JP7497007B2 - Cu-Al-Mn alloy - Google Patents
Cu-Al-Mn alloy Download PDFInfo
- Publication number
- JP7497007B2 JP7497007B2 JP2019174725A JP2019174725A JP7497007B2 JP 7497007 B2 JP7497007 B2 JP 7497007B2 JP 2019174725 A JP2019174725 A JP 2019174725A JP 2019174725 A JP2019174725 A JP 2019174725A JP 7497007 B2 JP7497007 B2 JP 7497007B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- crystal
- strain
- manufactured
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 95
- 239000000956 alloy Substances 0.000 title claims description 95
- 229910018131 Al-Mn Inorganic materials 0.000 title claims description 30
- 229910018461 Al—Mn Inorganic materials 0.000 title claims description 30
- 239000013078 crystal Substances 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 34
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 7
- 238000009864 tensile test Methods 0.000 description 27
- 238000005096 rolling process Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000005489 elastic deformation Effects 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 3
- 239000012620 biological material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Images
Landscapes
- Conductive Materials (AREA)
Description
本発明は、Cu-Al-Mn系合金に関する。 The present invention relates to a Cu-Al-Mn alloy.
従来、優れた加工性を維持しながら、高い形状記憶効果や安定した超弾性を示すCu-Al-Mn系合金が、本発明者等により開発されている(例えば、特許文献1乃至6または非特許文献1乃至3参照)。これらの合金の引張試験から、例えば、Cu-8.07重量%Al-9.68重量%Mn-0.51重量%Co合金で、約0.1%の最大弾性ひずみ量、および、210MPaの弾性限度(例えば、特許文献1参照)、Cu-8.1重量%Al-10.7重量%Mn合金で、約1%の最大弾性ひずみ量、および、190MPaの弾性限度(例えば、特許文献2参照)、Cu-17.5Al-11Mn合金(at%)の一方向凝固材で、約1%の最大弾性ひずみ量、および、約140MPaの弾性限度(例えば、非特許文献1参照)、Cu-17Al-15Mn合金(at%)の単結晶で、-113℃において約0.8%の最大弾性ひずみ量、および、約410MPaの弾性限度(例えば、非特許文献2参照)、Cu-17.5Al-11Mn合金(at%)の一方向凝固材で、約0.5%の最大弾性ひずみ量、および、約80MPaの弾性限度(例えば、非特許文献3参照)が得られている。なお、最大弾性ひずみ量とは、弾性変形を示す範囲でのひずみの最大値である。 Conventionally, the present inventors have developed Cu-Al-Mn alloys that exhibit a high shape memory effect and stable superelasticity while maintaining excellent workability (see, for example, Patent Documents 1 to 6 or Non-Patent Documents 1 to 3). Tensile tests of these alloys have shown that, for example, a Cu-8.07 wt% Al-9.68 wt% Mn-0.51 wt% Co alloy has a maximum elastic strain of about 0.1% and an elastic limit of 210 MPa (see, for example, Patent Document 1), a Cu-8.1 wt% Al-10.7 wt% Mn alloy has a maximum elastic strain of about 1% and an elastic limit of 190 MPa (see, for example, Patent Document 2), and a unidirectionally solidified Cu-17.5Al-11Mn alloy (at%) has a maximum elastic strain of about 1% and an elastic limit of 200 MPa (see, for example, Patent Document 3). A large elastic strain amount and an elastic limit of about 140 MPa (see, for example, Non-Patent Document 1), a single crystal of Cu-17Al-15Mn alloy (at%) has a maximum elastic strain amount of about 0.8% and an elastic limit of about 410 MPa at -113°C (see, for example, Non-Patent Document 2), and a unidirectionally solidified material of Cu-17.5Al-11Mn alloy (at%) has a maximum elastic strain amount of about 0.5% and an elastic limit of about 80 MPa (see, for example, Non-Patent Document 3). Note that the maximum elastic strain amount is the maximum value of strain in the range showing elastic deformation.
特許文献1および非特許文献1乃至3に記載のCu-Al-Mn系合金など、ほとんどのCu-Al-Mn系合金では、最大弾性ひずみ量が約1%以下である。このように、従来、最大弾性ひずみ量が1%よりも大きいCu-Al-Mn系合金は見出されておらず、応用範囲を拡大する観点から、より大きい最大弾性ひずみ量を有するCu-Al-Mn系合金の開発が望まれていた。 Most Cu-Al-Mn alloys, such as those described in Patent Document 1 and Non-Patent Documents 1 to 3, have a maximum elastic strain of approximately 1% or less. Thus, no Cu-Al-Mn alloys with a maximum elastic strain of more than 1% have been found to date, and from the perspective of expanding the range of applications, there has been a demand for the development of Cu-Al-Mn alloys with a larger maximum elastic strain.
本発明は、このような課題に着目してなされたもので、より大きい最大弾性ひずみ量を有するCu-Al-Mn系合金を提供することを目とする。 The present invention was made with a focus on these issues, and aims to provide a Cu-Al-Mn alloy with a larger maximum elastic strain.
上記目的を達成するために、本発明に係るCu-Al-Mn系合金は、14at%~22at%のAlと、5at%~14.5at%のMnと、0.001at%~10at%のNiとを含み、残部がCuと不可避不純物とから成り、最大弾性ひずみ量が1.5%以上であることを特徴とする。または、本発明に係るCu-Al-Mn系合金は、14at%~22at%のAlと、5at%~14.5at%のMnとを含み、残部がCuと不可避不純物とから成り、最大弾性ひずみ量が1.5%以上であり、単結晶から成り、電子線後方散乱回折(EBSD)法により測定した結晶粒の変形方向の結晶方位が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることを特徴とする。または、本発明に係るCu-Al-Mn系合金は、14at%~22at%のAlと、5at%~14.5at%のMnとを含み、残部がCuと不可避不純物とから成り、最大弾性ひずみ量が1.5%以上であり、多結晶から成り、結晶粒の50%以上が、電子線後方散乱回折(EBSD)法により測定した変形方向の結晶方位が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることを特徴とする。
In order to achieve the above object, the Cu-Al-Mn alloy according to the present invention is characterized in that it contains 14 at% to 22 at% Al, 5 at% to 14.5 at% Mn, and 0.001 at% to 10 at% Ni, with the balance being Cu and unavoidable impurities, and has a maximum elastic strain of 1.5% or more. Alternatively, the Cu-Al-Mn alloy according to the present invention is characterized in that it contains 14 at% to 22 at% Al, 5 at% to 14.5 at% Mn, with the balance being Cu and unavoidable impurities, has a maximum elastic strain of 1.5% or more, is single crystal, and has a crystal orientation in the deformation direction of the crystal grains measured by electron backscatter diffraction (EBSD) that has a deviation angle from the crystal orientation <100> within a range of 0° to 30° . Alternatively, the Cu-Al-Mn alloy according to the present invention is characterized in that it contains 14 at% to 22 at% Al, 5 at% to 14.5 at% Mn, with the remainder being Cu and unavoidable impurities, has a maximum elastic strain of 1.5% or more, is polycrystalline, and has a crystal orientation in the deformation direction, as measured by electron backscatter diffraction (EBSD), with a deviation angle from the crystal orientation <100> within a range of 0° to 30°.
本発明に係るCu-Al-Mn系合金は、最大弾性ひずみ量が1.5%以上と大きく、弾性変形領域が広い。また、ヤング率が50GPa以下と低くすることもできる。このため、例えば、バネ材や生体材料など、比較的大きいひずみを受けても弾性変形を行う必要がある材料や、低ヤング率である必要がある材料として利用することができる。 The Cu-Al-Mn alloy of the present invention has a large maximum elastic strain of 1.5% or more and a wide elastic deformation range. The Young's modulus can also be reduced to 50 GPa or less. For this reason, it can be used as a material that must be able to elastically deform even when subjected to a relatively large strain, such as a spring material or a biomaterial, or a material that must have a low Young's modulus.
本発明に係るCu-Al-Mn系合金で、Alが14at%未満のとき、α相が出現して弾性変形領域が狭くなる。Alが22at%より多くなると、極めて脆くなり、弾性変形領域が狭くなる。Mnが5at%未満のとき、α相が出現して弾性変形領域が狭くなる。Mnが14.5at%より多くなると、弾性率が高くなり、弾性変形領域が狭くなる。 In the Cu-Al-Mn alloy of the present invention, when Al is less than 14 at%, the α phase appears and the elastic deformation region becomes narrow. When Al is more than 22 at%, the alloy becomes extremely brittle and the elastic deformation region becomes narrow. When Mn is less than 5 at%, the α phase appears and the elastic deformation region becomes narrow. When Mn is more than 14.5 at%, the elastic modulus becomes high and the elastic deformation region becomes narrow.
本発明に係るCu-Al-Mn系合金は、前記Alが16at%~21at%であり、前記Mnが7at%~14.5at%であることが特に好ましい。この場合、最大弾性ひずみ量をより大きくすることができ、例えば、最大弾性ひずみ量を3%以上にすることもできる。 The Cu-Al-Mn alloy according to the present invention is particularly preferably one in which the Al is 16 at% to 21 at% and the Mn is 7 at% to 14.5 at%. In this case, the maximum elastic strain can be made larger, for example, the maximum elastic strain can be made 3% or more.
また、本発明に係るCu-Al-Mn系合金は、さらに、0.001at%~10at%のNiを含んでいてもよい。この場合、Niを含むことにより、基地組織を強化することができるが、Niが10at%より多くなると、焼き入れ性が低下してしまう。また、本発明に係るCu-Al-Mn系合金は、単結晶から成ることが好ましいが、多結晶から成っていてもよい。多結晶から成る場合、結晶方位の<100>方位が変形方向に配向していることが好ましく、例えば、電子線後方散乱回折(EBSD)法により測定した結晶粒の変形方向の結晶方位のうち、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っているものが、50%以上であることが好ましい。また、本発明に係るCu-Al-Mn系合金は、結晶粒径が材料の断面サイズ以上であることが好ましい。例えば、板材の場合、結晶粒径が板厚以上であることが好ましく、結晶粒径が板幅以上であることがさらに好ましい。 The Cu-Al-Mn alloy according to the present invention may further contain 0.001 at% to 10 at% Ni. In this case, the inclusion of Ni can strengthen the matrix structure, but if the Ni content is more than 10 at%, the hardenability decreases. The Cu-Al-Mn alloy according to the present invention is preferably made of a single crystal, but may be made of polycrystals. If it is made of polycrystals, it is preferable that the <100> crystal orientation is oriented in the deformation direction, and for example, it is preferable that 50% or more of the crystal orientations in the deformation direction of the crystal grains measured by the electron backscatter diffraction (EBSD) method have a deviation angle from the <100> crystal orientation within the range of 0° to 30°. In the Cu-Al-Mn alloy according to the present invention, the crystal grain size is preferably equal to or larger than the cross-sectional size of the material. For example, in the case of a plate material, it is preferable that the crystal grain size is equal to or larger than the plate thickness, and it is even more preferable that the crystal grain size is equal to or larger than the plate width.
本発明によれば、より大きい最大弾性ひずみ量を有するCu-Al-Mn系合金を提供することができる。 The present invention provides a Cu-Al-Mn alloy with a larger maximum elastic strain.
以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態のCu-Al-Mn系合金は、14at%~22at%のAlと、5at%~14.5at%のMnとを含み、残部がCuと不可避不純物とから成っている。また、本発明の実施の形態のCu-Al-Mn系合金は、最大弾性ひずみ量が1.5%以上である。
Hereinafter, the embodiment of the present invention will be described based on examples.
The Cu-Al-Mn alloy according to the embodiment of the present invention contains 14 at% to 22 at% Al, 5 at% to 14.5 at% Mn, and the balance is Cu and unavoidable impurities, and has a maximum elastic strain of 1.5% or more.
なお、本発明の実施の形態のCu-Al-Mn系合金は、Alが16at%~21at%であることが好ましい。また、Mnが7at%~14.5at%であることが特に好ましい。また、さらに、0.001at%~10at%のNiを含んでいてもよい。また、本発明の実施の形態のCu-Al-Mn系合金は、単結晶から成ることが好ましいが、多結晶から成っていてもよい。多結晶から成る場合、結晶方位の<100>方位が変形方向に配向していることが好ましい。結晶配向は、一方向凝固や加工熱処理の組み合わせなどにより実現することができる。 In addition, the Cu-Al-Mn alloy according to the embodiment of the present invention preferably contains 16 at% to 21 at% Al. It is particularly preferable that the Mn content is 7 at% to 14.5 at%. The alloy may further contain 0.001 at% to 10 at% Ni. The Cu-Al-Mn alloy according to the embodiment of the present invention is preferably made of a single crystal, but may be made of polycrystals. If it is made of polycrystals, it is preferable that the <100> crystal orientation is oriented in the deformation direction. The crystal orientation can be achieved by a combination of unidirectional solidification and thermomechanical treatment.
Cu-17Al-14Mn合金(at%)を製造し、引張試験を行った。Cu-17Al-14Mn合金は、以下のようにして製造した。まず、Cu;69at%、Al;17at%、Mn;14at%の組成を有する合金を溶解し、鋳型に鋳造してインゴットを作製した。インゴットを再溶解し、水冷した銅モールドと加熱ヒーターとが備え付けられた一方向凝固炉内で鋳造し、150mm×80mm×40mmの一方向凝固インゴットを作製した。その後、長手方向が凝固方向となるように、1mm×10mm×50mmの試験片を切り出した。この試験片を900℃から450℃まで3℃/分で冷却し、さらに、900℃まで10℃/分で加熱する、冷却・加熱のサイクル熱処理を23回繰り返した後、900℃で3時間の溶体化処理を行い、水中へ投入して急冷した。 A Cu-17Al-14Mn alloy (at%) was produced and subjected to a tensile test. The Cu-17Al-14Mn alloy was produced as follows. First, an alloy having a composition of Cu; 69 at%, Al; 17 at%, Mn; 14 at% was melted and cast into a mold to produce an ingot. The ingot was remelted and cast in a unidirectional solidification furnace equipped with a water-cooled copper mold and a heater to produce a unidirectionally solidified ingot of 150 mm x 80 mm x 40 mm. Then, a test piece of 1 mm x 10 mm x 50 mm was cut out so that the longitudinal direction was the solidification direction. This test piece was cooled from 900 ° C to 450 ° C at 3 ° C / min, and further heated to 900 ° C at 10 ° C / min., and the cooling and heating cycle heat treatment was repeated 23 times, and then it was solution treated at 900 ° C for 3 hours and quenched by putting it into water.
こうして、長さ50mm、幅10mm、厚さ1mmの、板状のCu-17Al-14Mn合金試料を製造した。製造されたCu-17Al-14Mn合金試料は、単結晶であり、凝固方向に対する結晶方位が<100>方位である。 In this way, a plate-shaped Cu-17Al-14Mn alloy sample was produced, measuring 50 mm in length, 10 mm in width, and 1 mm in thickness. The produced Cu-17Al-14Mn alloy sample was a single crystal, with a crystal orientation relative to the solidification direction being the <100> orientation.
製造したCu-17Al-14Mn合金試料に対して引張試験を行った。引張方向は、凝固方向である。引張試験は、引張荷重を400MPaまでかけて戻し、次に引張荷重を450MPaまでかけて戻し、さらに引張荷重を500MPaまでかけて戻す、というように、上限応力を50MPaずつ増加しながら、引張荷重をかけて戻す手順を繰り返して行った。この引張試験により得られた応力ひずみ曲線を、図1に示す。 A tensile test was performed on the manufactured Cu-17Al-14Mn alloy sample. The tensile direction was the solidification direction. The tensile test was performed by repeatedly applying and releasing a tensile load up to 400 MPa, then up to 450 MPa, and then up to 500 MPa, increasing the upper limit stress by 50 MPa each time. The stress-strain curve obtained from this tensile test is shown in Figure 1.
図1に示すように、試料は、612MPaの応力で破壊されたが、それまでは、引張荷重をかけて戻す手順の繰り返しで、ほぼ同じ曲線上を移動しており、弾性変形していることが確認された。また、図1に示すように、応力(Engineering stress)が550MPaのときのひずみ(Engineering strain)が3.58%であり、応力が600MPaのときのひずみが4.31%であることが確認された。また、試料の最大弾性ひずみ量は4.31%であることが確認された。また、ひずみが大きくなるに従って、応力ひずみ曲線の傾きが徐々に小さくなり、ヤング率が変化していることが確認された。ひずみが3.58%のときの見かけ上のヤング率、すなわち、原点からひずみが3.58%までを線形とみなしたときのヤング率は15.4GPa、ひずみが4.31%のときの見かけ上のヤング率は14GPaであることが確認された。 As shown in Figure 1, the sample broke at a stress of 612 MPa, but up until then, the sample moved along almost the same curve by repeatedly applying and releasing a tensile load, and it was confirmed that the sample was elastically deformed. Also, as shown in Figure 1, it was confirmed that the engineering strain was 3.58% when the engineering stress was 550 MPa, and 4.31% when the stress was 600 MPa. It was also confirmed that the maximum elastic strain of the sample was 4.31%. It was also confirmed that the slope of the stress-strain curve gradually decreased as the strain increased, and that the Young's modulus changed. It was confirmed that the apparent Young's modulus at a strain of 3.58%, that is, the Young's modulus when the range from the origin to a strain of 3.58% is considered to be linear, was 15.4 GPa, and the apparent Young's modulus at a strain of 4.31% was 14 GPa.
2種類のCu-17Al-13.5Mn-3Ni合金(at%)を製造し、引張試験を行った。各Cu-17Al-13.5Mn-3Ni合金は、それぞれ図2(a)および(b)に示す工程により製造した。各工程では、まず、Cu;66.5at%、Al;17at%、Mn;13.5at%、Ni;3at%の組成を有する合金を溶解し、鋳型に鋳造して、直径34mmのインゴットを作製した。 Two types of Cu-17Al-13.5Mn-3Ni alloys (at%) were produced and tensile tests were performed. Each Cu-17Al-13.5Mn-3Ni alloy was produced by the process shown in Figures 2(a) and (b), respectively. In each process, first, an alloy with a composition of Cu; 66.5 at%, Al; 17 at%, Mn; 13.5 at%, Ni; 3 at% was melted and cast into a mold to produce an ingot with a diameter of 34 mm.
図2(a)に示す工程では、このインゴットに対して、900℃で熱間圧延(Hot rolling)を行って板状に加工した後、空冷(Air cooling)した。このときの板厚は、5.8mmである。次に、500℃で60分間の焼なましを行い、水中へ投入して急冷(Water quench)した後、冷間圧延(Cold rolling)を行って、さらに薄い板状に加工した。このときの板厚は3.3mmであり、圧延率は43.1%である。再び、600℃で60分間の焼なましを行い、水中へ投入して急冷した後、冷間圧延を行って、さらに薄い板状に加工した。このときの板厚は1.6mmであり、圧延率は51.5%である。再び、600℃で60分間の焼なましを行い、水中へ投入して急冷した後、冷間圧延を行って、さらに薄い板状に加工した。このときの板厚は1.0mmであり、圧延率は37.5%である。再び、500℃で30分間の焼なましを行い、水中へ投入して急冷した後、冷間圧延を行って、さらに薄い板状に加工した。このときの板厚は0.4mmであり、圧延率は60%である。ここまでの4回の冷間圧延の圧延率は、93.1%である。最後に、800℃まで3.3K/分で加熱し、800℃で10分間の熱処理を行い、水中へ投入して急冷した。こうして、多結晶で、微細な結晶粒を有するCu-17Al-13.5Mn-3Ni合金試料(以下では、「微細結晶粒試料」とも呼ぶ)を製造した。 In the process shown in FIG. 2(a), the ingot was hot rolled at 900°C to be processed into a plate shape, and then air cooled. The plate thickness at this time was 5.8 mm. Next, annealing was performed at 500°C for 60 minutes, quenched in water, and cold rolling was performed to further process it into a thinner plate shape. The plate thickness at this time was 3.3 mm, and the rolling ratio was 43.1%. Annealing was performed again at 600°C for 60 minutes, quenched in water, and cold rolling was performed to further process it into a thinner plate shape. The plate thickness at this time was 1.6 mm, and the rolling ratio was 51.5%. Annealing was performed again at 600°C for 60 minutes, quenched in water, and cold rolling was performed to further process it into a thinner plate shape. The plate thickness at this time was 1.0 mm, and the rolling ratio was 37.5%. The specimen was again annealed at 500°C for 30 minutes, quenched in water, and cold rolled to form a thinner plate. The plate thickness was 0.4 mm, and the reduction ratio was 60%. The reduction ratio of the four cold rolling processes was 93.1%. Finally, the specimen was heated to 800°C at 3.3 K/min, heat-treated at 800°C for 10 minutes, and quenched in water. In this way, a polycrystalline Cu-17Al-13.5Mn-3Ni alloy specimen with fine grains (hereinafter also referred to as a "fine grain specimen") was produced.
また、図2(b)に示す工程では、直径34mmのインゴットに対して、900℃で熱間圧延(Hot rolling)を行って板状に加工した後、空冷(Air cooling)した。このときの板厚は、5.8mmである。次に、500℃で60分間の焼なましを行い、水中へ投入して急冷(Water quench)した後、冷間圧延(Cold rolling)を行って、さらに薄い板状に加工した。このときの板厚は3.3mmであり、圧延率は43.1%である。再び、600℃で60分間の焼なましを行い、水中へ投入して急冷した後、冷間圧延を行って、さらに薄い板状に加工した。このときの板厚は1.6mmであり、圧延率は51.5%である。再び、500℃で30分間の焼なましを行い、水中へ投入して急冷した後、冷間圧延を行って、さらに薄い板状に加工した。このときの板厚は0.4mmであり、圧延率は75%である。ここまでの3回の冷間圧延の圧延率は、93.1%である。最後に、800℃まで0.5K/分で加熱し、800℃で10分間の熱処理を行い、水中へ投入して急冷した。こうして、多結晶で、粗大な結晶粒を有するCu-17Al-13.5Mn-3Ni合金試料(以下では、「粗大結晶粒試料」とも呼ぶ)を製造した。 In the process shown in FIG. 2(b), the ingot with a diameter of 34 mm was hot-rolled at 900°C to be processed into a plate shape, and then air-cooled. The plate thickness at this time was 5.8 mm. Next, annealing was performed at 500°C for 60 minutes, quenched in water, and cold-rolled to be processed into a thinner plate shape. The plate thickness at this time was 3.3 mm, and the rolling ratio was 43.1%. Annealing was performed again at 600°C for 60 minutes, quenched in water, and cold-rolled to be processed into a thinner plate shape. The plate thickness at this time was 1.6 mm, and the rolling ratio was 51.5%. Annealing was performed again at 500°C for 30 minutes, quenched in water, and cold-rolled to be processed into a thinner plate shape. The plate thickness at this time was 0.4 mm, and the rolling ratio was 75%. The reduction ratio of the three cold rollings up to this point was 93.1%. Finally, the sample was heated to 800°C at 0.5 K/min, heat-treated at 800°C for 10 minutes, and then quenched in water. In this way, a polycrystalline Cu-17Al-13.5Mn-3Ni alloy sample with coarse crystal grains (hereinafter also referred to as the "coarse crystal grain sample") was produced.
図2(a)の工程で製造された微細結晶粒試料、および、図2(b)の工程で製造された粗大結晶粒試料に対して、EBSD法による結晶方位解析を行った。得られた逆極点図方位マップおよび逆極点図を、それぞれ図3および図4に示す。なお、図3および図4に示すRD(rolling direction)は圧延方向、TD(transverse direction)は圧延面内で圧延方向に直交する方向、ND(normal direction)は圧延面の法線方向、MDは、圧延面内でRDに対して45度の方向である。 Crystal orientation analysis was performed using the EBSD method on the fine grain sample manufactured by the process in Figure 2(a) and the coarse grain sample manufactured by the process in Figure 2(b). The obtained inverse pole figure orientation map and inverse pole figure are shown in Figures 3 and 4, respectively. Note that the RD (rolling direction) shown in Figures 3 and 4 is the rolling direction, the TD (transverse direction) is the direction perpendicular to the rolling direction in the rolling plane, the ND (normal direction) is the normal direction to the rolling plane, and the MD is the direction at 45 degrees to the RD in the rolling plane.
微細結晶粒試料では、図3に示すように、半分程度の結晶粒の粒径が、板厚の0.4mmとほぼ同じか、それより大きくなっていることが確認された。また、図3(d)に示すように、MDで測定した70.9%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。粗大結晶粒試料では、図4に示すように、ほとんどの結晶粒の粒径が、板厚の0.4mmより大きくなっていることが確認された。また、図4(d)に示すように、MDで測定した87.9%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。 In the fine grain sample, as shown in Figure 3, it was confirmed that the grain size of about half of the grains was almost the same as or larger than the sheet thickness of 0.4 mm. In addition, as shown in Figure 3(d), it was confirmed that 70.9% of the grains measured by MD had a deviation angle from the crystal orientation <100> within the range of 0° to 30°, and the crystal orientation <100> was aligned in the rolling direction. In the coarse grain sample, as shown in Figure 4, it was confirmed that the grain size of most of the grains was larger than the sheet thickness of 0.4 mm. In addition, as shown in Figure 4(d), it was confirmed that 87.9% of the grains measured by MD had a deviation angle from the crystal orientation <100> within the range of 0° to 30°, and the crystal orientation <100> was aligned in the rolling direction.
次に、図2(a)の工程で製造された微細結晶粒試料、および、図2(b)の工程で製造された粗大結晶粒試料に対して、引張試験を行った。引張方向は、MDである。引張試験は、ひずみ量0.5%まで引っ張って戻し、次にひずみ量1.0%まで引っ張って戻し、さらにひずみ量1.5%まで引っ張って戻す、というように、上限ひずみ量を0.5%ずつ増加しながら、引張変形をさせてゼロ荷重まで戻す手順を繰り返して行った。この引張試験により得られた応力ひずみ曲線を、それぞれ図5(a)および(b)に示す。 Next, a tensile test was performed on the fine grain sample produced by the process in FIG. 2(a) and the coarse grain sample produced by the process in FIG. 2(b). The tensile direction was MD. The tensile test was performed by repeatedly pulling the sample to a strain of 0.5%, then pulling it to a strain of 1.0%, and then pulling it to a strain of 1.5%, and so on, increasing the upper limit strain by 0.5% each time and deforming it to zero load. The stress-strain curves obtained by this tensile test are shown in FIG. 5(a) and (b), respectively.
微細結晶粒試料は、図5(a)に示すように、621MPaの応力で破壊されたが、それまでは、引張荷重をかけて戻す手順の繰り返しで、曲線が若干ずれていくものの、ほぼ弾性変形していることが確認された。また、微細結晶粒試料の最大弾性ひずみ量は2.40%であることが確認された。また、ひずみが大きくなるに従って、応力ひずみ曲線の傾きが徐々に小さくなり、ヤング率が変化していることが確認された。ひずみが1.5%のときの見かけ上のヤング率は29GPaであることが確認された。 As shown in Figure 5(a), the fine crystal grain sample was broken at a stress of 621 MPa. However, it was confirmed that up until that point, the curve shifted slightly when the tensile load was applied and released repeatedly, but the sample was mostly elastically deformed. It was also confirmed that the maximum elastic strain of the fine crystal grain sample was 2.40%. It was also confirmed that as the strain increased, the slope of the stress-strain curve gradually became smaller, indicating a change in Young's modulus. It was confirmed that the apparent Young's modulus at a strain of 1.5% was 29 GPa.
粗大結晶粒試料は、図5(b)に示すように、約600MPaの応力で破壊されたが、それまでは、引張荷重をかけて戻す手順の繰り返しで、曲線が若干ずれていくものの、ほぼ弾性変形していることが確認された。また、粗大結晶粒試料の最大弾性ひずみ量は約3.25%であることが確認された。また、ひずみが大きくなるに従って、応力ひずみ曲線の傾きが徐々に小さくなり、ヤング率が変化していることが確認された。ひずみが2.5%のときの見かけ上のヤング率は21GPaであることが確認された。 As shown in Figure 5(b), the coarse grain sample was broken at a stress of about 600 MPa. However, it was confirmed that up until that point, the curve shifted slightly when the tensile load was applied and released repeatedly, but the sample was still largely elastically deformed. It was also confirmed that the maximum elastic strain of the coarse grain sample was about 3.25%. It was also confirmed that as the strain increased, the slope of the stress-strain curve gradually became smaller, indicating a change in Young's modulus. It was confirmed that the apparent Young's modulus at a strain of 2.5% was 21 GPa.
Cu-14.5Al-14.5Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した91.0%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は2.50%、見かけ上のヤング率は22GPaであることが確認された。 A Cu-14.5Al-14.5Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 91.0% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°, and that the crystal orientation <100> orientation was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, that the maximum elastic strain was 2.50%, and that the apparent Young's modulus was 22 GPa.
Cu-15Al-14Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した90.2%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は2.95%、見かけ上のヤング率は22GPaであることが確認された。 A Cu-15Al-14Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by EBSD method in the same manner as in Example 2. As a result, it was confirmed that 90.2% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°, and the crystal orientation <100> orientation was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, the maximum elastic strain was 2.95%, and the apparent Young's modulus was 22 GPa.
Cu-19Al-8Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した55.3%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は1.98%、見かけ上のヤング率は48GPaであることが確認された。 A Cu-19Al-8Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 55.3% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> within the range of 0° to 30°, and that the crystal orientation <100> was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, that the maximum elastic strain was 1.98%, and that the apparent Young's modulus was 48 GPa.
Cu-21Al-7Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した50.0%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は1.70%、見かけ上のヤング率は49GPaであることが確認された。 A Cu-21Al-7Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 50.0% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°, and the crystal orientation <100> orientation was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, with a maximum elastic strain of 1.70% and an apparent Young's modulus of 49 GPa.
Cu-17Al-10.5Mn-1Ni合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した68.4%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は2.02%、見かけ上のヤング率は30GPaであることが確認された。 A Cu-17Al-10.5Mn-1Ni alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 68.4% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°, and that the crystal orientation <100> orientation was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, that the maximum elastic strain was 2.02%, and that the apparent Young's modulus was 30 GPa.
Cu-21Al-6.3Mn-6Ni合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した62.8%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っており、結晶方位<100>方位が圧延方向に揃っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、破壊されるまではほぼ弾性変形しており、最大弾性ひずみ量は1.61%、見かけ上のヤング率は45GPaであることが確認された。 A Cu-21Al-6.3Mn-6Ni alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 62.8% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°, and that the crystal orientation <100> orientation was aligned in the rolling direction. In addition, a tensile test was performed on the manufactured alloy sample in the same manner as in Example 2. As a result, it was confirmed that the alloy was almost elastically deformed until it was broken, with a maximum elastic strain of 1.61% and an apparent Young's modulus of 45 GPa.
[比較例1]
比較例として、Cu-6.2Al-12.1Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した25.3%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、最大弾性ひずみ量は0.36%、見かけ上のヤング率は157GPaであることが確認された。
[Comparative Example 1]
As a comparative example, a Cu-6.2Al-12.1Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 25.3% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> within the range of 0° to 30°. In addition, the manufactured alloy sample was subjected to a tensile test in the same manner as in Example 2. As a result, it was confirmed that the maximum elastic strain was 0.36% and the apparent Young's modulus was 157 GPa.
[比較例2]
比較例として、Cu-16.1Al-21.3Mn合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した40.8%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、最大弾性ひずみ量は0.71%、見かけ上のヤング率は174GPaであることが確認された。
[Comparative Example 2]
As a comparative example, a Cu-16.1Al-21.3Mn alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 40.8% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> within the range of 0° to 30°. In addition, the manufactured alloy sample was subjected to a tensile test in the same manner as in Example 2. As a result, it was confirmed that the maximum elastic strain was 0.71% and the apparent Young's modulus was 174 GPa.
[比較例3]
比較例として、Cu-16.8Al-11.3Mn-11.4Ni合金(at%)を製造し、引張試験を行った。この合金は、実施例2の図2(a)に示す方法により製造した。製造後の合金試料に対して、実施例2と同様にして、EBSD法による結晶方位解析を行った。その結果、MDで測定した36.7%の結晶粒が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることが確認された。また、製造後の合金試料に対して、実施例2と同様にして、引張試験を行った。その結果、最大弾性ひずみ量は0.40%、見かけ上のヤング率は180GPaであることが確認された。
[Comparative Example 3]
As a comparative example, a Cu-16.8Al-11.3Mn-11.4Ni alloy (at%) was manufactured and subjected to a tensile test. This alloy was manufactured by the method shown in FIG. 2(a) of Example 2. The manufactured alloy sample was subjected to crystal orientation analysis by the EBSD method in the same manner as in Example 2. As a result, it was confirmed that 36.7% of the crystal grains measured by MD had a deviation angle from the crystal orientation <100> orientation within the range of 0° to 30°. In addition, the manufactured alloy sample was subjected to a tensile test in the same manner as in Example 2. As a result, it was confirmed that the maximum elastic strain was 0.40% and the apparent Young's modulus was 180 GPa.
実施例1~8、比較例1~3の合金組成および各試験結果をまとめ、表1に示す。表1に示すように、比較例1~3では、最大弾性ひずみ量が1%以下であったのに対し、実施例1~8では、少なくとも1.5%までは塑性変形がほとんど生じず、最大弾性ひずみ量が1.5%以上5%以下であり、広い弾性変形領域を有しているといえる。このため、本発明の実施の形態のCu-Al-Mn系合金は、例えば、バネ材や生体材料など、比較的大きいひずみを受けても弾性変形を行う必要がある材料として利用することができる。また、比較例1~3では、ヤング率が150GPa以上であるのに対し、実施例1~8では、ヤング率も50GPa以下と低いため、本発明の実施の形態のCu-Al-Mn系合金は、低ヤング率である必要がある材料として利用することもできる。 The alloy compositions and test results of Examples 1 to 8 and Comparative Examples 1 to 3 are summarized and shown in Table 1. As shown in Table 1, in Comparative Examples 1 to 3, the maximum elastic strain was 1% or less, whereas in Examples 1 to 8, plastic deformation hardly occurs up to at least 1.5%, and the maximum elastic strain is 1.5% or more and 5% or less, and it can be said that there is a wide elastic deformation range. Therefore, the Cu-Al-Mn alloy of the embodiment of the present invention can be used as a material that needs to undergo elastic deformation even when subjected to a relatively large strain, such as a spring material or a biomaterial. In addition, while the Young's modulus is 150 GPa or more in Comparative Examples 1 to 3, the Young's modulus is also low at 50 GPa or less in Examples 1 to 8, so the Cu-Al-Mn alloy of the embodiment of the present invention can also be used as a material that needs to have a low Young's modulus.
Claims (3)
単結晶から成り、電子線後方散乱回折(EBSD)法により測定した結晶粒の変形方向の結晶方位が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることを特徴とするCu-Al-Mn系合金。 % to 22 at% Al, 5 at% to 14.5 at% Mn, with the balance being Cu and unavoidable impurities; and the maximum elastic strain is 1.5% or more;
A Cu-Al-Mn alloy consisting of a single crystal, characterized in that the crystal orientation of the deformation direction of the crystal grains, as measured by electron backscatter diffraction (EBSD) method, has a deviation angle from the crystal orientation <100> within a range of 0° to 30° .
多結晶から成り、結晶粒の50%以上が、電子線後方散乱回折(EBSD)法により測定した変形方向の結晶方位が、結晶方位<100>方位からのずれ角度が0°~30°の範囲内に入っていることを
特徴とするCu-Al-Mn系合金。 % to 22 at% Al, 5 at% to 14.5 at% Mn, with the balance being Cu and unavoidable impurities; and the maximum elastic strain is 1.5% or more;
A Cu-Al-Mn alloy comprising polycrystals, characterized in that 50% or more of the crystal grains have a crystal orientation in the deformation direction, as measured by electron backscatter diffraction (EBSD), with a deviation angle from the crystal orientation <100> within the range of 0° to 30°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019174725A JP7497007B2 (en) | 2019-09-25 | 2019-09-25 | Cu-Al-Mn alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019174725A JP7497007B2 (en) | 2019-09-25 | 2019-09-25 | Cu-Al-Mn alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021050396A JP2021050396A (en) | 2021-04-01 |
JP7497007B2 true JP7497007B2 (en) | 2024-06-10 |
Family
ID=75157147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019174725A Active JP7497007B2 (en) | 2019-09-25 | 2019-09-25 | Cu-Al-Mn alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7497007B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020026A (en) | 1999-07-08 | 2001-01-23 | Kiyohito Ishida | Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture |
JP2005298952A (en) | 2004-04-15 | 2005-10-27 | Chuo Spring Co Ltd | Damping material and its production method |
WO2011152009A1 (en) | 2010-05-31 | 2011-12-08 | 社団法人 日本銅センター | Copper-based alloy and structural material comprising same |
JP2015021146A (en) | 2013-07-16 | 2015-02-02 | 株式会社古河テクノマテリアル | WROUGHT PRODUCT MADE OF Cu-Al-Mn-BASED ALLOY MATERIAL EXCELLENT IN STRESS CORROSION RESISTANCE |
JP2015054977A (en) | 2013-09-10 | 2015-03-23 | 古河電気工業株式会社 | Cu-Al-Mn BASED ALLOY MATERIAL EXCELLENT IN BREAKING EXTENSION AND SEISMIC CONTROL MEMBER USING THE SAME |
CN104963994A (en) | 2015-06-02 | 2015-10-07 | 北京科技大学 | Cu-Al-Mn shape memory alloy damping device for precise instrument and manufacturing method of Cu-Al-Mn shape memory alloy damping device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09321209A (en) * | 1996-03-28 | 1997-12-12 | Furukawa Electric Co Ltd:The | Pin mount package, pin material therefor and manufacture thereof of the pin material |
-
2019
- 2019-09-25 JP JP2019174725A patent/JP7497007B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020026A (en) | 1999-07-08 | 2001-01-23 | Kiyohito Ishida | Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture |
JP2005298952A (en) | 2004-04-15 | 2005-10-27 | Chuo Spring Co Ltd | Damping material and its production method |
WO2011152009A1 (en) | 2010-05-31 | 2011-12-08 | 社団法人 日本銅センター | Copper-based alloy and structural material comprising same |
JP2015021146A (en) | 2013-07-16 | 2015-02-02 | 株式会社古河テクノマテリアル | WROUGHT PRODUCT MADE OF Cu-Al-Mn-BASED ALLOY MATERIAL EXCELLENT IN STRESS CORROSION RESISTANCE |
JP2015054977A (en) | 2013-09-10 | 2015-03-23 | 古河電気工業株式会社 | Cu-Al-Mn BASED ALLOY MATERIAL EXCELLENT IN BREAKING EXTENSION AND SEISMIC CONTROL MEMBER USING THE SAME |
CN104963994A (en) | 2015-06-02 | 2015-10-07 | 北京科技大学 | Cu-Al-Mn shape memory alloy damping device for precise instrument and manufacturing method of Cu-Al-Mn shape memory alloy damping device |
Non-Patent Citations (3)
Title |
---|
T. KUSAMA et al.,"Ultra-large single crystals by abnormal grain growth",Nature Communications,2017年08月25日,Vol.8, No.1,pp.1-9,DOI: 10.1038/s41467-017-00383-0 |
大森俊洋 外4名,「Cu‐Al‐Mn‐Ni形状記憶合金の超塑性」,銅と銅合金,2006年08月01日,第45巻1号,pp.282-286 |
大森俊洋 外5名,「サイクル熱処理誘起異常粒成長によるCu-Al-Mn大型部材の単結晶化と超弾性」,2018年(第162回)日本金属学会春期講演大会 講演概要集,公益社団法人日本金属学会,2018年03月05日,p.243 |
Also Published As
Publication number | Publication date |
---|---|
JP2021050396A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849231B2 (en) | α-β type titanium alloy | |
He et al. | TiNiNb wide hysteresis shape memory alloy with low niobium content | |
US11078563B2 (en) | TiAl alloy and method of manufacturing the same | |
WO2012115187A1 (en) | Ti-mo alloy and method for producing same | |
KR101643838B1 (en) | Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same | |
WO2013180122A1 (en) | Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy | |
WO2014157146A1 (en) | Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same | |
JP5636532B2 (en) | Oxide dispersion strengthened steel and manufacturing method thereof | |
JP7387139B2 (en) | Titanium alloy, its manufacturing method, and engine parts using it | |
JP2021050391A (en) | Cu-Al-Mn-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP7497007B2 (en) | Cu-Al-Mn alloy | |
JP2012107282A (en) | Titanium alloy member having bidirectional shape memory characteristic and manufacturing method of the same | |
JP5512145B2 (en) | Shape memory alloy | |
JP6673121B2 (en) | α + β type titanium alloy rod and method for producing the same | |
CN109477169B (en) | Aluminum alloy plastic working material and method for producing same | |
WO2017179652A1 (en) | Titanium alloy and method for producing material for timepiece exterior parts | |
JP4528109B2 (en) | Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same | |
GUO et al. | Full shape memory effect of Cu-13.5 Al-4Ni-6Fe shape memory martensite single crystal | |
JP5929251B2 (en) | Iron alloy | |
JP2004183079A (en) | Titanium alloy and method for manufacturing titanium alloy material | |
US20110318220A1 (en) | Titanium alloys and method for manufacturing titanium alloy materials | |
KR102604458B1 (en) | Commercially pure titanium having high strength and high uniform ductility and method of manufacturing the same | |
KR20240152806A (en) | Age-hardened Ti-Ni-Cu shape memory alloy and manufacturing method thereof | |
JP2013185249A (en) | Iron alloy | |
JP2009007679A (en) | Titanium alloy, and method for producing titanium alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190926 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20231108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7497007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |