JP7495128B2 - Hydrogen production method using aluminum alloy - Google Patents

Hydrogen production method using aluminum alloy Download PDF

Info

Publication number
JP7495128B2
JP7495128B2 JP2021063762A JP2021063762A JP7495128B2 JP 7495128 B2 JP7495128 B2 JP 7495128B2 JP 2021063762 A JP2021063762 A JP 2021063762A JP 2021063762 A JP2021063762 A JP 2021063762A JP 7495128 B2 JP7495128 B2 JP 7495128B2
Authority
JP
Japan
Prior art keywords
reaction
aluminum alloy
hydrogen
aqueous solution
alkaline aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021063762A
Other languages
Japanese (ja)
Other versions
JP2022158693A (en
Inventor
伸明 水木
哲哉 角谷
Original Assignee
アルハイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルハイテック株式会社 filed Critical アルハイテック株式会社
Priority to JP2021063762A priority Critical patent/JP7495128B2/en
Publication of JP2022158693A publication Critical patent/JP2022158693A/en
Application granted granted Critical
Publication of JP7495128B2 publication Critical patent/JP7495128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、アルミニウムとアルカリ水溶液とを反応させて、水素を得る水素の製造方法に関し、特にアルミニウム合金に含まれるアルミニウム以外の成分の影響を改善した水素の製造方法に係る。 The present invention relates to a method for producing hydrogen by reacting aluminum with an alkaline aqueous solution to obtain hydrogen, and in particular to a method for producing hydrogen that reduces the effects of components other than aluminum contained in an aluminum alloy.

アルミニウムをpH3以上のアルカリ水溶液に反応させると、溶解反応により水素が発生する。
アルカリ水溶液として、水酸化ナトリウムを例にして反応式を下記に示す。
(1)2Al+2NaOH+2HO → 2NaAlO+3H
ここで、水素の発生に必要なNaOHは、反応によりNaAlOとして消耗されるが、ある程度の濃度になると、水溶性のNaAlO(アルミン酸ソーダ)は加水分解により、下記のようにNaOHが再生される。
(2)NaAlO+2HO → Al(OH)+NaOH
しかし、アルミニウム合金中には、鋳造性や展伸性、強度や切削性等を考慮して、各種添加成分が含有する。
例えば、JIS ADC12等は、ダイカスト鋳造用合金であり、Siが多く含まれる。
したがって、各種製品の製造に使用されたアルミニウム合金の端材や、製造工程で発生する切削クズや切粉等を水素製造の原材料に用いた場合に、アルミニウム以外の成分が問題となる。
When aluminum is reacted with an alkaline aqueous solution having a pH of 3 or more, hydrogen is generated by the dissolution reaction.
The reaction formula is shown below using sodium hydroxide as an example of an alkaline aqueous solution.
(1) 2Al + 2NaOH + 2H2O2NaAlO2 + 3H2
Here, the NaOH required for hydrogen generation is consumed as NaAlO 2 through the reaction, but when it reaches a certain concentration, water-soluble NaAlO 2 (sodium aluminate) is hydrolyzed to regenerate NaOH as shown below.
(2) NaAlO2 + 2H2O → Al(OH) 3 + NaOH
However, aluminum alloys contain various additive elements in consideration of castability, ductility, strength, machinability, and the like.
For example, JIS ADC12 and the like are alloys for die casting and contain a large amount of Si.
Therefore, when scraps of aluminum alloys used in the manufacture of various products, or cutting waste and chips generated during the manufacturing process, are used as raw materials for hydrogen production, components other than aluminum become problematic.

特許文献1には、反応器から固形物を排出しながら連続的に水素を得る方法を開示するが、Si等のアルミニウム合金中の添加成分はアルカリ水溶液中に溶解した状態で存在するので、除去することができない。 Patent Document 1 discloses a method for continuously obtaining hydrogen while discharging solids from a reactor, but additive components in the aluminum alloy, such as Si, exist in a dissolved state in the alkaline aqueous solution and cannot be removed.

特開2007-320792号公報JP 2007-320792 A

本発明は、アルミニウム合金を水素製造の原材料に用いた場合に、アルカリ水溶液中に溶解するアルミニウム以外の成分の影響を抑えた水素の製造方法の提供を目的とする。 The present invention aims to provide a method for producing hydrogen that reduces the effects of components other than aluminum that dissolve in an alkaline aqueous solution when an aluminum alloy is used as a raw material for hydrogen production.

本発明に係る水素の製造方法は、アルミニウム合金をアルカリ水溶液に反応させて水素を製造する方法であって、前記アルカリ水溶液中に溶解された前記アルミニウム合金に含まれるアルミニウム以外の成分を不溶化し除去するための不溶化補助剤が前記アルカリ水溶液に添加されていることを特徴とする。
このように、不溶化補助剤は、水素製造に用いる反応液中に予め、あるいは途中で添加してもよい。
The method for producing hydrogen according to the present invention is a method for producing hydrogen by reacting an aluminum alloy with an alkaline aqueous solution, and is characterized in that an insolubilization assistant is added to the alkaline aqueous solution to insolubilize and remove components other than aluminum contained in the aluminum alloy dissolved in the alkaline aqueous solution.
In this manner, the insolubilizer may be added to the reaction liquid used for hydrogen production in advance or during the process.

また、反応が終了した反応液の再生に使用することもでき、アルミニウム合金をアルカリ水溶液に反応させて水素を製造する方法であって、反応液中に含まれる前記アルミニウム合金中のアルミニウム以外の成分を不溶化し除去するための不溶化補助剤を前記反応液中に添加し、前記アルカリ水溶液を再生し、再利用することを特徴としてもよい。 It can also be used to regenerate a reaction solution after the reaction has been completed. A method for producing hydrogen by reacting an aluminum alloy with an alkaline aqueous solution may be characterized in that an insolubilizing agent is added to the reaction solution to insolubilize and remove components other than aluminum in the aluminum alloy contained in the reaction solution, and the alkaline aqueous solution is regenerated and reused.

ここで、不溶化補助剤はCaSO,CaCO,CaCl,Ca(OH),MgSO,MgCO,MgCl,Mg(OH),FeSO,FeCO,FeCl,Fe(OH)のうち、いずれか1つ以上であるのが好ましい。 Here, the insolubilizing agent is preferably one or more of CaSO4 , CaCO3 , CaCl2 , Ca(OH) 2 , MgSO4 , MgCO3 , MgCl2 , Mg(OH) 2 , FeSO4 , FeCO3 , FeCl2 , and Fe(OH) 2 .

例えば、アルミニウム合金中に含まれるSiもアルカリ水溶液と反応し、その反応式を下記に示す。
(3)Si+2NaOH+HO → NaSiO+2H
これにより、NaOHは、NaSiOとして消耗されるが、このNaSiOは加水分解しないので、NaAlOのようにNaOHが再生されない。
そこで、例えば不溶化補助剤としてCa(OH)を添加すると、下記のような反応が生じる。
NaSiO(NaO・SiO)+Ca(OH) → CaO・SiO+2NaOH
ここで、CaO・SiOは、アルカリ水溶液に不溶性となり、固形物として除去でき、NaOHが再生される。
For example, Si contained in an aluminum alloy also reacts with an alkaline aqueous solution, and the reaction formula is shown below.
(3) Si + 2NaOH + H2ONa2SiO3 + 2H2
As a result, NaOH is consumed as Na 2 SiO 3 , but since this Na 2 SiO 3 does not hydrolyze, NaOH is not regenerated as in the case of NaAlO 2 .
Therefore, for example, when Ca(OH) 2 is added as an insolubilizing agent, the following reaction occurs:
Na2SiO3 ( Na2O.SiO2 )+Ca(OH ) 2CaO.SiO2 + 2NaOH
Here, CaO.SiO2 becomes insoluble in the alkaline aqueous solution and can be removed as a solid, and NaOH is regenerated.

本発明に係る水素の製造方法にあっては、アルミニウム合金をアルカリ水溶液に溶解した際に、アルミニウム合金中に含まれるアルミニウム以外の可溶性成分を不溶化補助剤にて反応液から除去できるとともにアルカリ成分が再生されるので、効率よく水素を製造することができる。 In the hydrogen production method according to the present invention, when an aluminum alloy is dissolved in an alkaline aqueous solution, soluble components other than aluminum contained in the aluminum alloy can be removed from the reaction solution by the insolubilization aid, and the alkaline components are regenerated, so hydrogen can be produced efficiently.

本発明に係る効果を実験にて実証したので、以下説明する。
水酸化ナトリウム(NaOH)40g/l,50mlの反応液をビーカーに準備し、アルミニウム合金の切粉0.2gを添加し、発生した水素(ガス)を回収した。
アルミニウム合金は、Si:9.6~12.0%,Cu:1.5~3.5%が含有しているものを用いた。
The effects of the present invention have been demonstrated through experiments, which will be described below.
A reaction solution of 50 ml of 40 g/l sodium hydroxide (NaOH) was prepared in a beaker, 0.2 g of aluminum alloy cutting chips was added, and the generated hydrogen (gas) was collected.
The aluminum alloy used contained 9.6 to 12.0% of Si and 1.5 to 3.5% of Cu.

上記の方法で、第1回目に反応させた反応終了後の反応液から濾過にて固形分を除去し、順次第2回目,3回目と実験を繰り返した。
実施例としては、反応終了後の反応液にCa(OH)を約1%添加し、反応実験を繰り返した。
一方、比較例にはCa(OH)を添加せずに、そのまま反応実験を繰り返した。
その結果、比較例では5回の実験の繰り返しにより、水素の発生量が第1回目の発生量に対して約80%まで低下したが、実施例は5回目の実験による水素発生量は、第1回目の発生量よりも約95%の低下に留まっていた。
これにより、不溶化補助剤の反応液への添加により、水素発生量の低下を抑えることができることが確認できた。
なお、不溶化補助剤の添加量は、アルミニウム合金中のアルミニウム以外の成分量に応じて選定されるが、概ね反応液に対して0.1~10質量%添加されるのが好ましい。
After the first reaction was completed using the above method, the solid contents were removed from the reaction solution by filtration, and the experiment was repeated a second time and a third time.
As an example, about 1% Ca(OH) 2 was added to the reaction solution after the reaction was completed, and the reaction experiment was repeated.
On the other hand, in the comparative example, Ca(OH) 2 was not added and the reaction experiment was repeated as it was.
As a result, in the comparative example, after five repeated experiments, the amount of hydrogen generated was reduced to approximately 80% of the amount generated in the first experiment, whereas in the example, the amount of hydrogen generated in the fifth experiment was only approximately 95% lower than the amount generated in the first experiment.
This confirmed that the addition of an insolubilizer to the reaction liquid can suppress the decrease in the amount of hydrogen generated.
The amount of the insolubilizer to be added is selected depending on the amount of components other than aluminum in the aluminum alloy, but it is generally preferable to add 0.1 to 10 mass % based on the reaction liquid.

Claims (1)

Siを9.6~12.0%含有するアルミニウム合金の端材又は切粉をアルカリ水溶液と反応させて水素を製造する方法であって、
前記水素を製造した反応終了後の反応液にCa(OH) を添加し、下記反応式(1)によりNaOHを再生することで、前記反応終了後の反応液を再生しながら繰り返し水素の製造に用いることを特徴とする水素の製造方法。
NaSiO(NaO・SiO)+Ca(OH) → CaO・SiO+2NaOH・・・・・・・・・(1)
A method for producing hydrogen by reacting scraps or cutting chips of an aluminum alloy containing 9.6 to 12.0% Si with an alkaline aqueous solution, comprising the steps of:
A method for producing hydrogen , comprising adding Ca(OH) 2 to the reaction solution after completion of the reaction in which hydrogen is produced , and regenerating NaOH according to the following reaction formula (1), thereby repeatedly using the reaction solution after completion of the reaction to produce hydrogen while regenerating it.
Na2SiO3 ( Na2O.SiO2 )+Ca( OH ) 2CaO.SiO2 + 2NaOH (1)
JP2021063762A 2021-04-02 2021-04-02 Hydrogen production method using aluminum alloy Active JP7495128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063762A JP7495128B2 (en) 2021-04-02 2021-04-02 Hydrogen production method using aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063762A JP7495128B2 (en) 2021-04-02 2021-04-02 Hydrogen production method using aluminum alloy

Publications (2)

Publication Number Publication Date
JP2022158693A JP2022158693A (en) 2022-10-17
JP7495128B2 true JP7495128B2 (en) 2024-06-04

Family

ID=83638498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063762A Active JP7495128B2 (en) 2021-04-02 2021-04-02 Hydrogen production method using aluminum alloy

Country Status (1)

Country Link
JP (1) JP7495128B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190906A (en) 2001-12-25 2003-07-08 Itec Co Ltd Waste aluminum treating apparatus
JP2016509570A (en) 2013-02-01 2016-03-31 レフレクティア,エセ.アー. Method for producing hydrogen by reaction with aluminum
JP2018002557A (en) 2016-07-05 2018-01-11 アルハイテック株式会社 Hydrogen production apparatus and production method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190906A (en) 2001-12-25 2003-07-08 Itec Co Ltd Waste aluminum treating apparatus
JP2016509570A (en) 2013-02-01 2016-03-31 レフレクティア,エセ.アー. Method for producing hydrogen by reaction with aluminum
JP2018002557A (en) 2016-07-05 2018-01-11 アルハイテック株式会社 Hydrogen production apparatus and production method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤尚,ドロマイトを用いたアルミン酸ソーダ溶液の脱ケイ酸処理,日本鉱業会誌,1968年08月18日,Vol.84,No.958,p.123-128,DOI: 10.2473/shigentosozai1953.84.958_123

Also Published As

Publication number Publication date
JP2022158693A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
JPH072512A (en) Preparation of pure amorphous silica from rock
JP2008528421A (en) Magnesium oxide manufacturing process
CN110629015B (en) Iron olivine type slag desiliconization method
CN103030126A (en) Recovery method for waste phosphoric acid liquor generated in production process of formed foil
JP7495128B2 (en) Hydrogen production method using aluminum alloy
JPH0481526B2 (en)
CN109797283B (en) Hydrochloric acid leaching method for silicon-containing nickel hydroxide cobalt
KR20230090326A (en) material disposal method
US1618105A (en) Process of manufacturing aluminum hydroxide
WO2001034859A1 (en) Method for reduction of nickel
CN111807829A (en) Method for preparing magnesia-alumina spinel by using aluminum ash and bischofite
US4381937A (en) Method for producing cobalt metal powder
JP7470941B2 (en) Hydrogen production method and production device
CN108275720A (en) A kind of method that zirconium oxychloride white residue takes off zirconium
JP4405281B2 (en) Recycling method of electroless nickel plating waste liquid
CN109825724B (en) Method for removing silicon in tungsten smelting
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
JP2000178663A (en) Treatment of aluminum dross
JP7535263B2 (en) Hydrogen production method and method for reusing the residue
JP2001192849A (en) Method for regenerating electroless nickel plating solution
JP7423055B2 (en) Method for recovering alkaline aqueous solution used for hydrogen production
JP3181824B2 (en) Treatment method for electroless nickel plating aging solution
US3712838A (en) Regeneration of caustic liquor for etching aluminum
JP7470977B2 (en) Hydrogen generating agent and method for producing hydrogen using the same
RU2036836C1 (en) Method for production of silicon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240516

R150 Certificate of patent or registration of utility model

Ref document number: 7495128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150