharge groove is formed on the outer periphery of a tip portion of an axis-shaped drill body centered on the axis and rotated in a drill rotation direction about an axis, and a cutting edge is formed on an intersection ridge between a wall surface of the chip discharge groove facing the drill rotation direction and a tip flank surface of the drill body,
The cutting edge includes a main cutting edge formed on the inner peripheral side of the drill body and a sub-cutting edge continuing from the main cutting edge on the outer peripheral side of the drill body,
The axial rake angle of the minor cutting edge is larger than the axial rake angle of the main cutting edge on the positive angle side,
The drill has a rake face of the minor cutting edge formed in a quadrangle shape whose length along the axis is greater than its width in a radial direction relative to the axis when viewed from the drill rotation direction.
上記副切刃は上記軸線に沿う方向に上記ドリル本体の先端を見たときに、上記主切刃よりも上記ドリル回転方向とは反対側に延びていることを特徴とする請求項1から請求項のうちいずれか一項に記載のドリル。 The drill according to any one of claims 1 to 4, characterized in that , when the tip of the drill body is viewed in a direction along the axis, the minor cutting edge extends in a direction opposite to the rotation direction of the drill relative to the main cutting edge. 軸線回りにドリル回転方向に回転させられる上記軸線を中心とした軸状のドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記ドリル回転方向を向く壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されたドリルであって、
上記切刃は、上記ドリル本体の内周側に形成される主切刃と、この主切刃のドリル本体外周側に連なる副切刃とを備え、
上記副切刃の軸方向すくい角が上記主切刃の軸方向すくい角よりも正角側に大きく、
上記副切刃は上記軸線に沿う方向に上記ドリル本体の先端を見たときに、上記主切刃よりも上記ドリル回転方向とは反対側に延びている、ドリル。
A drill in which a chip discharge groove is formed on the outer periphery of a tip portion of an axis-shaped drill body centered on the axis and rotated in a drill rotation direction about an axis, and a cutting edge is formed on an intersection ridge between a wall surface of the chip discharge groove facing the drill rotation direction and a tip flank surface of the drill body,
The cutting edge includes a main cutting edge formed on the inner peripheral side of the drill body and a sub-cutting edge continuing from the main cutting edge on the outer peripheral side of the drill body,
The axial rake angle of the minor cutting edge is larger than the axial rake angle of the main cutting edge on the positive angle side,
The minor cutting edge extends in a direction opposite to the rotation direction of the drill relative to the main cutting edge when the tip of the drill body is viewed in a direction along the axis .
上記主切刃と上記副切刃とは上記軸線に沿う方向に上記ドリル本体の先端を見たときに段差をもっているとともに、上記副切刃と上記主切刃の間の段差部には上記軸線に沿う方向に上記ドリル本体の先端を見たときに曲線状をなす接続部が形成されていることを特徴とする請求項5または6に記載のドリル。 The drill according to claim 5 or 6, characterized in that the main cutting edge and the minor cutting edge have a step when the tip of the drill body is viewed in a direction along the axis, and a connection portion that is curved when the tip of the drill body is viewed in a direction along the axis is formed at the step portion between the minor cutting edge and the main cutting edge . 上記副切刃は、上記軸線に沿う方向に上記ドリル本体の先端を見たときに、上記主切刃と折れ線状に連なっていることを特徴とする請求項5または6に記載のドリル。 The drill according to claim 5 or 6 , wherein the minor cutting edge is connected to the main cutting edge in a broken line when the tip of the drill body is viewed in a direction along the axis. 上記副切刃は、上記軸線に沿う方向に上記ドリル本体の先端を見たときに、上記主切刃に接する凸曲線状に形成されていることを特徴とする請求項5または6に記載のドリル。 The drill according to claim 5 or 6 , characterized in that the minor cutting edge is formed in a convex curved shape tangent to the main cutting edge when the tip of the drill body is viewed in a direction along the axis. 上記副切刃は、上記軸線に沿う方向に上記ドリル本体の先端を見たときに、上記主切刃から上記ドリル回転方向とは反対側に凹む凹曲線状に形成されていることを特徴とする請求項5または6に記載のドリル。 The drill according to claim 5 or 6, characterized in that the auxiliary cutting edge is formed in a concave curved shape that is concave from the main cutting edge in the opposite direction to the rotation direction of the drill when the tip of the drill body is viewed in a direction along the axis . 上記副切刃の上記軸線に対する径方向の幅が、上記切刃の直径Dの0.05×D~0.20×Dの範囲内とされていることを特徴とする請求項2から請求項10のいずれか1項に記載のドリル。 The drill according to any one of claims 2 to 10, characterized in that the radial width of the auxiliary cutting edge relative to the axis is within a range of 0.05 x D to 0.20 x D of the diameter D of the cutting edge. 上記副切刃の軸方向すくい角が10°~50°の範囲内とされるとともに、上記主切刃の軸方向すくい角が0°~40°の範囲内とされていることを特徴とする請求項1から請求項11のいずれか1項に記載のドリル。 The drill according to any one of claims 1 to 11, characterized in that the axial rake angle of the minor cutting edge is within a range of 10° to 50°, and the axial rake angle of the main cutting edge is within a range of 0° to 40°.
JP2020052952A 2020-03-24 2020-03-24 Drill Active JP7497588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052952A JP7497588B2 (en) 2020-03-24 2020-03-24 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052952A JP7497588B2 (en) 2020-03-24 2020-03-24 Drill

Publications (2)

Publication Number Publication Date
JP2021151681A JP2021151681A (en) 2021-09-30
JP7497588B2 true JP7497588B2 (en) 2024-06-11

Family

ID=77887025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052952A Active JP7497588B2 (en) 2020-03-24 2020-03-24 Drill

Country Status (1)

Country Link
JP (1) JP7497588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176439A1 (en) * 2023-02-24 2024-08-29 三菱マテリアル株式会社 Drill

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280110A (en) 1999-03-29 2000-10-10 Toshiba Tungaloy Co Ltd Twist drill with extra-high pressure sintered body
JP2003275913A (en) 2002-03-20 2003-09-30 Mitsubishi Materials Kobe Tools Corp Drill
US20050053438A1 (en) 2003-09-08 2005-03-10 Alfons Wetzl Self-centering drill bit with pilot tip
WO2009139377A1 (en) 2008-05-15 2009-11-19 住友電工ハ-ドメタル株式会社 Twist drill bit
US8215882B2 (en) 2005-10-31 2012-07-10 Shiqing Li Helical multilevel cutting tool
JP2012161912A (en) 2011-02-08 2012-08-30 Sandvik Intellectual Property Ab Drill
US20130164089A1 (en) 2010-05-31 2013-06-27 Guehring Ohg Drilling tool
JP2014161946A (en) 2013-02-25 2014-09-08 Mitsubishi Materials Corp Drilling machine
DE202015001161U1 (en) 2015-02-13 2015-04-14 Jakob Schmid Gmbh + Co. Kg Tool for drilling coating materials
JP2016078209A (en) 2014-10-22 2016-05-16 株式会社ソディック drill
JP2016172305A (en) 2015-03-18 2016-09-29 三菱マテリアル株式会社 Drill
JP2017024158A (en) 2014-09-26 2017-02-02 三菱マテリアル株式会社 Drill and drill head
JP2018126842A (en) 2017-02-10 2018-08-16 マコトロイ工業株式会社 Cutting tool
US10265781B2 (en) 2015-02-13 2019-04-23 Botek Praezisionsbohrtechnik Gmbh Single-lip deep hole drill
WO2019189415A1 (en) 2018-03-28 2019-10-03 京セラ株式会社 Drill and method of manufacturing machined product
JP2019181615A (en) 2018-04-06 2019-10-24 株式会社ビック・ツール Drill

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880114U (en) * 1981-11-26 1983-05-31 三菱マテリアル株式会社 double-blade drilling tool
JPS6445504A (en) * 1987-08-17 1989-02-20 Masao Kubota Hole cutting tool
JPH0645287Y2 (en) * 1987-08-22 1994-11-24 大見工業株式会社 Burnishing drilling tool
TW299385B (en) * 1994-12-12 1997-03-01 Black & Decker Inc Cutting tools for drilling concrete, aggregate, masonry or the like materials

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280110A (en) 1999-03-29 2000-10-10 Toshiba Tungaloy Co Ltd Twist drill with extra-high pressure sintered body
JP2003275913A (en) 2002-03-20 2003-09-30 Mitsubishi Materials Kobe Tools Corp Drill
US20050053438A1 (en) 2003-09-08 2005-03-10 Alfons Wetzl Self-centering drill bit with pilot tip
US8215882B2 (en) 2005-10-31 2012-07-10 Shiqing Li Helical multilevel cutting tool
WO2009139377A1 (en) 2008-05-15 2009-11-19 住友電工ハ-ドメタル株式会社 Twist drill bit
US20130164089A1 (en) 2010-05-31 2013-06-27 Guehring Ohg Drilling tool
JP2012161912A (en) 2011-02-08 2012-08-30 Sandvik Intellectual Property Ab Drill
JP2014161946A (en) 2013-02-25 2014-09-08 Mitsubishi Materials Corp Drilling machine
US20170274461A1 (en) 2014-09-26 2017-09-28 Mitsubishi Materials Corporation Drill and drill head
JP2017024158A (en) 2014-09-26 2017-02-02 三菱マテリアル株式会社 Drill and drill head
JP2016078209A (en) 2014-10-22 2016-05-16 株式会社ソディック drill
DE202015001161U1 (en) 2015-02-13 2015-04-14 Jakob Schmid Gmbh + Co. Kg Tool for drilling coating materials
US10265781B2 (en) 2015-02-13 2019-04-23 Botek Praezisionsbohrtechnik Gmbh Single-lip deep hole drill
JP2016172305A (en) 2015-03-18 2016-09-29 三菱マテリアル株式会社 Drill
JP2018126842A (en) 2017-02-10 2018-08-16 マコトロイ工業株式会社 Cutting tool
WO2019189415A1 (en) 2018-03-28 2019-10-03 京セラ株式会社 Drill and method of manufacturing machined product
JP2019181615A (en) 2018-04-06 2019-10-24 株式会社ビック・ツール Drill

Also Published As

Publication number Publication date
JP2021151681A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6421792B2 (en) Drill and drill head
CN109070239B (en) Small-diameter drill bit
JP6589462B2 (en) Drill
JP4973259B2 (en) Cutting insert and insert detachable rolling tool
JP5762547B2 (en) drill
WO2010050391A1 (en) Ball end mill
US8690493B2 (en) End mill
JP2007030074A (en) Radius end mill and cutting method
WO2005102572A1 (en) Ball end mill
EP2698219A1 (en) Drill
JP7341058B2 (en) End mill body and end mill
CN113993644A (en) Drill bit
CN111587160B (en) Drill bit
JP7497588B2 (en) Drill
WO2008050389A1 (en) Drill
CN214392488U (en) Annular cutter for drilling composite material
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
CN210702770U (en) Milling cutter with end chip grooves
JP2014193513A (en) Drill
JP2003275913A (en) Drill
CN115194221A (en) Cutting tool
JP7491104B2 (en) Ball End Mill
JP3686022B2 (en) Drilling tool with coolant hole
JP3639227B2 (en) Drilling tools for brittle materials
CN217095723U (en) Tool bit structure and cutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240513

R150 Certificate of patent or registration of utility model

Ref document number: 7497588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150