JP7491258B2 - Method for producing purified (organooxymethyl)organooxysilane - Google Patents

Method for producing purified (organooxymethyl)organooxysilane Download PDF

Info

Publication number
JP7491258B2
JP7491258B2 JP2021068813A JP2021068813A JP7491258B2 JP 7491258 B2 JP7491258 B2 JP 7491258B2 JP 2021068813 A JP2021068813 A JP 2021068813A JP 2021068813 A JP2021068813 A JP 2021068813A JP 7491258 B2 JP7491258 B2 JP 7491258B2
Authority
JP
Japan
Prior art keywords
bis
organooxymethyl
organooxysilane
bromomethyl
chloromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021068813A
Other languages
Japanese (ja)
Other versions
JP2022163779A (en
Inventor
直紀 東村
成紀 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2021068813A priority Critical patent/JP7491258B2/en
Publication of JP2022163779A publication Critical patent/JP2022163779A/en
Application granted granted Critical
Publication of JP7491258B2 publication Critical patent/JP7491258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、精製(オルガノオキシメチル)オルガノオキシシランの製造方法に関する。 The present invention relates to a method for producing purified (organooxymethyl)organooxysilane.

(アルコキシメチル)アルコキシシランは、硬化性を速める効果があることから、シラノール基やアルコキシシリル基を有するポリシロキサンを主原料とした弾性シーラントや接着剤の架橋剤として用いられることが広く知られている。 (Alkoxymethyl)alkoxysilanes are widely known for their ability to accelerate curing, and are therefore used as crosslinking agents in elastic sealants and adhesives whose main raw material is polysiloxanes containing silanol or alkoxysilyl groups.

ここで、(アルコキシメチル)アルコキシシランは、(クロロメチル)アルコキシシランに過剰量のナトリウムアルコキシドを加えて、アルコール溶媒存在下にて反応させ、副生する塩を除去した後、蒸留精製することで得ることができる(特許文献1)。 Here, (alkoxymethyl)alkoxysilane can be obtained by adding an excess amount of sodium alkoxide to (chloromethyl)alkoxysilane, reacting them in the presence of an alcohol solvent, removing the by-product salt, and then purifying them by distillation (Patent Document 1).

特表2009-513734号公報JP 2009-513734 A

しかしながら、特許文献1記載の製造方法の場合、蒸留時の温度や減圧度に関する規定がないため、(アルコキシメチル)アルコキシシランを蒸留する際に、蒸留釜の内温が高くなればなるほど不均化を起こしやすくなる。不均化を起こすと目的物がそれぞれ低沸点不純物および高沸点不純物に変化するが、これら不純物は、沸点が互いに近いことから、主留に混入しやすく、目的物を高純度で得ることが困難となる。そればかりでなく、目的物の量が少なくなっていくため、高収率で得ることも困難となる場合があった。特に、目的物の純度が低い場合は、硬化剤等として用いた場合に、所望の効果を奏しない場合が考えられる。
一方、減圧度を高めて蒸留釜の内温が低すぎる状態で蒸留すると、沸点が低くなるため、飛散によるロスが多くなる場合もあった。
However, in the case of the manufacturing method described in Patent Document 1, since there are no regulations regarding the temperature or degree of vacuum during distillation, the higher the internal temperature of the distillation still is, the more likely disproportionation occurs when distilling (alkoxymethyl)alkoxysilane. When disproportionation occurs, the target product changes into low-boiling impurities and high-boiling impurities, respectively, and since these impurities have similar boiling points, they are likely to be mixed into the main distillate, making it difficult to obtain the target product with high purity. Not only that, but the amount of the target product decreases, making it difficult to obtain it in high yield. In particular, when the purity of the target product is low, it is considered that the desired effect will not be achieved when used as a curing agent, etc.
On the other hand, if distillation is performed under conditions where the degree of pressure reduction is increased and the internal temperature of the still is too low, the boiling point becomes lower, which can result in a large loss due to evaporation.

本発明は、上記事情に鑑みなされたものであり、蒸留中の不均化を抑制し、高純度且つ高収率で精製(オルガノオキシメチル)オルガノオキシシランを製造する方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a method for producing purified (organooxymethyl)organooxysilane with high purity and high yield by suppressing disproportionation during distillation.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、(オルガノオキシメチル)オルガノオキシシラン、特に、(アルコキシメチル)アルコキシシランを蒸留する際に、蒸留釜の内温を所定の温度にし、且つ圧力を所定の圧力となるように減圧度を調整することにより、蒸留中における(アルコキシメチル)アルコキシシラン等の(オルガノオキシメチル)オルガノオキシシランの不均化を抑制でき、高純度且つ高収率で目的物が得られることを見出し、本発明を完成するに至った。 As a result of extensive research into achieving the above object, the inventors discovered that when distilling (organooxymethyl)organooxysilanes, particularly (alkoxymethyl)alkoxysilanes, by setting the internal temperature of the distillation still to a predetermined temperature and adjusting the degree of vacuum so that the pressure is a predetermined pressure, it is possible to suppress disproportionation of (organooxymethyl)organooxysilanes such as (alkoxymethyl)alkoxysilanes during distillation, and to obtain the desired product with high purity and high yield, which led to the completion of the present invention.

すなわち、本発明は、
1.下記一般式(1)
(R1OCH2mSi(OR2n3 4-m-n (1)
(式中、R1、R2およびR3は、それぞれ独立して、非置換の炭素数1~10の1価炭化水素基であり、mおよびnは、1~3の整数であり、m+n≦4を満たす。)
で示される(オルガノオキシメチル)オルガノオキシシランを、金属オルガノオキシドの存在下、蒸留釜の内温が100℃未満であり、且つ圧力が9kPa未満となるように減圧度を調整して蒸留する工程を含む精製(オルガノオキシメチル)オルガノオキシシランの製造方法、
2.前記精製(オルガノオキシメチル)オルガノオキシシランが、(メトキシメチル)トリメトキシシランまたは(エトキシメチル)トリエトキシシランである1記載の精製(オルガノオキシメチル)オルガノオキシシランの製造方法
を提供する。
That is, the present invention provides
1. The following general formula (1)
( R1OCH2 ) mSi ( OR2 ) nR34 -mn ( 1)
(In the formula, R 1 , R 2 and R 3 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and m and n are integers of 1 to 3, and m+n≦4 is satisfied.)
in the presence of a metal organooxide, by adjusting the internal temperature of a distillation still to less than 100° C. and the degree of reduced pressure to less than 9 kPa;
2. The method for producing a purified (organooxymethyl)organooxysilane according to 1, wherein the purified (organooxymethyl)organooxysilane is (methoxymethyl)trimethoxysilane or (ethoxymethyl)triethoxysilane.

本発明によれば、(オルガノオキシメチル)オルガノオキシシラン、特に、(アルコキシメチル)アルコキシシランの製造において、蒸留中に不均化を起こすことなく、高純度且つ高収率で精製(オルガノオキシメチル)オルガノオキシシラン、特に、精製(アルコキシメチル)アルコキシシランを得ることが可能となる。 According to the present invention, in the production of (organooxymethyl)organooxysilanes, particularly (alkoxymethyl)alkoxysilanes, it is possible to obtain purified (organooxymethyl)organooxysilanes, particularly purified (alkoxymethyl)alkoxysilanes, with high purity and high yield without causing disproportionation during distillation.

以下、本発明について、具体的に説明する。
本発明において、(オルガノオキシメチル)オルガノオキシシランは、下記一般式(1)で示される。
(R1OCH2mSi(OR2n3 4-m-n (1)
The present invention will be specifically described below.
In the present invention, the (organooxymethyl)organooxysilane is represented by the following general formula (1).
( R1OCH2 ) mSi ( OR2 ) nR34 -mn ( 1)

一般式(1)において、R1、R2およびR3は、それぞれ独立して、炭素原子数1~10、好ましくは1~5、より好ましくは1~3の非置換の1価炭化水素基である。
1、R2およびR3の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル基等の直鎖状のアルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル、テキシル基等の分岐鎖状のアルキル基;シクロペンチル、シクロヘキシル基等の環状のアルキル基;ビニル、アリル、ブテニル、ペンテニル基等のアルケニル基;エチニル、プロピニル、ブチニル、ペンチニル基等のアルキニル基;フェニル、トリル基等のアリール基;ベンジル、フェネチル基等のアラルキル基等が挙げられる。
In general formula (1), R 1 , R 2 and R 3 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
The monovalent hydrocarbon groups of R 1 , R 2 , and R 3 may be linear, branched, or cyclic, and specific examples thereof include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, and n-pentyl; branched alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, and thexyl; cyclic alkyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl, allyl, butenyl, and pentenyl; alkynyl groups such as ethynyl, propynyl, butynyl, and pentynyl; aryl groups such as phenyl and tolyl; and aralkyl groups such as benzyl and phenethyl.

一般式(1)におけるオルガノオキシメチル基とオルガノオキシ基の組合せとしては、メトキシメチル基とメトキシ基、メトキシメチル基とエトキシ基、エトキシメチル基とメトキシ基、エトキシメチル基とエトキシ基、プロポキシメチル基とプロポキシ基、ビニロキシメチル基とメトキシ基、ビニロキシメチル基とエトキシ基、フェノキシメチル基とメトキシ基、フェノキシメチル基とエトキシ基等が挙げられる。
これらの中でも好ましい組み合わせとしては、メトキシメチル基とメトキシ基、エトキシメチル基とエトキシ基である。
Combinations of organooxymethyl groups and organooxy groups in general formula (1) include a methoxymethyl group and a methoxy group, a methoxymethyl group and an ethoxy group, an ethoxymethyl group and a methoxy group, an ethoxymethyl group and an ethoxy group, a propoxymethyl group and a propoxy group, a vinyloxymethyl group and a methoxy group, a vinyloxymethyl group and an ethoxy group, a phenoxymethyl group and a methoxy group, and a phenoxymethyl group and an ethoxy group.
Among these, preferred combinations are a methoxymethyl group and a methoxy group, and an ethoxymethyl group and an ethoxy group.

一般式(1)において、mおよびnは、1~3の整数であり、m+n≦4を満たす。好ましくはmが1で、nが3である。 In general formula (1), m and n are integers from 1 to 3, and satisfy m+n≦4. Preferably, m is 1 and n is 3.

一般式(1)で示される(オルガノオキシメチル)オルガノオキシシランの具体例としては、(メトキシメチル)トリメトキシシラン、ビス(メトキシメチル)ジメトキシシラン、トリス(メトキシメチル)メトキシシラン、(メトキシメチル)メチルジメトキシシラン、ビス(メトキシメチル)メチルメトキシシラン、(メトキシメチル)エチルジメトキシシラン、ビス(メトキシメチル)エチルメトキシシラン、(メトキシメチル)トリエトキシシラン、ビス(メトキシメチル)ジエトキシシラン、トリス(メトキシメチル)エトキシシラン、(メトキシメチル)メチルジエトキシシラン、ビス(メトキシメチル)メチルエトキシシラン、(メトキシメチル)エチルジエトキシシラン、ビス(メトキシメチル)エチルエトキシシラン、(エトキシメチル)トリメトキシシラン、ビス(エトキシメチル)ジメトキシシラン、トリス(エトキシメチル)メトキシシラン、(エトキシメチル)メチルジメトキシシラン、ビス(エトキシメチル)メチルメトキシシラン、(エトキシメチル)エチルジメトキシシラン、ビス(エトキシメチル)エチルメトキシシラン、(エトキシメチル)トリエトキシシラン、ビス(エトキシメチル)ジエトキシシラン、トリス(エトキシメチル)エトキシシラン、(エトキシメチル)メチルジエトキシシラン、ビス(エトキシメチル)メチルエトキシシラン、(エトキシメチル)エチルジエトキシシラン、ビス(エトキシメチル)エチルエトキシシラン、(プロポキシメチル)トリプロポキシシラン、ビス(プロポキシメチル)ジプロポキシシラン、トリス(プロポキシメチル)プロポキシシラン、(プロポキシメチル)メチルジプロポキシシラン、ビス(プロポキシメチル)メチルプロポキシシラン、(プロポキシメチル)エチルジプロポキシシラン、ビス(プロポキシメチル)エチルプロポキシシラン、(ビニロキシメチル)トリメトキシシラン、ビス(ビニロキシメチル)ジメトキシシラン、トリス(ビニロキシメチル)メトキシシラン、(ビニロキシメチル)メチルジメトキシシラン、ビス(ビニロキシメチル)メチルメトキシシラン、(ビニロキシメチル)エチルジメトキシシラン、ビス(ビニロキシメチル)エチルメトキシシラン、(フェノキシメチル)トリメトキシシラン、ビス(フェノキシメチル)ジメトキシシラン、トリス(フェノキシメチル)メトキシシラン、(フェノキシメチル)メチルジメトキシシラン、ビス(フェノキシメチル)メチルメトキシシラン、(フェノキシメチル)エチルジメトキシシラン、ビス(フェノキシメチル)エチルメトキシシラン、(ビニロキシメチル)トリエトキシシラン、ビス(ビニロキシメチル)ジエトキシシラン、トリス(ビニロキシメチル)エトキシシラン、(ビニロキシメチル)メチルジエトキシシラン、ビス(ビニロキシメチル)メチルエトキシシラン、(ビニロキシメチル)エチルジエトキシシラン、ビス(ビニロキシメチル)エチルエトキシシラン、(フェノキシメチル)トリエトキシシラン、ビス(フェノキシメチル)ジエトキシシラン、トリス(フェノキシメチル)エトキシシラン、(フェノキシメチル)メチルジエトキシシラン、ビス(フェノキシメチル)メチルエトキシシラン、(フェノキシメチル)エチルジエトキシシラン、ビス(フェノキシメチル)エチルエトキシシラン等が挙げられる。
これらの中でも特に、(メトキシメチル)トリメトキシシラン、(エトキシメチル)トリエトキシシランが好ましい。
Specific examples of the (organooxymethyl)organooxysilane represented by the general formula (1) include (methoxymethyl)trimethoxysilane, bis(methoxymethyl)dimethoxysilane, tris(methoxymethyl)methoxysilane, (methoxymethyl)methyldimethoxysilane, bis(methoxymethyl)methylmethoxysilane, (methoxymethyl)ethyldimethoxysilane, bis(methoxymethyl)ethylmethoxysilane, (methoxymethyl)triethoxysilane, bis(methoxymethyl)diethoxysilane, tris(methoxymethyl)ethoxysilane, (methoxymethyl)methyldiethoxysilane, bis(methoxymethyl)methylethoxysilane, (methoxymethyl)ethyldiethoxysilane, bis(methoxymethyl)ethylethoxysilane, (ethoxymethyl)trimethoxysilane, , bis(ethoxymethyl)dimethoxysilane, tris(ethoxymethyl)methoxysilane, (ethoxymethyl)methyldimethoxysilane, bis(ethoxymethyl)methylmethoxysilane, (ethoxymethyl)ethyldimethoxysilane, bis(ethoxymethyl)ethylmethoxysilane, (ethoxymethyl)triethoxysilane, bis(ethoxymethyl)diethoxysilane, tris(ethoxymethyl)ethoxysilane, (ethoxymethyl)methyldiethoxysilane, bis(ethoxymethyl)methylethoxysilane, (ethoxymethyl)ethyldiethoxysilane, bis(ethoxymethyl)ethylethoxysilane, (propoxymethyl)tripropoxysilane, bis(propoxymethyl)dipropoxysilane, tris(propoxymethyl)propoxysilane, (propoxymethyl)meth Tyldipropoxysilane, bis(propoxymethyl)methylpropoxysilane, (propoxymethyl)ethyldipropoxysilane, bis(propoxymethyl)ethylpropoxysilane, (vinyloxymethyl)trimethoxysilane, bis(vinyloxymethyl)dimethoxysilane, tris(vinyloxymethyl)methoxysilane, (vinyloxymethyl)methyldimethoxysilane, bis(vinyloxymethyl)methylmethoxysilane, (vinyloxymethyl)ethyldimethoxysilane, bis(vinyloxymethyl)ethylmethoxysilane, (phenoxymethyl)trimethoxysilane, bis(phenoxymethyl)dimethoxysilane, tris(phenoxymethyl)methoxysilane, (phenoxymethyl)methyldimethoxysilane, bis(phenoxymethyl)methylmethoxysilane, (phenoxymethyl) ethyl)ethyldimethoxysilane, bis(phenoxymethyl)ethylmethoxysilane, (vinyloxymethyl)triethoxysilane, bis(vinyloxymethyl)diethoxysilane, tris(vinyloxymethyl)ethoxysilane, (vinyloxymethyl)methyldiethoxysilane, bis(vinyloxymethyl)methylethoxysilane, (vinyloxymethyl)ethyldiethoxysilane, bis(vinyloxymethyl)ethylethoxysilane, (phenoxymethyl)triethoxysilane, bis(phenoxymethyl)diethoxysilane, tris(phenoxymethyl)ethoxysilane, (phenoxymethyl)methyldiethoxysilane, bis(phenoxymethyl)methylethoxysilane, (phenoxymethyl)ethyldiethoxysilane, bis(phenoxymethyl)ethylethoxysilane, and the like.
Among these, (methoxymethyl)trimethoxysilane and (ethoxymethyl)triethoxysilane are particularly preferable.

本発明に用いる(オルガノオキシメチル)オルガノオキシシランは、従来公知の方法により製造することができ、例えば(クロロメチル)アルコキシシラン等の(ハロゲン化メチル)オルガノオキシシランと、アルカリ金属アルコキシド等の金属オルガノオキシドによる置換反応により得られる。 The (organooxymethyl)organooxysilane used in the present invention can be produced by a conventional method, for example, by a substitution reaction between a (halogenated methyl)organooxysilane such as a (chloromethyl)alkoxysilane and a metal organooxide such as an alkali metal alkoxide.

(ハロゲン化メチル)オルガノオキシシランの具体例としては、(クロロメチル)トリメトキシシラン、ビス(クロロメチル)ジメトキシシラン、トリス(クロロメチル)メトキシシラン、(クロロメチル)メチルジメトキシシラン、ビス(クロロメチル)メチルメトキシシラン、(クロロメチル)エチルジメトキシシラン、ビス(クロロメチル)エチルメトキシシラン、(クロロメチル)トリエトキシシラン、ビス(クロロメチル)ジエトキシシラン、トリス(クロロメチル)エトキシシラン、(クロロメチル)メチルジエトキシシラン、ビス(クロロメチル)メチルエトキシシラン、(クロロメチル)エチルジエトキシシラン、ビス(クロロメチル)エチルエトキシシラン、(クロロメチル)トリプロポキシシラン、ビス(クロロメチル)ジプロポキシシラン、トリス(クロロメチル)プロポキシシラン、(クロロメチル)メチルジプロポキシシラン、ビス(クロロメチル)メチルプロポキシシラン、(クロロメチル)エチルジプロポキシシラン、ビス(クロロメチル)エチルプロポキシシラン;(ブロモメチル)トリメトキシシラン、ビス(ブロモメチル)ジメトキシシラン、トリス(ブロモメチル)メトキシシラン、(ブロモメチル)メチルジメトキシシラン、ビス(ブロモメチル)メチルメトキシシラン、(ブロモメチル)エチルジメトキシシラン、ビス(ブロモメチル)エチルメトキシシラン、(ブロモメチル)トリエトキシシラン、ビス(ブロモメチル)ジエトキシシラン、トリス(ブロモメチル)エトキシシラン、(ブロモメチル)メチルジエトキシシラン、ビス(ブロモメチル)メチルエトキシシラン、(ブロモメチル)エチルジエトキシシラン、ビス(ブロモメチル)エチルエトキシシラン、(ブロモメチル)トリプロポキシシラン、ビス(ブロモメチル)ジプロポキシシラン、トリス(ブロモメチル)プロポキシシラン、(ブロモメチル)メチルジプロポキシシラン、ビス(ブロモメチル)メチルプロポキシシラン、(ブロモメチル)エチルジプロポキシシラン、ビス(ブロモメチル)エチルプロポキシシラン;(ヨードメチル)トリメトキシシラン、ビス(ヨードメチル)ジメトキシシラン、トリス(ヨードメチル)メトキシシラン、(ヨードメチル)メチルジメトキシシラン、ビス(ヨードメチル)メチルメトキシシラン、(ヨードメチル)エチルジメトキシシラン、ビス(ヨードメチル)エチルメトキシシラン、(ヨードメチル)トリエトキシシラン、ビス(ヨードメチル)ジエトキシシラン、トリス(ヨードメチル)エトキシシラン、(ヨードメチル)メチルジエトキシシラン、ビス(ヨードメチル)メチルエトキシシラン、(ヨードメチル)エチルジエトキシシラン、ビス(ヨードメチル)エチルエトキシシラン、(ヨードメチル)トリプロポキシシラン、ビス(ヨードメチル)ジプロポキシシラン、トリス(ヨードメチル)プロポキシシラン、(ヨードメチル)メチルジプロポキシシラン、ビス(ヨードメチル)メチルプロポキシシラン、(ヨードメチル)エチルジプロポキシシラン、ビス(ヨードメチル)エチルプロポキシシラン等が挙げられる。
これらの中でも、特に(クロロメチル)トリメトキシシラン、(クロロメチル)トリエトキシシランが好ましい。
Specific examples of the (halogenated methyl)organooxysilane include (chloromethyl)trimethoxysilane, bis(chloromethyl)dimethoxysilane, tris(chloromethyl)methoxysilane, (chloromethyl)methyldimethoxysilane, bis(chloromethyl)methylmethoxysilane, (chloromethyl)ethyldimethoxysilane, bis(chloromethyl)ethylmethoxysilane, (chloromethyl)triethoxysilane, bis(chloromethyl)diethoxysilane, tris(chloromethyl)ethoxysilane, (chloromethyl)methyldiethoxysilane, bis(chloromethyl)methylethoxysilane, (chloromethyl)ethyldiethoxysilane, bis(chloromethyl)ethylethoxysilane, and (chloromethyl)tripropoxysilane. Bis(chloromethyl)dipropoxysilane, tris(chloromethyl)propoxysilane, (chloromethyl)methyldipropoxysilane, bis(chloromethyl)methylpropoxysilane, (chloromethyl)ethyldipropoxysilane, bis(chloromethyl)ethylpropoxysilane; (bromomethyl)trimethoxysilane, bis(bromomethyl)dimethoxysilane, tris(bromomethyl)methoxysilane, (bromomethyl)methyldimethoxysilane, bis(bromomethyl)methylmethoxysilane, (bromomethyl)ethyldimethoxysilane, bis(bromomethyl)ethylmethoxysilane, (bromomethyl)triethoxysilane, bis(bromomethyl)diethoxysilane, tris(bromomethyl)ethoxysilane, (bromomethyl) (bromomethyl)methyldiethoxysilane, bis(bromomethyl)methylethoxysilane, (bromomethyl)ethyldiethoxysilane, bis(bromomethyl)ethylethoxysilane, (bromomethyl)tripropoxysilane, bis(bromomethyl)dipropoxysilane, tris(bromomethyl)propoxysilane, (bromomethyl)methyldipropoxysilane, bis(bromomethyl)methylpropoxysilane, (bromomethyl)ethyldipropoxysilane, bis(bromomethyl)ethylpropoxysilane; (iodomethyl)trimethoxysilane, bis(iodomethyl)dimethoxysilane, tris(iodomethyl)methoxysilane, (iodomethyl)methyldimethoxysilane, bis(iodomethyl)methylmethoxysilane, (iodometyl)methyldiethoxysilane, bis(bromomethyl)ethylethoxysilane, (bromomethyl)tripropoxysilane, bis(bromomethyl)dipropoxysilane, tris(iodomethyl)propoxysilane, (bromomethyl)methyldipropoxysilane, bis(bromomethyl)ethylpropoxysilane; Examples of such silane include bis(iodomethyl)ethyldimethoxysilane, bis(iodomethyl)ethylmethoxysilane, (iodomethyl)triethoxysilane, bis(iodomethyl)diethoxysilane, tris(iodomethyl)ethoxysilane, (iodomethyl)methyldiethoxysilane, bis(iodomethyl)methylethoxysilane, (iodomethyl)ethyldiethoxysilane, bis(iodomethyl)ethylethoxysilane, (iodomethyl)tripropoxysilane, bis(iodomethyl)dipropoxysilane, tris(iodomethyl)propoxysilane, (iodomethyl)methyldipropoxysilane, bis(iodomethyl)methylpropoxysilane, (iodomethyl)ethyldipropoxysilane, and bis(iodomethyl)ethylpropoxysilane.
Among these, (chloromethyl)trimethoxysilane and (chloromethyl)triethoxysilane are particularly preferable.

金属オルガノオキシドを構成する金属種としては、リチウム、ナトリウム、カリウム等のアルカリ金属が挙げられる。
金属オルガノオキシドの具体的としては、リチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、リチウムビニルオキシド、リチウムフェノキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムビニルオキシド、ナトリウムフェノキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド、カリウムビニルオキシド、カリウムフェノキシドや、これらをメタノール、エタノール等のアルコールに溶解させたアルコール溶液等が挙げられる。
Examples of metal species constituting the metal organooxide include alkali metals such as lithium, sodium, and potassium.
Specific examples of the metal organooxide include lithium methoxide, lithium ethoxide, lithium propoxide, lithium vinyl oxide, lithium phenoxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium vinyl oxide, sodium phenoxide, potassium methoxide, potassium ethoxide, potassium propoxide, potassium vinyl oxide, potassium phenoxide, and alcohol solutions of these in alcohols such as methanol and ethanol.

金属オルガノオキシドの使用量は、(ハロゲン化メチル)オルガノオキシシラン1モルに対して1モルを超え5モル以下が好ましく、1モルを超え2モル以下がより好ましく、1モルを超え1.5モル以下がさらに好ましい。
上記反応では、(ハロゲン化メチル)オルガノオキシシランに対して過剰モル量の金属オルガノオキシドを用いるため、反応終了後に、金属オルガノオキシドが未反応の状態で残存する。本発明では、この残存した金属オルガノオキシドとともに(オルガノオキシメチル)オルガノオキシシランを蒸留することで、上記金属オルガノオキシドの存在下で蒸留を行うことができる。
The amount of the metal organooxide used is preferably more than 1 mole and not more than 5 moles, more preferably more than 1 mole and not more than 2 moles, and even more preferably more than 1 mole and not more than 1.5 moles, per mole of the (halogenated methyl)organooxysilane.
In the above reaction, since a molar excess of the metal organooxide is used relative to the (halogenated methyl)organooxysilane, the metal organooxide remains unreacted after the reaction is completed. In the present invention, the distillation can be carried out in the presence of the metal organooxide by distilling the (organooxymethyl)organooxysilane together with the remaining metal organooxide.

上記置換反応では、必要に応じて溶媒を用いることができる。使用可能な溶媒の具体例としては、反応を阻害しないものであれば任意であり、メタノール、エタノール等のアルコール溶媒;ヘキサン、トルエン、キシレン等の炭化水素系溶媒;テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの溶媒は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
溶媒を用いる場合、添加量は、(ハロゲン化メチル)オルガノオキシシランおよび金属オルガノオキシドの合計100質量部に対して10~300質量部が好ましく、50~200質量部がより好ましい。
In the above substitution reaction, a solvent can be used as necessary. Specific examples of solvents that can be used are any solvent that does not inhibit the reaction, and include alcohol solvents such as methanol and ethanol; hydrocarbon solvents such as hexane, toluene, and xylene; ether solvents such as tetrahydrofuran and dioxane; and aprotic polar solvents such as acetonitrile and N,N-dimethylformamide. These solvents may be used alone or in combination of two or more.
When a solvent is used, the amount added is preferably 10 to 300 parts by mass, and more preferably 50 to 200 parts by mass, per 100 parts by mass of the total of the (halogenated methyl)organooxysilane and the metal organooxide.

反応条件は、公知の条件から適宜選定すればよく、例えば反応温度は、50~100℃が好ましく、反応時間は、1~10時間が好ましい。 The reaction conditions may be appropriately selected from known conditions. For example, the reaction temperature is preferably 50 to 100°C, and the reaction time is preferably 1 to 10 hours.

(オルガノオキシメチル)オルガノオキシシランの製造過程で生じた塩は、残存したままでも蒸留可能であるが、蒸留後の後処理の容易さから、除去した方が好ましい。塩の除去は、(オルガノオキシメチル)オルガノオキシシランが有する加水分解性の観点から、ろ過、遠心分離またはそれらを組み合わせることによって行うことが好ましい。
本発明に用いる(オルガノオキシメチル)オルガノオキシシランは、溶媒を用いた場合、塩除去後に溶媒を除去して単離してもよいが、溶液の状態であってもよい。本発明では、残存した金属オルガノオキシドの存在下で蒸留する点から、残存した金属オルガノオキシドとともに溶媒に溶解した状態が好ましい。塩を除去した後、(オルガノオキシメチル)オルガノオキシシランと金属オルガノオキシドが溶解した溶液は、その後の蒸留にそのまま用いることができる。
The salts generated during the production process of the (organooxymethyl)organooxysilane can be distilled even if they remain, but it is preferable to remove them from the viewpoint of ease of post-treatment after distillation. The removal of the salts is preferably carried out by filtration, centrifugation, or a combination thereof, from the viewpoint of the hydrolysis property of the (organooxymethyl)organooxysilane.
When a solvent is used, the (organooxymethyl)organooxysilane used in the present invention may be isolated by removing the solvent after removing the salt, but may also be in the form of a solution. In the present invention, in view of the fact that distillation is performed in the presence of the remaining metal organooxide, it is preferable that the (organooxymethyl)organooxysilane is dissolved in a solvent together with the remaining metal organooxide. After removing the salt, the solution in which the (organooxymethyl)organooxysilane and the metal organooxide are dissolved can be used as is for the subsequent distillation.

蒸留時における蒸留釜の内温は、100℃未満であり、好ましくは30~90℃、より好ましくは35~85℃である。100℃以上であると、蒸留中に(オルガノオキシメチル)オルガノオキシシランの不均化が起こりやすくなり、純度や収率の低下につながる。 The internal temperature of the still during distillation is below 100°C, preferably 30 to 90°C, and more preferably 35 to 85°C. If the temperature is above 100°C, disproportionation of (organooxymethyl)organooxysilane is likely to occur during distillation, leading to a decrease in purity and yield.

蒸留時における圧力は、9kPa未満であり、好ましくは0.1~8kPa、より好ましくは0.2~7kPaである。9kPa以上であると、それに伴って蒸留釜の内温を高くする必要があり、蒸留中に(オルガノオキシメチル)オルガノオキシシランの不均化が起こりやすくなり、純度や収率の低下につながる。また、蒸留時において高温にするため、高エネルギー消費につながり、製造において非効率的である。 The pressure during distillation is less than 9 kPa, preferably 0.1 to 8 kPa, and more preferably 0.2 to 7 kPa. If the pressure is 9 kPa or more, the internal temperature of the distillation still must be increased accordingly, which makes it easier for disproportionation of (organooxymethyl)organooxysilane to occur during distillation, leading to a decrease in purity and yield. In addition, high temperatures are required during distillation, which leads to high energy consumption and is inefficient in production.

減圧度は、例えば蒸留装置と減圧装置の間に、マノメーター等の真空度を確認できる装置およびバルブを用意し、バルブの開閉度によって調整することができる。 The degree of vacuum can be adjusted by opening and closing the valve, for example, by providing a device for checking the degree of vacuum, such as a manometer, and a valve between the distillation apparatus and the pressure reducing apparatus.

蒸留方法は、単発蒸留および精留塔を用いた蒸留のいずれでも実施可能であるが、精製を目的とした観点から、精留塔を用いた蒸留が好ましい。 The distillation method can be either single-shot distillation or distillation using a rectification column, but from the perspective of purification, distillation using a rectification column is preferred.

本発明の製造方法においては、溶媒は無くてもよいが、上述したとおり、溶媒が蒸留前の段階で既に混ざった状態であってもよい。溶媒としては、上記と同じものを挙げることができる。
溶媒が存在する場合、例えば9kPa以上の減圧度で溶媒を予め除去した後、蒸留釜内を上述した蒸留時の減圧度および温度に調節し、目的とする(オルガノオキシメチル)オルガノオキシシランを蒸留してもよい。
In the production method of the present invention, a solvent may not be used, but as described above, a solvent may be already mixed in the process before distillation. Examples of the solvent include the same ones as those described above.
When a solvent is present, the solvent may be removed in advance at a reduced pressure of, for example, 9 kPa or more, and then the interior of the distillation still may be adjusted to the reduced pressure and temperature described above for distillation, to distill the desired (organooxymethyl)organooxysilane.

本発明によれば、精製(オルガノオキシメチル)オルガノキシシランの純度を98.0%以上、好ましくは98.5%以上、より好ましくは99.0%以上にすることができる。 According to the present invention, the purity of the purified (organooxymethyl)organoxysilane can be increased to 98.0% or more, preferably 98.5% or more, and more preferably 99.0% or more.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1]
1Lの4つ口ガラスフラスコに、ジムロート冷却器、温度計および撹拌機を取り付け、内部を窒素置換した。このフラスコに、ナトリウムエトキシド21質量%エタノール溶液408.6g(ナトリウムエトキシド1.26モル)を仕込み、反応器の内温を70~85℃に温調しながら(クロロメチル)トリエトキシシラン255.4g(1.20モル)を1時間掛けて滴下し、同温下にて6時間熟成した。その後、反応液をろ過して副生した塩化ナトリウムをろ別した。
続いて、減圧装置、精留塔、冷却装置を備えた分留頭、温度計が取り付けられた蒸留用仕込み容器の1Lフラスコ(蒸留釜)に、得られたろ液559.0gを仕込み、冷却装置に常温の水を通した。14.3~51.3kPa下にて溶媒のエタノールを除去し、その後、蒸留釜の内温75~85℃を保ちながら圧力を下げていき、0.4~1.4kPaの下で主留の留出を行った。
この結果、単離収率70.7%であり、純度99.4%の精製(エトキシメチル)トリエトキシシランが得られた。
[Example 1]
A 1L four-neck glass flask was fitted with a Dimroth condenser, a thermometer and a stirrer, and the inside of the flask was replaced with nitrogen. 408.6 g of a 21% by mass ethanol solution of sodium ethoxide (1.26 mol of sodium ethoxide) was charged into the flask, and 255.4 g (1.20 mol) of (chloromethyl)triethoxysilane was added dropwise over 1 hour while controlling the internal temperature of the reactor to 70-85°C, and the mixture was aged at the same temperature for 6 hours. Thereafter, the reaction solution was filtered to remove the by-produced sodium chloride.
Next, 559.0 g of the obtained filtrate was charged into a 1 L flask (stillage still) of a distillation charging vessel equipped with a pressure reducing device, a rectification column, a fractionation head equipped with a cooling device, and a thermometer, and room temperature water was passed through the cooling device. The solvent ethanol was removed under 14.3 to 51.3 kPa, and then the pressure was reduced while maintaining the internal temperature of the still at 75 to 85°C, and the main fraction was distilled under 0.4 to 1.4 kPa.
As a result, purified (ethoxymethyl)triethoxysilane with a purity of 99.4% was obtained in an isolated yield of 70.7%.

[実施例2]
1Lの4つ口ガラスフラスコに、ジムロート冷却器、温度計および撹拌機を取り付け、内部を窒素置換した。このフラスコに、ナトリウムメトキシド28質量%メタノール溶液300.0g(ナトリウムメトキシド1.56モル)を仕込み、反応器の内温を60~70℃に温調しながら(クロロメチル)トリメトキシシラン252.9g(1.48モル)を1時間掛けて滴下し、同温下にて6時間熟成した。その後、反応液をろ過して副生した塩化ナトリウムをろ別した。
続いて、減圧装置、精留塔、冷却装置を備えた分留頭、温度計が取り付けられた蒸留用仕込み容器の1Lフラスコ(蒸留釜)に、得られたろ液440.0gを仕込み、冷却装置に常温の水を通した。14.3~51.3kPa下にて溶媒のメタノールを除去し、その後、蒸留釜の内温60~70℃を保ちながら圧力を下げていき、0.4~4.0kPaのもとで主留の留出を行った。
この結果、単離収率65.0%であり、純度99.4%の精製(メトキシメチル)トリメトキシシランが得られた。
[Example 2]
A 1L four-neck glass flask was fitted with a Dimroth condenser, a thermometer and a stirrer, and the inside of the flask was replaced with nitrogen. 300.0 g of a 28% by mass methanol solution of sodium methoxide (1.56 mol of sodium methoxide) was charged into the flask, and 252.9 g (1.48 mol) of (chloromethyl)trimethoxysilane was added dropwise over 1 hour while controlling the internal temperature of the reactor to 60-70°C, and the mixture was aged for 6 hours at the same temperature. Thereafter, the reaction solution was filtered to remove the by-produced sodium chloride.
Next, 440.0 g of the filtrate was charged into a 1 L flask (stillage still) equipped with a pressure reducing device, a rectification column, a distillation head equipped with a cooling device, and a thermometer, and room temperature water was passed through the cooling device. The solvent methanol was removed under 14.3 to 51.3 kPa, and then the pressure was reduced while maintaining the internal temperature of the still at 60 to 70°C, and the main fraction was distilled under 0.4 to 4.0 kPa.
As a result, purified (methoxymethyl)trimethoxysilane with a purity of 99.4% was obtained in an isolated yield of 65.0%.

[比較例1]
減圧装置、精留塔、冷却装置を備えた分留頭、温度計が取り付けられた蒸留用仕込み容器の1Lフラスコ(蒸留釜)に、実施例1と同様にして得られたろ液559.6gを仕込み、冷却装置に常温の水を通した。8.0~50.8kPa下にて溶媒のエタノールを除去し、その後、蒸留釜の内温110~138℃、圧力8.0kPa下のもとで主留の留出を行った。
この結果、単離収率37.8%であり、純度97.9%の精製(エトキシメチル)トリエトキシシランが得られた。
[Comparative Example 1]
559.6 g of the filtrate obtained in the same manner as in Example 1 was charged into a 1 L flask (stillage still) equipped with a pressure reducing device, a rectification column, a fractionation head equipped with a cooling device, and a thermometer, and water at room temperature was passed through the cooling device. The solvent ethanol was removed under 8.0 to 50.8 kPa, and then the main fraction was distilled out at an internal temperature of 110 to 138°C and a pressure of 8.0 kPa.
As a result, purified (ethoxymethyl)triethoxysilane with a purity of 97.9% was obtained in an isolated yield of 37.8%.

[比較例2]
減圧装置、精留塔、冷却装置を備えた分留頭、温度計が取り付けられた蒸留用仕込み容器の1Lフラスコ(蒸留釜)に、実施例2と同様にして得られたろ液440.0gを仕込み、冷却装置に常温の水を通した。8.0~50.8kPa下にて溶媒のメタノールを除去し、その後、蒸留釜の内温95~115℃、圧力8.0kPa下のもとで主留の留出を行った。
この結果、単離収率35.0%であり、純度97.0%の精製(メトキシメチル)トリメトキシシランが得られた。
[Comparative Example 2]
440.0 g of the filtrate obtained in the same manner as in Example 2 was charged into a 1 L flask (stillage still) equipped with a pressure reducing device, a rectification column, a fractionating head equipped with a cooling device, and a thermometer, and water at room temperature was passed through the cooling device. The solvent methanol was removed under 8.0 to 50.8 kPa, and then the main fraction was distilled out at an internal temperature of 95 to 115°C and a pressure of 8.0 kPa.
As a result, purified (methoxymethyl)trimethoxysilane with a purity of 97.0% was obtained in an isolated yield of 35.0%.

Claims (2)

下記一般式(1)
(R1OCH2mSi(OR2n3 4-m-n (1)
(式中、R1、R2およびR3は、それぞれ独立して、非置換の炭素数1~10の1価炭化水素基であり、mおよびnは、1~3の整数であり、m+n≦4を満たす。)
で示される(オルガノオキシメチル)オルガノオキシシランを、金属オルガノオキシドの存在下、蒸留釜の内温が30~90℃であり、且つ圧力が0.1~4.0kPaとなるように減圧度を調整して蒸留する工程を含む精製(オルガノオキシメチル)オルガノオキシシランの製造方法。
The following general formula (1)
( R1OCH2 ) mSi ( OR2 ) nR34 -mn ( 1)
(In the formula, R 1 , R 2 and R 3 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and m and n are integers of 1 to 3, and m+n≦4 is satisfied.)
in the presence of a metal organooxide, while adjusting the internal temperature of a distillation still to 30 to 90°C and the degree of reduced pressure to 0.1 to 4.0 kPa .
前記精製(オルガノオキシメチル)オルガノオキシシランが、(メトキシメチル)トリメトキシシランまたは(エトキシメチル)トリエトキシシランである請求項1記載の精製(オルガノオキシメチル)オルガノオキシシランの製造方法。 The method for producing purified (organooxymethyl)organooxysilane according to claim 1, wherein the purified (organooxymethyl)organooxysilane is (methoxymethyl)trimethoxysilane or (ethoxymethyl)triethoxysilane.
JP2021068813A 2021-04-15 2021-04-15 Method for producing purified (organooxymethyl)organooxysilane Active JP7491258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021068813A JP7491258B2 (en) 2021-04-15 2021-04-15 Method for producing purified (organooxymethyl)organooxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021068813A JP7491258B2 (en) 2021-04-15 2021-04-15 Method for producing purified (organooxymethyl)organooxysilane

Publications (2)

Publication Number Publication Date
JP2022163779A JP2022163779A (en) 2022-10-27
JP7491258B2 true JP7491258B2 (en) 2024-05-28

Family

ID=83742579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021068813A Active JP7491258B2 (en) 2021-04-15 2021-04-15 Method for producing purified (organooxymethyl)organooxysilane

Country Status (1)

Country Link
JP (1) JP7491258B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513203A (en) 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Alkoxysilane-terminated prepolymer
JP2009513734A (en) 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト Prepolymer having alkoxysilane end groups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513203A (en) 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Alkoxysilane-terminated prepolymer
JP2009513734A (en) 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト Prepolymer having alkoxysilane end groups

Also Published As

Publication number Publication date
JP2022163779A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US5489701A (en) Process for the preparation of silane polysulfides
EP0098369B1 (en) Producing alkoxysilanes and alkoxy-oximinosilanes
JP5494233B2 (en) Cyclic silazane compound having carboxylic acid ester group and method for producing the same
JP2000154193A (en) Production of alkoxysilane
JP7491258B2 (en) Method for producing purified (organooxymethyl)organooxysilane
US7915439B2 (en) Method of producing silylalkoxymethyl halide
KR101780102B1 (en) Process for preparing (meth)acrylamido-functional silanes by the reaction of aminoalkyl alkoxysilanes with acrylic acid anhydride
US3414604A (en) Organofunctional silanes and siloxanes
JP6167936B2 (en) Method for producing cyclic silazane compound
JP6942459B2 (en) Carboxylic acid silyl ester group-containing alkoxysilane compound and its production method
US8871963B2 (en) Process for preparing carbamatoorganosilanes
US20050059835A1 (en) Methods of refining silane compounds
JP5699990B2 (en) Method for producing organoxysilane compound having piperazinyl group and piperazine compound
JP2014105163A (en) Method of producing alkoxysilyl group-containing norbornyl compound
JP3852550B2 (en) Method for producing mercapto group-containing alkoxysilane compound
JPWO2003027126A1 (en) Method for producing thiocyanato group-containing organoalkoxysilane
WO2020223068A1 (en) Method for the manufacture of alkoxysilyl-containing thiocarboxylic acid esters
JP6631407B2 (en) Method for producing carbamatoalkylsilane
JP2012006844A (en) Production method of alkoxyhydrosilane
JP7517244B2 (en) Method for producing hydroxyalkylsilane compound
US11312734B2 (en) Nitrogen-containing cyclic organoxysilane compound and method for producing the same
JP4275417B2 (en) Method for producing alkoxysilane compound
JP3972162B2 (en) Process for producing isocyanato group-containing organosilicon compounds
EP4410797A1 (en) Method for producing cyclic silazane compound
JP2020147588A (en) Carboxylic acid silyl ester group-containing alkoxysilane compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240429

R150 Certificate of patent or registration of utility model

Ref document number: 7491258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150