JP7496981B2 - Magnetostrictive composite material and method for producing the same - Google Patents

Magnetostrictive composite material and method for producing the same Download PDF

Info

Publication number
JP7496981B2
JP7496981B2 JP2020071912A JP2020071912A JP7496981B2 JP 7496981 B2 JP7496981 B2 JP 7496981B2 JP 2020071912 A JP2020071912 A JP 2020071912A JP 2020071912 A JP2020071912 A JP 2020071912A JP 7496981 B2 JP7496981 B2 JP 7496981B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
composite material
alloy
magnetostrictive composite
linear bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020071912A
Other languages
Japanese (ja)
Other versions
JP2021168371A (en
Inventor
真金 王
史生 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2020071912A priority Critical patent/JP7496981B2/en
Publication of JP2021168371A publication Critical patent/JP2021168371A/en
Application granted granted Critical
Publication of JP7496981B2 publication Critical patent/JP7496981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

特許法第30条第2項適用 ・ウェブサイトのアドレス:https://doi.org/10.1299/jsmemecj.2019.S03112 ウェブサイトの掲載日:2019年(令和1年)9月2日 ・集 会 名:日本機械学会2019年度年次大会 開 催 日:2019年(令和1年)9月8日~9月11日 ・ウェブサイトのアドレス:https://www.mdpi.com/journal/materials ウェブサイトの掲載日:2020年(令和2年)3月25日Article 30, paragraph 2 of the Patent Act applies. Website address: https://doi.org/10.1299/jsmemecj.2019.S03112 Website posting date: September 2, 2019 (Reiwa 1) Meeting name: 2019 Annual Meeting of the Japan Society of Mechanical Engineers Date held: September 8 to 11, 2019 (Reiwa 1) Website address: https://www.mdpi.com/journal/materials Website posting date: March 25, 2020 (Reiwa 2)

本発明は、磁歪複合材料および磁歪複合材料の製造方法に関する。 The present invention relates to a magnetostrictive composite material and a method for manufacturing a magnetostrictive composite material.

従来、可撓性を有するやわらかい磁歪材料は存在しないため、磁歪材料を樹脂に混合した、やわらかい磁歪複合材料の開発が行われており、例えば、超磁歪材料のTerfenol-Dの粒子をポリマー母材に分散させた磁歪複合材料が開発されている(例えば、非特許文献1乃至4参照)。また、本発明者等により、鉄基磁歪合金から成り残留応力を有する線材や薄板を、充填材(フィラー)として母材(マトリックス)に埋め込んだものも開発されている(例えば、特許文献1参照)。 Since there are no flexible soft magnetostrictive materials to date, soft magnetostrictive composite materials have been developed by mixing magnetostrictive materials with resins. For example, magnetostrictive composite materials have been developed in which particles of the giant magnetostrictive material Terfenol-D are dispersed in a polymer matrix (see, for example, Non-Patent Documents 1 to 4). The inventors have also developed a material in which wires or thin plates made of iron-based magnetostrictive alloys and having residual stress are embedded in a matrix as a filler (see, for example, Patent Document 1).

T. A. Duenasa, G. P. Carman, “Particle distribution study for low-volume fraction magnetostrictive composites”, J. Appl. Phys., 2001, 90, p.2433-2439T. A. Duenasa, G. P. Carman, “Particle distribution study for low-volume fraction magnetostrictive composites”, J. Appl. Phys., 2001, 90, p.2433-2439 X. Dong, J. Ou, X. Guan, M. Qi, “Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance”, J. Mag. Mag, Mater., 2010, 322, p.3648-3652X. Dong, J. Ou, X. Guan, M. Qi, “Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance”, J. Mag. Mag, Mater., 2010, 322, p.3648-3652 M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, “Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes”, J. Mater. Sci., 2012, 47, p.5752-5759M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, “Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes”, J. Mater. Sci., 2012, 47, p.5752-5759 M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, “Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: Evaluation of stress detection”, J. Mater. Sci., 2013, 48, p.6578-6584M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, “Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: Evaluation of stress detection”, J. Mater. Sci., 2013, 48, p.6578-6584

特開2017-163119号公報JP 2017-163119 A

しかしながら、非特許文献1乃至4に記載の磁歪複合材料は、やわらかいが、強加工により、内部の結晶配向性が変化したり、内部欠陥が発生したりするため、磁歪特性が大幅に低下してしまうという課題があった。また、特許文献1に記載の磁歪複合材料は、所定の太さ(例えば、直径1mm)および長さ(例えば、長さ15~19mm)を有する磁歪材料から成る充填材を、母材を貫くように埋め込んでいるため、やや硬いという課題があった。 However, the magnetostrictive composite materials described in Non-Patent Documents 1 to 4 are soft, but have the problem that the magnetostrictive properties are significantly reduced due to changes in the internal crystal orientation and the occurrence of internal defects when subjected to strong processing. In addition, the magnetostrictive composite material described in Patent Document 1 has the problem that it is somewhat hard because a filler made of a magnetostrictive material having a specified diameter (e.g., diameter 1 mm) and length (e.g., length 15 to 19 mm) is embedded so as to penetrate the base material.

本発明は、このような課題に着目してなされたもので、比較的やわらかく、優れた磁歪特性を有する磁歪複合材料および磁歪複合材料の製造方法を提供することを目的とする。 The present invention was made with a focus on these problems, and aims to provide a magnetostrictive composite material that is relatively soft and has excellent magnetostrictive properties, and a method for manufacturing the magnetostrictive composite material.

上記目的を達成するために、本発明に係る磁歪複合材料は、鉄基磁歪合金から成り、径が0.03mm乃至0.15mm、長さが1mm乃至4mmである多数の線状体が、体積濃度で3%乃至7%の割合で、樹脂から成る母材にランダムに分散されており、可撓性を有していることを特徴とする。 In order to achieve the above object, the magnetostrictive composite material of the present invention is characterized in that it is made of an iron-based magnetostrictive alloy, has a large number of linear bodies having a diameter of 0.03 mm to 0.15 mm and a length of 1 mm to 4 mm , and is randomly dispersed in a matrix made of resin at a volume concentration of 3% to 7%, and has flexibility.

本発明に係る磁歪複合材料は、鉄基磁歪合金から成る多数の線状体が、樹脂から成る母材に分散されているため、磁歪材料が母材を貫くように埋め込まれている従来のものと比べて、可撓性に優れ、たわみやすくやわらかい。また、優れた磁歪特性を有しており、強加工による磁歪特性の変化も小さい。 The magnetostrictive composite material of the present invention has numerous linear bodies made of an iron-based magnetostrictive alloy dispersed in a base material made of resin, and is therefore more flexible, bendable, and softer than conventional materials in which the magnetostrictive material is embedded so as to penetrate the base material. It also has excellent magnetostrictive properties, and changes in magnetostrictive properties due to heavy processing are small.

本発明に係る磁歪複合材料は、磁歪特性を発現させるために、たわみやすい形状を成していることが好ましく、例えば、シート状や細長い線状であることが好ましい。また、本発明に係る磁歪複合材料で、母材は、多数の線状体を分散可能なものであれば、いかなる樹脂から成っていてもよく、例えば、エポキシ樹脂から成っていてもよい。 The magnetostrictive composite material according to the present invention is preferably in a shape that is easily flexible in order to exhibit magnetostrictive properties, for example, in the form of a sheet or elongated wire. Furthermore, in the magnetostrictive composite material according to the present invention, the base material may be made of any resin, for example, epoxy resin, as long as it is capable of dispersing a large number of wires.

本発明に係る磁歪複合材料で、鉄基磁歪合金は、磁歪特性を有するものであれば、Fe-Co合金やFe-Ga合金など、いかなるものであってもよいが、例えば、高強度かつ高延性であり、優れた加工性を有し、線状体を容易に作製可能なFe-Co合金から成ることが好ましい。この場合、磁歪特性に優れたFe-Co合金として、Coを50at%乃至90at%含むものから成ることが好ましく、特に、Coを69at%乃至79at%含むものから成ることが好ましい。 In the magnetostrictive composite material according to the present invention, the iron-based magnetostrictive alloy may be any alloy, such as an Fe-Co alloy or an Fe-Ga alloy, so long as it has magnetostrictive properties. However, it is preferable that the alloy is an Fe-Co alloy, which has high strength and ductility, excellent workability, and allows for easy fabrication of a linear body. In this case, the Fe-Co alloy with excellent magnetostrictive properties is preferably one containing 50 at% to 90 at% Co, and more preferably one containing 69 at% to 79 at% Co.

本発明に係る磁歪複合材料、前記多数の線状体径が0.03mm乃至0.15mm、長さが1mm乃至4mmであるため、優れた磁歪特性を有すると共に、特に優れた可撓性を有している。また、本発明に係る磁歪複合材料は、前記母材に対して、前記多数の線状体を体積濃度で3.5%乃至5.5%の割合で含んでいることが好ましい。この場合、特に優れた磁歪特性を有している。 The magnetostrictive composite material according to the present invention has excellent magnetostrictive properties and particularly excellent flexibility since the diameter of the numerous filaments is 0.03 mm to 0.15 mm and the length is 1 mm to 4 mm. The magnetostrictive composite material according to the present invention preferably contains the numerous filaments at a volume concentration of 3.5 % to 5.5% relative to the base material. In this case, the magnetostrictive composite material has particularly excellent magnetostrictive properties.

本発明に関し、磁歪複合材料は、前記多数の線状体の長さ方向が、前記母材中でランダムに分布していても良いが、所定の方向に揃っていてもよい。多数の線状体の長さ方向が所定の方向に揃っている場合、磁歪特性を高めることができる。 In the magnetostrictive composite material of the present invention, the length directions of the numerous linear bodies may be randomly distributed in the base material, or may be aligned in a predetermined direction. When the length directions of the numerous linear bodies are aligned in a predetermined direction, the magnetostrictive properties can be improved.

本発明に係る磁歪複合材料の製造方法は、鉄基磁歪合金から成り、径が0.03mm乃至0.15mm、長さが1mm乃至4mmである多数の線状体を、母材となる溶かした樹脂中に、体積濃度で3%乃至7%の割合で入れて混合し、前記多数の線状体の長さ方向が、前記母材中でランダムに分布するよう、その混合物を型に入れて固化させることを特徴とする。 The manufacturing method of the magnetostrictive composite material according to the present invention is characterized in that a large number of linear bodies made of an iron-based magnetostrictive alloy and having a diameter of 0.03 mm to 0.15 mm and a length of 1 mm to 4 mm are mixed into a molten resin that serves as a base material at a volume concentration of 3% to 7% , and the mixture is placed in a mold and solidified so that the length directions of the large number of linear bodies are randomly distributed in the base material .

本発明に係る磁歪複合材料の製造方法は、比較的やわらかく、優れた磁歪特性を有する、本発明に係る磁歪複合材料を好適に製造することができる。本発明に係る磁歪複合材料の製造方法は、シート状の磁歪複合材料を製造することが好ましい。また、本発明に係る磁歪複合材料の製造方法で、鉄基磁歪合金は、Coを69at%乃至79at%含むFe-Co合金から成ることが好ましい。 The method for producing a magnetostrictive composite material according to the present invention can suitably produce a magnetostrictive composite material according to the present invention that is relatively soft and has excellent magnetostrictive properties. The method for producing a magnetostrictive composite material according to the present invention preferably produces a sheet-shaped magnetostrictive composite material. In the method for producing a magnetostrictive composite material according to the present invention, the iron-based magnetostrictive alloy is preferably an Fe-Co alloy containing 69 at % to 79 at % Co.

本発明に係る磁歪複合材料の製造方法は、母材に対して、多数の線状体を体積濃度で3.5%乃至5.5%の割合で混合することが好ましい。また、多数の線状体の長さ方向が、母材中で所定の方向に揃うよう、混合物を固化させてもよい。
In the method for producing a magnetostrictive composite material according to the present invention, it is preferable to mix a large number of linear bodies with a matrix material at a volume concentration of 3.5 % to 5.5%. The mixture may be solidified so that the length directions of the linear bodies are aligned in a predetermined direction in the matrix material.

本発明によれば、比較的やわらかく、優れた磁歪特性を有する磁歪複合材料および磁歪複合材料の製造方法を提供することができる。 The present invention provides a magnetostrictive composite material that is relatively soft and has excellent magnetostrictive properties, and a method for manufacturing the magnetostrictive composite material.

本発明の実施の形態の磁歪複合材料の製造方法を示す、(a)斜視図、(b)平面図、(c)~(f)断面図、(g)平面図である。1A to 1G are a perspective view, a plan view, cross-sectional views, and a plan view showing a manufacturing method of a magnetostrictive composite material according to an embodiment of the present invention. 本発明の実施の形態の磁歪複合材料の、長さ方向に対して平行方向(Parallel)および垂直方向(Vertical)に磁場をかけたときの磁化曲線を示すグラフである。1 is a graph showing magnetization curves of a magnetostrictive composite material according to an embodiment of the present invention when a magnetic field is applied in a parallel direction and a vertical direction to the length direction. 本発明の実施の形態の磁歪複合材料の、線状体の含有量が2.5%、4%、6.5%のときの磁歪曲線を示すグラフである。1 is a graph showing magnetostriction curves of a magnetostrictive composite material according to an embodiment of the present invention when the content of linear bodies is 2.5%, 4%, and 6.5%. 本発明の実施の形態の磁歪複合材料の、線状体の(a)二次電子(SE)像、(b)反射電子(BSE)像、(c)イメージクオリティ(IQ)マップ、(d)逆極点図方位マップ(白黒で示した)である。1A and 1B are (a) a secondary electron (SE) image, (b) a backscattered electron (BSE) image, (c) an image quality (IQ) map, and (d) an inverse pole figure orientation map (shown in black and white) of a linear body of a magnetostrictive composite material according to an embodiment of the present invention. 本発明の実施の形態の磁歪複合材料の、線状体の磁歪曲線を示すグラフである。4 is a graph showing a magnetostriction curve of a linear body of a magnetostrictive composite material according to an embodiment of the present invention. 本発明の実施の形態の磁歪複合材料の、線状体の原料であるバルク状のFe-Co合金の(a)磁歪曲線を示すグラフ、(b)逆極点図方位マップ(白黒で示した)である。1A is a graph showing a magnetostriction curve of a bulk Fe--Co alloy which is the raw material for the linear body of a magnetostrictive composite material according to an embodiment of the present invention, and FIG. 1B is an inverse pole figure orientation map (shown in black and white). 本発明の実施の形態の磁歪複合材料、および、バルク状のFe-Co合金の圧磁定数(Piezomagnetic constant)の測定値(Experiment)、並びに、本発明の実施の形態の磁歪複合材料の、各線状体の長さ方向が母材中でランダムに分布しているもの、および、各線状体の長さ方向が母材中で所定の方向に揃っているものの圧磁定数の計算値(Calculation)を示すグラフである。1 is a graph showing experimental values of the piezomagnetic constant of a magnetostrictive composite material according to an embodiment of the present invention and a bulk Fe-Co alloy, as well as calculated values of the piezomagnetic constant of a magnetostrictive composite material according to an embodiment of the present invention, in which the length direction of each linear body is randomly distributed in the base material, and in which the length direction of each linear body is aligned in a predetermined direction in the base material. 本発明の実施の形態の磁歪複合材料の、有限要素法での計算に用いた(a)代表体積要素(RVE)モデルの縦断面図、(b)横断面図、(c)各要素に分割したモデルを示す斜視図である。1A is a longitudinal section of a representative volume element (RVE) model used in a finite element method calculation of a magnetostrictive composite material according to an embodiment of the present invention, FIG. 1B is a transverse section of the model, and FIG. 1C is a perspective view of the model divided into each element.

以下、図面に基づいて、本発明の実施の形態について説明する。
図1乃至図8は、本発明の実施の形態の磁歪複合材料および磁歪複合材料の製造方法を示している。
図1(g)に示すように、磁歪複合材料10は、シート状を成し、鉄基磁歪合金から成る多数の線状体11が、樹脂から成る母材12に分散されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 to 8 show a magnetostrictive composite material and a method for manufacturing the magnetostrictive composite material according to an embodiment of the present invention.
As shown in FIG. 1(g), the magnetostrictive composite material 10 is in the form of a sheet, and a large number of linear bodies 11 made of an iron-based magnetostrictive alloy are dispersed in a matrix 12 made of resin.

具体的な一例では、鉄基磁歪合金は、Coを69at%乃至79at%含むFe-Co合金から成っているが、Fe-Co合金に限らず、磁歪特性を有するものであれば、いかなるものであってもよい。また、線状体11は、径が0.03mm乃至0.15mm、長さが1mm乃至4mmである。また、母材12は、エポキシ樹脂から成っているが、エポキシ樹脂に限らず、多数の線状体11を分散可能なものであれば、いかなる樹脂から成っていてもよい。また、磁歪複合材料10は、母材12に対して、多数の線状体11を体積濃度で3%乃至7%の割合で含んでいる。 In a specific example, the iron-based magnetostrictive alloy is made of an Fe-Co alloy containing 69 at% to 79 at% Co, but it is not limited to an Fe-Co alloy and may be any alloy that has magnetostrictive properties. The linear body 11 has a diameter of 0.03 mm to 0.15 mm and a length of 1 mm to 4 mm. The base material 12 is made of epoxy resin, but it is not limited to epoxy resin and may be made of any resin that can disperse a large number of linear bodies 11. The magnetostrictive composite material 10 contains a large number of linear bodies 11 in the base material 12 at a volume concentration of 3% to 7%.

磁歪複合材料10は、本発明の実施の形態の磁歪複合材料の製造方法により、好適に製造することができる。すなわち、図1に示すように、本発明の実施の形態の磁歪複合材料の製造方法によれば、まず、バルク状のFe-Co合金(図1(a)参照)を引き延ばして、細いファイバー状にし、所定の長さに切断して、多数の線状体11を形成する(図1(b)参照)に示す。 The magnetostrictive composite material 10 can be suitably manufactured by the manufacturing method of the magnetostrictive composite material according to the embodiment of the present invention. That is, as shown in FIG. 1, according to the manufacturing method of the magnetostrictive composite material according to the embodiment of the present invention, first, a bulk Fe-Co alloy (see FIG. 1(a)) is stretched to form thin fibers, which are then cut to a predetermined length to form a large number of linear bodies 11 (see FIG. 1(b)).

次に、溶かしたエポキシ樹脂21に、硬化剤22と共に、多数の線状体11を入れ(図1(c)参照)、それらを撹拌して混合した後(図1(d)参照)、その混合物23を型に入れて(図1(e)参照)、所定の温度で所定の時間貯蔵する(図1(f)参照)。図1に示す具体的な一例では、23℃で24時間貯蔵した後、80℃で3時間貯蔵する。これにより、混合物23が固化し、図1(g)に示す薄いシート状の磁歪複合材料10を製造することができる。 Next, a large number of linear bodies 11 are placed into the molten epoxy resin 21 together with a hardener 22 (see FIG. 1(c)), which are then stirred and mixed (see FIG. 1(d)), and the mixture 23 is placed in a mold (see FIG. 1(e)), and stored at a predetermined temperature for a predetermined time (see FIG. 1(f)). In a specific example shown in FIG. 1, the mixture is stored at 23°C for 24 hours, and then at 80°C for 3 hours. This causes the mixture 23 to solidify, and a thin sheet-like magnetostrictive composite material 10 as shown in FIG. 1(g) can be produced.

磁歪複合材料10は、鉄基磁歪合金から成る多数の線状体11が、樹脂から成る母材12に分散されているため、磁歪材料が母材を貫くように埋め込まれている従来のものと比べて、可撓性に優れ、たわみやすくやわらかい。また、優れた磁歪特性を有しており、強加工による磁歪特性の変化も小さい。特に、鉄基磁歪合金として、磁歪特性に優れ、高強度かつ高延性で、優れた加工性を有するFe-Co合金を用いているため、線状体11を容易に作製可能であり、特に優れた磁歪特性を有する磁歪複合材料10を得ることができる。 The magnetostrictive composite material 10 has numerous linear bodies 11 made of an iron-based magnetostrictive alloy dispersed in a matrix 12 made of resin, and is therefore more flexible, easier to bend, and softer than conventional magnetostrictive materials in which the magnetostrictive material is embedded so as to penetrate the matrix. It also has excellent magnetostrictive properties, and changes in magnetostrictive properties due to heavy processing are small. In particular, since an Fe-Co alloy that has excellent magnetostrictive properties, high strength, high ductility, and excellent processability is used as the iron-based magnetostrictive alloy, the linear bodies 11 can be easily produced, and a magnetostrictive composite material 10 with particularly excellent magnetostrictive properties can be obtained.

図1に示す本発明の実施の形態の磁歪複合材料の製造方法により、磁歪複合材料10を製造した。製造する磁歪複合材料10の形状は、長さが70mm、幅が25mm、厚みが0.45mmの薄くて細長い矩形のシート状とした。鉄基磁歪合金としては、Coを71at%含むFe-Co合金を用いた。また、線状体11は、直径を50μm、長さを2mmとした。また、母材12に対して、多数の線状体11を体積濃度でそれぞれ2.5%、4%、6.5%の割合で含む3種類の磁歪複合材料10を製造した。なお、多数の線状体11は、その長さ方向が母材12中でランダムに分布している。製造した各磁歪複合材料10は、いずれも、長さ方向に沿ってたわみやすい可撓性を有しており、長さ方向に沿って曲げたときの最小の曲率半径は22.5mmであった。 A magnetostrictive composite material 10 was manufactured by the manufacturing method of the magnetostrictive composite material according to the embodiment of the present invention shown in FIG. 1. The magnetostrictive composite material 10 was manufactured in the form of a thin, elongated rectangular sheet with a length of 70 mm, a width of 25 mm, and a thickness of 0.45 mm. An Fe-Co alloy containing 71 at% Co was used as the iron-based magnetostrictive alloy. The linear body 11 had a diameter of 50 μm and a length of 2 mm. Three types of magnetostrictive composite materials 10 were manufactured, each containing a large number of linear bodies 11 at a volume concentration of 2.5%, 4%, and 6.5% relative to the base material 12. The length direction of the large number of linear bodies 11 was randomly distributed in the base material 12. Each of the manufactured magnetostrictive composite materials 10 had flexibility that easily bent along the length direction, and the minimum radius of curvature when bent along the length direction was 22.5 mm.

まず、線状体11を4%の割合で含む磁歪複合材料10を、長さ6mm、幅6mmに切断して試験片を作製し、振動試料型磁力計(VSM)により、外部磁場(H)に対する磁化(M)の変化を調べた。磁歪複合材料10の長さ方向に対して平行方向(Parallel)および垂直方向(Vertical)に磁場をかけたときの磁化曲線を、図2に示す。 First, a magnetostrictive composite material 10 containing 4% of linear bodies 11 was cut into a length of 6 mm and a width of 6 mm to prepare a test piece, and the change in magnetization (M) relative to an external magnetic field (H) was examined using a vibrating sample magnetometer (VSM). Figure 2 shows the magnetization curves when a magnetic field was applied parallel and perpendicular to the length direction of the magnetostrictive composite material 10.

図2に示すように、磁歪複合材料10の長さ方向に対して平行方向に磁場をかけたときは、磁化は非線形となるが、磁歪複合材料10の長さ方向に対して垂直方向に磁場をかけたときは、磁化はほぼ線形となることが確認された。このことから、磁歪複合材料10は、その長さ方向に対して平行方向の方が、垂直方向よりも優れた透磁率を有しているといえる。 As shown in FIG. 2, when a magnetic field is applied parallel to the length of the magnetostrictive composite material 10, the magnetization becomes nonlinear, but when a magnetic field is applied perpendicular to the length of the magnetostrictive composite material 10, the magnetization becomes nearly linear. From this, it can be said that the magnetostrictive composite material 10 has a higher magnetic permeability parallel to its length than perpendicular to it.

次に、ひずみゲージを用いて、製造した各磁歪複合材料10に対し、外部磁場(H)に対する磁歪量(Strain)の変化を調べた。そのときの磁歪曲線を、図3に示す。図3に示すように、線状体11を4%の割合で含む磁歪複合材料10が、最も磁歪量が大きいことが確認された。また、線状体11を6.5%の割合で含む磁歪複合材料10も、磁歪現象が認められたが、線状体11を2.5%の割合で含む磁歪複合材料10では、磁歪現象が認められなかった。また、磁歪現象が発生している磁歪複合材料10では、線状体11を4%の割合で含むものの方が、線状体11を6.5%の割合で含むものよりも小さい磁場で磁歪現象が発生しており、感度が高いことが確認された。 Next, a strain gauge was used to examine the change in magnetostriction (Strain) with respect to the external magnetic field (H) for each magnetostrictive composite material 10 produced. The magnetostriction curves are shown in FIG. 3. As shown in FIG. 3, it was confirmed that the magnetostrictive composite material 10 containing 4% of the linear body 11 had the largest amount of magnetostriction. In addition, the magnetostrictive phenomenon was observed in the magnetostrictive composite material 10 containing 6.5% of the linear body 11, but not in the magnetostrictive composite material 10 containing 2.5% of the linear body 11. In addition, in the magnetostrictive composite material 10 in which magnetostriction occurred, the magnetostrictive phenomenon occurred in the one containing 4% of the linear body 11 in a smaller magnetic field than the one containing 6.5% of the linear body 11, and it was confirmed that the sensitivity was higher.

走査型電子顕微鏡(SEM)を用い、線状体11の断面観察、および、結晶方位解析を行った。線状体11の二次電子(SE)像、反射電子(BSE)像、イメージクオリティ(IQ)マップ、および逆極点図方位マップを、それぞれ図4(a)~(d)に示す。また、線状体11の磁歪曲線を、図5に示す。また、比較のため、線状体11の原料であるバルク状のFe-Co合金の磁歪曲線および逆極点図方位マップを、図6(a)および(b)に示す。 A scanning electron microscope (SEM) was used to observe the cross section of the linear body 11 and to analyze the crystal orientation. The secondary electron (SE) image, backscattered electron (BSE) image, image quality (IQ) map, and inverse pole figure orientation map of the linear body 11 are shown in Figures 4(a) to (d), respectively. The magnetostriction curve of the linear body 11 is shown in Figure 5. For comparison, the magnetostriction curve and inverse pole figure orientation map of the bulk Fe-Co alloy, which is the raw material of the linear body 11, are shown in Figures 6(a) and (b).

図6(b)に示すように、バルク状のFe-Co合金は、結晶が粒子状を成しているのに対し、図4に示すように、線状体11は、その長さ方向(引き延ばし方向)に沿って、結晶も引き延ばされていることが確認された。また、図5に示すように、線状体11は、図6(a)に示すバルク状のものと比べて、磁歪(Magnetostriction)の飽和量は小さくなっているものの、感度は高いままであることが確認された。 As shown in FIG. 6(b), the bulk Fe-Co alloy has granular crystals, whereas, as shown in FIG. 4, the linear body 11 has crystals that are stretched along its length (stretching direction). As shown in FIG. 5, the linear body 11 has a smaller saturation amount of magnetostriction than the bulk one shown in FIG. 6(a), but the sensitivity remains high.

線状体11を4%の割合で含む磁歪複合材料10、および、バルク状のFe-Co合金の圧磁定数(Piezomagnetic constant)を測定し、図7に示す。また、線状体11を4%の割合で含み、各線状体11の長さ方向が母材12中でランダムに分布しているもの、および、各線状体11の長さ方向が母材12中で所定の方向に揃っているものについて、有限要素法を用いて計算した圧磁定数も、図7に示す。なお、図中の棒グラフの数値は、それぞれの圧磁定数である。 The piezomagnetic constants of a magnetostrictive composite material 10 containing 4% of linear bodies 11 and a bulk Fe-Co alloy were measured and are shown in Figure 7. Figure 7 also shows the piezomagnetic constants calculated using the finite element method for a material containing 4% of linear bodies 11, with the length direction of each linear body 11 randomly distributed in the base material 12, and for a material in which the length direction of each linear body 11 is aligned in a predetermined direction in the base material 12. The numerical values in the bar graphs in the figure are the respective piezomagnetic constants.

なお、有限要素法に用いた代表体積要素(RVE)モデルを図8(a)および(b)に、各要素に分割したモデルを図8(c)に示す。有限要素法で用いた要素は 126,144個、ノードは 137,500個である。また、線状体11に使用する要素を、全体の 3.96%の 5,000個とした。計算では、各線状体11同士の相互作用は無視している。また、計算に用いたFe-Co合金の弾性コンプライアンス(elastic compliances;s)、圧磁定数(piezomagnetic constants;d)、および透磁率(magnetic permeabilities;μ)を、表1に示す。また、母材12のエポキシ樹脂のヤング率およびポアソン比を、それぞれE = 3.78 GPa および ν = 0.36 とした。 The representative volume element (RVE) model used in the finite element method is shown in Figure 8 (a) and (b), and the model divided into each element is shown in Figure 8 (c). The number of elements used in the finite element method is 126,144, and the number of nodes is 137,500. The number of elements used for the linear bodies 11 is 5,000, which is 3.96% of the total. In the calculation, the interaction between the linear bodies 11 is ignored. The elastic compliances (s), piezomagnetic constants (d), and magnetic permeabilities (μ) of the Fe-Co alloy used in the calculation are shown in Table 1. The Young's modulus and Poisson's ratio of the epoxy resin of the base material 12 are E = 3.78 GPa and ν = 0.36, respectively.

図7に示すように、線状体11を4%の割合で含む磁歪複合材料10は、バルク状のFe-Co合金よりも圧磁定数が大きく、3~4倍程度になっていることが確認された。また、製造した磁歪複合材料10の圧磁定数の測定値と、各線状体11の長さ方向が母材12中でランダムに分布しているものの圧磁定数の計算値とがほぼ一致していることが確認された。このことから、今回用いた有限要素法のモデルにより、圧磁定数をほぼ正確に計算できているといえる。また、計算の結果、各線状体11の長さ方向を揃えることにより、圧磁定数が約1.6倍になることが確認された。このことから、各線状体11の長さ方向を揃えることにより、さらに圧磁定数を大きくすることが可能であり、磁歪特性を高めることができるといえる。 As shown in FIG. 7, it was confirmed that the magnetostrictive composite material 10 containing 4% of the linear bodies 11 has a larger piezoelectric constant than the bulk Fe-Co alloy, about 3 to 4 times larger. It was also confirmed that the measured value of the piezoelectric constant of the manufactured magnetostrictive composite material 10 and the calculated value of the piezoelectric constant of the linear bodies 11 whose length directions are randomly distributed in the base material 12 almost matched. From this, it can be said that the piezoelectric constant can be calculated almost accurately by the finite element method model used in this study. Furthermore, as a result of the calculation, it was confirmed that the piezoelectric constant becomes about 1.6 times larger by aligning the length directions of the linear bodies 11. From this, it can be said that it is possible to further increase the piezoelectric constant and improve the magnetostrictive properties by aligning the length directions of the linear bodies 11.

10 磁歪複合材料
11 線状体
12 母材

21 溶かしたエポキシ樹脂
22 硬化剤
23 混合物
10 magnetostrictive composite material 11 linear body 12 base material

21 Melted epoxy resin 22 Hardener 23 Mixture

Claims (5)

鉄基磁歪合金から成り、径が0.03mm乃至0.15mm、長さが1mm乃至4mmである多数の線状体が、体積濃度で3%乃至7%の割合で、樹脂から成る母材にランダムに分散されており、可撓性を有していることを特徴とする磁歪複合材料。 A magnetostrictive composite material characterized in that it is made of an iron-based magnetostrictive alloy, has a large number of linear bodies with a diameter of 0.03 mm to 0.15 mm and a length of 1 mm to 4 mm , and is randomly dispersed in a resin matrix at a volume concentration of 3% to 7%, and has flexibility. シート状であることを特徴とする請求項1記載の磁歪複合材料。 The magnetostrictive composite material according to claim 1, characterized in that it is in sheet form. 前記鉄基磁歪合金は、Coを69at%乃至79at%含むFe-Co合金から成ることを特徴とする請求項1または2記載の磁歪複合材料。 The magnetostrictive composite material according to claim 1 or 2, characterized in that the iron-based magnetostrictive alloy is an Fe-Co alloy containing 69 at% to 79 at% Co. 前記母材に対して、前記多数の線状体を体積濃度で3.5%乃至5.5%の割合で含んでいることを特徴とする請求項1乃至のいずれか1項に記載の磁歪複合材料。 4. The magnetostrictive composite material according to claim 1, wherein the matrix contains the numerous filaments at a volume concentration of 3.5% to 5.5%. 鉄基磁歪合金から成り、径が0.03mm乃至0.15mm、長さが1mm乃至4mmである多数の線状体を、母材となる溶かした樹脂中に、体積濃度で3%乃至7%の割合で入れて混合し、前記多数の線状体の長さ方向が、前記母材中でランダムに分布するよう、その混合物を型に入れて固化させることを特徴とする磁歪複合材料の製造方法。 A method for producing a magnetostrictive composite material, comprising the steps of: mixing a large number of linear bodies made of an iron-based magnetostrictive alloy, each having a diameter of 0.03 mm to 0.15 mm and a length of 1 mm to 4 mm, into a molten resin that serves as a base material at a volume concentration of 3% to 7% , and then pouring the mixture into a mold and solidifying it so that the longitudinal directions of the large number of linear bodies are randomly distributed in the base material.
JP2020071912A 2020-04-13 2020-04-13 Magnetostrictive composite material and method for producing the same Active JP7496981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071912A JP7496981B2 (en) 2020-04-13 2020-04-13 Magnetostrictive composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071912A JP7496981B2 (en) 2020-04-13 2020-04-13 Magnetostrictive composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021168371A JP2021168371A (en) 2021-10-21
JP7496981B2 true JP7496981B2 (en) 2024-06-10

Family

ID=78079945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071912A Active JP7496981B2 (en) 2020-04-13 2020-04-13 Magnetostrictive composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP7496981B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035711A (en) 1999-07-16 2001-02-09 Kyocera Corp Synthetic resin substrate for wave absorber
JP2015092562A (en) 2013-09-30 2015-05-14 大同特殊鋼株式会社 Soft magnetic thin wire and manufacturing method thereof, mesh sheet for ac use, sintered sheet for ac use, rubber sheet for ac use, and laminate sheet for ac use
JP2017163119A (en) 2016-03-11 2017-09-14 国立大学法人東北大学 Composite reinforced type magnetostrictive composite material and method for manufacturing the same
JP2018186286A (en) 2018-07-03 2018-11-22 デクセリアルズ株式会社 Electromagnetic wave absorption thermal conduction sheet, method of manufacturing the same, and semiconductor device
JP2020009866A (en) 2018-07-05 2020-01-16 住友電気工業株式会社 Inductor, circuit board, and power supply
JP2020021864A (en) 2018-08-02 2020-02-06 加川 清二 Electromagnetic wave absorption composite sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035711A (en) 1999-07-16 2001-02-09 Kyocera Corp Synthetic resin substrate for wave absorber
JP2015092562A (en) 2013-09-30 2015-05-14 大同特殊鋼株式会社 Soft magnetic thin wire and manufacturing method thereof, mesh sheet for ac use, sintered sheet for ac use, rubber sheet for ac use, and laminate sheet for ac use
JP2017163119A (en) 2016-03-11 2017-09-14 国立大学法人東北大学 Composite reinforced type magnetostrictive composite material and method for manufacturing the same
JP2018186286A (en) 2018-07-03 2018-11-22 デクセリアルズ株式会社 Electromagnetic wave absorption thermal conduction sheet, method of manufacturing the same, and semiconductor device
JP2020009866A (en) 2018-07-05 2020-01-16 住友電気工業株式会社 Inductor, circuit board, and power supply
JP2020021864A (en) 2018-08-02 2020-02-06 加川 清二 Electromagnetic wave absorption composite sheet

Also Published As

Publication number Publication date
JP2021168371A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Elhajjar et al. Magnetostrictive polymer composites: Recent advances in materials, structures and properties
Narita Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites
Chen et al. Bending strength and flexibility of ZnO nanowires
Narita et al. Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction
Kobayashi et al. Low-field magnetic characterization of ferromagnets using a minor-loop scaling law
Bormio-Nunes et al. Volume magnetostriction and structure of copper mold-cast polycrystalline Fe–Ga alloys
Nguyen et al. Magnetoelectric properties of nickel nanowires-P (VDF–TrFE) composites
Chen et al. The effect of field-orientation on the magnetoelectric coupling in Terfenol-D/PZT/Terfenol-D laminated structure
Fang et al. Mesostructural origin of stress-induced magnetic anisotropy in Fe-based nanocrystalline ribbons
Zhang et al. “Lattice Strain Matching”‐Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms
Wang et al. Fabrication, modeling and characterization of magnetostrictive short fiber composites
JP7496981B2 (en) Magnetostrictive composite material and method for producing the same
JP6884299B2 (en) Composite reinforced magnetostrictive composite material and its manufacturing method
Yoon et al. Tunable Young’s moduli of soft composites fabricated from magnetorheological materials containing microsized iron particles
Lanotte et al. The potentiality of composite elastic magnets as novel materials for sensors and actuators
Fujieda et al. Significant reduction in Young's modulus of Fe–Ga alloy single crystal by inverse magnetostrictive effect under tensile stress
Chen et al. The influence of low-level pre-stressing on resonant magnetoelectric coupling in Terfenol-D/PZT/Terfenol-D laminated composite structure
Favieres et al. Surface roughness influence on Néel-, crosstie, and bloch-type charged zigzag magnetic domain walls in nanostructured Fe films
Liu et al. Magnetostriction under high prestress in Fe81Ga19 crystal
Ma et al. Magnetic force microscopy study of magnetically annealed Tb0. 36Dy0. 64 (Fe0. 85Co0. 15) 2 polycrystals
Tasin et al. Magnetostriction Enhancement in Midrange Modulus Magnetorheological Elastomers for Sensor Applications
Akdemir et al. Degeneration of mechanical characteristics and performances with Zr nanoparticles inserted in Bi-2223 superconducting matrix and increment in dislocation movement and cracks propagation
Keino et al. Negative magnetostrictive paper formed by dispersing CoFe2O4 particles in cellulose nanofibrils
Gao et al. The effective properties of three-dimensional giant magnetostrictive composites
Ahmad Khairi et al. Effect of mould orientation on the field-dependent properties of MR elastomers under shear deformation

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521

R150 Certificate of patent or registration of utility model

Ref document number: 7496981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150