JP2017163119A - Composite reinforced type magnetostrictive composite material and method for manufacturing the same - Google Patents

Composite reinforced type magnetostrictive composite material and method for manufacturing the same Download PDF

Info

Publication number
JP2017163119A
JP2017163119A JP2016048929A JP2016048929A JP2017163119A JP 2017163119 A JP2017163119 A JP 2017163119A JP 2016048929 A JP2016048929 A JP 2016048929A JP 2016048929 A JP2016048929 A JP 2016048929A JP 2017163119 A JP2017163119 A JP 2017163119A
Authority
JP
Japan
Prior art keywords
magnetostrictive
composite material
material according
filler
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048929A
Other languages
Japanese (ja)
Other versions
JP6884299B2 (en
Inventor
史生 成田
Fumio Narita
史生 成田
泰文 古屋
Yasubumi Furuya
泰文 古屋
研次 表
Kenji Omote
研次 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Ideal Star Inc
Yokohama National University NUC
Original Assignee
Tohoku University NUC
Ideal Star Inc
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Ideal Star Inc, Yokohama National University NUC filed Critical Tohoku University NUC
Priority to JP2016048929A priority Critical patent/JP6884299B2/en
Publication of JP2017163119A publication Critical patent/JP2017163119A/en
Application granted granted Critical
Publication of JP6884299B2 publication Critical patent/JP6884299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a composite reinforced type magnetostrictive composite material which can be spread in many fields as an "independent power generation type" smart material having a light weight, a robust, high strength, a large generation power, and durability against a stress load; and a method for manufacturing the magnetostrictive composite material.SOLUTION: A magnetostrictive fiber reinforced type composite material having a high generation power with a residual tensile stress included therein is manufactured by the steps of: mixing a base material with a hardening agent in certain proportions; arraying FeCo fibers in one direction in a mold; pouring the resultant base material into the mold in a state in which a stress is loaded on the fibers by a weight, followed by hardening at a room temperature for 24 hours; and further, putting the resultant hardened FeCo fiber-reinforced composite material in a thermostatic oven to keep heating the composite material at 80°C for three hours for causing the post-hardening of the composite material. A magnetostrictive fiber reinforced type composite material with a higher performance can be manufactured by performing a thermal treatment on the FeCo fibers. In addition, the composite material can be optimized in combination of a theoretical analysis.SELECTED DRAWING: Figure 5

Description

本発明は、複合強化型の磁歪複合材料及びその製造方法に係り、より詳細には、磁歪合金フィラーを埋め込んだ、ロバスト(強靱)かつ軽量性を具えた自己発電型スマート複合強化型の磁歪複合材料及びその製造方法に関する。   The present invention relates to a composite reinforced magnetostrictive composite material and a method for manufacturing the same, and more particularly, a self-powered smart composite reinforced magnetostrictive composite having a robust and light weight embedded with a magnetostrictive alloy filler. The present invention relates to a material and a manufacturing method thereof.

その機能発現の原理は、磁歪合金が外力(応力)を受けると、ひずみエネルギーが材料内部に及び、その結晶内のミクロ的な磁気モーメント領域(以下、磁区または磁気ドメイン(Magnetic Domainと表示する)の発生や移動挙動に影響を及ぼし、ついには、試料表面から応力に対応した形で漏れ磁束が発生する、いわゆる“逆磁歪現象”を利用する。   The principle of its function is that when a magnetostrictive alloy receives an external force (stress), the strain energy reaches inside the material, and the micro magnetic moment region in the crystal (hereinafter referred to as magnetic domain or magnetic domain) The so-called “reverse magnetostriction phenomenon” is used in which leakage flux is generated in a form corresponding to the stress from the sample surface.

そのような機能を有す磁歪合金を薄板や細線に加工して、ポリマー、金属、セラミックスからなる母材(マトリックス)に適切に埋め込み、複合強化と同時に逆磁歪効果(漏れ磁束現象)を増強して、外力センサや振動発電機能を高めた、複合機能型でスマートな複合材料を提供するものである。   A magnetostrictive alloy with such a function is processed into a thin plate or thin wire, and is appropriately embedded in a matrix (matrix) made of polymer, metal, or ceramics to enhance the inverse magnetostriction effect (leakage flux phenomenon) at the same time as composite reinforcement. Therefore, it is intended to provide a composite functional and smart composite material with enhanced external force sensor and vibration power generation functions.

本発明による新素材は,鉄基の新磁歪FeCo過剰型合金を主として用いるので、従来の希土類系や希少金属からなる磁歪合金よりも、高強度、耐久性、耐食性に優れており、母材側に埋め込むフィラー(充填材)比率を低減化できるので、その複合材料製品はしなやかさと軽量性を具備できる。   Since the new material according to the present invention mainly uses an iron-based new magnetostrictive FeCo excess type alloy, it has higher strength, durability and corrosion resistance than conventional magnetostrictive alloys made of rare earths or rare metals. Since the ratio of the filler (filler) embedded in can be reduced, the composite material product can be flexible and lightweight.

また、磁歪合金フィラーの有する逆磁歪効果から、外力に対応して、それ相応の漏れ磁束をバルク複合材料表面外部に発生(放出)機能特性が有るので、磁性型応力センサ―のみならず繰り返し負荷重下では、コイル装着により、振動発電力を抽出できる特徴がある。   In addition, due to the inverse magnetostrictive effect of the magnetostrictive alloy filler, the corresponding leakage flux is generated (released) outside the surface of the bulk composite material in response to external forces. Under heavy load, it is possible to extract vibration power by attaching a coil.

この材料開発で使用し、母材に埋め込まれたFeCo系磁歪合金は、伸びもあり、母材側との成形一体化の自由度もあるので、製品応用への適用性を大幅に拡げることが可能となる。   The FeCo magnetostrictive alloy used in the development of this material and embedded in the base material has elongation and freedom of molding and integration with the base material side, so the applicability to product applications can be greatly expanded. It becomes possible.

すなわち、以上から、軽量、ロバスト高強度、大発電力、応力負荷に耐える磁歪型複合バルク材料として、スポーツ製品、車(車体・タイヤ)、航空・宇宙機器部品、インフラ構造体材料、さらには、医療・福祉機器部材、さらには、将来的には、ウエアラブルIoTデバイスへのマイクロ電池機能へも適用可能であり、“自立発電型”スマート材料として内外最初の新素材になり得る。   That is, from the above, as a magnetostrictive composite bulk material that can withstand light weight, robust high strength, large electric power, stress load, sports products, cars (body / tire), aerospace equipment parts, infrastructure structure materials, It can be applied to medical and welfare equipment members, and in the future, to micro battery functions for wearable IoT devices, and may be the first new material inside and outside of the “self-sustaining power generation” smart material.

インターネットは,世界中で20億人以上のユーザーを持っており,様々なデバイス間のコミュニケーションを図って,ユーザーの経験と生活の質をさらに改善する可能性を有している。「モノのインターネット, Internet of things “IoT“」は,例えば,ロボット,ヘルスケア,リアルタイムモニタリング[非特許文献1]等の待望のアプリケーションとビジネスの機会を提供可能にする技術である。一方,エネルギーハーベスティングは,ワイヤレス通信ノードに関する動力の代替となりえる最近注目されている技術であり,振動や運動から直接エネルギーを回収することを目指し,多くの研究が行われている。   The Internet has more than 2 billion users worldwide and has the potential to further improve user experience and quality of life by communicating between various devices. “Internet of things“ IoT ”” is a technology that makes it possible to provide long-awaited applications and business opportunities such as robots, healthcare, and real-time monitoring [Non-Patent Document 1]. On the other hand, energy harvesting is a technology that has recently been attracting attention as an alternative to power for wireless communication nodes, and many studies have been conducted with the aim of directly recovering energy from vibration and motion.

磁歪材料は,エネルギー回収を可能とするため,高い磁歪特性を有し,大量生産可能で,低コストな材料が要求されている[非特許文献2]。テルビウム,ジスプロシウムおよび鉄から成るTerfenol-Dは,巨大な磁歪(800−1600ppm)と低い磁気異方性[非特許文献3]のため,重要な磁歪材料として認められている。このため,Davinoら[非特許文献4]は,様々な応力と磁場下でTerfenol-Dロッドの磁歪・磁気特性を検討し,最大の磁気弾性定数が比較的低い圧縮プレストレスとバイアス磁場で達成できることを示している。また,交通からエネルギーを回収するTerfenol-D電力発生子の設計手法がViolaら[非特許文献5]によって提案されている。   In order to enable energy recovery, magnetostrictive materials have high magnetostrictive characteristics, can be mass-produced, and are low-cost materials [Non-Patent Document 2]. Terfenol-D, which consists of terbium, dysprosium and iron, is recognized as an important magnetostrictive material due to its huge magnetostriction (800-1600ppm) and low magnetic anisotropy [Non-Patent Document 3]. For this reason, Davino et al. [Non-Patent Document 4] studied the magnetostriction and magnetic properties of Terfenol-D rods under various stresses and magnetic fields, and achieved the maximum magnetoelastic constant with relatively low compression prestress and bias magnetic field. It shows what you can do. A design method for Terfenol-D power generators that recover energy from traffic has been proposed by Viola et al. [Non Patent Literature 5].

さらに,森ら[非特許文献6]は,Terfenol-D板を利用した共振調整機能を有するカンチレバーの動的曲げと環境発電特性に関する研究を理論・実験両面から行っている。Terfenol-Dはエネルギーハーベスティング材料として有望であるが、脆性や,有効な周波数領域を制限する高い渦電流の発生など,いくつかの問題によって,圧電材料の代替材料としての使用が制限されている。   Furthermore, Mori et al. [Non-Patent Document 6] are conducting research on the dynamic bending and energy harvesting characteristics of cantilevers with a resonance adjustment function using Terfenol-D plates, both theoretically and experimentally. Terfenol-D is a promising energy harvesting material, but its use as an alternative to piezoelectric materials is limited by several issues, including brittleness and the generation of high eddy currents that limit the effective frequency range .

これらの問題がきっかけとなり,複合材料を利用して上記問題を解決する検討が行われてきている。最近,Terfenol-D粒子をポリマー母材に分散させた磁歪複合材料が,高い引張強度と小さな渦電流損失[非特許文献7-9]のために注目を集めている。Kubickaら[非特許文献10、11]は,Terfenol-D粒子分散エポキシ樹脂の応力誘起磁束密度に及ぼすTerfenol-D粒子の分散量とサイズの影響を明らかにした。また,Yoffeら[非特許文献12]は,Terfenol-D粒子分散エポキシ複合材料の外力誘起磁場の新しいモデルを提案した。   These problems have led to studies to solve the above problems using composite materials. Recently, a magnetostrictive composite material in which Terfenol-D particles are dispersed in a polymer matrix has attracted attention because of its high tensile strength and small eddy current loss [Non-Patent Document 7-9]. Kubicka et al. [Non-Patent Documents 10 and 11] clarified the influence of the amount and size of Terfenol-D particles dispersed on the stress-induced magnetic flux density of Terfenol-D particle-dispersed epoxy resin. Yoffe et al. [Non-Patent Document 12] proposed a new model of the external force-induced magnetic field of Terfenol-D particle-dispersed epoxy composites.

Galfenolとして知られているFe−Ga合金は,400ppmの磁歪を示し,一部の研究者はGalfenol振動電力発生器のエネルギーハーベスティング特性を研究している[非 特許文献13、14]。しかしながら,それらも生産・加工が難しい、高価などなどの欠点を有していて、本格的な環境発電材料とては不完全で適期事例も少なく、製品化には至っていないのが現状である。   The Fe-Ga alloy known as Galfenol exhibits a magnetostriction of 400 ppm, and some researchers have studied the energy harvesting characteristics of Galfenol oscillating power generators [13, 14]. However, they also have drawbacks such as difficulty in production and processing, high costs, etc., and they are incomplete as full-scale energy harvesting materials, have few timely cases, and have not yet been commercialized.

以上から、従来技術の米国製(特許)の磁歪合金素材2種(希少金属系FeGa系(Galfenol)、希土類系Terfenol−D)の問題点と利用限界は以下の通りとなる。
1)鋳造材料は脆く、難加工性で2次加工(線材、板材強加工(圧延、線引き)は“不可能”であった。
2)この2種類の磁歪合金の剛性は鉄系よりも半分以下であり柔らかく、2次加工(強加工)に伴い、内部に(結晶配向性変化、内部欠陥(われ、転位密度の不均質性、内部応力不均質性)が発生して、磁気/磁歪特性が大幅に低下してしまう。それゆえに、2次加工材から得られる圧延薄板や絞り込み細線の入手は不可能であり、それを用いた工業製品は皆無であった。
From the above, the problems and limits of use of the two conventional magnetostrictive alloy materials (rare metal FeGa (Galenol), rare earth Terfenol-D) made in the United States (patent) are as follows.
1) The casting material was brittle, difficult to process, and secondary processing (wire material, plate material strong processing (rolling, wire drawing) was “impossible”.
2) The rigidity of these two types of magnetostrictive alloys is less than half that of iron-based alloys and is soft, and with secondary processing (strong processing), the inside (crystal orientation change, internal defects (crack, dislocation density inhomogeneity) (Internal stress inhomogeneity) occurs, and the magnetic / magnetostrictive properties are greatly reduced.Therefore, it is impossible to obtain rolled thin plates and narrowed wires obtained from secondary processed materials. There were no industrial products.

一方、最近(2011年)になって,Fe1−xCo磁歪(x=50−90at%)合金が鍛造・冷間加工によって開発され,様々な合金組成と熱処理の影響が検討されている[15]。また、高いCo含有量のFe−Co合金に対する熱処理の影響も研究されている[16]。Fe−Co合金は,高強度,延性,優れた加工性を示し,Fe−Co合金繊維も容易に作製可能である。 On the other hand, recently (2011), Fe 1-x Co x magnetostrictive (x = 50-90 at%) alloys have been developed by forging and cold working, and the effects of various alloy compositions and heat treatments have been studied. [15]. The effects of heat treatment on Fe-Co alloys with high Co content have also been studied [16]. The Fe—Co alloy exhibits high strength, ductility, and excellent workability, and an Fe—Co alloy fiber can be easily produced.

高アスペクト比による磁歪連続Fe−Co合金繊維は,様々な特色(低反磁界係数,強い磁気結晶異方性など)を示すため,Fe−Co繊維をポリマー中に分散させることで,高い磁歪特性を有する複合材料の開発が期待される。さらに,ポリマー複合材料は,軽量で,作製時にプレレストレス効果が付与されるなど、Fe−Co繊維の特徴を生かした高品質の複合材料設計が可能となる。   Magnetostrictive continuous Fe-Co alloy fibers with a high aspect ratio exhibit various characteristics (low demagnetizing factor, strong magnetocrystalline anisotropy, etc.), so high magnetostrictive properties can be obtained by dispersing Fe-Co fibers in the polymer. The development of composite materials with Furthermore, the polymer composite material is lightweight, and a high-quality composite material design that makes use of the characteristics of the Fe-Co fiber, such as providing a pre-restressing effect at the time of production, becomes possible.

C. Han, J. M. Jornet, E. Fadel, I. F. Akyildiz, Comput. Networks57,622-633 (2013).C. Han, J. M. Jornet, E. Fadel, I. F. Akyildiz, Comput. Networks 57,622-633 (2013). L. Wang, F. G. Yuan, Smart Mater. Struct.17,045009 (2008).L. Wang, F. G. Yuan, Smart Mater.Struct.17,045009 (2008). A. E. Clark, B. F. De Savage, R. Bozorth, Phys. Rev. 138 , A216-A224(1965 ).A. E. Clark, B. F. De Savage, R. Bozorth, Phys. Rev. 138, A216-A224 (1965). D. Davino, A. Giustiniani, C. Visone, Phys. B407,1427-1432 (2012).D. Davino, A. Giustiniani, C. Visone, Phys. B407, 1427-1432 (2012). A. Viola, V. Franzitta, G. Cipriani, V. D. Dio, F. M. Raimondi, M.Trapanese, IEEE Trans. Mag. 51 , 8208404 (2015 ).A. Viola, V. Franzitta, G. Cipriani, V. D. Dio, F. M. Raimondi, M. Trapanese, IEEE Trans. Mag. 51, 8208404 (2015). K. Mori, T. Horibe, S. Ishikawa, Y. Shindo, F. Narita, Smart Mater.Struct. 24 , 125032 (2015 ) .K. Mori, T. Horibe, S. Ishikawa, Y. Shindo, F. Narita, Smart Mater.Struct. 24, 125032 (2015). T. A. Duenasa, G. P. Carman, J. Appl. Phys.90,2433-2439 (2001).T. A. Duenasa, G. P. Carman, J. Appl. Phys. 90, 2433-2439 (2001). X. Dong, J. Ou, X. Guan, M. Qi, J. Mag. Mag, Mater.322,3648-3652(2010). .X. Dong, J. Ou, X. Guan, M. Qi, J. Mag. Mag, Mater. 322, 3648-3652 (2010). J. Kaleta, D. Lewandowski, R. Mech, Arch. Civil Mech. Eng., in press.J. Kaleta, D. Lewandowski, R. Mech, Arch. Civil Mech. Eng., In press. M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, J. Mater.Sci.47,5752-5759 (2012).M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, J. Mater.Sci. 47,5752-5759 (2012). M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, J. Mater.Sci. 48, 6578-6584 (2013).M. Kubicka, T. Mahrholz, A. Kuhn, P. Wierach, M. Sinapius, J. Mater.Sci. 48, 6578-6584 (2013). A. Yoffe, Y. Weber, D. Shilo, J. Mech. Phys. Solids 85 ,203-218(2015).A. Yoffe, Y. Weber, D. Shilo, J. Mech. Phys. Solids 85, 203-218 (2015). B. Rezaeealam, T. Ueno, S. Yamada, IEEE Tran. Magnetics 48 , 3977-3980(2010) .B. Rezaeealam, T. Ueno, S. Yamada, IEEE Tran. Magnetics 48, 3977-3980 (2010). S. Kita, T. Ueno, S. Yamada, J. Appl. Phys. 117 , 17B508 (2015 ).S. Kita, T. Ueno, S. Yamada, J. Appl. Phys. 117, 17B508 (2015). S. Yamaura, T. Nakajima, T. Satoh, T. Ebata, Y. Furuya, Mater. Sci.Eng. B 193, 121−129 (2015).S. Yamaura, T. Nakajima, T. Satoh, T. Ebata, Y. Furuya, Mater. Sci. Eng. B 193, 121-129 (2015). N. Kimura, T. Kubota, T. Yamamoto, S. Fukuoka, Y. Furuya, J. JapanInst. Met. Mater. 79 , 441-446 (2015).N. Kimura, T. Kubota, T. Yamamoto, S. Fukuoka, Y. Furuya, J. JapanInst. Met. Mater. 79, 441-446 (2015). :横山 雅紀,山浦 真一,久保田健,岡崎 禎子, 砂川 和彦,島田 宗勝,古屋 泰文, “磁歪リング式トルクセンサ素子としての高磁歪Fe-Co-V系合金の特性”,材料の科学と工学, 50,32-37 (2013).): Masaki Yokoyama, Shinichi Yamaura, Ken Kubota, Atsuko Okazaki, Kazuhiko Sunagawa, Munekatsu Shimada, Yasufumi Furuya, “Characteristics of High Magnetostrictive Fe-Co-V Alloys as Magnetostrictive Ring Type Torque Sensor Elements”, Materials Science and Engineering, 50,32-37 (2013).) K. Mori, Y. Shindo, F. Narita, Smart Mater. Struct. 21 , 115003(2012) .K. Mori, Y. Shindo, F. Narita, Smart Mater.Struct. 21, 115003 (2012). Z. Jia, W. Liu, Y. Zhang, F. Wang, D. Guo, Sens. Actuators A 128,158-164(2006).Z. Jia, W. Liu, Y. Zhang, F. Wang, D. Guo, Sens. Actuators A 128, 158-164 (2006). Z. G. Zhang, T. Ueno, T. Yamazaki, T. Higuchi, IEEE Tran. Magnetics46, 1641-1644 (2010).Z. G. Zhang, T. Ueno, T. Yamazaki, T. Higuchi, IEEE Tran. Magnetics 46, 1641-1644 (2010). Y. Wan, D. Fang, K.-C. Hwang, Int. J. Non-Linear Mech.38,1053-1065(2003).Y. Wan, D. Fang, K.-C. Hwang, Int. J. Non-Linear Mech. 38,1053-1065 (2003). H. Hauser, J. Appl. Phys.96,2753-2767 (2004).H. Hauser, J. Appl. Phys. 96,2753-2767 (2004). M. Karsten, Probleme der Technischen Magnetisierungskurve, Springer,Berlin,1938.M. Karsten, Probleme der Technischen Magnetisierungskurve, Springer, Berlin, 1938. Y. Furuya, J. Jp. Welding Soc. 64,120-125 (1995).Y. Furuya, J. Jp. Welding Soc. 64, 120-125 (1995).

特開2014−84484号公報JP 2014-84484 A 特開2013−177664号公報JP 2013-177664 A

本発明では、この新開発FeCo過剰型フィラー繊維の特徴を生かした磁歪繊維強化型複合材料を開発し,理論・実験両面から、磁歪発電型複合材料の最適設計技術を提供する。そして、繰り返し負荷下での試験体からの漏れ磁束の強さを計測し、試験片周囲に設置したコイルにより電力を抽出することにより、理論解析と実験データを比較・検討して、振動発電材料と負荷条件を明らかにすることで、高出力のエネルギーハーベスティング特性を有するスマートな複合材料を用いた環境発電デバイス応用を目指すものである。   In the present invention, a magnetostrictive fiber reinforced composite material utilizing the characteristics of the newly developed FeCo excess filler fiber is developed, and an optimum design technique for the magnetostrictive power generation composite material is provided from both theoretical and experimental viewpoints. Then, by measuring the strength of the magnetic flux leakage from the specimen under repeated loading and extracting the power with a coil installed around the specimen, the theoretical analysis and the experimental data were compared and examined, and the vibration power generation material By clarifying the load conditions, we aim to apply energy harvesting devices using smart composite materials with high output energy harvesting characteristics.

繊維強化型複合材料を設計・試作する場合、母材(マトリクス)側に埋め込む薄板・線材形態の充填材(フィラー)が必要になる。しかし、従来の米国製(特許)の磁歪合金素材2種、すなわち、希少金属系FeGa2元素系(Galfenol)および希土類系Terfenol−D)は脆く、難加工性であり、2次加工(圧延、線引き)による薄板材や細線材化への強加工は事実上“不可能”であった。   When designing and prototyping a fiber reinforced composite material, a filler (filler) in the form of a thin plate or wire embedded in the base material (matrix) side is required. However, two conventional magnetostrictive alloy materials made in the United States (patent), that is, rare metal FeGa2 element (Galfenol) and rare earth terfenol-D, are brittle and difficult to process, and secondary processing (rolling, drawing) ) The strong processing of thin plate materials and thin wire materials by (3) was virtually impossible.

この課題に対して、本発明で用いる填材(フィラー)は,最近、日本で開発された鉄基のFeCo過剰型系合金を採用することで解決を目指している。すなわち、2次加工による一ミリメートル以下の細線化・薄板化が可能となり、また。その後の適切な熱処理に伴う改質効果により、従来の希土類系や希少金属からなる磁歪合金よりも、高強度、耐久性、耐食性に優れており、母材側に埋め込むフィラー(充填材)比率を低減化できる。   To solve this problem, the filler (filler) used in the present invention is aimed at solving the problem by adopting an iron-based FeCo-rich alloy recently developed in Japan. In other words, it is possible to reduce the thickness to 1 mm or less by secondary processing and to make it thinner. Due to the reforming effect associated with the subsequent heat treatment, it is superior in strength, durability, and corrosion resistance compared to conventional magnetostrictive alloys made of rare earth or rare metals, and the filler (filler) ratio embedded in the base material side It can be reduced.

その複合材料製品はしなやかさと軽量性を具えており、母材側との成形一体化の自由度もあるので、製品応用への適用性を大幅に拡げることが可能となる。すなわち、軽量、ロバスト高強度、大発電力、応力負荷に耐える“自立発電型”スマート材料として内外初の新素材になり得て、工業材料として多方面に展開できることになる。
本発明は、軽量、ロバスト高強度、大発電力、応力負荷に耐える“自立発電型”スマート材料として多方面に展開することが可能な複合強化型振動発電材料及びその製造方法を提供することを目的とする。
The composite material product has flexibility and light weight, and has a degree of freedom of molding and integration with the base material side, so that the applicability to product application can be greatly expanded. In other words, it can be the first new material in Japan and overseas as a “self-sustaining power generation” smart material that can withstand light weight, robust high strength, large power generation, and stress load, and can be developed in various fields as an industrial material.
The present invention provides a composite reinforced vibration power generation material that can be developed in various fields as a “self-supporting power generation” smart material that can withstand light weight, robust high strength, large power generation, and stress load, and a method for manufacturing the same. Objective.

請求項1に係る発明は、鉄基磁歪合金からなり残留応力を有する線材及び/又は薄板が充填材(フィラー)として母材(マトリックス)に埋め込まれている複合強化型の磁歪複合材料である。
請求項2に係る発明は、前記鉄基磁歪合金はCo過剰型組成(Co=69-79at%)の磁歪合金である請求項1記載の磁歪複合材料。
Co=69-79at%の範囲において磁歪量は100ppmを超えるためこの範囲とすることが好ましい。
磁歪合金素材であるFeGa系(Galfenol、希土類系Terfenol−Dは鋳造後線材、板材への2次加工が困難である。すなわち、圧延、線引きなどによるによる2次加工に伴い、粗大で特有な熱処理制御の結晶組織の欠陥(結晶配向性、内部欠陥(割れ、転位密度の不均質性、内部応力不均質性)が発生して、磁気/磁歪特性が大幅に低下してしまう。
それに対して、Co過剰型組成の磁歪合金は強加工が可能であるため特に好ましい。
さらに、Co=69-79at%においては、磁歪量が100ppmを超えることからよりCoをこの範囲とすることがより好ましい。
請求項3に係る発明は、前記フィラーは引張残留応力、前記母材は圧縮残留応力を有する請求項1ないし3のいずれか1項記載の磁歪複合材料である。
母材およびフィラー側に残留応力を発生させることにより強度とともに逆磁歪効果(漏れ磁束現象)より一層を増強した磁歪複合材料が得られる。
請求項4に係る発明は、前記フィラーは、鍛造材を伸線または圧延した2次加工品である請求項1ないし3のいずれか1項記載の磁歪複合材料である。
請求項5に係る発明は、前記母材は、ポリマー、金属又はセラミックスである請求項1ないし4のいずれか1項記載の磁歪複合材料である。
請求項6に係る発明は、前記ポリマーはエポキシ樹脂である請求項5記載の磁歪複合材料である。
エポキシ樹脂を母材する場合、セラミックあるいは金属を母材とするよりもより高い残留応力が得られる。
請求項7に係る発明は、鉄基磁歪合金からなるフィラーを予応力を負荷しながら、母材に鋳込みを行うプロセスにより製造する磁歪複合材料の製造方法である。
請求項8に係る発明は、前記鉄基磁歪合金はCo過剰型組成(Co=69-79at%)の磁歪合金である請求項7記載の磁歪複合材料の製造方法である。
請求項9に係る発明は、前記鋳込みを行う前の前記フィラーに、400〜600℃で鈍熱処理を施す請求項7又は8記載の磁歪複合材料の製造方法である。
鋳込み前のフィラーに対して、焼鈍を行うと、as drawnあるいはas rolledの場合よりも磁気・磁歪特性が向上する。特にその傾向は、400〜600℃における焼鈍温度において現れる。
請求項10に係る発明は、前記フィラーは、鍛造材を伸線または圧延した2次加工品である請求項7ないし9のいずれか1項記載の磁歪複合材料の製造方法である。
請求項11に係る発明は、前記母材は、ポリマー、金属又はセラミックスである請求項7ないし10のいずれか1項記載の磁歪複合材料の製造方法である。
請求項12に係る発明は、前記ポリマーはエポキシ樹脂である請求項11記載の磁歪複合材料の製造方法である。
請求項13に係る発明は、応力負荷時の磁歪フィラーからの漏れ磁束(逆磁歪効果)を、請求項1ないし7のいずれか1項記載の複合材料の本体表面部の外側に設置した電磁誘導型コイルにより検出し、振動発電力を得るようにした発電装置である。
The invention according to claim 1 is a composite reinforced magnetostrictive composite material in which a wire and / or thin plate made of an iron-based magnetostrictive alloy and having a residual stress is embedded in a base material (matrix) as a filler.
The invention according to claim 2 is the magnetostrictive composite material according to claim 1, wherein the iron-based magnetostrictive alloy is a magnetostrictive alloy having a Co-rich composition (Co = 69-79 at%).
Since the magnetostriction amount exceeds 100 ppm in the range of Co = 69-79 at%, this range is preferable.
FeGa-based (Galfenol, rare earth-based Terfenol-D), which is a magnetostrictive alloy material, is difficult to perform secondary processing on post-cast wire and plate materials. Defects in the controlled crystal structure (crystal orientation, internal defects (cracking, dislocation density inhomogeneity, internal stress inhomogeneity)) occur, and the magnetic / magnetostrictive characteristics are greatly reduced.
On the other hand, a magnetostrictive alloy having a Co-rich composition is particularly preferable because it can be strongly processed.
Further, when Co = 69-79 at%, since the magnetostriction amount exceeds 100 ppm, it is more preferable to set Co within this range.
The invention according to claim 3 is the magnetostrictive composite material according to any one of claims 1 to 3, wherein the filler has a tensile residual stress, and the base material has a compressive residual stress.
By generating a residual stress on the base material and filler side, a magnetostrictive composite material in which strength and the inverse magnetostriction effect (leakage magnetic flux phenomenon) are further enhanced can be obtained.
The invention according to claim 4 is the magnetostrictive composite material according to any one of claims 1 to 3, wherein the filler is a secondary processed product obtained by drawing or rolling a forged material.
The invention according to claim 5 is the magnetostrictive composite material according to any one of claims 1 to 4, wherein the base material is a polymer, metal, or ceramic.
The invention according to claim 6 is the magnetostrictive composite material according to claim 5, wherein the polymer is an epoxy resin.
When an epoxy resin is used as a base material, a higher residual stress can be obtained than when ceramic or metal is used as a base material.
The invention according to claim 7 is a method for manufacturing a magnetostrictive composite material, in which a filler made of an iron-based magnetostrictive alloy is manufactured by a process of casting a base material while applying a prestress.
The invention according to claim 8 is the method for producing a magnetostrictive composite material according to claim 7, wherein the iron-based magnetostrictive alloy is a magnetostrictive alloy having a Co-rich composition (Co = 69-79 at%).
The invention according to claim 9 is the method for producing a magnetostrictive composite material according to claim 7 or 8, wherein the filler before casting is subjected to a blunt heat treatment at 400 to 600 ° C.
When the pre-cast filler is annealed, the magnetic and magnetostrictive characteristics are improved as compared with the case of as drawn or as rolled. In particular, this tendency appears at an annealing temperature of 400 to 600 ° C.
The invention according to claim 10 is the method for producing a magnetostrictive composite material according to any one of claims 7 to 9, wherein the filler is a secondary processed product obtained by drawing or rolling a forged material.
The invention according to claim 11 is the method for producing a magnetostrictive composite material according to any one of claims 7 to 10, wherein the base material is a polymer, a metal, or ceramics.
The invention according to claim 12 is the method for producing a magnetostrictive composite material according to claim 11, wherein the polymer is an epoxy resin.
The invention according to claim 13 is the electromagnetic induction in which the leakage magnetic flux (inverse magnetostriction effect) from the magnetostrictive filler at the time of stress loading is installed outside the main body surface portion of the composite material according to any one of claims 1 to 7. This is a power generation device that detects vibrations and generates vibrational power.

本発明によれば以下の諸々の効果を得ることができる。
本発明によれば磁歪感受率dmが増大する。すなわち、磁歪曲線の立ち上がり勾配、dm=磁歪(λ)/印加磁場強さ(H))が増大する。本発明のフィラーは、線状であり、高いアスペクト比(長さ/径)を有している、
そのため、
a) 反磁界係数は低下し、内部に残留する磁束密度が増大し、磁束漏れが増加する。その結果、振動発電力の増加が期待できる。
b)残留磁区の増大;2次加工による長手方向(寸法比大)に結晶配向性が生じる。特に、磁化されやすい、鉄系<100>方位が強化されて、磁化されやすく、かつ、強加工に伴う、内部残留応力や転位密度や析出相分布により、残留磁区の数が増えて、漏れ磁束が増して、発電力が増大出来るものと考えられる。
本発明では、フィラーがプレストレス(内部残留応力)を有している。
FeCoファイバ強化複合材料(コンポジット)では、その製造プロセスにおいて、ファイバに引っ張り予備応力を加えたままでエポキシ母材に鋳込み固形化する。ゆえに、マトリックス(母材)側には圧縮応力残留、逆にファイバ側には引っ張り残留応力が発生する。このファイバ側残留応力が磁区の移動を促進させて、磁壁移動が多発して、漏れ磁束量が増えて、振動発電力が増大するものと考えられる。
本発明では、大きな“ひずみ速度(打点速度)依存性”を有し、そのために大きな発電力が得られる。
2次加工工程で強加工を施して得られたFeCo過剰型合金フィラーは、内部に結晶粒の不連続分布や大きな残留応力の不均質性が発生してくる。FeCo合金は剛性(ヤング率)が200GPaと、FeGaの2倍、Terefnol―D希土類系の4倍以上と、強度も2倍以上強く、かつ、硬い素材である。それゆえに、磁区の動的理論から、磁壁の障壁エネルギーが高くなっており、磁区を動かし、磁化を促進させるためには、初期に大きな応力負荷を必要とする。しかし、一度、この高いレベルの磁壁障壁を超えると、内部組織の不均質性による大きなダイナミック磁区挙動がおこり、外部に強い磁束を放出するようになる。ゆえに、FeCoファイバ強化コンポジットは、大きな“ひずみ速度(打点速度)依存性”による大発電力を発生することができたものである。
According to the present invention, the following various effects can be obtained.
According to the present invention, the magnetostriction susceptibility dm increases. That is, the rising gradient of the magnetostrictive curve, dm = magnetostriction (λ) / applied magnetic field strength (H)) increases. The filler of the present invention is linear and has a high aspect ratio (length / diameter).
for that reason,
a) The demagnetizing factor decreases, the magnetic flux density remaining inside increases, and the magnetic flux leakage increases. As a result, an increase in vibration power can be expected.
b) Increase in remanent domain; crystal orientation occurs in the longitudinal direction (size ratio large) by secondary processing. In particular, the number of residual magnetic domains increases due to internal residual stress, dislocation density, and precipitation phase distribution that are easily magnetized, strengthen the iron-based <100> orientation, are easily magnetized, and are accompanied by strong processing, and leakage flux It is considered that power generation can be increased.
In the present invention, the filler has prestress (internal residual stress).
In the FeCo fiber reinforced composite material (composite), in the manufacturing process, the fiber is cast and solidified in an epoxy base material with a tensile prestress applied to the fiber. Therefore, residual compressive stress is generated on the matrix (base material) side, and tensile residual stress is generated on the fiber side. It is considered that this fiber-side residual stress promotes the movement of the magnetic domain, the domain wall movement frequently occurs, the amount of leakage magnetic flux increases, and the vibration power generation increases.
In the present invention, there is a large “strain rate (spot speed) dependency”, and therefore a large power generation is obtained.
The FeCo excess type alloy filler obtained by carrying out strong processing in the secondary processing step generates discontinuous distribution of crystal grains and large residual stress heterogeneity inside. The FeCo alloy is a hard material having a stiffness (Young's modulus) of 200 GPa, twice that of FeGa, four times that of Terefnol-D rare earth, and twice as strong as the strength. Therefore, from the dynamic theory of the magnetic domain, the barrier energy of the domain wall is high, and in order to move the magnetic domain and promote the magnetization, a large stress load is required in the initial stage. However, once this high level domain wall barrier is exceeded, a large dynamic domain behavior occurs due to the inhomogeneity of the internal structure, and a strong magnetic flux is emitted to the outside. Therefore, the FeCo fiber reinforced composite was able to generate a large power generation due to a large “strain rate (spot speed) dependency”.

磁歪合金に負荷した場合の内部磁区(SN極変化) 再配列に伴う漏れ磁束発生の説明図(逆磁歪効果)Internal magnetic domain when the magnetostrictive alloy is loaded (SN pole change) Explanation of leakage flux generation due to rearrangement (inverse magnetostrictive effect) 磁歪・逆磁歪効果と関連する磁気パラメータ(磁性体の磁化曲線)Magnetic parameters related to magnetostriction and inverse magnetostriction effect (magnetization curve of magnetic material) FeCo加工線材と溶解鋳造材との磁歪特性の比較Comparison of magnetostriction characteristics of FeCo processed wire and melt cast material 磁化曲線(FeCo加工線材、溶解鋳造材)Magnetization curve (FeCo processed wire, melt casting) 複合材料の製造手順Procedure for manufacturing composite materials (a )試験治具、コイルと負荷条件,(荷重・出力電圧と時間の関係)(a) Test jig, coil and load condition, (Relationship between load / output voltage and time) 出力電圧密度と平均負荷応力および応力速度との関係:(a) 複合材料とガルフェノールとの比較,(b)残留引張応力の影響Relationship between output voltage density and average load stress and stress rate: (a) Comparison between composite and galphenol, (b) Effect of residual tensile stress 解析による有効圧磁定数の予測Of effective magnetostriction constant by analysis (a)ひずみ−磁場曲線磁化曲線,(b)ダイナミック磁区モデル(A) Strain-field curve magnetization curve, (b) Dynamic domain model

以下に、本発明の原理、作用を実施のするための形態とともに説明する。
鉄やコバルトなどの強磁性体に外部磁場を加えて磁化すると,磁場の方向に歪みを生じる.これを磁歪効果(または、「ジュール効果」、「磁気ひずみ効果」)と称する。その長さ変化(歪)は大きなものではなく,割合変化(ΔL/L)
は10-6 〜10-5 程度であるが,応答速度はMHzオーダーまでと早いので、超音波発振器などの素子として利用されている.一方、これとは逆に、磁性材料に外部から応力(圧縮力や引張り力)を加えると、その寸法が変化すると同時に、その内部の磁化状態(電子スピン状態、磁区構造、透磁率など)も変わるので、周囲に漏れ磁束が発生する。この現象を逆磁歪効果という。この現象を利用することで、磁歪素材に加わっている負荷応力(外力)の大きさや歪みを評価するセンサへの適用できる。
The principle and operation of the present invention will be described below together with embodiments for carrying out the present invention.
When an external magnetic field is applied to a ferromagnetic material such as iron or cobalt, it is distorted in the direction of the magnetic field. This is called a magnetostriction effect (or “Joule effect”, “magnetostriction effect”). The length change (distortion) is not large, but the ratio change (ΔL / L)
Is around 10-6 to 10-5, but the response speed is as fast as MHz, so it is used as an element for ultrasonic oscillators. On the other hand, when an external stress (compressive force or tensile force) is applied to a magnetic material, its dimensions change, and at the same time, its internal magnetization state (electron spin state, magnetic domain structure, magnetic permeability, etc.) Since it changes, a leakage magnetic flux is generated around it. This phenomenon is called inverse magnetostriction effect. By utilizing this phenomenon, it can be applied to a sensor for evaluating the magnitude and strain of a load stress (external force) applied to a magnetostrictive material.

さらに最近、磁歪素材自体に機械的振動を与えた場合に発生する漏れ磁束を捕えるコイルを設置して電力を得るマイクロ環境発電用の逆磁歪素子としての可能性も研究されている。磁歪効果と逆磁歪効果の原理とその応用を概念的に図1に示す。磁歪合金に負荷した場合の内部磁区(SN極変化)と再配列に伴う漏れ磁束発生(逆磁歪効果)が起こる。本発明に使用される適切な逆磁歪効果を発現する素材は、新規に開発された鉄基磁歪合金(FeCo、FeGa系等)[特許文献1]であり、小さな応力レベルから、その表面から漏れ磁束(磁気)を発生することができて、高感度な応力(歪み)センサになりうる素材であることを特徴としている。   Recently, the possibility of an inverse magnetostrictive element for micro-environmental power generation that obtains electric power by installing a coil that captures a leakage magnetic flux generated when mechanical vibration is applied to the magnetostrictive material itself has been studied. Fig. 1 conceptually shows the principles and applications of the magnetostrictive effect and inverse magnetostrictive effect. When a magnetostrictive alloy is loaded, internal magnetic domains (SN pole change) and leakage flux generation (reverse magnetostriction effect) accompanying rearrangement occur. A material that exhibits an appropriate inverse magnetostrictive effect used in the present invention is a newly developed iron-based magnetostrictive alloy (FeCo, FeGa series, etc.) [Patent Document 1], which leaks from its surface from a small stress level. It is a material that can generate magnetic flux (magnetism) and can be a highly sensitive stress (strain) sensor.

そのためには、以下の材料特性が重要なことが明らかなった。図2に示される磁歪・逆磁歪効果と関連する磁性体の磁化曲線上の磁気パラメータからも判るように、(1)磁歪量(λ)が大きいこと、(2)磁歪感受率(勾配:dm=dλ/dH)が大きいこと、(3)磁化曲線(ヒステリシスカーブ)での残留磁束密度(Br)が大きいこと、保磁力(Hc)が中程度あること、(4)結晶異方性、即ち、鉄の容易磁化軸<100>配向性強い素材にすること、が効果的である。これらの磁歪素材における磁気特性因子(パラメータ)の有効性は、逆磁歪効果を原理とする磁歪リング式トルクセンサの結果[非特許文献17]からも確認されている。さらに最近になって、これに関連して、逆磁歪利用デバイスの一つである振動発電素子においても、従来のFeGa系(米国特許)よりもFeCo系で大きな漏れ磁束(=トルクセンサ感度)を振動発電出力で実証済[特許文献2]である。   For this purpose, the following material properties were found to be important. As can be seen from the magnetic parameters on the magnetization curve of the magnetic material related to the magnetostriction / inverse magnetostriction effect shown in FIG. 2, (1) the magnetostriction amount (λ) is large, and (2) the magnetostriction susceptibility (gradient: dm = Dλ / dH), (3) large residual magnetic flux density (Br) in the magnetization curve (hysteresis curve), medium coercive force (Hc), (4) crystal anisotropy, It is effective to make the iron easy magnetization axis <100> oriented strong material. The effectiveness of magnetic characteristic factors (parameters) in these magnetostrictive materials has been confirmed from the results of a magnetostrictive ring type torque sensor based on the inverse magnetostrictive effect [Non-patent Document 17]. More recently, in connection with this, even in a vibration power generation element which is one of devices using inverse magnetostriction, a larger leakage magnetic flux (= torque sensor sensitivity) is obtained in the FeCo system than in the conventional FeGa system (US patent). Proven with vibration power generation output [Patent Document 2].

高出力のエネルギーハーベスティング特性を有するスマートな磁歪型複合材料を用いた環境発電デバイス応用を目指すためには、まず、高感度なFeCo系磁歪素材とその磁気特性(逆磁歪現象、磁気パラメータ)の選択が重要となる。前項で示したように、逆磁歪効果が大きく、高感度センサとなりうる、磁歪素材の選択の一例として、図3に、Co過剰型組成(Co=71wt%)の 加工線材と溶解鋳造材との磁歪特性の比較を示す。加工線材では、X線結晶回折結果からも判るように、結晶方位が長手方向に揃っていて、結晶異方性が強いので磁歪(λ)量がランダム方位結晶の溶製材に較べて増加している。また、より少ない磁場強さ(H)で磁歪現象が発生しており、高感度の素材といえる。   In order to aim for the application of energy harvesting devices using smart magnetostrictive composite materials with high output energy harvesting characteristics, first of all, high-sensitivity FeCo-based magnetostrictive materials and their magnetic properties (reverse magnetostriction phenomenon, magnetic parameters) Selection is important. As shown in the previous section, as an example of selecting a magnetostrictive material that has a large inverse magnetostriction effect and can be a high-sensitivity sensor, FIG. 3 shows a comparison between a processed wire with a Co-rich composition (Co = 71 wt%) and a molten cast material. A comparison of magnetostriction characteristics is shown. In the processed wire, as can be seen from the X-ray crystal diffraction results, the crystal orientation is aligned in the longitudinal direction and the crystal anisotropy is strong, so the amount of magnetostriction (λ) is increased compared to the melted material of random orientation crystal. Yes. In addition, the magnetostriction phenomenon occurs with less magnetic field strength (H), which can be said to be a highly sensitive material.

次に、表1には、FeCo加工線材と溶製(溶解鋳造)材との磁歪・磁歪感受率を示す。加工線材のほうが、磁歪(λ)は1.36倍、磁歪感受率(dm)は1.65倍に上昇していることがわかる。図4には、両者(FeCo加工線材、溶解鋳造材)の磁化曲線を示す。原点(=H=0)近傍での拡大図からも加工線材の鋭い立ち上がり(透磁率、磁化率大)とともに保磁力(Hc)、残留磁束密度(Br)も高いことがわかる。表2には、加工線材と溶解鋳造材での磁化パラメータの比較を示す。磁歪素材からの漏れ磁束(φ)の強さに強く効いてくる、残留磁束密度(Br)と保磁力(Hc)、いずれも加工線材の方が高く、Br=5.23倍、Hc=3.03倍となっており、これから圧延強加工や引き抜き材料のほうが逆磁歪センサとしは有利なことが判る。   Next, Table 1 shows magnetostriction and magnetostriction susceptibility of the FeCo processed wire and the melted (melted casting) material. It can be seen that the processed wire has a magnetostriction (λ) increased 1.36 times and a magnetostriction susceptibility (dm) increased 1.65 times. FIG. 4 shows the magnetization curves of both (FeCo processed wire and melted cast material). From the enlarged view near the origin (= H = 0), it is understood that the coercive force (Hc) and the residual magnetic flux density (Br) are high as well as the sharp rise (permeability and magnetic susceptibility) of the processed wire. Table 2 shows a comparison of magnetization parameters between the processed wire and the molten cast material. The residual magnetic flux density (Br) and the coercive force (Hc), both of which have a strong effect on the strength of the leakage magnetic flux (φ) from the magnetostrictive material, are both higher in the processed wire, Br = 5.23 times, Hc = 3 0.03 times, and it can be seen that a strong rolling process and a drawn material are more advantageous as an inverse magnetostrictive sensor.

FeCo加工線材のX線回折から漏れ磁束増加の原因を調べた。線材の横断面と引き抜き長手方向の結晶回折面のピーク強度から、面心立方(fcc)相は確認できず、すべて体心立方晶(bcc)相のみを確認しており、また、横断面と縦断面の違いにより、この加工線材に結晶配向性の存在を確認できた。   The cause of the increase in leakage flux was investigated from the X-ray diffraction of the FeCo processed wire. From the cross section of the wire and the peak intensity of the crystal diffraction plane in the longitudinal direction of the drawing, the face centered cubic (fcc) phase cannot be confirmed, and only the body centered cubic (bcc) phase is confirmed. Due to the difference in longitudinal section, the presence of crystal orientation was confirmed in this processed wire.

磁気・磁歪特性向上のために2次加工後の細線材、薄板材に、中温度域(400℃)での適切な焼鈍熱処理を施して改質する。2次加工線材のままよりも特性向上が見られる。   In order to improve the magnetic / magnetostrictive characteristics, the thin wire material and the thin plate material after the secondary processing are subjected to an appropriate annealing heat treatment in the middle temperature range (400 ° C.) to be modified. The characteristic improvement is seen rather than the secondary processed wire.

Figure 2017163119
Figure 2017163119

Figure 2017163119
Figure 2017163119

次に、本発明のFeCoファイバ強化複合材料の製造方法の一例を説明する。図5は,複合材料の特徴および製造手順を示したもので,母材はビスフェノール-Fエポキシ樹脂,硬化剤はポリアミンで,混合比率100:55となるように母材を作製した.そして,直径1 mm,長さ l = 15〜19mmのFe1−xCox(x = 71wt%)FeCoファイバを型の中で一方向に配列し,重りにより約0,12.5,25,50MPaの応力を負荷した状態で,エポキシ母材を型に流し込んだ。
その後,室温にて,24時間硬化させた.次に,硬化したFeCoファイバ強化複合材料を恒温炉内に入れ,80℃に加熱後3時間保持して後硬化させた。表3は,サンプルの最終的な形状(断面積A、長さl)、繊維体積含有vfおよび引張残留応力σの予測値を示したものである。比較のために,表3に示す寸法のEtrema製(USA)のGalfenolも用意した。また,表4に,それぞれの材料の弾性コンプライアンスs33,圧磁定数d33,2次の磁気弾性係数m,透磁率μ33を示した。
Next, an example of the manufacturing method of the FeCo fiber reinforced composite material of this invention is demonstrated. Fig. 5 shows the characteristics of the composite material and the manufacturing procedure. The base material was bisphenol-F epoxy resin, the curing agent was polyamine, and the base material was prepared so that the mixing ratio was 100: 55. Then, Fe 1-x Co x (x = 71 wt%) FeCo fibers with a diameter of 1 mm and a length of l = 15 to 19 mm are arranged in one direction in the mold, and are approximately 0, 12.5, 25, and 50 MPa by weight. The epoxy base material was poured into the mold while stress was applied.
Thereafter, it was cured at room temperature for 24 hours. Next, the cured FeCo fiber reinforced composite material was placed in a constant temperature furnace and heated at 80 ° C. and held for 3 hours for post-curing. Table 3 shows predicted values of the final shape of the sample (cross-sectional area A, length l), fiber volume containing vf, and tensile residual stress σ 0 . For comparison, Galfenol made by Etrema (USA) having the dimensions shown in Table 3 was also prepared. Table 4 shows the elastic compliance s 33 , the piezomagnetic constant d 33 , the secondary magnetoelastic coefficient m, and the magnetic permeability μ 33 of each material.

表3に示すサンプルを用いて,衝撃圧縮試験を行った。試験は,Autograph(SHIMAZU AG−50kNXD)を用いて行い,図6(a)に示すように,最小荷重Pmin=50N,最大荷重Pmax=550Nの5サイクル圧縮荷重を負荷した。この時のクロスヘッド速度は,dδ/dt=0.25,0.50,0.75,1.0,2.0および3.0 mm/sである(δはクロスヘッド変位)。また,試験中,サンプルには,永久磁石を用いてバイアス磁場B=62mTを負荷した。出力電圧Voutは,断面積約113mm,2500ターン、長さ36mm,抵抗106Ωのコイル(図6(a))とデータロガーを用いて計測した。図6(b)は,Fe29Co71繊維/ポリマー複合材料の出力電圧Voutおよび荷重Pと時間tとの関係を示したもので、dδ/dt=3mm/s、Pmin=50N,Pmax=550Nの場合である。出力電圧は,負荷時と除荷時で異なっており,今後,負荷時の値で評価することとした。 An impact compression test was performed using the samples shown in Table 3. The test was performed using Autograph (SHIMAZU AG-50kNXD), and as shown in FIG. 6A, a 5-cycle compression load with a minimum load P min = 50 N and a maximum load P max = 550 N was applied. The crosshead speeds at this time are dδ / dt = 0.25, 0.50, 0.75, 1.0, 2.0, and 3.0 mm / s (δ is the crosshead displacement). During the test, the sample was loaded with a bias magnetic field B 0 = 62 mT using a permanent magnet. The output voltage Vout was measured using a coil (FIG. 6A) having a cross-sectional area of about 113 mm 2 , 2500 turns, a length of 36 mm, and a resistance of 106Ω and a data logger. FIG. 6 (b) shows the relationship between the output voltage Vout and the load P of the Fe 29 Co 71 fiber / polymer composite material and the time t. Dδ / dt = 3 mm / s, P min = 50 N, P This is the case when max = 550N. The output voltage differs between loading and unloading, and it will be evaluated in the future at the load value.

Figure 2017163119
Figure 2017163119

Figure 2017163119
Figure 2017163119

理論解析も実施した。得られた実験結果に理論的検討を加えるため、1本の円形断面Fe-Co繊維がエポキシマトリックス円筒に完全接合された代表体積要素(RVE)モデルを考える。Fe-Co繊維とエポキシ円筒の半径の比を(vf)1/2とし,これにより,RVEの繊維体積含有率はvfとなるため,試験片の繊維体積含有率と等価となる。直角座標系O-x1x2x3における基礎式は非特許文献18に示されている。 Fe-Co繊維の磁化容易軸はx3方向とする。複合材料の長さがその他の寸法(幅と厚さ,あるいは直径)に比べ非常に大きく,磁化容易軸が長さ方向(容易軸)に一致すると考えると,縦33磁気ひずみ変形モードが支配的となるため,磁気弾性定数d'33が磁場の強さベクトルのx3方向成分(H3)に依存すると仮定することができる [非特許文献19]。ここで,上添え字fは繊維を示す。一次元問題を考えると,Fe-Co繊維の構成方程式は以下のように与えられる。

Figure 2017163119
Figure 2017163119
Fe29Co71繊維,熱処理(850°Cで5時間後急冷)されたFe29Co71繊維,Galfenol [非特許文献20]とエポキシの物性を表IIに示す。逆磁歪効果(ビラリ効果)によって誘起される磁束密度がバイアス磁場H=B/μ(μ=1.2×10−6H/mは自由空間の透磁率)に比べ小さいと仮定すると,Fe-Co繊維の応力と磁束密度は次のように得られる。
Figure 2017163119
Figure 2017163119
また,エポキシマトリックスのひずみと磁束密度は,上添え字mを用いて,次のように与えられる。
Figure 2017163119
Figure 2017163119
Figure 2017163119
ここで,Nはコイル巻き数、AはFe-Co繊維の断面積,
Figure 2017163119
は試験片に作用する平均応力,tは時間である。2次の磁気弾性係数は,
Figure 2017163119
と表すことができる(ここで,mfは単位磁場当たりの磁歪を意味する定数,rfは単位プレストレス・単位磁場当たりの磁歪を意味する定数、σ0はプレストレスである)[非特許文献21]。 A theoretical analysis was also performed. To add a theoretical study to the experimental results, consider a representative volume element (RVE) model in which a single circular cross-section Fe-Co fiber is fully bonded to an epoxy matrix cylinder. The ratio of the radius of the Fe-Co fiber to the epoxy cylinder is (v f ) 1/2, and the fiber volume content of RVE is v f , which is equivalent to the fiber volume content of the specimen. Non-patent document 18 shows the basic formula in the rectangular coordinate system Ox 1 x 2 x 3 . The axis of easy magnetization of the Fe-Co fibers and x 3 direction. Considering that the length of the composite material is much larger than other dimensions (width and thickness, or diameter) and that the easy axis of magnetization coincides with the length direction (easy axis), the longitudinal 33 magnetostriction deformation mode is dominant. Therefore, it can be assumed that the magnetoelastic constant d ′ 33 depends on the x 3 direction component (H 3 ) of the magnetic field strength vector [Non-patent Document 19]. Here, the superscript f indicates a fiber. Considering the one-dimensional problem, the constitutive equation of Fe-Co fiber is given as follows.
Figure 2017163119
Figure 2017163119
Fe 29 Co 71 fibers show a heat treatment (850 ° C in a quench after 5 hours) has been Fe 29 Co 71 fibers, the properties of epoxy and Galfenol [Non-Patent Document 20] in Table II. It is assumed that the magnetic flux density induced by the inverse magnetostriction effect (biliary effect) is smaller than the bias magnetic field H 0 = B 0 / μ 00 = 1.2 × 10 −6 H / m is the permeability of free space). Then, the stress and magnetic flux density of the Fe—Co fiber can be obtained as follows.
Figure 2017163119
Figure 2017163119
The strain and magnetic flux density of the epoxy matrix are given as follows using the superscript m.
Figure 2017163119
Figure 2017163119
Figure 2017163119
Where N is the number of coil turns, A f is the cross-sectional area of the Fe-Co fiber,
Figure 2017163119
Is the average stress acting on the specimen and t is the time. The secondary magnetoelastic coefficient is
Figure 2017163119
Where m f is a constant indicating magnetostriction per unit magnetic field, r f is a constant indicating unit prestress / magnetostriction per unit magnetic field, and σ 0 is prestress. Reference 21].

磁区挙動モデルについては、式(7)の計算値は Galfenolの場合実値とほぼ一致するが,複合材料の場合は一致しない。本研究では,次式で示されるように,Fe−Co繊維の場合大きな磁壁速度vが局所的に大きな磁束密度変化を誘起したと考えている[非特許文献22]。

Figure 2017163119
ここに、Msは飽和磁化、lは粒径に関連する磁壁ジャンプ長さ(金属微細構造の不均質分布パラメータサイズ),Aは磁歪感受率や磁壁の数に関連する定数である。Kersten[非特許文献23]によって検討されるように,式(8)のμも内部応力に依存する。さらに,純鉄の磁化中磁束漏れによるバルクハウゼンノイズ電圧(VBHN)が粒度の逆平方根(すなわちg −1/2)に比例するという報告もある[非特許文献24]。 For the magnetic domain behavior model, the calculated value of Equation (7) is almost the same as the actual value in the case of Galfenol, but not in the case of the composite material. In this study, as shown by the following formula, a large magnetic domain wall velocity v w For Fe-Co fibers are thought to induce a large magnetic flux density varies locally [Non-Patent Document 22].
Figure 2017163119
Here, M s is saturation magnetization, l is domain wall jump length related to grain size (heterogeneous distribution parameter size of metal microstructure), and A is a constant related to magnetostriction susceptibility and the number of domain walls. Kersten As discussed by [Non-Patent Document 23], μ 0 M s of formula (8) also depends on the internal stress. Furthermore, there is a report that the Barkhausen noise voltage (V BHN ) due to magnetic flux leakage during magnetization of pure iron is proportional to the inverse square root of the grain size (ie, g g −1/2 ) [Non-patent Document 24].

次に得られた結果を示す。Fe29Co71繊維/ポリマー複合材料の出力電圧密度Vout/Alvfと応力速度(dσ0 33)/dtおよび最大平均応力σmaxとの関係を図7に示す。比較のためGalfenolの結果も示している。複合材料の出力電圧密度は大きく,負荷速度が大きい領域では,その値はガルフェノールの二倍程度となっている(図7(a))。また,複合材料の出力電圧密度は,負荷速度に依存して変化し,負荷速度の増大に伴い増大した。一方,Galfenolの出力電圧密度は,負荷速度の増大に伴い増大するが,飽和する傾向にある。図7(b)は,出力電圧密度−負荷速度と出力電圧密度−最大平均応力の曲線の残留応力依存性を示したもので,曲線の傾きは残留応力σ=2.8MPaで最大となる結果が得られた。これにより,出力電圧を最大とする残留応力に最適値があることが予想される。図8は,Fe29Co71繊維/ポリマー複合材料の有効磁気弾性定数を予測したもので,比較のため,GalfenolおよびFe29Co71繊維熱処理材を用いて作製した複合材料の結果も示している。Fe29Co71繊維を用いた複合材料の有効磁気弾性定数はGalfenolに比べ大きくなる結果が得られた。また,体積含有率やバイアス磁場を変えることで有効磁気弾性定数は飛躍的に向上する傾向がみられた。予測値を表5に示す。 The results obtained are shown below. FIG. 7 shows the relationship between the output voltage density Vout / Alvf, the stress rate (dσ 0 33 ) / dt, and the maximum average stress σ max of the Fe 29 Co 71 fiber / polymer composite material. For comparison, Galfenol results are also shown. In the region where the output voltage density of the composite material is large and the load speed is large, the value is about twice that of galphenol (Fig. 7 (a)). In addition, the output voltage density of the composite material changed depending on the load speed, and increased as the load speed increased. On the other hand, the output voltage density of Galfenol increases with increasing load speed, but tends to saturate. FIG. 7 (b) shows the residual stress dependence of the curve of output voltage density-load speed and output voltage density-maximum average stress, and the slope of the curve becomes maximum at residual stress σ 0 = 2.8 MPa. Results were obtained. As a result, it is expected that there is an optimum value for the residual stress that maximizes the output voltage. Figure 8 predicts the effective magnetoelastic constant of Fe 29 Co 71 fiber / polymer composite, and for comparison also shows the results of a composite made using Galfenol and Fe 29 Co 71 fiber heat treatment. . The effective magnetoelastic constant of the composite material using Fe 29 Co 71 fiber was larger than that of Galfenol. Moreover, the effective magnetoelastic constant tended to improve dramatically by changing the volume content and the bias magnetic field. The predicted values are shown in Table 5.

図9(a)は,長さ15mm、幅5mm、厚さ3mmのFe29Co71バルクとGalfenolの磁場によるひずみ(磁歪)の計測結果を示したもので,Galfenolの磁歪特性はFe29Co71バルクに比べ大きかった。Galfenolは粗い結晶粒を有しているため,出力電圧は低い負荷速度・応力レベルで比較的大きくなる.一方,微粒子のFe29Co71バルクには,内部に結晶粒に不連続分布や残留応力の不均質性があり,磁壁のエネルギーが大きく,磁区を移動させて磁化を促進させる必要があるが(図9(b)),複合材料の場合はそれが簡単に達成でき,ダイナミック磁区挙動が容易に起こって,大きな出力電圧が得られる。図9(a)には,磁歪複合材料の磁歪特性に予測結果も破線で示した。 FIG. 9 (a), it shows the measurement result of the length 15 mm, width 5 mm, distortion due to Fe 29 Co 71 magnetic field of the bulk and Galfenol thickness 3 mm (magnetostriction), the magnetostrictive characteristic of Galfenol is Fe 29 Co 71 Larger than bulk. Since Galfenol has coarse grains, the output voltage becomes relatively large at low load speed and stress level. On the other hand, the fine Fe 29 Co 71 bulk has discontinuous distribution of crystal grains and inhomogeneity of residual stress inside, and the energy of the domain wall is large, and it is necessary to promote the magnetization by moving the magnetic domain ( In the case of the composite material shown in FIG. 9 (b)), this can be easily achieved, and the dynamic magnetic domain behavior easily occurs to obtain a large output voltage. In FIG. 9 (a), the predicted results of the magnetostrictive characteristics of the magnetostrictive composite material are also shown by broken lines.

Figure 2017163119
Figure 2017163119

理論解析と実験結果から、結論をまとめる。本研究では,Fe29Co71繊維の特徴を生かした新しい磁歪複合材料の開発に内外で初めて成功した。製造プロセスにおいて,高い結晶性と磁気異方性が材料に付与され,繊維の高アスペクト比によって反磁界係数の影響を効果的に減少させることもでき,磁歪複合材料の逆磁歪効果を増大させることが可能となる。また,新しい複合材料の出力電圧は,荷重速度の増大に伴い磁壁移動を伴って増大し,Galfenolの特性を上回る結果を得た。 The conclusion is summarized from theoretical analysis and experimental results. In this study, we succeeded in developing a new magnetostrictive composite material that makes the best use of the characteristics of Fe 29 Co 71 fiber. In the manufacturing process, high crystallinity and magnetic anisotropy are imparted to the material, and the influence of the demagnetizing factor can be effectively reduced by the high aspect ratio of the fiber, increasing the inverse magnetostrictive effect of the magnetostrictive composite material. Is possible. In addition, the output voltage of the new composite material increased with the domain wall motion as the loading speed increased, and the results exceeded those of Galfenol.

ダイナミック磁区挙動に関するモデルの提案により,多結晶Fe-Coの不均質なマイクロ構造特有の現象学的要因を特定することができ,Fe29Co71繊維/ポリマー複合材料で観察された磁歪現象の物理的挙動を明らかにした。熱処理された繊維やより細い繊維を用いる場合,出力電圧がさらに増大する可能性も示した。また,磁歪定数 d33より,磁区移動と不均質な結晶粒分布の相互干渉がFe29Co71繊維/ポリマー複合材料のエネルギーハーベスティング特性を支配するという点を初めて示した。Fe-Co繊維の特徴を生かした磁歪複合材料の最適化により,エネルギーハーベスティングの将来の前進と発展が予想される。Fe-Coは,高強度で高温にも耐えることができ,エネルギーハーベスティングデバイスだけではなく,極限環境用のセンサ・アクチュエータとしても有望な材料となりえる。 Proposal of a model for dynamic domain behavior enables the identification of phenomenological factors peculiar to heterogeneous microstructures of polycrystalline Fe-Co, and the physics of magnetostriction observed in Fe 29 Co 71 fiber / polymer composites. Behavior was clarified. It was also shown that the output voltage could be further increased when heat-treated or thinner fibers were used. In addition, the magnetostriction constant d 33 showed for the first time that the mutual interference between magnetic domain migration and heterogeneous grain distribution dominates the energy harvesting characteristics of Fe 29 Co 71 fiber / polymer composites. Future advances and developments in energy harvesting are expected by optimizing magnetostrictive composites that take advantage of the characteristics of Fe-Co fibers. Fe-Co has high strength and can withstand high temperatures, and can be a promising material not only for energy harvesting devices but also for sensors and actuators for extreme environments.

本発明による新素材は,強さ(しなやかさ)と超軽量を具備して、また、成形一体化の自由度もあり、機械・構造物分野での機能性部品、例えば、スポーツ用製品(ラケット、スパイクなど)、車(車体・タイヤなど)、航空・宇宙機器(動翼ダービンなど)、さらには、医療・福祉機器、さらに将来的には、ウエアラブルIoTデバイスへのマイクロ電池機能へも適用可能である。   The new material according to the present invention has strength (flexibility) and ultra-light weight, and also has a degree of freedom of molding and integration. Functional parts in the field of machinery and structures, for example, sports products (racquets) , Spikes, etc.), cars (vehicle bodies, tires, etc.), aerospace equipment (moving blade durbin, etc.), medical and welfare equipment, and in the future, can be applied to micro battery functions for wearable IoT devices. It is.

Claims (13)

鉄基磁歪合金からなり残留応力を有する線材及び/又は薄板が充填材(フィラー)として母材(マトリックス)に埋め込まれている複合強化型の磁歪複合材料。 A composite reinforced magnetostrictive composite material, which is made of an iron-based magnetostrictive alloy and has a residual stress and / or a thin plate embedded in a base material (matrix) as a filler. 前記鉄基磁歪合金はCo過剰型組成(Co=69-79at%)の磁歪合金である請求項1記載の磁歪複合材料。 2. The magnetostrictive composite material according to claim 1, wherein the iron-based magnetostrictive alloy is a magnetostrictive alloy having a Co-rich composition (Co = 69-79 at%). 前記フィラーは引張残留応力、前記母材は圧縮残留応力を有する請求項1ないし2のいずれか1項記載の磁歪複合材料。 The magnetostrictive composite material according to claim 1, wherein the filler has a tensile residual stress, and the base material has a compressive residual stress. 前記フィラーは、鍛造材を伸線または圧延した2次加工品である請求項1ないし3のいずれか1項記載の磁歪複合材料。 The magnetostrictive composite material according to any one of claims 1 to 3, wherein the filler is a secondary processed product obtained by drawing or rolling a forged material. 前記母材は、ポリマー、金属又はセラミックスである請求項1ないし4のいずれか1項記載の磁歪複合材料。 The magnetostrictive composite material according to claim 1, wherein the base material is a polymer, a metal, or a ceramic. 前記ポリマーはエポキシ樹脂である請求項5記載の磁歪複合材料。 The magnetostrictive composite material according to claim 5, wherein the polymer is an epoxy resin. 鉄基磁歪合金からなるフィラーを、予応力を負荷しながら、母材に鋳込みを行うプロセスにより製造する磁歪複合材料の製造方法。 A method for manufacturing a magnetostrictive composite material, wherein a filler made of an iron-based magnetostrictive alloy is manufactured by a process of casting a base material while applying a prestress. 前記鉄基磁歪合金はCo過剰型組成(Co=69-79at%)の磁歪合金である請求項7記載の磁歪複合材料の製造方法。 8. The method for producing a magnetostrictive composite material according to claim 7, wherein the iron-based magnetostrictive alloy is a magnetostrictive alloy having a Co-excess type composition (Co = 69-79 at%). 前記鋳込みを行う前の前記フィラーに、400〜600℃で鈍熱処理を施す請求項7又は8記載の磁歪複合材料の製造方法。 The method for producing a magnetostrictive composite material according to claim 7 or 8, wherein the filler before the casting is subjected to a blunt heat treatment at 400 to 600 ° C. 前記フィラーは、鍛造材を伸線または圧延した2次加工品である請求項7ないし9のいずれか1項記載の磁歪複合材料の製造方法。 The method for producing a magnetostrictive composite material according to claim 7, wherein the filler is a secondary processed product obtained by drawing or rolling a forged material. 前記母材は、ポリマー、金属又はセラミックスである請求項7ないし10のいずれか1項記載の磁歪複合材料の製造方法。 The method for producing a magnetostrictive composite material according to claim 7, wherein the base material is a polymer, a metal, or a ceramic. 前記ポリマーはエポキシ樹脂である請求項11記載の磁歪複合材料の製造方法。 The method for producing a magnetostrictive composite material according to claim 11, wherein the polymer is an epoxy resin. 応力負荷時の磁歪フィラーからの漏れ磁束(逆磁歪効果)を、請求項1ないし6のいずれか1項記載の複合材料の本体表面部の外側に設置した電磁誘導型コイルにより検出し、振動発電力を得るようにした発電装置。 A leakage magnetic flux (inverse magnetostrictive effect) from a magnetostrictive filler during stress loading is detected by an electromagnetic induction coil installed outside the surface of the main body of the composite material according to any one of claims 1 to 6, and vibration power generation A power generation device designed to gain power.
JP2016048929A 2016-03-11 2016-03-11 Composite reinforced magnetostrictive composite material and its manufacturing method Active JP6884299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048929A JP6884299B2 (en) 2016-03-11 2016-03-11 Composite reinforced magnetostrictive composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048929A JP6884299B2 (en) 2016-03-11 2016-03-11 Composite reinforced magnetostrictive composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017163119A true JP2017163119A (en) 2017-09-14
JP6884299B2 JP6884299B2 (en) 2021-06-09

Family

ID=59858054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048929A Active JP6884299B2 (en) 2016-03-11 2016-03-11 Composite reinforced magnetostrictive composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6884299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152502A (en) * 2018-03-02 2019-09-12 国立大学法人横浜国立大学 Stress sensor
JP2020136594A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Magnetostrictor and manufacturing method thereof
WO2022186209A1 (en) 2021-03-01 2022-09-09 東京応化工業株式会社 Composition having magnetostrictive properties, and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152502A (en) * 2018-03-02 2019-09-12 国立大学法人横浜国立大学 Stress sensor
JP2020136594A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Magnetostrictor and manufacturing method thereof
WO2022186209A1 (en) 2021-03-01 2022-09-09 東京応化工業株式会社 Composition having magnetostrictive properties, and cured product thereof

Also Published As

Publication number Publication date
JP6884299B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
Elhajjar et al. Magnetostrictive polymer composites: Recent advances in materials, structures and properties
Narita Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites
Olabi et al. Design and application of magnetostrictive materials
Narita et al. Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction
Kellogg Development and modeling of iron-gallium alloys
US8092616B2 (en) Method for producing a giant magnetostrictive alloy
Yang et al. Design, fabrication and evaluation of metal-matrix lightweight magnetostrictive fiber composites
JP4895108B2 (en) FeGaAl alloy and magnetostrictive torque sensor
JP6884299B2 (en) Composite reinforced magnetostrictive composite material and its manufacturing method
Yang et al. Structural design and performance evaluation of FeCo/epoxy magnetostrictive composites
Yekta et al. Magnetic and mechanical properties of cold-rolled permalloy
JP4053328B2 (en) Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties
Yang et al. Twisting and reverse magnetic field effects on energy conversion of magnetostrictive wire metal matrix composites
Nakajima et al. Performance boost of co-rich fe-co based alloy magnetostrictive sensors via nitrogen treatment
Lanotte et al. The potentiality of composite elastic magnets as novel materials for sensors and actuators
Fujieda et al. Significant reduction in Young's modulus of Fe–Ga alloy single crystal by inverse magnetostrictive effect under tensile stress
Jen et al. Structural, magneto-mechanical, and damping properties of slowly-cooled polycrystalline Fe81Ga19 alloy
Riesgo et al. Influence of the remnant magnetization, size distribution and content of soft magnetic reinforcement in micro-mechanical behavior of polymer matrix composites
Ebrahimi et al. Mechanics of Magnetostrictive Materials and Structures
Yamazaki et al. Magnetic and magnetostrictive properties in heat-treated Fe-Co wire for smart material/device
Chang et al. Magneto-mechanical and damping properties in Fe79. 9Al20-xGaxTb0. 1 alloys
Yamazaki et al. Microstructure‐Enhanced Inverse Magnetostrictive Effect in Fe–Co Alloy Wires
Alexander et al. Microstructure properties and strengthening mechanisms of the AS4-3501-6 polymeric resin with embedded Terfenol-D particles
JP2013177664A (en) Alloy for magnetostrictive vibration power generation
Lesz et al. The structure and magnetoelastic properties of the Fe-based amorphous alloy with Hf addition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6884299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150