JP7423055B2 - Method for recovering alkaline aqueous solution used for hydrogen production - Google Patents

Method for recovering alkaline aqueous solution used for hydrogen production Download PDF

Info

Publication number
JP7423055B2
JP7423055B2 JP2020055212A JP2020055212A JP7423055B2 JP 7423055 B2 JP7423055 B2 JP 7423055B2 JP 2020055212 A JP2020055212 A JP 2020055212A JP 2020055212 A JP2020055212 A JP 2020055212A JP 7423055 B2 JP7423055 B2 JP 7423055B2
Authority
JP
Japan
Prior art keywords
aqueous solution
alkaline aqueous
alkaline
water
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020055212A
Other languages
Japanese (ja)
Other versions
JP2021155239A (en
Inventor
伸明 水木
善之 麻生
Original Assignee
アルハイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルハイテック株式会社 filed Critical アルハイテック株式会社
Priority to JP2020055212A priority Critical patent/JP7423055B2/en
Publication of JP2021155239A publication Critical patent/JP2021155239A/en
Application granted granted Critical
Publication of JP7423055B2 publication Critical patent/JP7423055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、アルミニウム又はアルミニウム合金(以下、必要に応じてアルミニウム合金等と称する。)と反応させて水素を製造するのに用いられるアルカリ性水溶液の回収方法に関する。 The present invention relates to a method for recovering an alkaline aqueous solution used to produce hydrogen by reacting with aluminum or an aluminum alloy (hereinafter referred to as aluminum alloy or the like as necessary).

アルミニウム合金等をpH13以上の高濃度のアルカリ性水溶液に溶解反応させることで水素が発生する。
アルカリ性水溶液としては、水酸化ナトリウム、水酸化カリウム等が用いられる。
例えば、水酸化ナトリウムにて説明する。
(1)2Al+2NaOH+2HO→2NaAlO+3Hなる反応で水素が発生し、水溶性のアルミン酸ナトリウム(NaAlO)が得られる。
NaAlOは、加水分解により下記のような反応が考えられる。
(2)NaAlO+HO→Al(OOH)+NaOH
(3)NaAlO+2HO→Al(OH)+NaOH
これらの反応は、結晶学的な結晶構造からなる水酸化アルミニウム結晶が生成されるものではなく、いわばゾル状の状態にある結晶性水酸化アルミニウムと水酸化ナトリウムとの混合物になるため、NaOHの水溶液が充分に回収されない技術的課題があった。
Hydrogen is generated by dissolving an aluminum alloy or the like in a highly concentrated alkaline aqueous solution with a pH of 13 or higher.
As the alkaline aqueous solution, sodium hydroxide, potassium hydroxide, etc. are used.
For example, sodium hydroxide will be explained.
(1) Hydrogen is generated by the reaction 2Al+2NaOH+2H 2 O→2NaAlO 2 +3H 2 and water-soluble sodium aluminate (NaAlO 2 ) is obtained.
When NaAlO 2 is hydrolyzed, the following reactions can be considered.
(2) NaAlO 2 +H 2 O → Al(OOH) + NaOH
(3) NaAlO 2 +2H 2 O→Al(OH) 3 +NaOH
These reactions do not produce aluminum hydroxide crystals with a crystallographic crystal structure, but instead produce a mixture of crystalline aluminum hydroxide and sodium hydroxide in a so-called sol-like state. There was a technical problem in that the aqueous solution was not sufficiently recovered.

特許文献1には、反応器から固形物を排出しながら連続的に水素を得る方法を開示するが、この固形物にはアルカリ成分が混入されているため、アルカリ成分の消耗が激しいものである。 Patent Document 1 discloses a method for continuously obtaining hydrogen while discharging solid matter from a reactor, but since this solid matter is mixed with an alkali component, the alkali component is rapidly consumed. .

特開2007-320792号公報Japanese Patent Application Publication No. 2007-320792

本発明は、アルミニウム合金等を溶解し、水素を製造するのに用いられるアルカリ性水溶液の繰り返し使用における回収率が高いアルカリ性水溶液の回収方法の提供を目的とする。 An object of the present invention is to provide a method for recovering an alkaline aqueous solution that has a high recovery rate during repeated use of the alkaline aqueous solution used to produce hydrogen by dissolving an aluminum alloy or the like.

本発明に係るアルカリ性水溶液の回収方法は、アルミニウム又はアルミニウム合金と反応させることで水素を製造するのに用いられるアルカリ性水溶液の繰り返し使用方法であって、前記アルカリ性水溶液はアルミニウムをアルミン酸アルカリの水溶液として溶解することで水素を発生させるステップと、アルミン酸アルカリ性水溶液から冷却等により水酸化アルミニウム・アルカリ水混合析出物を析出させ固液分離することでアルカリ性水溶液の1次回収ステップと、前記水酸化アルミニウム・アルカリ水混合物からフィルタープレスにてアルカリ水の2次回収ステップとを有することを特徴とする。 The method for recovering an alkaline aqueous solution according to the present invention is a method for repeatedly using an alkaline aqueous solution used to produce hydrogen by reacting with aluminum or an aluminum alloy, wherein the alkaline aqueous solution converts aluminum into an aqueous solution of an alkali aluminate. a step of generating hydrogen by dissolving the alkaline aluminate aqueous solution; a step of primary recovery of the alkaline aqueous solution by precipitating a mixed precipitate of aluminum hydroxide and alkaline water by cooling etc. from the alkaline aluminate aqueous solution and performing solid-liquid separation; - A second recovery step of alkaline water from the alkaline water mixture using a filter press.

ここで、前記水酸化アルミニウム・アルカリ水混合物からアルカリ水を2次回収した粗水酸化アルミニウムをさらに、少量の水又は温水にて洗浄し、アルカリ成分の3次回収ステップを有するようにすると、より回収率が向上する。 Here, if the crude aluminum hydroxide obtained by secondary recovery of alkaline water from the aluminum hydroxide/alkaline water mixture is further washed with a small amount of water or hot water to have a tertiary recovery step of the alkaline component, it is even more effective. Recovery rate improves.

本発明において、前記アルカリ性水溶液は水溶性の水素発生触媒が含有されていてもよく、その場合に水素発生触媒の消耗も低減できる。 In the present invention, the alkaline aqueous solution may contain a water-soluble hydrogen generating catalyst, in which case consumption of the hydrogen generating catalyst can also be reduced.

従来、アルミン酸アルカリの水溶液から加水分解により、水酸化アルミニウムを折出させただけでは、アルカリ成分がこの水酸化アルミニウムに多く混合し、水酸化アルミニウム・アルカリ水混合物になっているため、アルカリ成分の消耗が激しく、充分に繰り返し使用できなかった。
これに対して本発明は、水酸化アルミニウム・アルカリ混合物を脱水操作することでアルカリ水の回収ができ、さらに少量の水や温水で上記固形物を洗浄しアルカリ分を回収することで、さらに回収率が向上する。
Conventionally, when aluminum hydroxide was simply precipitated by hydrolysis from an aqueous solution of alkali aluminate, a large amount of alkali components were mixed with this aluminum hydroxide, resulting in a mixture of aluminum hydroxide and alkaline water. It was severely worn out and could not be used repeatedly.
In contrast, in the present invention, alkaline water can be recovered by dehydrating the aluminum hydroxide/alkali mixture, and further recovered by washing the solid matter with a small amount of water or hot water to recover the alkaline content. rate is improved.

以下、本発明に係る回収方法を具体的に説明する。
pH13以上の高濃度の水酸化ナトリウムの水溶液が貯留された反応タンクにアルミニウム合金を投入し、水素を製造した。
なお、反応タンクには0.001~0.1モル/リットルの水素発生触媒を添加してある。
反応が終了すると、反応液を別の回収タンクにポンプ輸送し、液温を下げることで水酸化アルミニウム・アルカリ混合物を折出させた。
この液を濾過し、濾液をアルカリ性水溶液として1次回収した。
Hereinafter, the collection method according to the present invention will be specifically explained.
An aluminum alloy was charged into a reaction tank in which a highly concentrated aqueous solution of sodium hydroxide with a pH of 13 or higher was stored to produce hydrogen.
Note that a hydrogen generating catalyst of 0.001 to 0.1 mol/liter was added to the reaction tank.
When the reaction was completed, the reaction solution was pumped to another recovery tank, and the aluminum hydroxide/alkali mixture was precipitated by lowering the solution temperature.
This liquid was filtered, and the filtrate was primarily recovered as an alkaline aqueous solution.

上記にて得られた固形分をフィルタープレス機に投入し、含水率約80%レベルまで脱水することでアルカリ水を2次回収し、反応タンクにリターンした。
これにより、水酸化アルミニウム・アルカリ水混合物からアルカリ成分をアルカリ水として回収できた。
脱水処理して残った粗結晶性水酸化アルミニウムには、まだアルカリ分が残っていることから、これを少量の温水で洗浄したところ、洗浄水は強いアルカリ性を示したので、これも反応タンクにリターンさせた。
なお、洗浄はフィルターに保持した固形物に少量の40~60℃の温水(固形分の10~20%の量)を上からかけるようにして、3~5回回収を繰り返した。
The solid content obtained above was put into a filter press machine and dehydrated to a water content level of about 80% to recover secondary alkaline water, which was then returned to the reaction tank.
As a result, the alkaline component could be recovered as alkaline water from the aluminum hydroxide/alkaline water mixture.
The crude crystalline aluminum hydroxide that remained after dehydration still had alkaline content, so when we washed it with a small amount of warm water, the washing water showed strong alkalinity, so we added this to the reaction tank as well. I returned it.
For washing, a small amount of 40 to 60°C warm water (10 to 20% of the solid content) was poured over the solids retained in the filter, and collection was repeated 3 to 5 times.

上記にてアルカリ性水溶液をリターン回収した反応タンクにアルミニウム合金を投入したところ、その前と同様に水素製造に供することができ、この水素製造を繰り返し行うことができた。
この場合に、水素発生触媒の減少も少なく、そのまま繰り返し使用できた。
このことは、高価な触媒の寿命も長くなり、生産性が向上する。
従来は水素の製造毎にアルカリ水や触媒を補充していたのに本発明にあっては、数回、連続的に水素製造ができ、補充する際にものと補充量が少なくなった。
When the aluminum alloy was put into the reaction tank into which the alkaline aqueous solution was returned and recovered in the above, it could be used for hydrogen production as before, and this hydrogen production could be repeated.
In this case, there was little loss of the hydrogen generating catalyst, and it could be used repeatedly as is.
This also extends the life of expensive catalysts and improves productivity.
In the past, alkaline water and catalyst were replenished each time hydrogen was produced, but with the present invention, hydrogen can be produced several times in succession, and the amount of replenishment is reduced.

Claims (1)

アルミニウム又はアルミニウム合金と反応させることで水素を製造するのに用いられるアルカリ性水溶液の回収方法であって、
前記アルカリ性水溶液に、アルミニウムをアルミン酸アルカリの水溶液として溶解することで水素を発生させるステップと、
アルミン酸アルカリ性水溶液から冷却より水酸化アルミニウム・アルカリ水混合析出物を析出させ固液分離することでアルカリ性水溶液を回収する、1次回収ステップと、
前記水酸化アルミニウム・アルカリ水混合物からフィルタープレスにてアルカリ性水溶液を回収する、2次回収ステップと、
前記水酸化アルミニウム・アルカリ水混合物からアルカリ性水溶液を2次回収した粗結晶性水酸化アルミニウムをさらに、少量の水又は温水にて洗浄し、アルカリ性水溶液を回収する、3次回収ステップを有し、
前記アルカリ性水溶液は水溶性の水素発生触媒が含有されていることを特徴とする前記1次~3次回収ステップによりアルカリ性水溶液を繰り返し使用するためのアルカリ性水溶液の回収方法。
A method for recovering an alkaline aqueous solution used to produce hydrogen by reacting with aluminum or an aluminum alloy, the method comprising:
generating hydrogen by dissolving aluminum as an alkali aluminate aqueous solution in the alkaline aqueous solution;
a primary recovery step in which a mixed aluminum hydroxide/alkaline water precipitate is precipitated from the aluminate alkaline aqueous solution by cooling and the alkaline aqueous solution is recovered by solid-liquid separation;
a secondary recovery step of recovering an alkaline aqueous solution from the aluminum hydroxide/alkaline water mixture using a filter press ;
A tertiary recovery step in which the crude crystalline aluminum hydroxide obtained by secondarily recovering the alkaline aqueous solution from the aluminum hydroxide/alkaline water mixture is further washed with a small amount of water or hot water to recover the alkaline aqueous solution,
A method for recovering an alkaline aqueous solution for repeatedly using the alkaline aqueous solution in the first to tertiary recovery steps, wherein the alkaline aqueous solution contains a water-soluble hydrogen generating catalyst .
JP2020055212A 2020-03-26 2020-03-26 Method for recovering alkaline aqueous solution used for hydrogen production Active JP7423055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020055212A JP7423055B2 (en) 2020-03-26 2020-03-26 Method for recovering alkaline aqueous solution used for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055212A JP7423055B2 (en) 2020-03-26 2020-03-26 Method for recovering alkaline aqueous solution used for hydrogen production

Publications (2)

Publication Number Publication Date
JP2021155239A JP2021155239A (en) 2021-10-07
JP7423055B2 true JP7423055B2 (en) 2024-01-29

Family

ID=77917075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055212A Active JP7423055B2 (en) 2020-03-26 2020-03-26 Method for recovering alkaline aqueous solution used for hydrogen production

Country Status (1)

Country Link
JP (1) JP7423055B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210591A (en) 2002-12-27 2004-07-29 Itec Co Ltd Apparatus and method of producing gaseous hydrogen
JP2008019158A (en) 2006-06-14 2008-01-31 Hiroko Ishikuri Method for producing high purity aluminum hydroxide and high purity aluminum hydroxide obtained by the method
JP2010001175A (en) 2008-06-19 2010-01-07 Furukawa-Sky Aluminum Corp Method of producing sodium aluminate and hydrogen
JP2014088280A (en) 2012-10-30 2014-05-15 Tonami Transportation Co Ltd Hydrogen generator
US20170033382A1 (en) 2014-04-13 2017-02-02 Alcoa Inc. Systems and methods for regeneration of aqueous alkaline solution
JP2018002557A (en) 2016-07-05 2018-01-11 アルハイテック株式会社 Hydrogen production apparatus and production method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210591A (en) 2002-12-27 2004-07-29 Itec Co Ltd Apparatus and method of producing gaseous hydrogen
JP2008019158A (en) 2006-06-14 2008-01-31 Hiroko Ishikuri Method for producing high purity aluminum hydroxide and high purity aluminum hydroxide obtained by the method
JP2010001175A (en) 2008-06-19 2010-01-07 Furukawa-Sky Aluminum Corp Method of producing sodium aluminate and hydrogen
JP2014088280A (en) 2012-10-30 2014-05-15 Tonami Transportation Co Ltd Hydrogen generator
US20170033382A1 (en) 2014-04-13 2017-02-02 Alcoa Inc. Systems and methods for regeneration of aqueous alkaline solution
JP2018002557A (en) 2016-07-05 2018-01-11 アルハイテック株式会社 Hydrogen production apparatus and production method using the same

Also Published As

Publication number Publication date
JP2021155239A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
AU2018227891B2 (en) Method for producing lithium hydroxide from lithium-containing ore
JP6289412B2 (en) Method for producing monovalent succinate
CN109516479B (en) Preparation method of battery-grade lithium hydroxide
CA2217343C (en) Process for the production of cesium compounds
CN111348669A (en) Preparation method of sodium hexafluoroaluminate
CN109680148A (en) A method of it decomposing scheelite and extracts tungsten
CN101348276A (en) Alkali metal stannate production method
CN109592699A (en) The preparation method of LITHIUM BATTERY lithium hydroxide
CN101157453A (en) Method for reclaiming alkali in red mud from Bayer process
JP7423055B2 (en) Method for recovering alkaline aqueous solution used for hydrogen production
JP2019131448A (en) Method for producing lithium hydroxide
CN103663516A (en) Method for preparing aluminum hydroxide by utilizing high-alumina coal ash
CN106673048A (en) Method for converting basic copper chloride into basic copper carbonate
KR101562263B1 (en) Method for preparing sodium nitrate using a waste solution containing nitric acid
CN101891227A (en) Silicon-containing sodium aluminate solution deep desiliconization method
CN106044853A (en) Purification method for deep silica removal of ammonium metavanadate
WO2024098620A1 (en) Method for co-producing lithium carbonate and lithium hydroxide from lithium-containing solution
CN113528857A (en) Continuous production method for recovering cobalt from cobalt-containing waste residues
WO2023246156A1 (en) Process for preparing lithium hydroxide by causticization and use thereof
CN101734696B (en) Method for removing organic matter by Bayer process
CN111252791A (en) Comprehensive utilization method of high-aluminum-content waste alkali liquor
CN104086398A (en) Method for separating and recovering oxalic acid from waste oxalic acid liquor
CN107140662B (en) A kind of new method producing cesium hydroxide
CN111410215A (en) Method for extracting lithium sulfate from brine with high magnesium-lithium ratio
CN110964905A (en) Method for purifying crude ammonium chloroplatinate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7423055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150