JP7497076B1 - Electric continuous baking oven - Google Patents
Electric continuous baking oven Download PDFInfo
- Publication number
- JP7497076B1 JP7497076B1 JP2022209914A JP2022209914A JP7497076B1 JP 7497076 B1 JP7497076 B1 JP 7497076B1 JP 2022209914 A JP2022209914 A JP 2022209914A JP 2022209914 A JP2022209914 A JP 2022209914A JP 7497076 B1 JP7497076 B1 JP 7497076B1
- Authority
- JP
- Japan
- Prior art keywords
- baking furnace
- temperature
- gas
- baking
- inert gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims abstract description 165
- 239000011261 inert gas Substances 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 10
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 3
- 239000000428 dust Substances 0.000 claims description 10
- 239000003344 environmental pollutant Substances 0.000 abstract description 6
- 231100000719 pollutant Toxicity 0.000 abstract description 6
- 239000000356 contaminant Substances 0.000 abstract description 5
- 239000012855 volatile organic compound Substances 0.000 description 36
- 230000032258 transport Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C9/00—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
- B05C9/08—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
- B05C9/14—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/04—Circulating atmospheres by mechanical means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Furnace Details (AREA)
- Coating Apparatus (AREA)
- Tunnel Furnaces (AREA)
Abstract
【課題】回収した汚染ガスに含まれる汚染物質を高温電気ヒータの加熱により無害化して排出し、高温化した排ガスを焼付炉内へ送気される不活性ガスの一次加熱用熱源として利用可能な電気式連続型焼付炉を提供する。【解決手段】ガス供給源と加熱ヒータと焼付炉とVOC除去装置で構成され、焼付炉内には、加熱ヒータで加熱された不活性ガスを焼付炉内へ放出する噴出口と焼付炉内下部の排ガスを吸引しVOC除去装置へ送気する吸入口が備えられ、VOC除去装置は焼付炉から送気された排ガスを流入させる流入孔とガス供給源にて生成された不活性ガスを流入させる供給孔と排ガスを高温に加熱させVOCの分解処理を行う高温電気ヒータと高温電気ヒータから送気された高温な排ガスと不活性ガスと熱交換を行う熱交換器と熱交換により高温となった不活性ガスを加熱ヒータへ送気する流出孔と清浄な排ガスを利用機器へ送気させる送気管と接続される送気孔を備える。【選択図】図1[Problem] To provide an electric continuous baking furnace that renders pollutants contained in recovered polluted gas harmless by heating with a high-temperature electric heater and discharges the detoxified contaminants, and that can use the high-temperature exhaust gas as a primary heating source for inert gas sent into the baking furnace. [Solution] The baking furnace is provided with a gas supply source, a heater, a baking furnace, and a VOC removal device, and the baking furnace is provided with an outlet for discharging the inert gas heated by the heater into the baking furnace and an intake port for sucking in the exhaust gas at the bottom of the baking furnace and sending it to the VOC removal device, and the VOC removal device is provided with an inlet port for letting in the exhaust gas sent from the baking furnace, a supply port for letting in the inert gas generated by the gas supply source, a high-temperature electric heater that heats the exhaust gas to a high temperature and performs a VOC decomposition process, a heat exchanger that exchanges heat between the high-temperature exhaust gas sent from the high-temperature electric heater and the inert gas, an outlet port for sending the inert gas heated by the heat exchange to the heater, and an air supply port connected to an air supply pipe for sending clean exhaust gas to a utilization device. [Selected Figure] Figure 1
Description
本発明は、電気加熱された加熱空気を使用して焼付を行う電気式連続焼付炉に関するものである。 The present invention relates to an electric continuous baking oven that uses electrically heated air to perform baking.
従前より、金属製の事務機器や自動車の部品等の焼付用塗料を塗った物品(以下ワークと呼ぶ)の焼付加工は、焼付温度に加熱する熱源を備えた焼付装置により行われている。
従来の焼付装置に使用する熱源には、重油や灯油等を使用した油バーナ、LPGや都市ガスを使用したガスヒータ等が利用されており、燃料の燃焼によって発生する二酸化炭素等の温室効果ガスの排出が問題となっている。
そこで、温室効果ガスの排出が低減可能な熱源を使用して焼付加工を行う焼付炉が求められていた。
2. Description of the Related Art Conventionally, the baking process of articles (hereinafter referred to as workpieces) coated with baking paint, such as metal office equipment and automobile parts, has been carried out by a baking device equipped with a heat source for heating to a baking temperature.
The heat sources used in conventional baking devices include oil burners that use heavy oil or kerosene, and gas heaters that use LPG or city gas, and the emission of greenhouse gases such as carbon dioxide generated by the combustion of fuels has become a problem.
Therefore, there has been a demand for a baking furnace that performs baking processing using a heat source that can reduce greenhouse gas emissions.
上記問題に対し、本出願人は、電気ヒータにて連続焼付が可能な技術を開発し、特許第7078299号公報(特許文献1)に記載の技術提案を行っている。かかる技術提案によれば、膜状のガスの流れで遮蔽された出入口を潜って、焼付室内に塗装したワークを連続的に搬送させつつ、電気ヒータによって加熱された不活性ガスが焼付室内で均質且つ分散して噴出されることで、高品質の焼付塗装製品を得ることができる、といった優れた効果を奏するものであった。 In response to the above problem, the applicant developed a technology that enables continuous baking using an electric heater, and proposed the technology described in Patent Publication No. 7078299 (Patent Document 1). This technical proposal has the excellent effect of producing a high-quality baked-coated product by continuously transporting the coated workpiece into the baking chamber through an entrance blocked by a film-like gas flow while the inert gas heated by the electric heater is ejected uniformly and dispersedly into the baking chamber.
しかしながら、特許文献1にかかる技術提案によれば、汚染ガスを排出するガス導出管が焼付炉の後部側に備えられているため、焼付炉の前部から中部で発生した汚染ガスが、焼付炉内へ導入された不活性ガスの噴出により拡散してしまい、ワークの焼付に支障をきたしてしまうおそれも想定し得るものであった。 However, according to the technical proposal in Patent Document 1, because the gas outlet pipe for discharging contaminated gas is provided on the rear side of the baking furnace, it is conceivable that contaminated gas generated in the front and middle parts of the baking furnace may be dispersed by the ejection of inert gas introduced into the baking furnace, causing problems in baking the workpieces.
本出願人は、以上のような従来における連続型焼付炉内にて滞留する汚染ガスの回収方法や、汚染ガスの無害化といった問題に着目し、焼付炉下部に滞留した汚染ガスを回収して無害化した後に排出できないものかという着想のもと、回収した汚染ガスに含まれる汚染物質を高温電気ヒータの加熱により無害化して排出すると共に、高温化した排ガスを焼付炉内へ送気される不活性ガスの一次加熱用熱源として利用可能な焼付炉を開発し、本発明にかかる「電気式連続型焼付炉」の提案に至るものである。 The applicant focused on the above-mentioned problems of the conventional method of recovering polluted gas remaining in a continuous baking furnace and of detoxifying the polluted gas, and came up with the idea of recovering the polluted gas remaining in the lower part of the baking furnace, detoxifying it, and then discharging it. He developed a baking furnace in which the pollutants contained in the recovered polluted gas are detoxified by heating with a high-temperature electric heater and then discharged, and the high-temperature exhaust gas can be used as a primary heating source for the inert gas sent into the baking furnace, which led to the proposal of the "electric continuous baking furnace" of the present invention.
本発明は、上記問題に鑑み、回収した汚染ガスに含まれる汚染物質を高温電気ヒータの加熱により無害化して排出すると共に、高温化した排ガスを焼付炉内へ送気される不活性ガスの一次加熱用熱源として利用可能な電気式連続型焼付炉を提供することを課題とする。 In view of the above problems, the present invention aims to provide an electric continuous baking furnace that can render the pollutants contained in the collected polluted gas harmless by heating it with a high-temperature electric heater and then discharge it, and that can use the high-temperature exhaust gas as a primary heating source for the inert gas sent into the baking furnace.
上記課題を解決するため、本発明は、ガス供給源と、該ガス供給源にて生成された不活性ガスを焼付温度へ加熱し焼付炉内へ送気する加熱ヒータと、搬入口から搬出口へワークを搬送する搬送手段を備えた焼付炉と、VOC除去装置と、で構成され、搬入口及び搬出口の高さが焼付炉よりも下部に備えられ搬送路に傾斜が設けられた電気式連続型焼付炉であって、焼付炉内には、加熱ヒータにて加熱された不活性ガスを該焼付炉内へ放出する複数の噴出口と、該焼付炉内下部の排ガスを吸引しVOC除去装置へ送気する吸入口と、が備えられ、VOC除去装置は、焼付炉から送気された排ガスを流入させる流入孔と、ガス供給源にて生成された不活性ガスを流入させる供給孔と、排ガスを高温に加熱させVOCの分解処理を行う高温電気ヒータと、該高温電気ヒータから送気された清浄且つ高温な排ガスと供給孔から流入した不活性ガスとの熱交換を行う熱交換器と、該熱交換器により高温となった不活性ガスを加熱ヒータへ送気する流出孔と、清浄な排ガスを利用機器へ送気させる送気管と接続される送気孔と、から成る手段を採る。 In order to solve the above problems, the present invention provides an electric continuous baking furnace that is composed of a gas supply source, a heater that heats the inert gas generated by the gas supply source to a baking temperature and sends it into the baking furnace, a baking furnace equipped with a transport means that transports the workpiece from the entrance to the exit, and a VOC removal device, and in which the entrance and exit are located lower than the baking furnace and the transport path is inclined. The baking furnace is provided with multiple nozzles that release the inert gas heated by the heater into the baking furnace, and a device that sucks in the exhaust gas from the lower part of the baking furnace and sends it to the VOC removal device. The VOC removal device is equipped with an intake port, and is composed of an inlet port for the inflow of exhaust gas sent from the baking furnace, a supply port for the inflow of inert gas generated by the gas supply source, a high-temperature electric heater for heating the exhaust gas to a high temperature and decomposing the VOCs, a heat exchanger for exchanging heat between the clean, high-temperature exhaust gas sent from the high-temperature electric heater and the inert gas that flows in from the supply port, an outlet port for sending the inert gas heated by the heat exchanger to the heater, and an air supply port connected to an air supply pipe for sending the clean exhaust gas to the equipment that uses it.
また、本発明は、前記焼付炉内の天井に、シーリングファンが備えられている手段を採る。 The present invention also provides a ceiling fan on the ceiling of the baking oven.
さらに、本発明は、前記送気管に、塵埃除去装置が接続されている手段を採る。 Furthermore, the present invention employs a means for connecting a dust removal device to the air supply pipe.
またさらに、本発明は、前記焼付炉が、一端が閉塞され他端が開放されており、搬入口及び搬出口が同一箇所に設けられていると共に、該焼付炉内の搬送路がコの字状である手段を採る。 Furthermore, the present invention employs a method in which the baking furnace has one end closed and the other end open, the loading entrance and the loading exit are provided at the same location, and the transport path within the baking furnace is U-shaped.
本発明にかかる電気式連続型焼付炉によれば、焼付炉下部の排ガスを吸引しVOC除去装置へ送気することにより、ワークの焼付工程中においても焼付炉内の不活性ガスを清浄に保つことが可能になる、といった優れた効果を奏する。
また、VOC除去装置内に高温電気ヒータが配設されていることにより、焼付炉内から吸引された排ガスを、排ガス中のVOCが無害化された高温の排ガスにすることが可能となる。
さらに、VOC除去装置内に熱交換器が配設されていることにより、高温の排ガスとガス供給源にて生成された常温の不活性ガスが熱交換され、高温の不活性ガスとして加熱ヒータ及び焼付炉へ送気することが可能となるため、不活性ガスに対し、常温から高温に加熱するために必要な熱源の有効利用に資する。
The electric continuous baking furnace of the present invention has the excellent effect of making it possible to keep the inert gas inside the baking furnace clean even during the baking process of the workpieces by sucking in the exhaust gas from the bottom of the baking furnace and sending it to a VOC removal device.
In addition, by providing a high-temperature electric heater in the VOC removal device, it is possible to convert the exhaust gas sucked from the baking furnace into high-temperature exhaust gas in which the VOCs in the exhaust gas have been rendered harmless.
Furthermore, by installing a heat exchanger within the VOC removal device, heat is exchanged between the high-temperature exhaust gas and the room-temperature inert gas generated in the gas supply source, making it possible to send the high-temperature inert gas to the heating heater and baking furnace, thereby contributing to the effective use of the heat source required to heat the inert gas from room temperature to a high temperature.
また、本発明にかかる電気式連続型焼付炉によれば、搬入口及び搬出口の高さが焼付炉よりも下部に備えられることにより、高温の不活性ガスが上部に備えられた焼付炉全体に滞留することで高温の空気層を形成するため、下部に備えられている搬入口及び搬出口側からの外気侵入を防ぐことが可能となる、といった優れた効果を奏する。 In addition, with the electric continuous baking oven of the present invention, the entrance and exit are located lower than the baking oven, so that high-temperature inert gas remains throughout the entire baking oven located at the top, forming a high-temperature air layer, which has the excellent effect of preventing outside air from entering through the entrance and exit located at the bottom.
さらに、本発明にかかる電気式連続型焼付炉によれば、焼付炉の天井にシーリングファンが備えられていることにより、焼付炉内の空気が撹拌されることで、焼付温度の均一化に資すると共に、該焼付炉の天井から下部へ向けた風流の形成により、焼付炉内にて発生した汚染ガスの拡散を抑制することが可能となる、といった優れた効果を奏する。 Furthermore, the electric continuous baking oven of the present invention has the excellent effect of providing a ceiling fan on the ceiling of the oven, which agitates the air inside the oven, contributing to uniform baking temperature, and forming an air flow from the ceiling of the oven to the bottom, making it possible to suppress the diffusion of polluting gases generated inside the oven.
またさらに、本発明にかかる電気式連続型焼付炉によれば、送気管に塵埃除去装置が接続されることにより、排ガス中に含有される塵埃や水蒸気といった異物の除去を行うことが可能となり、後段に接続された利用機器への清浄な排ガスの送気に資する、といった優れた効果を奏する。 Furthermore, with the electric continuous baking oven of the present invention, a dust removal device is connected to the air supply pipe, which makes it possible to remove foreign matter such as dust and water vapor contained in the exhaust gas, thus providing the excellent effect of contributing to the supply of clean exhaust gas to the equipment connected downstream.
さらにまた、本発明にかかる電気式連続型焼付炉によれば、焼付炉の搬入口及び搬出口が同一箇所に設けられ、該焼付炉内の搬送路がコの字状であることにより、焼付炉の全長を半分程度にすることが可能となり、焼付工程における設備の省スペース化に資すると共に、外気の侵入経路が一箇所になるため外気との遮蔽層形成が容易となる、といった優れた効果を奏する。 Furthermore, with the electric continuous baking oven of the present invention, the entrance and exit of the baking oven are located in the same place, and the conveying path inside the baking oven is U-shaped, which makes it possible to reduce the overall length of the baking oven by about half, which contributes to space saving of the equipment in the baking process, and also provides the excellent effect of facilitating the formation of a shielding layer against the outside air, since there is only one path for outside air to enter.
本発明にかかる電気式連続型焼付炉は、搬入口及び搬出口の高さが焼付炉よりも下部に備えられ搬送路に傾斜が設けられた電気式連続型焼付炉において、VOC除去装置へ送気された排ガスを高温電気ヒータにて無害化すると共に、高温化した排ガスを焼付炉内へ送気される不活性ガスの一次加熱用熱源として利用することを最大の特徴とする。
以下、本発明にかかる電気式連続型焼付炉の実施形態を、図面に基づいて説明する。
The electric continuous baking furnace of the present invention is an electric continuous baking furnace in which the height of the loading/unloading port is provided lower than the baking furnace and the transport path is sloped.The greatest feature of this furnace is that the exhaust gas sent to the VOC removal device is rendered harmless by a high-temperature electric heater and the high-temperature exhaust gas is used as a primary heating heat source for the inert gas sent into the baking furnace.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an electric continuous baking furnace according to the present invention will be described with reference to the drawings.
尚、本発明にかかる電気式連続型焼付炉は、以下に述べる実施形態に限定されるものではなく、本発明の技術的思想の範囲内、すなわち同一の作用効果を発揮できる形状や寸法、材質等の範囲内で適宜変更することができるものである。 The electric continuous baking furnace of the present invention is not limited to the embodiment described below, but can be modified as appropriate within the scope of the technical concept of the present invention, i.e., within the scope of the shape, dimensions, materials, etc. that can achieve the same effect.
図1は、本発明にかかる電気式連続型焼付炉の実施形態を示す説明図である。図2は、本発明にかかる電気式連続型焼付炉の実施形態を示す説明図であり、具体的には、搬入口及び搬出口が同一箇所に設けられた場合の実施態様を示している。図3は、本発明にかかる電気式連続型焼付炉の実施形態を示す説明図であり、(a)は塵埃除去装置の後段に分岐点を設け吸入口に接続された配管と合流させた状態、(b)は塵埃除去装置の後段に分岐点を設けガス供給源に接続された配管と合流させた状態を示している。
本発明にかかる電気式連続型焼付炉1は、ガス供給源2と、加熱ヒータ3と、焼付炉4と、で構成されている。また、本発明で焼付対象とするワークWには特に限定はなく、例えば、焼付用の塗料が塗られた金属製の事務機器や自動車の部品、飲料缶等が考え得る。なお、電気式連続型焼付炉1における各装置間には、当然に配管が設けられている。該配管に使用される素材には特に限定はなく、送気されるガスの温度に耐え得る素材が適宜使用されることとなる。
Fig. 1 is an explanatory diagram showing an embodiment of an electric continuous baking oven according to the present invention. Fig. 2 is an explanatory diagram showing an embodiment of an electric continuous baking oven according to the present invention, specifically showing an embodiment in which an inlet and an outlet are provided at the same location. Fig. 3 is an explanatory diagram showing an embodiment of an electric continuous baking oven according to the present invention, in which (a) shows a state in which a branch point is provided at the downstream of the dust removal device and merges with a pipe connected to an intake port, and (b) shows a state in which a branch point is provided at the downstream of the dust removal device and merges with a pipe connected to a gas supply source.
The electric continuous baking furnace 1 according to the present invention is composed of a gas supply source 2, a heater 3, and a baking furnace 4. There is no particular limitation on the workpiece W to be baked in the present invention, and examples of such workpieces include metal office equipment and automobile parts coated with baking paint, and beverage cans. Of course, piping is provided between each device in the electric continuous baking furnace 1. There is no particular limitation on the material used for the piping, and any material that can withstand the temperature of the gas sent in is used as appropriate.
(ガス供給源)
ガス供給源2は、VOC除去装置5及び加熱ヒータ3を介して焼付炉4内へ供給されるガスを生成するための装置である。
ガス供給源2にて生成されるガスについては、ワークWへ使用される焼付塗料が酸化による変色等を起すことのない不活性ガスを使用する。例えば、アルゴンガスや窒素ガス等の不活性ガスが使用可能であるが、窒素ガスを使用する場合には、窒素ガス製造機で製造し、これをガス供給源2とすることができる。なお、ガス供給源2として使用される装置の構造については、特に限定するものではなく、従来公知の技術を有した装置を用いれば良い。
ガス供給源2にて生成された不活性ガスは、VOC除去装置5に備わった熱交換器21における熱交換によって加熱された後、加熱ヒータ3にて適切な焼付温度に調整され、焼付炉4内へ送気されることとなる。
(Gas supply source)
The gas supply source 2 is a device for generating gas to be supplied into the baking furnace 4 via the VOC remover 5 and the heater 3 .
The gas generated by the gas supply source 2 is an inert gas that will not cause discoloration due to oxidation of the baking paint used on the workpiece W. For example, inert gases such as argon gas and nitrogen gas can be used, but when nitrogen gas is used, it can be produced in a nitrogen gas production machine and used as the gas supply source 2. The structure of the device used as the gas supply source 2 is not particularly limited, and any device having conventionally known technology may be used.
The inert gas generated in the gas supply source 2 is heated by heat exchange in the heat exchanger 21 provided in the VOC removal device 5, and then adjusted to an appropriate baking temperature by the heater 3 and sent into the baking furnace 4.
(加熱ヒータ)
加熱ヒータ3は、ガス供給源2にて生成された不活性ガスを焼付温度まで加熱し、配管を介して焼付炉4内へ流入させるものである。
加熱ヒータ3は、電気によって加熱が行われるヒータであり、熱交換器21における熱交換で高温になったガスを、ワークWの焼付加工に適した温度まで自動もしくは手動にて加熱を行うものである。なお、加熱ヒータ3として使用される装置の構造については特に限定はなく、従来公知の装置を用いれば良い。また、加熱ヒータ3に設定される温度についても、焼付塗装に使用される塗料によって決定されれば良く、例えば、アクリル系の塗料を使用する場合は140℃から180℃の間で決定される。
なお、図示してはいないが、焼付炉4へ流入させるガスの圧力を安定させるため、配管の適宜位置にブロア16を設けても良い。
(Heater)
The heater 3 heats the inert gas generated by the gas supply source 2 to a baking temperature and causes the gas to flow into the baking furnace 4 via a pipe.
The heater 3 is an electrically heated heater, and automatically or manually heats the gas heated by heat exchange in the heat exchanger 21 to a temperature suitable for baking the workpiece W. There is no particular limitation on the structure of the device used as the heater 3, and any conventionally known device may be used. The temperature set in the heater 3 may also be determined by the paint used for baking, and is set between 140°C and 180°C when an acrylic paint is used, for example.
Although not shown, a blower 16 may be provided at an appropriate position in the piping in order to stabilize the pressure of the gas flowing into the baking furnace 4.
(焼付炉)
焼付炉4は、加熱ヒータ3にて温度調整された高温ガスを使用して、ワークWに対し焼付加工を行うものである。
焼付炉4は、焼付するワークWに適する大きさの焼付領域を有し、該焼付炉4の前後に、ワークWの移動・出入に支障がない程度に開口した搬入口12及び搬出口13を夫々備えると共に、該焼付炉4内には、一乃至複数の噴出口10及び吸入口11が設けられている。
ワークWの焼付工程において、焼付領域内の高温ガスは、高温によって変化した溶剤由来物質が含有されることで汚染されていくため、図1に図示したように、汚染された高温ガスを吸入可能な一乃至複数の吸入口11が設けられる。
また、焼付炉4には、ワークWを並べて連続的に支持しつつ、搬入口12及び搬出口13を介して焼付炉4の焼付領域内外を搬送する搬送手段14が当然に備えられる。該搬送手段14におけるワークWの支持方法については特に限定はなく、ワークWの形状や焼付態様に応じて、ベルトコンベアや吊下げ式の移動機等を選択することとなる。
(Baking oven)
The baking furnace 4 performs baking processing on the workpiece W using high-temperature gas whose temperature has been adjusted by the heater 3 .
The baking furnace 4 has a baking area of a size suitable for the workpiece W to be baked, and is equipped with an entrance 12 and an exit 13 at the front and rear of the baking furnace 4, which are open enough to allow the workpiece W to move in and out without being hindered, and one or more exhaust ports 10 and suction ports 11 are provided within the baking furnace 4.
During the baking process of the workpiece W, the high-temperature gas in the baking area becomes contaminated by containing solvent-derived substances that have changed due to the high temperature. Therefore, as shown in Figure 1, one or more suction ports 11 are provided that can suck in the contaminated high-temperature gas.
The baking furnace 4 is naturally equipped with a transport means 14 that supports the workpieces W in a line and in succession while transporting them in and out of the baking area of the baking furnace 4 via the carry-in entrance 12 and the carry-out exit 13. There are no particular limitations on the method of supporting the workpieces W in the transport means 14, and a belt conveyor, a suspended moving machine, or the like can be selected depending on the shape of the workpieces W and the baking mode.
図示してはいないが、焼付炉4内の焼付領域に温度センサを設ける態様も考え得る。この態様を採ることで、検知された温度により加熱ヒータ3の加熱温度を制御し、焼付領域内の高温ガスが一定の焼付温度に維持されるよう手動又は自動で調整することも可能となる。
また、焼付領域に圧力センサを設ける態様も好適である。この態様を採ることで、検知された圧力によりガス供給源2の不活性ガス生成量を制御し、焼付領域内の高温ガスが一定の圧力に維持されるよう手動又は自動で調整することも可能となる。
さらに、焼付領域両端部近傍に酸素濃度計を設ける態様も考え得る。この態様を採ることにより、該焼付領域内への外気侵入を把握しワークWへの酸化現象を防ぐことが可能となり、一定以上の酸素濃度が検出された場合、警告灯等による報知や、焼付炉4自体の稼働を停止させ、外気侵入箇所の確定や、充填されている不活性ガスの入れ替え、といった対策が実行可能となる。
Although not shown, it is also possible to provide a temperature sensor in the baking area in the baking furnace 4. By adopting this mode, it is possible to control the heating temperature of the heater 3 based on the detected temperature, and to manually or automatically adjust the temperature of the high-temperature gas in the baking area so that it is maintained at a constant baking temperature.
It is also preferable to provide a pressure sensor in the baking area, which allows the amount of inert gas generated by the gas supply source 2 to be controlled by the detected pressure, and allows manual or automatic adjustment so that the high-temperature gas in the baking area is kept at a constant pressure.
Furthermore, it is also possible to provide oxygen concentration meters near both ends of the baking area. By adopting this mode, it is possible to grasp the intrusion of outside air into the baking area and prevent the oxidation phenomenon of the workpiece W. If an oxygen concentration above a certain level is detected, it is possible to issue a warning light or the like, stop the operation of the baking furnace 4 itself, identify the location of the intrusion of outside air, or replace the inert gas filled therein.
(搬入口・搬出口)
搬入口12は、ワークWを焼付炉4の焼付領域内へ搬入するための入口であり、また、搬出口13は、ワークWを焼付炉4の焼付領域外へ搬出するための出口である。
搬入口12及び搬出口13の大きさや形状は特に限定はなく、ワークWの形状や種類によって適宜決定されることとなるが、少なくともワークW以上の大きさを有してワークWの移動・出入に支障がない程度に開口した態様となる。
また、焼付炉4の形状によっては、図2に図示したような、搬入口12及び搬出口13が同一箇所に設置される態様も考え得る。この態様を採る場合、搬入口12及び搬出口13が一の開口部において、ワークWが接触しない程度に隣接して配設されることとなる。
(Carry-in/carry-out entrance)
The carry-in entrance 12 is an entrance for carrying the workpiece W into the baking area of the baking furnace 4 , and the carry-out exit 13 is an exit for carrying the workpiece W out of the baking area of the baking furnace 4 .
There are no particular limitations on the size and shape of the loading entrance 12 and the unloading exit 13, and they will be determined appropriately depending on the shape and type of work W, but they will be at least as large as the work W and open to the extent that they do not interfere with the movement and ingress and egress of the work W.
Depending on the shape of the baking furnace 4, the carry-in entrance 12 and the carry-out exit 13 may be installed in the same location as shown in Fig. 2. When this configuration is adopted, the carry-in entrance 12 and the carry-out exit 13 are disposed adjacent to each other at one opening so that the workpieces W do not come into contact with each other.
(噴出口)
噴出口10は、加熱ヒータ3にて加熱された高温ガスを噴出することで、焼付領域内の温度を焼付加工に適した温度に保持するものである。
噴出口10は、焼付炉4領域の内壁にて長手方向に延伸された配管に複数設けられ、加熱ヒータ3にて温度調整された高温ガスを夫々の噴出口10から焼付領域内へ噴出することとなる。噴出口10の設置位置に関して特に限定はないが、天面部や側面部、もしくは底面部等に配設されることで一乃至複数方向からワークWに対して高温ガスを噴出させることが可能となる。また、噴出口10の形状は特に限定はしないが、焼付領域内へ分散状態にガスを噴出させる形状が好適である。さらに、噴出口10の数についても特に限定しないが、図1及び図2に図示したような天面部に等間隔に設ける態様や、図示してはいないが、天面部と側面部に等間隔で設けた噴出口10を交互に設置する態様を採ることで、焼付領域内において複数の渦状気流が発生するため、ワークW表面が渦状気流により覆われつつ焼付温度まで上昇させることが可能となる。
(Spout)
The nozzle 10 ejects high-temperature gas heated by the heater 3, thereby maintaining the temperature in the baking area at a temperature suitable for baking.
A plurality of nozzles 10 are provided in a pipe extending in the longitudinal direction on the inner wall of the baking furnace 4 area, and the high-temperature gas adjusted in temperature by the heater 3 is ejected from each nozzle 10 into the baking area. There is no particular limitation on the installation position of the nozzles 10, but by arranging them on the top surface, side surface, or bottom surface, it is possible to eject high-temperature gas onto the workpiece W from one or more directions. In addition, there is no particular limitation on the shape of the nozzles 10, but a shape that ejects gas in a dispersed state into the baking area is preferable. Furthermore, there is no particular limitation on the number of nozzles 10, but by adopting a mode in which the nozzles 10 are provided at equal intervals on the top surface as shown in Figures 1 and 2, or a mode in which the nozzles 10 are provided at equal intervals on the top surface and side surface alternately (not shown), multiple vortex airflows are generated in the baking area, so that the surface of the workpiece W can be raised to the baking temperature while being covered by the vortex airflow.
(吸入口)
吸入口11は、焼付領域内下部に滞留するVOC(揮発性有機化合物)が含有された高温ガスを吸入し、汚染ガスとしてVOC除去装置5へ送気するものである。
焼付加工が行われる焼付領域内では、ワークWを連続して焼付することで、溶剤が高温で変化した溶剤由来物質であるVOC等の汚染物質(以降、単に「汚染物質」という場合がある。)が不活性ガスと混合し、汚染されたガス(以降、「汚染ガス」という。)が発生してしまう。この汚染ガスは、焼付領域内に充填されている不活性ガスよりも比重が高くなるため、焼付炉4の下方に滞留することとなる。
吸入口11は、焼付炉4下方に備えられることにより、汚染物質を含み焼付領域の下方に滞留してしまった汚染ガスを吸入し、汚染物質を分解・除去可能なVOC除去装置5へ送気することで、焼付炉4内の汚染を防ぐものである。
吸入口11の設置箇所や設置数について特に限定はしないが、図1に図示したように、不活性ガス中の汚染物質濃度が上昇しやすい焼付領域内の所定箇所、例えば、略中央部分近傍やワークWの焼付が終了する室内後部に、汚染ガスを吸入可能な複数の吸入口11を等間隔に設ける態様が望ましい。また、該吸入口11と接続される配管を一の配管に纏め、吸入口11から吸入した汚染ガスを合流させた後に、配管の合流地点近傍に備えたブロア16によって汚染ガスの流速を増加させ、後段に配設される高温電気ヒータ20へ送気させる態様も好適である。
吸入口11による吸入量は、噴出口10による噴出量と同量もしくは同量以下とすることで、焼付領域内に充填されている不活性ガスが常時充満している状態を維持することが可能となり、さらに、焼付領域に充填される不活性ガスの余剰分によって、焼付領域から焼付炉4の開口部分である搬入口12及び搬出口13へ向けた気流が形成されることとなり、外気侵入が防止できるといった優れた効果も発揮し得る。
(Intake port)
The suction port 11 sucks in high-temperature gas containing VOCs (volatile organic compounds) that has accumulated in the lower part of the baking area, and sends it to the VOC removal device 5 as a polluted gas.
In the baking area where baking processing is performed, contaminants such as VOCs, which are solvent-derived substances that are produced when the solvent is changed at high temperatures (hereinafter, simply referred to as "contaminants"), mix with the inert gas as the workpieces W are successively baked, generating contaminated gas (hereinafter, referred to as "contaminated gas"). This contaminated gas has a higher specific gravity than the inert gas filled in the baking area, and so remains below the baking furnace 4.
The intake port 11 is provided below the baking furnace 4 and sucks in polluted gas that contains pollutants and has accumulated below the baking area, and sends the gas to a VOC removal device 5 that can decompose and remove the pollutants, thereby preventing contamination inside the baking furnace 4.
1, it is preferable to provide a plurality of suction ports 11 capable of sucking in polluted gas at equal intervals in predetermined locations in the baking area where the concentration of pollutants in the inert gas is likely to increase, such as near the center or at the rear of the chamber where baking of the workpiece W is completed. It is also preferable to combine the piping connected to the suction ports 11 into one piping, and after the polluted gas sucked in from the suction ports 11 is joined, the flow rate of the polluted gas is increased by a blower 16 provided near the junction of the piping, and the gas is sent to a high-temperature electric heater 20 provided downstream.
By making the amount of inhalation through the suction port 11 the same as or less than the amount of inhalation through the outlet port 10, it is possible to maintain a state in which the inert gas filled in the baking area is constantly filled therewith.Furthermore, the excess inert gas filled in the baking area creates an airflow from the baking area toward the inlet 12 and outlet 13, which are the openings of the baking furnace 4, thereby providing the excellent effect of preventing the intrusion of outside air.
(シーリングファン)
シーリングファン15は、焼付領域内の不活性ガスを撹拌すると共に、焼付領域上方から下方に向けた気流を形成するものである。
シーリングファン15は、プロペラ形状を有し、焼付領域の天井に設置される。シーリングファン15の大きさや数、設置箇所について特に限定はなく、焼付領域の距離や高さを考慮し適宜決定される。
シーリングファン15の回転によって焼付領域内の不活性ガスを撹拌することで、該焼付領域内に充填されている高温の不活性ガスの温度を均一化すると共に、該焼付炉の天井から下部へ向けた風流の形成により、焼付炉内にて発生した汚染ガスの拡散を抑制することが可能となる
(Ceiling fan)
The ceiling fan 15 agitates the inert gas within the baking area and creates an air current directed downward from above the baking area.
The ceiling fan 15 has a propeller shape and is installed on the ceiling of the burning area. There are no particular limitations on the size, number, or installation location of the ceiling fan 15, and these are determined appropriately taking into account the distance and height of the burning area.
By stirring the inert gas in the baking area by rotating the ceiling fan 15, the temperature of the high-temperature inert gas filled in the baking area can be made uniform, and by forming an air current from the ceiling of the baking oven toward the bottom, it is possible to suppress the diffusion of contaminant gases generated in the baking oven.
(遮蔽手段)
搬入口12及び搬出口13は常時開放状態であるため、開口部分より大気が流入し焼付炉4に充填されている不活性ガスの温度を低下させる他、大気に含まれる酸素によりワークWの焼付時に酸化してしまう等、ワークWの焼付品質に悪影響を及ぼす可能性がある。そのため、搬入口12及び搬出口13の開口部近傍に、例えば、焼付炉内外に搬送されるワークWと連動し自動的に開閉動作を行う自動開閉扉を設けたり、図2に図示したような焼付領域の内外を仕切るエアカーテンを形成する遮蔽手段17を設けたりする態様が好適である。
図2に図示した態様を採る場合、遮蔽手段17から略垂直上且つ膜状に放出されるガスをガス供給源2にて供給され加熱ヒータ3を経由した高温の不活性ガスにすることで、搬入口12及び搬出口13の開口部分からの外気侵入を防ぐと共に、焼付炉4内に充填された不活性ガスの温度低下も防ぐことが可能である。また、遮蔽手段17の設置箇所については、特に限定はないが、図示したような開口部の天面側や底面側から垂直一方向に放出可能な箇所や、開口部の天面側及び底面側の上下に夫々備え、上下二方向から垂直に放出可能な箇所等が考え得る。
(Shielding Means)
Since the entrance 12 and the exit 13 are always open, air may flow in through the openings, lowering the temperature of the inert gas filled in the baking furnace 4, and the oxygen contained in the air may oxidize the workpiece W during baking, which may adversely affect the baking quality of the workpiece W. For this reason, it is preferable to provide an automatic door that automatically opens and closes in conjunction with the workpiece W being transported in and out of the baking furnace near the openings of the entrance 12 and the exit 13, or to provide a shielding means 17 that forms an air curtain that separates the inside and outside of the baking area as shown in FIG.
2, the gas discharged from the shielding means 17 in a film shape is supplied by the gas supply source 2 and turned into a high-temperature inert gas via the heater 3, thereby preventing the intrusion of outside air from the openings of the inlet 12 and outlet 13 and preventing a drop in the temperature of the inert gas filled in the baking furnace 4. There are no particular limitations on the location of the shielding means 17, but possible locations include a location where the shielding means 17 can be provided vertically in one direction from the top or bottom of the opening as shown in the figure, or a location where the shielding means 17 can be provided above and below the top and bottom of the opening to enable vertical discharge from two directions, top and bottom.
(VOC除去装置)
VOC除去装置5は、吸入口11から吸入した汚染ガスに含有されるVOCを高温に加熱することで分解し無害化すると共に、高温となり無害化された汚染ガス(以降、「排ガス」という。)と、ガス供給源2から供給された不活性ガスとの熱交換を行うものである。
VOC除去装置5は、中空部を有する箱状体であり、吸入口11によって焼付領域から吸入された汚染ガスをVOC除去装置5内へ流入させる流入孔22と、該流入孔22から流入した汚染ガスを高温に加熱することで汚染ガスに含有されたVOCを分解する高温電気ヒータ20と、ガス供給源2から供給される不活性ガスをVOC除去装置5内へ流入させる供給孔23と、該供給孔23から流入した常温の不活性ガスと高温電気ヒータ20にて高温となった排ガスを熱交換する熱交換器21と、該熱交換器21にて熱交換し高温となった不活性ガスを加熱ヒータ3へ送気する流出孔24と、該熱交換器21にて熱交換し温度が低下した排ガスを後段に送気する送気孔25が夫々備えられている。
(VOC removal device)
The VOC removal device 5 heats the VOCs contained in the polluted gas sucked in from the intake port 11 to a high temperature to decompose and render them harmless, and also exchanges heat between the high-temperature, harmless polluted gas (hereinafter referred to as "exhaust gas") and the inert gas supplied from the gas supply source 2.
The VOC removal device 5 is a box-shaped body having a hollow portion, and is equipped with an inlet hole 22 that allows the polluted gas sucked in from the baking area by the suction port 11 to flow into the VOC removal device 5, a high-temperature electric heater 20 that heats the polluted gas that flows in from the inlet hole 22 to a high temperature to decompose the VOCs contained in the polluted gas, a supply hole 23 that allows the inert gas supplied from the gas supply source 2 to flow into the VOC removal device 5, a heat exchanger 21 that exchanges heat between the room temperature inert gas that flows in from the supply hole 23 and the exhaust gas that has been heated to a high temperature by the high-temperature electric heater 20, an outlet hole 24 that sends the inert gas that has been heat exchanged in the heat exchanger 21 and has been heated to a high temperature to the heating heater 3, and an air supply hole 25 that sends the exhaust gas that has been heat exchanged in the heat exchanger 21 and has been cooled to a subsequent stage.
(流入孔)
流入孔22は、吸入口11から吸入された汚染ガスを高温電気ヒータ20へ流入させる孔である。
流入孔22の径の大きさは特に限定はないが、汚染ガスが送気される配管と同径以上の大きさとすることで、汚染ガスの圧力を損じることなく高温電気ヒータ20へ流入させることが可能となる。
(Inlet hole)
The inlet hole 22 is a hole through which the polluted gas sucked in from the suction port 11 flows into the high-temperature electric heater 20 .
There is no particular limitation on the diameter of the inlet hole 22, but by making it larger than or equal to the diameter of the piping through which the polluted gas is delivered, it is possible to allow the polluted gas to flow into the high-temperature electric heater 20 without losing its pressure.
(高温電気ヒータ)
高温電気ヒータ20は、流入孔22からVOC除去装置5内へ流入した汚染ガスを高温に加熱することで、汚染ガスに含有されるVOCを分解し無害化するものである。
高温電気ヒータ20は、吸入口11にて吸入し配管を介して流入孔22から流入させた汚染ガスを、電気ヒータによって高温に加熱することで、VOCを分解し汚染ガスを無害化させた排ガスにするものである。高温電気ヒータ20として使用される装置の構造については特に限定はなく、従来公知の技術を有した装置を用いれば良い。また、高温電気ヒータ20に設定される温度については、焼付炉4から排出される汚染ガス内のVOCを分解させるため、電気ヒータにて800度から900度近傍まで加熱する態様が好ましい。この態様を採ることにより、汚染ガス中のVOCは水と二酸化炭素に分解されるため、無害化された高温の排ガスとして後段の熱交換器21へ送気されることとなる。
(High temperature electric heater)
The high-temperature electric heater 20 heats the polluted gas that has flowed into the VOC removal device 5 from the inlet 22 to a high temperature, thereby decomposing and rendering harmless the VOCs contained in the polluted gas.
The high-temperature electric heater 20 heats the polluted gas sucked in through the suction port 11 and introduced through the inlet hole 22 via a pipe to a high temperature with an electric heater, thereby decomposing the VOCs and making the polluted gas into a harmless exhaust gas. There is no particular limitation on the structure of the device used as the high-temperature electric heater 20, and any device having a conventionally known technology may be used. In addition, the temperature set in the high-temperature electric heater 20 is preferably set to a temperature of approximately 800 to 900 degrees with an electric heater in order to decompose the VOCs in the polluted gas discharged from the baking furnace 4. By adopting this mode, the VOCs in the polluted gas are decomposed into water and carbon dioxide, and the detoxified high-temperature exhaust gas is sent to the heat exchanger 21 in the subsequent stage.
(供給孔)
供給孔23は、ガス供給源2によって生成された不活性ガスを、熱交換器21へ送気させるものである。
供給孔23の径の大きさは特に限定はないが、ガス供給源2から送気される不活性ガスの配管と同径以上の大きさとすることで、不活性ガスの圧力を損じることなく熱交換器21へ流入させることが可能となる。
(Supply hole)
The supply hole 23 supplies the inert gas generated by the gas supply source 2 to the heat exchanger 21 .
There is no particular limitation on the diameter of the supply hole 23, but by making it larger than or equal to the diameter of the piping for the inert gas supplied from the gas supply source 2, it is possible to allow the inert gas to flow into the heat exchanger 21 without losing pressure.
(熱交換器)
熱交換器21は、高温電気ヒータ20から送気された高温の排ガスと、供給孔23から流入された常温の不活性ガスとの熱交換を行うものである。
熱交換器21は、高温電気ヒータ20から送気された高温の排ガスと、ガス供給源2にて生成され供給孔23を介して送気された常温の不活性ガスを夫々熱交換器21内に流入させ、高温の排ガスが有する熱エネルギーを常温の不活性ガスへ移動させることにより高温の排ガスの温度を低下させると共に、常温の不活性ガスの温度を上昇させる装置である。
熱交換器21の構造については従来公知の技術を使用すれば良く、例えば、コイル形状やUチューブ形状等を使用した二重管方式を使用する態様等が考え得る。
なお、高温の排ガスにおける熱交換器21からの排出温度は、後段に配設される異物除去装置30にて使用される吸着剤やフィルタの耐熱温度や吸着効率をもとに決定されるため、例えば、大気と熱交換が可能な熱交換器を増設し、排ガスの排出温度をさらに低下させる態様も考え得る。
(Heat exchanger)
The heat exchanger 21 exchanges heat between the high-temperature exhaust gas sent from the high-temperature electric heater 20 and the room-temperature inert gas flowing in through the supply hole 23 .
The heat exchanger 21 is a device in which the high-temperature exhaust gas delivered from the high-temperature electric heater 20 and the room-temperature inert gas generated in the gas supply source 2 and delivered through the supply hole 23 each flow into the heat exchanger 21, and the thermal energy contained in the high-temperature exhaust gas is transferred to the room-temperature inert gas, thereby lowering the temperature of the high-temperature exhaust gas and raising the temperature of the room-temperature inert gas.
The structure of the heat exchanger 21 may be any known technology, for example, a double-tube system using a coil shape or a U-tube shape may be used.
In addition, since the discharge temperature of the high-temperature exhaust gas from the heat exchanger 21 is determined based on the heat resistance temperature and adsorption efficiency of the adsorbent and filter used in the foreign matter removal device 30 arranged downstream, it is possible to consider, for example, an additional heat exchanger capable of exchanging heat with the atmosphere to further reduce the discharge temperature of the exhaust gas.
(流出孔)
流出孔24は、熱交換器21による熱交換により高温となった不活性ガスを、加熱ヒータ3に送気するものである。
流出孔24の径の大きさに限定はないが、供給孔23と同径以上の大きさとすることで、不活性ガスの圧力を損じることなく加熱ヒータ3へ流入させることが可能となる。
加熱ヒータ3へ流入した高温の不活性ガスは、焼付炉4内にて使用される不活性ガスとして必要な温度に調整され、送気されることとなる。
(Outlet hole)
The outlet hole 24 supplies the inert gas, which has been heated to a high temperature by heat exchange in the heat exchanger 21 , to the heater 3 .
There is no limitation on the diameter of the outflow hole 24, but by making it equal to or larger than the diameter of the supply hole 23, it is possible to allow the inert gas to flow into the heater 3 without losing its pressure.
The high-temperature inert gas flowing into the heater 3 is adjusted to a temperature required for use as the inert gas in the baking furnace 4 and then sent thereto.
(送気孔)
送気孔25は、熱交換器21による熱交換により温度の低下した排ガスを、異物除去装置30に送気するものである。
送気孔25の径の大きさに限定はないが、流入孔22と同径以上の大きさとすることで、排ガスの圧力を損じることなく異物除去装置30へ流入させることが可能となる。
(Air supply hole)
The air supply hole 25 supplies the exhaust gas, the temperature of which has been reduced by heat exchange in the heat exchanger 21 , to the foreign matter removal device 30 .
There is no limitation on the diameter of the air supply hole 25, but by making it equal to or larger than the diameter of the inlet hole 22, it is possible to allow the exhaust gas to flow into the foreign matter removal device 30 without losing its pressure.
(異物除去装置)
異物除去装置30は、熱交換器21にて温度の低下した排ガス中に残留する塵埃等の不純物や水蒸気といった異物(以下、単に「異物」という場合がある。)を分離・除去するものである。
異物除去装置30は、焼付炉4から排出される汚染ガス中に含有された塵埃等の不純物やVOC等の有害物質のうち、高温電気ヒータ20による高温で除去しきれなかった物質やVOCの分解によって生じた水蒸気の分離・除去を行い、後段へ送気させることとなる。異物除去装置30の構造は特に限定しないが、例えば、排ガス中の水蒸気を除去するエアドライヤと、遠心分離機構を利用した塵埃・水分除去フィルタと、活性炭やゼオライト等を使用した吸着剤を中空部へ充填した異物除去フィルタへ排ガスを送気し通過させる態様が考え得る。この態様を採ることにより、排ガス中の異物が除去されることで清浄な排ガスとして後段に送気可能となり、前処理用乾燥炉等の装置に使用可能となる。
(Foreign matter removal device)
The foreign matter removal device 30 separates and removes foreign matter, such as impurities such as dust and water vapor, remaining in the exhaust gas whose temperature has been reduced by the heat exchanger 21 (hereinafter, sometimes simply referred to as “foreign matter”).
The foreign matter removal device 30 separates and removes impurities such as dust and harmful substances such as VOCs contained in the polluted gas discharged from the baking furnace 4, substances that could not be removed by the high temperature of the high-temperature electric heater 20, and water vapor generated by the decomposition of VOCs, and sends the separated gas to the subsequent stage. The structure of the foreign matter removal device 30 is not particularly limited, but for example, it can be considered that the exhaust gas is sent to and passed through an air dryer that removes water vapor from the exhaust gas, a dust and water removal filter that uses a centrifugal separation mechanism, and a foreign matter removal filter whose hollow part is filled with an adsorbent using activated carbon, zeolite, or the like. By adopting this embodiment, the foreign matter in the exhaust gas is removed, so that the exhaust gas can be sent to the subsequent stage as clean exhaust gas, and can be used in devices such as a pre-treatment drying furnace.
図3に図示したように、異物除去装置30を経由して清浄となった排ガスは、後段の装置へ送気する配管を分岐させ、電気式連続型焼付炉1として配設されている配管と接続し合流させることで、使用されるガスの一部を電気式連続型焼付炉1内で循環させる態様も考え得る。例えば、(a)に図示したような吸入口11から吸入された汚染ガスと合流させる態様や、(b)に図示したようなガス供給源2から送出される不活性ガスと合流させる態様が考え得る。これらの態様を採ることにより、電気式連続型焼付炉1全体で使用されるガスの使用量の一部を清浄な排ガスで賄うことが可能となり、不活性ガスの新規生成量の減少に資するといった優れた効果を奏する。 As shown in FIG. 3, the exhaust gas that has been purified by passing through the foreign matter removal device 30 can be branched off into a pipe that sends the gas to a downstream device, and can be connected and merged with a pipe arranged as the electric continuous baking furnace 1, so that a portion of the gas used can be circulated within the electric continuous baking furnace 1. For example, it can be merged with the contaminated gas sucked in from the intake port 11 as shown in (a), or with the inert gas sent out from the gas supply source 2 as shown in (b). By adopting these embodiments, it is possible to cover a portion of the gas used in the entire electric continuous baking furnace 1 with clean exhaust gas, which has the excellent effect of contributing to a reduction in the amount of new inert gas generated.
以上の構成要素から成る電気式連続型焼付炉1について、その主な動作及び作用を説明する。
(ガス主体)
まず、ガス供給源2にて生成された不活性ガスは、熱交換器21を経由した後に、必要に応じて加熱ヒータ3にて高温に加熱されて高温ガスとなり、焼付炉4内の噴出口10へ送気される。
噴出口10に送気された高温ガスは、焼付炉4の焼付領域内へ搬送されたワークWへ吹出されることで焼付加工を行った後、汚染ガスとして吸入口11から吸入されることとなる。そして、吸入された汚染ガスは、VOC除去装置5内に配設された高温電気ヒータ20の加熱によってVOCが分解された後、熱交換器21を介すことでガス供給源2から送気される不活性ガスとの熱交換が行われ、温度が低下する。その後、排ガスは、異物除去装置30によって塵埃や水分等の分離・除去が行われ、清浄な排ガスとして後段に配設された利用機器へ送気されることとなる。
The main operations and functions of the electric continuous baking furnace 1 consisting of the above components will now be described.
(Mainly gas)
First, the inert gas generated in the gas supply source 2 passes through a heat exchanger 21, and then, if necessary, is heated to a high temperature by a heater 3 to become a high-temperature gas, which is then sent to the nozzle 10 in the baking furnace 4.
The high-temperature gas sent to the nozzle 10 is blown onto the workpiece W transported into the baking area of the baking furnace 4 to perform baking processing, and then is sucked in from the suction port 11 as contaminated gas. The sucked in contaminated gas is heated by the high-temperature electric heater 20 disposed in the VOC removal device 5 to decompose the VOCs, and then the gas is heat-exchanged with the inert gas sent from the gas supply source 2 via the heat exchanger 21, thereby lowering the temperature. The foreign matter removal device 30 then separates and removes dust, moisture, and the like from the exhaust gas, and the exhaust gas is sent as clean exhaust gas to a utilization device disposed downstream.
(ワーク主体)
図1に示すように、搬入口12側と搬出口13側とは前後対称の構造とするので、以下搬入口12側の方を詳述し、搬出口13側は簡略に説明する。
まず、搬送手段14によるワークWの搬送により搬入口12から焼付炉4の焼付領域内に侵入する。この際、搬入口12が焼付炉4よりも下部に設けられていると共に、焼付領域内において高温ガスが常時供給されていることにより、焼付領域側から搬入口12へ向けた気流が発生するため、ワークWは高温ガスを周囲に纏わせた状態で搬送手段14の傾斜を上昇し、焼付炉4内へ搬送されていくこととなる。
焼付領域内においてワークWは、複数の噴出口10から吹出される高温ガスによって焼付加工が行われ、焼付加工が終了したワークWは、搬出口13へ向けて搬送される。
搬出口13も搬入口12同様、焼付炉4よりも下部に設けられているため、ワークWは高温ガスを周囲に纏わせた状態から徐々に冷却されつつ搬送手段14の傾斜を下降し、その後搬出口13から搬出され後段の装置へ搬送されることとなる。
(Work subject)
As shown in FIG. 1, the entrance 12 side and the exit 13 side have a symmetrical structure from front to back, so the entrance 12 side will be described in detail below, and the exit 13 side will be briefly described.
First, the workpiece W is transported by the transport means 14 and enters the baking area of the baking furnace 4 through the carry-in opening 12. At this time, since the carry-in opening 12 is located below the baking furnace 4 and high-temperature gas is constantly supplied in the baking area, an air current is generated from the baking area toward the carry-in opening 12. Therefore, the workpiece W, surrounded by high-temperature gas, moves up the slope of the transport means 14 and is transported into the baking furnace 4.
In the baking area, the workpiece W is baked by high-temperature gas blown out from a plurality of nozzles 10, and the workpiece W after baking is transported toward the discharge port 13.
Like the inlet 12, the outlet 13 is located lower than the baking furnace 4, so the workpiece W is gradually cooled from the state in which it is surrounded by high-temperature gas as it descends the incline of the transport means 14, and is then transported out through the outlet 13 and transported to the subsequent equipment.
以上、本発明にかかる電気式連続型焼付炉1の主要動作及び作用について説明したが、本発明は上記実施形態で示した構造態様に限定されるものではない。例えば、熱交換器21の後段に別の熱交換器を配設し、高温の排ガスとガス供給源2にて生成された常温の不活性ガスを熱交換させることで、排ガスの温度を更に低下させると共に、常温よりも高温且つ焼付領域よりも低温の不活性ガスを遮蔽手段17として設置したエアカーテンから噴出させ、ワークWの温度を段階的に変化させることが可能となる。
なお、電気式連続型焼付炉1には、各計器類(温度計、風圧計、風速計、風量計、窒素濃度計、ワーク搬送速度計等)が必要に応じて備えられる。例えば、温度計であれば、焼付炉4内や、熱交換器21の排出側の他にも、焼付工程中や搬入・搬出時におけるワークW自体の温度計測等にも使用され、夫々の測定値によって、適正温度に向けた加熱ヒータ3によるガス温度調整や温度異常検出に伴う警報発出等が行われることとなる。
Although the main operation and action of the electric continuous baking furnace 1 according to the present invention have been described above, the present invention is not limited to the structural aspects shown in the above embodiment. For example, by arranging another heat exchanger after the heat exchanger 21 and exchanging heat between the high-temperature exhaust gas and the room-temperature inert gas generated by the gas supply source 2, the temperature of the exhaust gas can be further lowered, and the inert gas that is higher than the room temperature and lower than the baking area can be sprayed from the air curtain installed as the shielding means 17, thereby making it possible to change the temperature of the workpiece W in stages.
The electric continuous baking furnace 1 is equipped with various instruments (thermometer, air pressure gauge, anemometer, air flow meter, nitrogen concentration meter, workpiece transport speed meter, etc.) as necessary. For example, a thermometer is used not only inside the baking furnace 4 and on the discharge side of the heat exchanger 21, but also to measure the temperature of the workpiece W itself during the baking process and when it is carried in and out, and depending on each measured value, the gas temperature is adjusted by the heater 3 to the appropriate temperature, and an alarm is issued when an abnormal temperature is detected.
以上の通り、本発明にかかる電気式連続型焼付炉1によれば、ガス供給源2にて生成した不活性ガスは、熱交換器21及び加熱ヒータ3によって加熱されることで高温ガスとして焼付炉4内に送気され、該焼付炉4に備えられた噴出口10から吹出されることで焼付領域内へ搬入されたワークWの焼付加工を行いつつ、高温ガスの一部が焼付加工時に発生した汚染物質を含有した汚染ガスへ変化し焼付領域下部に滞留し、吸入口11から吸引されることで高温電気ヒータ20へ送気され、該高温電気ヒータ20による高温加熱によって汚染ガス中のVOCが分解及び無害化された後、高温の排ガスとして熱交換器21へ流入することで、ガス供給源2にて生成された常温の不活性ガスと熱交換を行う電気式連続型焼付炉1を提供することが可能となる。 As described above, according to the electric continuous baking furnace 1 of the present invention, the inert gas generated in the gas supply source 2 is heated by the heat exchanger 21 and the heater 3 and sent into the baking furnace 4 as a high-temperature gas, and is blown out from the nozzle 10 provided in the baking furnace 4 to bake the workpiece W brought into the baking area. While this gas is being baked, a part of the high-temperature gas is transformed into a contaminated gas containing the contaminants generated during the baking process and remains at the bottom of the baking area. It is then sucked in from the suction port 11 and sent to the high-temperature electric heater 20. After the VOCs in the contaminated gas are decomposed and rendered harmless by the high-temperature heating by the high-temperature electric heater 20, the gas flows into the heat exchanger 21 as a high-temperature exhaust gas, making it possible to provide an electric continuous baking furnace 1 that exchanges heat with the room-temperature inert gas generated in the gas supply source 2.
本発明にかかる電気式連続型焼付炉は、電気ヒータによってワークへの加熱焼付加工及び焼付加工時に発生したVOCの無害化を行うものであるが、加熱対象は金属製品に限らず、VOCの発生が考え得る印刷施設や接着剤使用施設における焼付工程の設備に応用することも可能である。したがって、本発明にかかる「電気式連続型焼付炉」の産業上の利用可能性は大であると思料する。 The electric continuous baking furnace of the present invention uses an electric heater to heat and bake the workpiece and neutralize the VOCs generated during the baking process, but the objects to be heated are not limited to metal products; it can also be applied to baking process equipment in printing facilities and adhesive-using facilities where VOCs may be generated. Therefore, it is believed that the "electric continuous baking furnace" of the present invention has great industrial applicability.
1 電気式連続型焼付炉
2 ガス供給源
3 加熱ヒータ
4 焼付炉
5 VOC除去装置
10 噴出口
11 吸入口
12 搬入口
13 搬出口
14 搬送手段
15 シーリングファン
16 ブロア
17 遮蔽手段
20 高温電気ヒータ
21 熱交換器
22 流入孔
23 供給孔
24 流出孔
25 送気孔
30 異物除去装置
REFERENCE SIGNS LIST 1 Electric continuous baking furnace 2 Gas supply source 3 Heater 4 Baking furnace 5 VOC removal device 10 Jet port 11 Suction port 12 Carry-in entrance 13 Carry-out exit 14 Conveying means 15 Ceiling fan 16 Blower 17 Shielding means 20 High-temperature electric heater 21 Heat exchanger 22 Inlet hole 23 Supply hole 24 Outlet hole 25 Air supply hole 30 Foreign matter removal device
Claims (4)
焼付炉内には、加熱ヒータにて加熱された不活性ガスを該焼付炉内へ放出する複数の噴出口と、該焼付炉内下部の排ガスを吸引しVOC除去装置へ送気する吸入口と、が備えられ、
該吸入口は、搬入口及び搬出口より上方に形成された焼付炉下方に設置され、
VOC除去装置は、焼付炉から送気された排ガスを流入させる流入孔と、ガス供給源にて生成された不活性ガスを流入させる供給孔と、排ガスを高温に加熱させVOCの分解処理を行う高温電気ヒータと、該高温電気ヒータから送気された清浄且つ高温な排ガスと供給孔から流入した不活性ガスとの熱交換を行う熱交換器と、該熱交換器により高温となった不活性ガスを加熱ヒータへ送気する流出孔と、清浄な排ガスを利用機器へ送気させる送気管と接続される送気孔と、から成ることを特徴とする電気式連続型焼付炉。
A continuous electric baking furnace comprising a gas supply source, a heater for heating an inert gas generated by the gas supply source to a baking temperature and feeding the inert gas into the baking furnace, a baking furnace equipped with a transport means for transporting a workpiece from an entrance to an exit, and a VOC removal device, the entrance and exit being located lower than the baking furnace and the transport path being inclined,
The baking furnace is provided with a plurality of outlets for discharging inert gas heated by a heater into the baking furnace, and an intake port for sucking in exhaust gas from the lower part of the baking furnace and sending it to a VOC removal device.
The suction port is installed below the baking furnace that is formed above the carry-in entrance and the carry-out exit,
The VOC removal device is an electric continuous baking oven characterized in that it comprises an inlet port through which exhaust gas sent from a baking oven flows in, a supply port through which inert gas generated by a gas supply source flows in, a high-temperature electric heater that heats the exhaust gas to a high temperature and performs a VOC decomposition process, a heat exchanger that exchanges heat between the clean, high-temperature exhaust gas sent from the high-temperature electric heater and the inert gas that flows in from the supply port, an outlet port through which the inert gas heated to a high temperature by the heat exchanger is sent to the heating heater, and an air supply port connected to an air supply pipe that sends the clean exhaust gas to a utilization device.
2. The electric continuous baking furnace according to claim 1, characterized in that the baking furnace has one end closed and the other end open, an inlet and an outlet are provided at the same location, and a transport path within the baking furnace is U-shaped.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022209914A JP7497076B1 (en) | 2022-12-27 | 2022-12-27 | Electric continuous baking oven |
PCT/JP2023/045194 WO2024143022A1 (en) | 2022-12-27 | 2023-12-18 | Electric continuous firing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022209914A JP7497076B1 (en) | 2022-12-27 | 2022-12-27 | Electric continuous baking oven |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7497076B1 true JP7497076B1 (en) | 2024-06-10 |
JP2024093496A JP2024093496A (en) | 2024-07-09 |
Family
ID=91377667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022209914A Active JP7497076B1 (en) | 2022-12-27 | 2022-12-27 | Electric continuous baking oven |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7497076B1 (en) |
WO (1) | WO2024143022A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001310150A (en) | 2000-04-28 | 2001-11-06 | Nippon Paint Co Ltd | Apparatus and method for waste gas treatment for hot- air drying oven for coating and hot-air drying oven for coating using the same |
JP2005083689A (en) | 2003-09-10 | 2005-03-31 | Trinity Ind Corp | Drying system for painting |
US20100038353A1 (en) | 2008-08-17 | 2010-02-18 | Gm Global Technology Operations | Transverse oven and method of baking workpieces |
WO2014049692A1 (en) | 2012-09-25 | 2014-04-03 | トヨタ自動車株式会社 | Manufacturing method for secondary battery electrode, and hot air drying furnace |
JP7078299B1 (en) | 2020-12-17 | 2022-05-31 | 株式会社エス.ケーガス | Continuous baking device |
JP7287719B1 (en) | 2022-05-13 | 2023-06-06 | 株式会社エス.ケーガス | Continuous baking device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179789A (en) * | 1982-04-15 | 1983-10-21 | 日産自動車株式会社 | Hot-air drying furnace for painting |
JPS62152564A (en) * | 1985-12-27 | 1987-07-07 | Trinity Ind Corp | Drying oven for painting |
JPH06142601A (en) * | 1992-11-12 | 1994-05-24 | Daido Steel Co Ltd | Continuous baking method of coating |
-
2022
- 2022-12-27 JP JP2022209914A patent/JP7497076B1/en active Active
-
2023
- 2023-12-18 WO PCT/JP2023/045194 patent/WO2024143022A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001310150A (en) | 2000-04-28 | 2001-11-06 | Nippon Paint Co Ltd | Apparatus and method for waste gas treatment for hot- air drying oven for coating and hot-air drying oven for coating using the same |
JP2005083689A (en) | 2003-09-10 | 2005-03-31 | Trinity Ind Corp | Drying system for painting |
US20100038353A1 (en) | 2008-08-17 | 2010-02-18 | Gm Global Technology Operations | Transverse oven and method of baking workpieces |
WO2014049692A1 (en) | 2012-09-25 | 2014-04-03 | トヨタ自動車株式会社 | Manufacturing method for secondary battery electrode, and hot air drying furnace |
JP7078299B1 (en) | 2020-12-17 | 2022-05-31 | 株式会社エス.ケーガス | Continuous baking device |
JP7287719B1 (en) | 2022-05-13 | 2023-06-06 | 株式会社エス.ケーガス | Continuous baking device |
Also Published As
Publication number | Publication date |
---|---|
JP2024093496A (en) | 2024-07-09 |
WO2024143022A1 (en) | 2024-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3231650U (en) | Continuous baking device | |
EP2957334A1 (en) | Exhaust gas treatment apparatus | |
EP3253522A1 (en) | Reflow soldering oven with at least one gas purification system comprising a catalyst unit | |
KR20070092114A (en) | Treating method of air containing organic solvent | |
JP7497076B1 (en) | Electric continuous baking oven | |
JP2007054706A (en) | Heating and cleaning apparatus of contaminated soil | |
US6135765A (en) | Pyrocleaning furnace and thermal oxidizer system | |
KR20040075793A (en) | Continuous kiln with unit of dealing with discharge gas | |
JP4928876B2 (en) | Heat purification equipment for contaminated soil | |
JP2002206725A (en) | Gas scrubber system | |
JP7078299B1 (en) | Continuous baking device | |
JP4550098B2 (en) | Substrate heat treatment furnace | |
JP7287719B1 (en) | Continuous baking device | |
JP2004528522A (en) | Closed exhaust capture type exhaust system | |
AU2002240761A1 (en) | System and process for the treatment of gaseous emissions | |
JP2024063989A (en) | Electric continuous type baking furnace | |
JP2011046988A (en) | Continuous annealing furnace of metal strip | |
KR101246923B1 (en) | Exhaust gas treatment unit | |
US3524633A (en) | Heat transfer apparatus utilizing particles of granular material | |
EP1906087B1 (en) | Device and method for removing and utilization of paint coating material and/or waste painting material | |
JP2020094726A (en) | Dryer | |
JPH11188308A (en) | Drying oven | |
EP1841577B1 (en) | Gas baking furnace for rubber products | |
CA2380277C (en) | Closed capture emission system | |
JPH06323738A (en) | Roller hearth kiln |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7497076 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |