JP7488752B2 - Carbide Tools - Google Patents

Carbide Tools Download PDF

Info

Publication number
JP7488752B2
JP7488752B2 JP2020190694A JP2020190694A JP7488752B2 JP 7488752 B2 JP7488752 B2 JP 7488752B2 JP 2020190694 A JP2020190694 A JP 2020190694A JP 2020190694 A JP2020190694 A JP 2020190694A JP 7488752 B2 JP7488752 B2 JP 7488752B2
Authority
JP
Japan
Prior art keywords
carbide tool
mass
cemented carbide
area
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020190694A
Other languages
Japanese (ja)
Other versions
JP2022079855A (en
Inventor
高志 阿部
紗也子 長崎
博士 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC RYOTEC CORPORATION
Original Assignee
MMC RYOTEC CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC RYOTEC CORPORATION filed Critical MMC RYOTEC CORPORATION
Priority to JP2020190694A priority Critical patent/JP7488752B2/en
Publication of JP2022079855A publication Critical patent/JP2022079855A/en
Application granted granted Critical
Publication of JP7488752B2 publication Critical patent/JP7488752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、炭化タングステン(以下、WCということがある)基超硬合金工具(以下、超硬工具ということがある)であって、特に、鉱山土木用削孔工具(削岩ビットのチップ、鉱山土木用ボタンビットのゲージチップ等)、切削工具(ドリル、インサート、フライス、回転式切断工具等)、塑性加工具(プレス金型、鍛造用のダイ、鉄鋼用圧延ロール等)に適用可能なものに関する。 The present invention relates to a tungsten carbide (hereinafter sometimes referred to as WC) based cemented carbide tool (hereinafter sometimes referred to as cemented carbide tool), particularly applicable to drilling tools for mining and civil engineering (rock drilling bit tips, gauge tips for mining and civil engineering button bits, etc.), cutting tools (drills, inserts, milling cutters, rotary cutting tools, etc.), and plastic processing tools (press dies, forging dies, rolling rolls for steel, etc.).

超硬合金工具は、WC硬質相とCo結合相とを有する超硬合金が用いられている。この超硬合金の特性は、WC粒子の粒径とCo含有量によって左右され、また、耐摩耗性と耐欠損性との間には二律相反の関係があることが知られている。そして、従来から、この二律相反の関係の関係を解消すべく、種々の提案がなされている。 Cemented carbide tools use cemented carbide having a WC hard phase and a Co binder phase. The properties of this cemented carbide depend on the grain size of the WC grains and the Co content, and it is known that there is a trade-off between wear resistance and chipping resistance. Various proposals have been made to resolve this trade-off.

例えば、特許文献1には、硬質相に9.5質量%以上含まれるWC粒子につき、4.5~7.5μmの粒子が50~75%、1.5~4.5μmの粒子が15~40%(ただしWC全体を100%としたときの面積比)の範囲にあり、(4.5~7.5μmのWC合計面積)/(1.5~4.5μmのWC合計面積)=2/1~5/1の関係を満たし、かつ1μm以下のWC粒子の面積比が3%以下である超硬工具が記載されており、該超硬工具は耐欠損性を低下させることなく耐摩耗性が向上しているとされている。 For example, Patent Document 1 describes a carbide tool in which, for WC particles contained in the hard phase at 9.5 mass% or more, 50-75% of particles are 4.5-7.5 μm and 15-40% are 1.5-4.5 μm (area ratios when the total WC is taken as 100%), the relationship (total WC area of 4.5-7.5 μm)/(total WC area of 1.5-4.5 μm)=2/1-5/1 is satisfied, and the area ratio of WC particles of 1 μm or less is 3% or less, and the carbide tool is said to have improved wear resistance without reducing chipping resistance.

また、例えば、特許文献2には、M12C型複炭化物を表層部の主成分とし、表層部WC平均粒度が、内質部のそれよりも0.3~0.7倍に小さくなる組織傾斜を有するとともに、表層部の結合金属が内部側に移動した濃度傾斜を有している超硬工具が記載されており、該超硬工具は、耐摩耗性、耐欠損性に優れているとされている。 Furthermore, for example, Patent Document 2 describes a cemented carbide tool having a surface layer mainly composed of M 12 C type composite carbide, a structure gradient in which the average WC grain size in the surface layer is 0.3 to 0.7 times smaller than that in the inner layer, and a concentration gradient in which the binding metal in the surface layer moves to the inner side, and the cemented carbide tool is said to have excellent wear resistance and chipping resistance.

さらに、例えば、特許文献3には、WCおよびCoを含んで作製された柱状のチップ本体を有し、前記チップ本体の軸方向に沿う先端部は、先端側へ向かうに従い縮径するように形成され、前記チップ本体の先端部には、Coを主成分とし、長さが5~25μmとされたバインダープールが複数設けられ、前記先端部の単位面積あたりに含まれる前記バインダープールの数が、該先端部における外面近傍よりもそのチップ内側で少なくされている超硬工具が記載され、該超硬工具は、耐摩耗性、耐欠損性に優れているとされている。 For example, Patent Document 3 describes a carbide tool that has a columnar tip body made of WC and Co, the tip portion along the axial direction of the tip body is formed so as to taper in diameter toward the tip side, the tip portion of the tip body is provided with multiple binder pools that are mainly composed of Co and have lengths of 5 to 25 μm, and the number of binder pools contained per unit area of the tip portion is smaller on the inside of the tip than near the outer surface of the tip portion, and the carbide tool is said to have excellent wear resistance and chipping resistance.

特開平8-302441号公報Japanese Patent Application Laid-Open No. 8-302441 特開2006-188749号公報JP 2006-188749 A 特開2014-214426号公報JP 2014-214426 A

近年、超硬工具に対して、より一層の耐摩耗性、耐欠損性が求められている。例えば、削孔工具に対しては、高出力・高周波削岩機による削孔事例が増加し、削孔工具への負荷は増加する傾向にあって、より一層の耐摩耗性、耐欠損性を含む耐久性が求められている。また、例えば、切削工具では、一段と高速化、高効率化の切削加工に対し、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、耐久性が求められ、また、塑性加工具についても同様である。 In recent years, there has been a demand for even greater wear resistance and chipping resistance in carbide tools. For example, with regard to drilling tools, there has been an increase in the number of cases where holes are drilled using high-power, high-frequency rock drills, and the load on drilling tools has tended to increase, so there is a demand for even greater durability, including wear resistance and chipping resistance. Also, for example, with regard to cutting tools, there is a demand for even greater resistance to abnormal damage, such as chipping resistance, chipping resistance, and peeling resistance, as well as durability, in order to achieve even higher speeds and more efficient cutting processes, and the same is true for plastic processing tools.

本発明は、前記事情や、前記提案を鑑みてなされたもので、優れた耐摩耗性や耐欠損性を有し、耐久性の優れた超硬工具を提供することを目的とする。 The present invention was made in consideration of the above circumstances and proposals, and aims to provide a carbide tool that has excellent wear resistance, chipping resistance, and durability.

本発明の実施形態に係る超硬工具は、
Coを2.0~30.0質量%を含み、残部がWCおよび不可避的不純物からなる組成を有し、結合相を形成しているCo結晶粒のうちの面心立方構造を有する結晶粒の面積割合につき、その表面から深さ50μmまでの表面領域の値(A)が50.0~100.0面積%、その表面から50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33である。
The cemented carbide tool according to the embodiment of the present invention is
The composition contains 2.0 to 30.0 mass % Co, with the remainder consisting of WC and unavoidable impurities, and the area ratio of crystal grains having a face-centered cubic structure among the Co crystal grains forming the binder phase is such that the value (A) of a surface region up to a depth of 50 μm from the surface is 50.0 to 100.0 area %, the value (B) of an internal region extending beyond 50 μm from the surface is 30.0 to 90.0 area %, and A/B is 0.70 to 3.33.

さらに、前記実施形態に係る超硬工具は、以下の各事項の一つ以上を満足してもよい。
(1)Crを0.2~3.5質量%および/またはVCを0.2~3.7質量%含有すること。
(2)Niを0.4~21.0質量%含有すること。
(3)前記内部領域において、ビッカース硬度が1500Hv以上であること。
(4)破壊靭性値が12.00MPa・m1/2以上であること。
(5)鉱山土木用ボタンビットのチップであること。
Furthermore, the cemented carbide tool according to the embodiment may satisfy one or more of the following requirements.
(1) Contains 0.2 to 3.5 mass% Cr3C2 and/or 0.2 to 3.7 mass% VC.
(2) The Ni content is 0.4 to 21.0 mass %.
(3) The internal region has a Vickers hardness of 1500 Hv or more.
(4) The fracture toughness value is 12.00 MPa·m 1/2 or more.
(5) The chips are button bits for use in mining and civil engineering.

前記によれば、耐摩耗性、耐欠損性、靭性に優れた超硬工具を得ることができる。 As a result of the above, it is possible to obtain a carbide tool with excellent wear resistance, chipping resistance, and toughness.

実施例Aのゲージチップ(バリスティックタイプ)の側面の模式図である。FIG. 2 is a schematic diagram of a side view of the gauge chip (ballistic type) of Example A. 実施例Aのボタンビットの側面の模式図である。FIG. 2 is a schematic diagram of a side view of the button bit of Example A. 図2のボタンビットのゲージ径を説明する模式図である。FIG. 3 is a schematic diagram illustrating a gauge diameter of the button bit of FIG. 2. ラトラ試験機の断面の模式図である。FIG. 2 is a schematic cross-sectional view of a rattler testing machine. 図4に示すラトラ試験機の側面の模式図である。FIG. 5 is a schematic side view of the rattler tester shown in FIG. 4 . 回転式切断工具(ロータリーダイカッター)の模式図である。FIG. 1 is a schematic diagram of a rotary cutting tool (rotary die cutter).

本発明者は、WCとCoを有する超硬工具に関し、特に、Coの結晶構造の分布について、鋭意検討した。その結果、面心立方構造のCo結晶粒の占める面積割合につき、超硬工具の表面、すなわち、被処理物である岩盤や被切削物に接する面を含む超硬工具の表面近傍領域における値(A)と、超硬工具内部における値(B)が、それぞれ、所定の値であり、かつ、A/Bが所定範囲にあるとき、超硬工具の耐摩耗性、耐欠損性、靭性が優れるという知見を得たのである。 The inventors have conducted extensive research into carbide tools containing WC and Co, particularly into the distribution of the Co crystal structure. As a result, they have discovered that when the area ratio of Co crystal grains with a face-centered cubic structure in the area near the surface of the carbide tool, including the surface that contacts the rock or workpiece being cut, (A), and the area ratio in the area near the surface of the carbide tool, including the surface that contacts the rock or workpiece being cut, (B), are each a predetermined value and A/B is within a predetermined range, the carbide tool has excellent wear resistance, chipping resistance, and toughness.

以下では、本発明の一実施形態に係る超硬工具について説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「M~N」(M、Nは共に数値)で表現するときは、その範囲は上限値(N)および下限値(M)を含んでおり、上限値(N)と下限値(M)の単位は同じである。
Hereinafter, a cemented carbide tool according to one embodiment of the present invention will be described.
In this specification and claims, when a numerical range is expressed as "M to N" (where M and N are both numerical values), the range includes an upper limit value (N) and a lower limit value (M), and the upper limit value (N) and the lower limit value (M) have the same units.

<組成>
まず、本実施形態に係る超硬工具の組成について説明する。
<Composition>
First, the composition of the cemented carbide tool according to this embodiment will be described.

<<Co>>
本実施形態に係る超硬工具の組成は、Coを2.0~30.0質量%含み、残部がWCと不可避的不純物である。Coの含有量をこの範囲とした理由は、2.0質量%未満であると、焼結時に緻密化が進行しづらくなって内部欠陥が残りやすくなり、その結果、組織としての均一性が損われ超硬工具の機械的強度が低下し、一方、30.0質量%を超えると、超硬工具の耐摩耗性が低下するためである。超硬工具が削孔工具(削孔チップ)のとき、Coの含有割合は、3.0~10.0質量%であることがより好ましい。
<<Co>>
The composition of the cemented carbide tool according to this embodiment contains 2.0 to 30.0 mass% Co, with the remainder being WC and unavoidable impurities. The reason for the Co content being in this range is that if the Co content is less than 2.0 mass%, densification during sintering is difficult to proceed and internal defects are likely to remain, resulting in a loss of uniformity as a structure and a decrease in the mechanical strength of the cemented carbide tool, while if it exceeds 30.0 mass%, the wear resistance of the cemented carbide tool decreases. When the cemented carbide tool is a drilling tool (drilling tip), the Co content is more preferably 3.0 to 10.0 mass%.

<<その他の元素>>
本実施形態に係る超硬工具は、Cr、V、Nb、Ta、Ti、Ni、Hf、Zrの1種類または2種以上を含有してもよい。これらの元素は、炭化物、複合炭化物、窒化物、炭窒化物として添加されてもよい。以下、これら元素について説明する。
<<Other elements>>
The cemented carbide tool according to the present embodiment may contain one or more of Cr, V, Nb, Ta, Ti, Ni, Hf, and Zr. These elements may be added as carbides, composite carbides, nitrides, or carbonitrides. These elements will be described below.

CrとVは、焼結時にWCの粒子成長を抑制する働きがあり、この抑制を行うためにCrとして0.2~3.5質量%および/またはVCとして0.2~3.7質量%を添加してもよい。 Cr and V act to suppress the grain growth of WC during sintering, and in order to achieve this suppression, 0.2 to 3.5 mass % of Cr 3 C 2 and/or 0.2 to 3.7 mass % of VC may be added.

Niは、超硬工具の用途によって結合相を形成するCoの代替として、Co含有割合の20~70%、すなわち、0.4~21.0質量%含有させてもよい。 Depending on the application of the cemented carbide tool, Ni may be included as a substitute for Co, which forms a binder phase, in an amount of 20 to 70% of the Co content, i.e., 0.4 to 21.0 mass%.

Nb、Ta、Tiは、超硬工具の高温硬さ、クリープ強度を向上させる働きがあり、この向上を確実に行うために炭化物等として0.2~3.0質量%添加してもよい。 Nb, Ta, and Ti improve the high-temperature hardness and creep strength of cemented carbide tools, and may be added in amounts of 0.2 to 3.0 mass % as carbides, etc., to ensure this improvement.

ZrとHfは、高温靭性、高温抗折力などの高温機械特性を向上させる働きがあり、この向上を確実に行うために炭化物等として0.2~3.0質量%添加してもよい。 Zr and Hf improve high-temperature mechanical properties such as high-temperature toughness and high-temperature flexural strength, and to ensure this improvement, 0.2 to 3.0 mass % may be added as carbides, etc.

<<不可避的不純物>>
本実施形態に係る超硬工具は、製造工程において不可避的に混入する元素を1.0質量%以下含有することが許容される。
<<Inevitable Impurities>>
The cemented carbide tool according to this embodiment is permitted to contain 1.0 mass % or less of elements that are inevitably mixed in during the manufacturing process.

<Co結晶粒の結晶構造の分布>
本実施形態に係る超硬工具は、面心立方構造(fcc結晶構造)を有するCo結晶粒の面積割合が、その表面、すなわち、表面に存在する黒皮、塗装等の表面層に接する超硬工具本体の最も深い谷底(最も超硬工具本体の内部にある部分)を起点として、この起点からの深さが50μmのまでの表面領域の値(A)が50.0~100.0面積%、その表面から深さが50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33であることが好ましい。
<Distribution of crystal structure of Co crystal grains>
In the cemented carbide tool according to this embodiment, it is preferable that the area ratio of Co crystal grains having a face-centered cubic structure (fcc crystal structure) is 50.0 to 100.0 area % in the surface region up to a depth of 50 μm from the surface, i.e., the deepest valley bottom (the part located most inside the cemented carbide tool body) of the cemented carbide tool body in contact with a surface layer such as a black skin or paint present on the surface, and the value (A) is 30.0 to 90.0 area % in the internal region having a depth of more than 50 μm from the surface, and the ratio A/B is 0.70 to 3.33.

面心立方構造を有するCo結晶粒の面積%と面積%の比が、この範囲を満足すると、耐亀裂伝搬性が向上し、優れた耐摩耗性を維持し、耐欠損性も向上する。
なお、超硬工具が削孔工具(削孔チップ)のとき、前記表面領域の値(A)は60.0~97.0面積%、前記内部領域の値(B)は40.0~90.0面積%、前記A/Bは0.70~2.20が好ましい。
When the ratio of the area percentage to the area percentage of Co crystal grains having a face-centered cubic structure satisfies this range, the crack propagation resistance is improved, excellent wear resistance is maintained, and the chipping resistance is also improved.
When the cemented carbide tool is a drilling tool (drilling tip), it is preferable that the value (A) of the surface region is 60.0 to 97.0 area %, the value (B) of the inner region is 40.0 to 90.0 area %, and the A/B is 0.70 to 2.20.

この耐亀裂伝搬性が向上し、優れた耐欠損性を示し、耐摩耗性も向上するという性質により、本実施形態に係る超硬工具は、削孔工具として用いたとき、例えば、一軸圧縮強度が150MPa以上の硬岩(例:花崗岩)の削岩、高圧力作動ハンマーで使用される削孔工具として好適といえる。 Due to the properties of improved crack propagation resistance, excellent chipping resistance, and improved wear resistance, the carbide tool according to this embodiment is suitable, when used as a drilling tool, for example, for drilling hard rocks (e.g., granite) with a uniaxial compressive strength of 150 MPa or more, and as a drilling tool used with a high-pressure operating hammer.

この耐亀裂伝搬性が向上し優れた耐欠損性を示す理由は、定かではないところがあるが、超硬工具の使用中に発生した工具表面のクラックの表面から内部に向かう進展が、面心立方構造を有するCo結晶粒が最密六方晶構造(hcp結晶構造)へ変化することによって抑制されて、際だった優れた耐欠損性を与え、さらに、最密六方晶構造のCo結晶粒は高強度であるため耐摩耗性も向上するためと推定している。また、最密六方晶構造のすべり系が3個(1面×3方向)であるのに対し、面心立方構造はすべり系が12個(4面×3方向)あるため延性に富み、歪み代があり、耐衝撃性が高いため際だった優れた耐欠損性を与えると考えている。 The reason for this improved crack propagation resistance and excellent chipping resistance is unclear, but it is believed that the progression of cracks that occur on the surface of the tool during use from the surface to the inside is suppressed by the Co crystal grains with a face-centered cubic structure changing to a close-packed hexagonal structure (hcp crystal structure), giving the tool outstanding chipping resistance, and that the high strength of Co crystal grains with a close-packed hexagonal structure also improves wear resistance. In addition, while the close-packed hexagonal structure has three slip systems (1 face x 3 directions), the face-centered cubic structure has 12 slip systems (4 faces x 3 directions), so it is highly ductile, has distortion allowance, and has high impact resistance, giving the tool outstanding chipping resistance.

ここで、面心立方構造(fcc結晶構造)を有するCo結晶粒の面積割合は、超硬工具の表面に垂直な断面において複数の観察視野(例えば、3視野)を設定し、各観察視野の黒皮、塗装等の表面層に接する超硬工具本体の最も深い谷底(最も超硬工具本体の内部にある部分)を起点として深さを測定し、前記表面領域と前記内部領域における面積率を求めて、その平均値をとることによって得る。
具体的には以下の「Co結晶粒の結晶粒界の画定と結晶構造の決定」の手順に従う。
Here, the area ratio of Co crystal grains having a face-centered cubic structure (fcc crystal structure) is obtained by setting a plurality of observation fields (e.g., three fields) in a cross section perpendicular to the surface of the cemented carbide tool, measuring the depth from the deepest valley bottom (the part located most inside the cemented carbide tool body) of the cemented carbide tool body that contacts a surface layer such as a black skin or paint in each observation field, determining the area ratios in the surface region and the internal region, and calculating the average value.
Specifically, the following procedure, "Definition of grain boundaries of Co crystal grains and determination of crystal structure", is followed.

<Co結晶粒の結晶粒界の画定と結晶構造の決定>
<<Co結晶粒の結晶粒界の画定>>
電子後方散乱回折を用いた結晶方位測定によりCo結晶の結晶粒界を特定する。まず、工具表面に垂直な面(縦断面)を耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、イオンミリング装置を用いて断面イオン加工を行って、測定面を作製する。次に、結晶方位測定を、EBSD測定装置と、解析ソフトを用いて行う。EBSD測定装置の電子線の加速電圧は15kV、測定視野は20μm×30μm、結晶方位測定の測定点間隔(Step Size)は0.05μmとする。EBSD測定装置で得られたデータを、解析ソフトを用いて処理する。
<Definition of grain boundaries of Co crystal grains and determination of crystal structure>
<<Definition of grain boundaries of Co crystal grains>>
The grain boundaries of the Co crystal are identified by crystal orientation measurement using electron backscatter diffraction. First, the surface perpendicular to the tool surface (longitudinal section) is mechanically polished using waterproof abrasive paper and diamond abrasive grains, and then the cross-sectional ion processing is performed using an ion milling device to prepare a measurement surface. Next, the crystal orientation is measured using an EBSD measurement device and analysis software. The EBSD measurement device has an electron beam acceleration voltage of 15 kV, a measurement field of view of 20 μm×30 μm, and a measurement point interval (Step Size) of the crystal orientation measurement of 0.05 μm. The data obtained by the EBSD measurement device is processed using analysis software.

<<Co結晶粒の結晶の決定>>
ここで、測定した結晶方位は測定面上を離散的に調べたものであり、隣接測定点間の中間までの領域をその測定結果で代表させることにより測定面全体の方位分布として求めるものである。なお、測定点で代表させた領域(以下、ピクセルということがある)として正六角形状のものが例示できる。
<<Determination of the crystal structure of Co crystal grains>>
Here, the measured crystal orientation is measured discretely on the measurement surface, and the area up to the middle between adjacent measurement points is represented by the measurement results to obtain the orientation distribution of the entire measurement surface. The area represented by the measurement points (hereinafter sometimes referred to as a pixel) can be, for example, a regular hexagon.

このピクセルのうち隣接するもの同士の間で5度以上の結晶方位の角度差がある場合、または隣接するピクセルの片方のみが面心立方構造または最密六方晶構造を示す場合は、これらピクセルの接する領域の辺を粒界とする。そして、この粒界とされた辺により囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある、あるいは、隣接する面心立方構造を有する測定点がないような、単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界の判定を行い、結晶粒を特定し、結晶粒構造毎にその結晶粒の占める面積%を算出する。 If there is an angle difference of 5 degrees or more between the crystal orientations of adjacent pixels, or if only one of the adjacent pixels shows a face-centered cubic structure or a close-packed hexagonal structure, the side of the area where these pixels meet is considered to be a grain boundary. The area surrounded by the side considered to be a grain boundary is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with all of its adjacent pixels, or that does not have any adjacent measurement points with a face-centered cubic structure, is not considered to be a crystal grain, and two or more connected pixels are treated as crystal grains. In this way, the grain boundaries are determined, the crystal grains are identified, and the area percentage occupied by the crystal grains is calculated for each crystal grain structure.

<ビッカース硬度>
本実施形態に係る超硬工具は、その内部領域において、ISO6507、またはASTM E385規定された方法により荷重490N(50kgf)で測定するビッカース硬度が1400Hv以上であることが好ましい。ビッカース硬度が1500Hv以上であると、前記超硬工具は、より一層、耐摩耗性、耐欠損性、靭性に優れる。
なお、ビッカース硬度の上限値は特段の制約がないが、後述する実施例の製造法では1550Hv程度が上限になる。
<Vickers hardness>
The cemented carbide tool according to the present embodiment preferably has a Vickers hardness of 1400 Hv or more in an inner region thereof, as measured at a load of 490 N (50 kgf) by a method specified in ISO 6507 or ASTM E 385. When the Vickers hardness is 1500 Hv or more, the cemented carbide tool is even more excellent in wear resistance, fracture resistance, and toughness.
There is no particular restriction on the upper limit of the Vickers hardness, but in the manufacturing method of the embodiment described later, the upper limit is about 1550 Hv.

<破壊靭性値>
本実施形態に係る超硬工具は、破壊靭性値(K1c)が12.00MPa・m1/2以上であることが好ましい。破壊靭性値が12.00MPa・m1/2以上であると、前記超硬工具は、耐摩耗性、耐欠損性、靭性がより一層優れる。
ここで、破壊靭性値の測定は、公知のものが使用でき、例えば、JIS R1607で規定された方法により測定する圧痕とクラック長から靭性値を算出するIF法、十分なクラック長が得られない領域ではSEPB法やSEVNB法を用いて測定を行う。
なお、破壊靭性の上限値は特段の制約がないが、後述する実施例の製造法では25.00MPa・m1/2程度が上限になる。
<Fracture toughness value>
The cemented carbide tool according to this embodiment preferably has a fracture toughness value (K 1c ) of 12.00 MPa·m 1/2 or more. When the fracture toughness value is 12.00 MPa·m 1/2 or more, the cemented carbide tool has even more excellent wear resistance, fracture resistance, and toughness.
Here, the fracture toughness value can be measured by known methods, such as the IF method in which the toughness value is calculated from the indentation and crack length measured by the method specified in JIS R1607, and in areas where a sufficient crack length cannot be obtained, the SEPB method or SEVNB method is used.
There is no particular restriction on the upper limit of fracture toughness, but in the manufacturing method of the examples described below, the upper limit is about 25.00 MPa·m 1/2 .

以下に、実施例を挙げて本発明を説明するが、本発明は実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

<実施例A>
以下、実施例Aとして、超硬工具がボタンビット(BB036A)の削孔チップである場合を例として挙げて本発明を説明する。
Example A
Hereinafter, the present invention will be described using, as Example A, an example in which the cemented carbide tool is a drilling tip of a button bit (BB036A).

図1に示すボタンビット用削孔チップを得るべく、各実施例において、6個のφ(T:直径)が10mmのバリスティックタイプ(ゲージチップ)と3個のφ(T:直径)が9mmのバリスティックタイプ(フェイスチップ)を、以下の手順により製造した。
すなわち、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、バリ取り工程、再焼結工程を経て製造した。
In order to obtain the button bit drilling tip shown in Figure 1, in each embodiment, six ballistic type (gauge tips) with a diameter of φ (T: diameter) of 10 mm and three ballistic type (face tips) with a diameter of φ (T: diameter) of 9 mm were manufactured by the following procedure.
That is, the product was manufactured through the steps of preparing the raw material powder, blending/mixing and press molding, sintering, pressure treatment, deburring, and re-sintering.

1.原料粉末の準備工程
原料粉末として、いずれも3.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. Raw Material Powder Preparation Step As raw material powders, WC powder and Co powder, each having an average particle size of 3.0 μm, and Cr 3 C 2 powder and VC powder, each having an average particle size of 0.1 to 3.0 μm, were prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表1に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表1に示す配合割合が、ボタンビット用削孔チップの組成である。
The prepared raw material powders were mixed according to the composition shown in Table 1, and paraffin wax was added. The mixture was mixed in a ball mill for 24 hours in a solvent containing 85% ethanol. The mixture was dried under reduced pressure and then pressed into a green compact with a compression ratio of 20%.
The blending ratio shown in Table 1 is the composition of the button bit drilling tip .

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. Sintering process The pressed powder compact was sintered in a vacuum of 20 Pa or less by maintaining the temperature in the range of 1350 to 1500°C for 60 minutes with a temperature increase rate of 4°C/min, and after sintering, it was cooled to 50°C at a cooling rate of 6°C/min using Ar gas.

4.加圧処理工程(HIP処理およびS-HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
また、HIP処理に代えて、焼結とHIP処理を同時に行うS-HIP処理を行った。S-HIP処理は、3℃/minの昇温温度で1350~1500℃間に真空加熱した後、その到達温度域でArガス雰囲気下の5MPaにて90分間の加圧をした処理を行った。その後は、3/minの冷却速度で50℃まで冷却した。
4. Pressure treatment process (HIP treatment and S-HIP treatment)
Next, the temperature was raised to 1320° C. at a heating rate of 7° C./min, and the HIP treatment was performed by holding the temperature at 900 MPa for 60 minutes. Thereafter, the temperature was cooled to 50° C. at a cooling rate of 6° C./min.
In place of the HIP treatment, an S-HIP treatment was performed in which sintering and HIP treatment were performed simultaneously. The S-HIP treatment was performed by vacuum heating to 1350-1500°C with a temperature increase rate of 3°C/min, and then pressurizing in the reached temperature range at 5 MPa for 90 minutes in an Ar gas atmosphere. After that, the material was cooled to 50°C at a cooling rate of 3/min.

5.バリ取り工程
次に、必要に応じて以下(1)~(3)のいずれかのバリ取り加工を行った。
5. Deburring Step Next, any one of the following deburring processes (1) to (3) was performed as necessary.

(1)バレル研磨
設備 振動式バレル研磨機
容量 20リットル
周波数 60Hz
研磨メディア 珪藻土
(1) Barrel polishing Equipment: Vibration barrel polishing machine Capacity: 20 liters Frequency: 60 Hz
Polishing media: Diatomaceous earth

(2)プロファイル研磨
砥粒 #200のダイヤモンド砥粒
周速 1000m/min
ストローク数 90回/min
切込量 0.1mm
(2) Profile polishing: Abrasive grain: #200 diamond abrasive grain; Circumferential speed: 1000 m/min
Stroke count: 90 times/min
Cutting depth: 0.1 mm

(3)サンドブラスト
エア圧 0.3~0.2MPa
ブラストガン Φ19mm
アルミナ径 425~300μm(FA46)
単位面積当たりの処理時間 3~6s/cm
(3) Sandblasting Air pressure 0.3 to 0.2 MPa
Blast gun Φ19mm
Alumina diameter 425-300μm (FA46)
Processing time per unit area: 3 to 6 s/ cm2

6.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
6. Resintering Step In a vacuum of 1 Pa or less, the temperature was raised to 1100° C. at a rate of 5° C./min, and the product was held for 60 minutes for resintering, and then cooled to 50° C. at a rate of 15° C./min.

このようにして、得られた実施例1~7のバリスティックタイプの各チップに対して、その中から任意の1個を取り出し、前述の方法により面心立方構造を有する結晶粒の面積割合を求めた。結果を表2に示す。ここで、EBSD装置は、カールツァイス社製 走査型電子顕微鏡Ultra55、EDAX/TSL社製 OIM Data Collectionを、解析ソフトとして、EDAX/TSL社製 OIM Data Analysis ver.7.3を用いた。また、ビッカース硬度は前述の方法により、破壊靭性値はIF法によりそれぞれ測定した。 From each of the ballistic-type chips thus obtained in Examples 1 to 7, one chip was randomly selected, and the area ratio of crystal grains having a face-centered cubic structure was determined by the method described above. The results are shown in Table 2. Here, the EBSD device used was a Carl Zeiss Ultra 55 scanning electron microscope, OIM Data Collection by EDAX/TSL, and the analysis software used was OIM Data Analysis ver. 7.3 by EDAX/TSL. The Vickers hardness was measured by the method described above, and the fracture toughness value was measured by the IF method.

これに対して、比較例1~7として、各比較例において実施例と同じ形状のφ10mmのバリスティックタイプ(ゲージチップ)6個とφ9mmのバリスティックタイプ(フェイスチップ)3個を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有する結晶粒の面積割合を求めた。結果を表2に示す。 In contrast, for Comparative Examples 1 to 7, six ballistic type (gauge chips) with a diameter of 10 mm and three ballistic type (face chips) with a diameter of 9 mm, each of which had the same shape as the Examples, were produced using the same raw material powder as the Examples, and following the same manufacturing process as the Examples, except that no resintering step was performed. The area ratio of crystal grains with a face-centered cubic structure was determined in the same way as in the Examples. The results are shown in Table 2.

Figure 0007488752000001
Figure 0007488752000001

Figure 0007488752000002
Figure 0007488752000002

削孔試験
実施例1~7、比較例1~7のバリスティックタイプチップを図3に示すゲージ径Gが47.0mmのボタンビットのヘッドに、6個のチップ径Tが10mmの前記チップをゲージチップとして、3個のチップ径Tが9mmの前記チップをフェイスチップとして、それぞれ取り付けて、以下の削孔試験を行った。
The ballistic type tips of Examples 1 to 7 and Comparative Examples 1 to 7 were attached to the head of a button bit having a gauge diameter G of 47.0 mm as shown in Figure 3 , with six tips having a tip diameter T of 10 mm as gauge tips and three tips having a tip diameter T of 9 mm as face tips, and the following drilling test was performed.

1.削孔試験装置(穿孔装置)の仕様
打撃圧 20MPa
打撃周波数 93Hz
推力 8MPa
回転圧 7.5MPa
1. Specifications of the drilling test equipment (drilling equipment) Impact pressure: 20 MPa
Impact frequency: 93Hz
Thrust: 8MPa
Rotation pressure 7.5MPa

2.削孔
削孔長さ(1回当たり) 4m
削孔径 45mm
岩盤-軸圧縮強度 210MPa
2. Drilling length (per drilling): 4m
Drilling diameter: 45 mm
Rock mass - axial compressive strength 210MPa

3.再研磨
10回の削孔(合計40mの削孔)が終了する毎に実施
3. Re-polishing is carried out after 10 drillings (a total of 40m drilling) are completed.

そして、以下の評価を行った。結果を表3に示す。
(1)5回の削孔(合計20mの削孔)の終了毎に削孔チップの形状を観察し、
(2)ゲージ径測定治具を用い、ボタンビットのゲージ径Gが44mm未満になった時点
で摩耗、あるいは、チップ径の1/3以上の長さに欠損(部分的な欠損、全欠損のいずれか)の有無を目視で観察し、ゲージチップ、フェイスチップに関わらず9個あるチップのうちの3個以上に欠損が発生した際に寿命と判断し、寿命に至るまでの総削孔長さ(メートル)を測定した。
The following evaluations were then carried out, and the results are shown in Table 3.
(1) After completing five drillings (a total of 20 m), the shape of the drilling tip was observed.
(2) Using a gauge diameter measuring jig, when the gauge diameter G of the button bit became less than 44 mm, it was visually observed for wear or the presence or absence of loss (either partial or complete loss) along a length of 1/3 or more of the tip diameter. When loss occurred in three or more of the nine tips, regardless of whether they were gauge tips or face tips, it was determined that the tip had reached the end of its life, and the total drilling length (meters) until the tip reached the end of its life was measured.

Figure 0007488752000003
Figure 0007488752000003

表3から明らかなように、実施例1~7の削孔チップは、20m削孔直後のチップには異常が発生せず、総切削長が長く、いずれも優れた耐摩耗性、耐欠損性、靭性を示した。一方、比較例1~7の削孔チップは、20m削孔直後のチップに欠損が発生したものがあり、いずれも、総削孔長が短く、早期に、欠損、摩耗が発生した。 As is clear from Table 3, the drilling tips of Examples 1 to 7 did not develop any abnormalities immediately after drilling 20 m, had a long total cutting length, and all demonstrated excellent wear resistance, chipping resistance, and toughness. On the other hand, the drilling tips of Comparative Examples 1 to 7 had chipping in some of the tips immediately after drilling 20 m, had a short total drilling length, and suffered early chipping and wear.

<実施例B>
以下、実施例Bとして、一辺の長さが10mmの立方体形状の試験片を作成し、図4、5に示すラトラ試験を行って、同試験片の耐摩耗性、耐欠損性、靭性について評価を行った。
試験片の作成は、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、研磨工程、再焼結工程を経て製造した。
Example B
As Example B below, a cubic test piece with a side length of 10 mm was prepared, and the rattler test shown in Figs. 4 and 5 was carried out to evaluate the wear resistance, fracture resistance, and toughness of the test piece.
The test specimens were manufactured through the steps of preparing the raw material powder, blending, mixing and press molding, sintering, pressure treatment, polishing and re-sintering.

1.原料粉末の準備工程
原料粉末として、いずれも1.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. Raw Material Powder Preparation Step As raw material powders, WC powder and Co powder, each having an average particle size of 1.0 μm, and Cr 3 C 2 powder and VC powder, each having an average particle size of 0.1 to 3.0 μm, were prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表4に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表4に示す配合割合が、試験片の組成である。
The prepared raw material powders were mixed according to the composition shown in Table 4, and paraffin wax was added. The mixture was mixed in a ball mill for 24 hours in a solvent containing 85% ethanol, dried under reduced pressure, and then pressed into a green compact with a compression ratio of 20%.
The blending ratios shown in Table 4 represent the compositions of the test pieces.

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. Sintering process The pressed powder compact was sintered in a vacuum of 20 Pa or less by maintaining the temperature in the range of 1350 to 1500°C for 60 minutes with a temperature increase rate of 4°C/min, and after sintering, it was cooled to 50°C at a cooling rate of 6°C/min using Ar gas.

4.加圧処理工程(HIP処理およびS-HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
また、HIP処理に代えて、焼結とHIP処理を同時に行うS-HIP処理を行った。S-HIP処理は、3℃/minの昇温温度で1350~1500℃間に真空加熱した後、その到達温度域でArガス雰囲気下の5MPaにて90分間の加圧をした処理を行った。その後は、3/minの冷却速度で50℃まで冷却した。
4. Pressure treatment process (HIP treatment and S-HIP treatment)
Next, the temperature was raised to 1320° C. at a heating rate of 7° C./min, and the HIP treatment was performed by holding the temperature at 900 MPa for 60 minutes. Thereafter, the temperature was cooled to 50° C. at a cooling rate of 6° C./min.
In place of the HIP treatment, an S-HIP treatment was performed in which sintering and HIP treatment were performed simultaneously. The S-HIP treatment was performed by vacuum heating to 1350-1500°C with a temperature increase rate of 3°C/min, and then pressurizing in the reached temperature range at 5 MPa for 90 minutes in an Ar gas atmosphere. After that, the material was cooled to 50°C at a cooling rate of 3/min.

5.研磨工程
平面研削盤を使用し、#140砥石を用いて試験片の6面を研磨した。
5. Polishing Step Using a surface grinder, six faces of the test piece were polished with a #140 grinding wheel.

6.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
6. Resintering Step In a vacuum of 1 Pa or less, the temperature was raised to 1100° C. at a rate of 5° C./min, and the product was held for 60 minutes for resintering, and then cooled to 50° C. at a rate of 15° C./min.

このようにして、得られた実施例11~15の試験片を、実施例Aと同様に面心立方構造を有するCo結晶粒の面積割合を求めた。結果を表5に示す。 The surface area ratio of Co crystal grains having a face-centered cubic structure was determined for the test pieces of Examples 11 to 15 obtained in this manner, in the same manner as Example A. The results are shown in Table 5.

これに対して、比較例11~15を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有するCo結晶粒の面積割合を求めた。結果を表5に示す。 In contrast, Comparative Examples 11 to 15 were produced using the same raw material powder as in the Examples, and following the same manufacturing process as in the Examples, except that they did not include a resintering process, and the area ratio of Co crystal grains having a face-centered cubic structure was calculated in the same way as in the Examples. The results are shown in Table 5.

Figure 0007488752000004
Figure 0007488752000004

Figure 0007488752000005
Figure 0007488752000005

ラトラ試験
実施例11~15、および、比較例11~15の各試験片に対して、図4に断面の模式図、図5に側面の模式図を示すラトラ試験機を用いて、欠損率を評価した。
Rattler Test For each of the test pieces of Examples 11 to 15 and Comparative Examples 11 to 15, the defect rate was evaluated using a ratler tester shown in a cross-sectional schematic diagram in FIG. 4 and in a side schematic diagram in FIG .

ラトラ試験の条件は次のとおりであった。
ラトラ試験の容器の寸法 内径φ110mm
長さ 200mm
ボール φ20mm アルミナボール(総質量 480g)
容器の回転数 250rpm
試験時間 180分
The conditions for the Rattler test were as follows:
Dimensions of the container for the rattra test: Inner diameter φ110mm
Length: 200mm
Ball: φ20mm alumina ball (total mass 480g)
Container rotation speed: 250 rpm
Test duration: 180 minutes

試験片の試験前の質量と試験後の質量を比較し、次の欠損率を求めて、試験片の耐摩耗性、耐欠損性、靭性について評価を行った。結果を表6に示す。
欠損率(%)=(試験前の質量-試験後の質量)/(試験前の質量)×100
The mass of the test piece before and after the test was compared to determine the following defect rate, and the wear resistance, defect resistance, and toughness of the test piece were evaluated. The results are shown in Table 6.
Defective rate (%) = (mass before test - mass after test) / (mass before test) x 100

Figure 0007488752000006
Figure 0007488752000006

表6から明らかなように、実施例11~15の試験片は、試験後の欠損率(%)が小さく、いずれも優れた耐摩耗性、耐欠損性、靭性を有するといえる。一方、比較例11~15の試験片は欠損率(%)が高く、耐摩耗性、耐欠損性、靭性が劣っていることは明らかである。 As is clear from Table 6, the test pieces of Examples 11 to 15 had a small defect rate (%) after testing, and all of them can be said to have excellent wear resistance, defect resistance, and toughness. On the other hand, the test pieces of Comparative Examples 11 to 15 had a high defect rate (%), and it is clear that they had inferior wear resistance, defect resistance, and toughness.

<実施例C>
以下、実施例Cとして、超硬工具が図6に示すような回転式切断工具(ロータリーダイカッター)である場合を例に挙げて説明する。
回転式切断工具は、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、再焼結工程、研磨工程を経て製造した。
Example C
Hereinafter, as Example C, a case where the cemented carbide tool is a rotary cutting tool (rotary die cutter) as shown in FIG. 6 will be described as an example.
The rotary cutting tool was manufactured through a process of preparing the raw material powder, blending and pressing, sintering, pressure treatment, re-sintering, and polishing.

1.原料粉末の準備工程
原料粉末として、いずれも1.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. Raw Material Powder Preparation Step As raw material powders, WC powder and Co powder, each having an average particle size of 1.0 μm, and Cr 3 C 2 powder and VC powder, each having an average particle size of 0.1 to 3.0 μm, were prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表7に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表7に示す配合割合が、回転式切断工具の組成である。
The prepared raw material powders were mixed according to the composition shown in Table 7, and paraffin wax was added. The mixture was mixed in a solvent containing 85% ethanol for 24 hours using a ball mill. The mixture was dried under reduced pressure and then pressed into a green compact with a compression ratio of 20%.
The blending ratios shown in Table 7 represent the composition of the rotary cutting tool.

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. Sintering process The pressed powder compact was sintered in a vacuum of 20 Pa or less by maintaining the temperature in the range of 1350 to 1500°C for 60 minutes with a temperature increase rate of 4°C/min, and after sintering, it was cooled to 50°C at a cooling rate of 6°C/min using Ar gas.

4.加圧処理工程(HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
4. Pressure treatment process (HIP treatment)
Next, the temperature was raised to 1320° C. at a heating rate of 7° C./min, and the HIP treatment was performed by holding the temperature at 900 MPa for 60 minutes. Thereafter, the temperature was cooled to 50° C. at a cooling rate of 6° C./min.

5.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
5. Resintering Step In a vacuum of 1 Pa or less, the temperature was raised to 1100° C. at a rate of 5° C./min, and the product was held for 60 minutes for resintering, and then cooled to 50° C. at a rate of 15° C./min.

6.研磨工程
仕上がり面粗さ(Rz)が0.8μmとなるように、以下のような研磨加工を行った。
加工機:円筒研磨機およびマシニングセンター
砥石番手:♯140(荒加工)~♯1000(仕上げ加工)
6. Polishing Step The following polishing process was carried out so that the finished surface roughness (Rz) was 0.8 μm.
Processing machine: Cylindrical grinding machine and machining center Grindstone size: #140 (rough processing) to #1000 (finishing processing)

このようにして、得られた実施例21~23の回転式切断工具に対して、実施例Aと同じ手段を用いて面心立方構造を有する結晶粒の面積割合を求めた。結果を表8に示す。 The area ratio of crystal grains having a face-centered cubic structure was determined for the rotary cutting tools of Examples 21 to 23 obtained in this way using the same method as in Example A. The results are shown in Table 8.

これに対して、比較例21~23を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有する結晶粒の面積割合を求めた。結果を表8に示す。 In contrast, Comparative Examples 21 to 23 were produced using the same raw material powder as in the Examples, and following the same manufacturing process as in the Examples, except that the resintering process was not performed. The area ratio of crystal grains having a face-centered cubic structure was calculated in the same way as in the Examples. The results are shown in Table 8.

Figure 0007488752000007
Figure 0007488752000007

Figure 0007488752000008
Figure 0007488752000008

耐久性の評価
図6に模式的に示す回転式切断工具を組み立て、
回転数 600rpm
押付圧力 1.5MPa
刃先突き出し量 1.5μm
として、10万回転毎に刃先の状態を目視により確認し、欠損が認められた時点までの累積回転数を寿命に至るまでの回転数とした。結果を表9に示す。表9において、寿命とは、寿命に至るまでの回転数である。
Evaluation of durability A rotary cutting tool as shown in FIG.
Rotational speed: 600 rpm
Pressing pressure 1.5MPa
Blade tip protrusion amount 1.5μm
The condition of the cutting edge was visually checked every 100,000 rotations, and the cumulative number of rotations up to the point where chipping was observed was taken as the number of rotations until the end of the tool life. The results are shown in Table 9. In Table 9, the term "tool life" refers to the number of rotations until the end of the tool life.

Figure 0007488752000009
Figure 0007488752000009

表9から明らかなにように、実施例21~23の累積回転数は高く、いずれも優れた耐摩耗性、耐欠損性、靭性を有するといえる。一方、比較例21~23の試験片は累積回転数が低く、耐摩耗性、耐欠損性、靭性が劣っていることは明らかである。 As is clear from Table 9, the cumulative rotation numbers of Examples 21 to 23 are high, and all of them can be said to have excellent wear resistance, fracture resistance, and toughness. On the other hand, the test pieces of Comparative Examples 21 to 23 have low cumulative rotation numbers, and it is clear that they have inferior wear resistance, fracture resistance, and toughness.

1 バリスティックタイプチップ(ゲージチップ)
2 チップバリスティックタイプ(フェイスチップ)
3 ボタンビット
4 ラトラ試験機の容器
5 障害板
6 試験片
7 アルミナボール
8 ダイカットロール
9 アンビルロール
10 刃先
11 ベアラ
T バリスティックタイプチップのチップ径
G ボタンビットのゲージ径
R 回転方向
1. Ballistic type tip (gauge tip)
2. Ballistic tip type (face tip)
3 Button bit 4 Rattler tester container 5 Obstacle plate 6 Test piece 7 Alumina ball 8 Die cut roll 9 Anvil roll 10 Blade tip 11 Bearer T Tip diameter G of ballistic type tip Gauge diameter R of button bit Rotation direction

Claims (6)

Coを2.0~30.0質量%を含み、残部がWCおよび不可避的不純物からなる組成を有し、結合相を形成しているCo結晶粒のうちの面心立方構造を有する結晶粒の面積割合につき、その表面から深さ50μmまでの表面領域の値(A)が50.0~100.0面積%、その表面から50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33であることを特徴とする超硬工具。 A cemented carbide tool having a composition containing 2.0 to 30.0 mass % Co with the remainder consisting of WC and unavoidable impurities, characterized in that, with respect to the area ratio of crystal grains having a face-centered cubic structure among Co crystal grains forming a binder phase, a value (A) of a surface region up to a depth of 50 μm from the surface is 50.0 to 100.0 area %, a value (B) of an internal region beyond 50 μm from the surface is 30.0 to 90.0 area %, and A/B is 0.70 to 3.33. Crを0.2~3.5質量%および/またはVCを0.2~3.7質量%含有することを特徴とする請求項1に記載の超硬工具。 2. The carbide tool according to claim 1 , characterized in that it contains 0.2 to 3.5 mass % of Cr3C2 and/or 0.2 to 3.7 mass % of VC. Niを0.4~21.0質量%含有することを特徴とする請求項1または2に記載の超硬工具。 The carbide tool according to claim 1 or 2, characterized in that it contains 0.4 to 21.0 mass % Ni. 前記内部領域のビッカース硬度が1500Hv以上であることを特徴とする請求項1~3のいずれかに記載の超硬工具。 The carbide tool according to any one of claims 1 to 3, characterized in that the Vickers hardness of the inner region is 1500 Hv or more. 破壊靭性値が12.00Mpam1/2以上であることを特徴とする請求項1~4のいずれかに記載の超硬工具。 The cemented carbide tool according to any one of claims 1 to 4, characterized in that it has a fracture toughness value of 12.00 Mpam 1/2 or more. 前記超硬工具は、鉱山土木用ボタンビットのチップであることを特徴とする請求項1~5のいずれかに記載の超硬工具。 The carbide tool according to any one of claims 1 to 5, characterized in that the carbide tool is a tip for a button bit for mining and civil engineering.
JP2020190694A 2020-11-17 2020-11-17 Carbide Tools Active JP7488752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190694A JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190694A JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Publications (2)

Publication Number Publication Date
JP2022079855A JP2022079855A (en) 2022-05-27
JP7488752B2 true JP7488752B2 (en) 2024-05-22

Family

ID=81731462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190694A Active JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Country Status (1)

Country Link
JP (1) JP7488752B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024810A (en) 1998-07-15 2000-01-25 Toho Kinzoku Co Ltd Cemented carbide tip
JP2003013169A (en) 2001-04-27 2003-01-15 Allied Material Corp WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JP2013170315A (en) 2012-09-06 2013-09-02 Mts:Kk High toughness cemented carbide and coated cemented carbide
JP2015108162A (en) 2013-10-22 2015-06-11 冨士ダイス株式会社 LESS AMOUNT Ni ADDED WC-Co GROUP HARD METAL OR TOOL USING IT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024810A (en) 1998-07-15 2000-01-25 Toho Kinzoku Co Ltd Cemented carbide tip
JP2003013169A (en) 2001-04-27 2003-01-15 Allied Material Corp WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JP2013170315A (en) 2012-09-06 2013-09-02 Mts:Kk High toughness cemented carbide and coated cemented carbide
JP2015108162A (en) 2013-10-22 2015-06-11 冨士ダイス株式会社 LESS AMOUNT Ni ADDED WC-Co GROUP HARD METAL OR TOOL USING IT

Also Published As

Publication number Publication date
JP2022079855A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
US7575805B2 (en) Polycrystalline diamond abrasive elements
US9468980B2 (en) Contoured PCD and PCBN segments for cutting tools containing such segments
JP5188578B2 (en) Cutting tools
EP3532440B1 (en) Core drill bits
US8505654B2 (en) Polycrystalline diamond
KR20120041265A (en) Super hard alloy and cutting tool using same
US8764876B2 (en) PCBN material, tool elements comprising same and method for using same
US20120241225A1 (en) Composite polycrystalline diamond body
CN110899803B (en) Integral ceramic milling cutter for high-speed milling of nickel-based alloy and manufacturing method thereof
US20170122038A1 (en) Sintering of thick solid carbonate-based pcd for drilling application
KR20170108457A (en) Composite sintered body for cutting tools and cutting tools using the same
EP1637258B1 (en) Method for toughening surface of sintered material cutting tool
Braghini Jr et al. An investigation of the wear mechanisms of polycrystalline cubic boron nitride (PCBN) tools when end milling hardened steels at low/medium cutting speeds
JP6213935B1 (en) Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
CN103128345A (en) Pcd bore bit
CN101450862B (en) Ceramic cutting insert
TW202012309A (en) Diamond polycrystal and tool including same
JP7488752B2 (en) Carbide Tools
JP7470622B2 (en) Drilling tools
Maeda Development of high precision silicon nitride ceramic balls
KR101606595B1 (en) Method of making a composite diamond body
JP6819018B2 (en) TiCN-based cermet cutting tool
US20030183426A1 (en) Polycrystalline Material Element with Improved Wear Resistance And Methods of Manufacture Thereof
JP7216916B2 (en) Diamond-coated cemented carbide tools
JP2020059621A (en) Cubic boron nitride-based sintered body and cutting tool

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510

R150 Certificate of patent or registration of utility model

Ref document number: 7488752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150