JP2022079855A - Cemented Carbide Tool - Google Patents

Cemented Carbide Tool Download PDF

Info

Publication number
JP2022079855A
JP2022079855A JP2020190694A JP2020190694A JP2022079855A JP 2022079855 A JP2022079855 A JP 2022079855A JP 2020190694 A JP2020190694 A JP 2020190694A JP 2020190694 A JP2020190694 A JP 2020190694A JP 2022079855 A JP2022079855 A JP 2022079855A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide tool
mass
area
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020190694A
Other languages
Japanese (ja)
Other versions
JP7488752B2 (en
Inventor
高志 阿部
Takashi Abe
紗也子 長崎
Sayako Nagasaki
博士 太田
Hiroshi Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mmc Ryotec Corp
Original Assignee
Mmc Ryotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mmc Ryotec Corp filed Critical Mmc Ryotec Corp
Priority to JP2020190694A priority Critical patent/JP7488752B2/en
Publication of JP2022079855A publication Critical patent/JP2022079855A/en
Application granted granted Critical
Publication of JP7488752B2 publication Critical patent/JP7488752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a cemented carbide tool that has excellent wear resistance and defect resistance and has excellent durability.SOLUTION: A cemented carbide tool contains Co of 2.0-30.0 mass% with the balance being WC and inevitable impurities. For an area ratio of crystal grains having a face-centered cubic structure, out of the Co crystal grains forming a binder phase, a value (A) of a surface region from its surface to a depth up to 50 μm is 50.0-100.0 area%, and a value (B) of an inner region from its surface to a depth beyond 50 μm is 30.0-90.0 area%, with A/B of 0.70-3.33.SELECTED DRAWING: Figure 1

Description

本発明は、炭化タングステン(以下、WCということがある)基超硬合金工具(以下、超硬工具ということがある)であって、特に、鉱山土木用削孔工具(削岩ビットのチップ、鉱山土木用ボタンビットのゲージチップ等)、切削工具(ドリル、インサート、フライス、回転式切断工具等)、塑性加工具(プレス金型、鍛造用のダイ、鉄鋼用圧延ロール等)に適用可能なものに関する。 The present invention is a tungsten carbide (hereinafter sometimes referred to as WC) -based cemented carbide tool (hereinafter sometimes referred to as a cemented carbide tool), and in particular, a drilling tool for mining civil engineering (a tip of a rock drilling bit, Applicable to button bit gauge tips for mining civil engineering), cutting tools (drills, inserts, mills, rotary cutting tools, etc.), plastic processing tools (press dies, forging dies, rolling rolls for steel, etc.) Regarding things.

超硬合金工具は、WC硬質相とCo結合相とを有する超硬合金が用いられている。この超硬合金の特性は、WC粒子の粒径とCo含有量によって左右され、また、耐摩耗性と耐欠損性との間には二律相反の関係があることが知られている。そして、従来から、この二律相反の関係の関係を解消すべく、種々の提案がなされている。 As the cemented carbide tool, a cemented carbide having a WC hard phase and a Co-bonded phase is used. The characteristics of this cemented carbide depend on the particle size and Co content of the WC particles, and it is known that there is a bilateral reciprocal relationship between wear resistance and fracture resistance. And, conventionally, various proposals have been made in order to eliminate the relationship of this bilateral conflict.

例えば、特許文献1には、硬質相に9.5質量%以上含まれるWC粒子につき、4.5~7.5μmの粒子が50~75%、1.5~4.5μmの粒子が15~40%(ただしWC全体を100%としたときの面積比)の範囲にあり、(4.5~7.5μmのWC合計面積)/(1.5~4.5μmのWC合計面積)=2/1~5/1の関係を満たし、かつ1μm以下のWC粒子の面積比が3%以下である超硬工具が記載されており、該超硬工具は耐欠損性を低下させることなく耐摩耗性が向上しているとされている。 For example, in Patent Document 1, 50 to 75% of WC particles containing 9.5% by mass or more in a hard phase and 15 to 75% of particles having a size of 4.5 to 7.5 μm and 15 to 75% of particles having a size of 1.5 to 4.5 μm. It is in the range of 40% (however, the area ratio when the entire WC is 100%), and (total WC area of 4.5 to 7.5 μm) / (total WC area of 1.5 to 4.5 μm) = 2. A super hard tool that satisfies the relationship of 1/1 to 5/1 and has an area ratio of WC particles of 1 μm or less of 3% or less is described, and the super hard tool has wear resistance without deteriorating fracture resistance. It is said that the sex is improving.

また、例えば、特許文献2には、M12C型複炭化物を表層部の主成分とし、表層部WC平均粒度が、内質部のそれよりも0.3~0.7倍に小さくなる組織傾斜を有するとともに、表層部の結合金属が内部側に移動した濃度傾斜を有している超硬工具が記載されており、該超硬工具は、耐摩耗性、耐欠損性に優れているとされている。 Further, for example, in Patent Document 2, a structure in which M12 C type cemented carbide is used as a main component of the surface layer portion and the average particle size of the surface layer portion WC is 0.3 to 0.7 times smaller than that of the internal substance portion. A cemented carbide tool having an inclination and a concentration inclination in which the bonding metal on the surface layer is moved inward is described, and the cemented carbide tool is said to be excellent in abrasion resistance and fracture resistance. Has been done.

さらに、例えば、特許文献3には、WCおよびCoを含んで作製された柱状のチップ本体を有し、前記チップ本体の軸方向に沿う先端部は、先端側へ向かうに従い縮径するように形成され、前記チップ本体の先端部には、Coを主成分とし、長さが5~25μmとされたバインダープールが複数設けられ、前記先端部の単位面積あたりに含まれる前記バインダープールの数が、該先端部における外面近傍よりもそのチップ内側で少なくされている超硬工具が記載され、該超硬工具は、耐摩耗性、耐欠損性に優れているとされている。 Further, for example, Patent Document 3 has a columnar chip body made of WC and Co, and the tip portion of the chip body along the axial direction is formed so as to shrink in diameter toward the tip side. At the tip of the chip body, a plurality of binder pools containing Co as a main component and having a length of 5 to 25 μm are provided, and the number of the binder pools included in the unit area of the tip is determined. A super hard tool is described in which the amount is reduced inside the tip rather than near the outer surface at the tip portion, and the super hard tool is said to be excellent in wear resistance and chipping resistance.

特開平8-302441号公報Japanese Unexamined Patent Publication No. 8-302441 特開2006-188749号公報Japanese Unexamined Patent Publication No. 2006-188949 特開2014-214426号公報Japanese Unexamined Patent Publication No. 2014-214426

近年、超硬工具に対して、より一層の耐摩耗性、耐欠損性が求められている。例えば、削孔工具に対しては、高出力・高周波削岩機による削孔事例が増加し、削孔工具への負荷は増加する傾向にあって、より一層の耐摩耗性、耐欠損性を含む耐久性が求められている。また、例えば、切削工具では、一段と高速化、高効率化の切削加工に対し、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、耐久性が求められ、また、塑性加工具についても同様である。 In recent years, cemented carbide tools are required to have higher wear resistance and fracture resistance. For example, for drilling tools, the number of drilling cases using high-power and high-frequency rock drills is increasing, and the load on drilling tools tends to increase, further improving wear resistance and fracture resistance. Durability including is required. Further, for example, in a cutting tool, abnormal damage resistance such as chipping resistance, chipping resistance, and peeling resistance is required for cutting work with higher speed and higher efficiency, and durability is also required. The same applies to plastic cutting tools.

本発明は、前記事情や、前記提案を鑑みてなされたもので、優れた耐摩耗性や耐欠損性を有し、耐久性の優れた超硬工具を提供することを目的とする。 The present invention has been made in view of the above circumstances and the above proposal, and an object of the present invention is to provide a cemented carbide tool having excellent wear resistance and fracture resistance and excellent durability.

本発明の実施形態に係る超硬工具は、
Coを2.0~30.0質量%を含み、残部がWCおよび不可避的不純物である組成を有し、結合相を形成しているCo結晶粒のうちの面心立方構造を有する結晶粒の面積割合につき、その表面から深さ50μmまでの表面領域の値(A)が50.0~100.0面積%、その表面から50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33である。
The cemented carbide tool according to the embodiment of the present invention is
A crystal grain having a face-to-face cubic structure among Co crystal grains forming a bonded phase, which contains 2.0 to 30.0% by mass of Co and has a composition in which the balance is WC and an unavoidable impurity. For the area ratio, the value (A) of the surface region from the surface to the depth of 50 μm is 50.0 to 100.0 area%, and the value (B) of the internal region exceeding 50 μm from the surface is 30.0 to 90. The area is 0%, and the A / B is 0.70 to 3.33.

さらに、前記実施形態に係る超硬工具は、以下の各事項の一つ以上を満足してもよい。
(1)Crを0.2~3.5質量%および/またはVCを0.2~3.7質量%含有すること。
(2)Niを0.4~21.0質量%含有すること。
(3)前記内部領域において、ビッカース硬度が1500Hv以上であること。
(4)破壊靭性値が12.00MPa・m1/2以上であること。
(5)鉱山土木用ボタンビットのチップであること。
Further, the cemented carbide tool according to the embodiment may satisfy one or more of the following items.
(1) Cr 3 C 2 is contained in an amount of 0.2 to 3.5% by mass and / or VC is contained in an amount of 0.2 to 3.7% by mass.
(2) Contains 0.4 to 21.0% by mass of Ni.
(3) The Vickers hardness is 1500 Hv or more in the internal region.
(4) The fracture toughness value is 12.00 MPa ・ m 1/2 or more.
(5) Being a button bit chip for mine civil engineering.

前記によれば、耐摩耗性、耐欠損性、靭性に優れた超硬工具を得ることができる。 According to the above, it is possible to obtain a cemented carbide tool having excellent wear resistance, fracture resistance, and toughness.

実施例Aのゲージチップ(バリスティックタイプ)の側面の模式図である。It is a schematic diagram of the side surface of the gauge tip (ballistic type) of Example A. 実施例Aのボタンビットの側面の模式図である。It is a schematic diagram of the side surface of the button bit of Example A. 図2のボタンビットのゲージ径を説明する模式図である。It is a schematic diagram explaining the gauge diameter of the button bit of FIG. ラトラ試験機の断面の模式図である。It is a schematic diagram of the cross section of the ratla tester. 図4に示すラトラ試験機の側面の模式図である。It is a schematic diagram of the side surface of the ratla tester shown in FIG. 回転式切断工具(ロータリーダイカッター)の模式図である。It is a schematic diagram of a rotary cutting tool (rotary die cutter).

本発明者は、WCとCoを有する超硬工具に関し、特に、Coの結晶構造の分布について、鋭意検討した。その結果、面心立方構造のCo結晶粒の占める面積割合につき、超硬工具の表面、すなわち、被処理物である岩盤や被切削物に接する面を含む超硬工具の表面近傍領域における値(A)と、超硬工具内部における値(B)が、それぞれ、所定の値であり、かつ、A/Bが所定範囲にあるとき、超硬工具の耐摩耗性、耐欠損性、靭性が優れるという知見を得たのである。 The present inventor has diligently studied the distribution of the crystal structure of Co in relation to the cemented carbide tool having WC and Co. As a result, the ratio of the area occupied by the Co crystal grains of the face center cubic structure is the value in the region near the surface of the cemented carbide tool including the surface of the cemented carbide tool, that is, the surface in contact with the bedrock and the workpiece to be processed. When A) and the value (B) inside the cemented carbide tool are each a predetermined value and A / B is within a predetermined range, the wear resistance, fracture resistance, and toughness of the cemented carbide tool are excellent. I got the finding.

以下では、本発明の一実施形態に係る超硬工具について説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「M~N」(M、Nは共に数値)で表現するときは、その範囲は上限値(N)および下限値(M)を含んでおり、上限値(N)と下限値(M)の単位は同じである。
Hereinafter, the cemented carbide tool according to the embodiment of the present invention will be described.
In the present specification and claims, when the numerical range is expressed by "MN" (both M and N are numerical values), the range includes the upper limit value (N) and the lower limit value (M). The unit of the upper limit value (N) and the lower limit value (M) is the same.

<組成>
まず、本実施形態に係る超硬工具の組成について説明する。
<Composition>
First, the composition of the cemented carbide tool according to this embodiment will be described.

<<Co>>
本実施形態に係る超硬工具の組成は、Coを2.0~30.0質量%含み、残部がWCと不可避的不純物である。Coの含有量をこの範囲とした理由は、2.0質量%未満であると、焼結時に緻密化が進行しづらくなって内部欠陥が残りやすくなり、その結果、組織としての均一性が損われ超硬工具の機械的強度が低下し、一方、30.0質量%を超えると、超硬工具の耐摩耗性が低下するためである。超硬工具が削孔工具(削孔チップ)のとき、Coの含有割合は、3.0~10.0質量%であることがより好ましい。
<< Co >>
The composition of the cemented carbide tool according to the present embodiment contains 2.0 to 30.0% by mass of Co, and the balance is WC and unavoidable impurities. The reason why the Co content is within this range is that if it is less than 2.0% by mass, densification is difficult to proceed during sintering and internal defects are likely to remain, resulting in impaired microstructure uniformity. This is because the mechanical strength of the cemented carbide tool decreases, while the wear resistance of the cemented carbide tool decreases when it exceeds 30.0% by mass. When the cemented carbide tool is a drilling tool (drilling tip), the Co content is more preferably 3.0 to 10.0% by mass.

<<その他の元素>>
本実施形態に係る超硬工具は、Cr、V、Nb、Ta、Ti、Ni、Hf、Zrの1種類または2種以上を含有してもよい。これらの元素は、炭化物、複合炭化物、窒化物、炭窒化物として添加されてもよい。以下、これら元素について説明する。
<< Other elements >>
The cemented carbide tool according to this embodiment may contain one or more of Cr, V, Nb, Ta, Ti, Ni, Hf, and Zr. These elements may be added as carbides, composite carbides, nitrides, carbonitrides. Hereinafter, these elements will be described.

CrとVは、焼結時にWCの粒子成長を抑制する働きがあり、この抑制を行うためにCrとして0.2~3.5質量%および/またはVCとして0.2~3.7質量%を添加してもよい。 Cr and V have a function of suppressing the particle growth of WC at the time of sintering, and in order to suppress this, 0.2 to 3.5% by mass as Cr 3 C 2 and / or 0.2 to 3 as VC. 7% by weight may be added.

Niは、超硬工具の用途によって結合相を形成するCoの代替として、Co含有割合の20~70%、すなわち、0.4~21.0質量%含有させてもよい。 Ni may be contained in an amount of 20 to 70% of the Co content ratio, that is, 0.4 to 21.0% by mass, as an alternative to Co forming a bonded phase depending on the application of the cemented carbide tool.

Nb、Ta、Tiは、超硬工具の高温硬さ、クリープ強度を向上させる働きがあり、この向上を確実に行うために炭化物等として0.2~3.0質量%添加してもよい。 Nb, Ta, and Ti have a function of improving the high-temperature hardness and creep strength of the cemented carbide tool, and 0.2 to 3.0% by mass may be added as a carbide or the like in order to surely improve the improvement.

ZrとHfは、高温靭性、高温抗折力などの高温機械特性を向上させる働きがあり、この向上を確実に行うために炭化物等として0.2~3.0質量%添加してもよい。 Zr and Hf have a function of improving high temperature mechanical properties such as high temperature toughness and high temperature bending resistance, and 0.2 to 3.0% by mass may be added as carbides or the like in order to surely improve the properties.

<<不可避的不純物>>
本実施形態に係る超硬工具は、製造工程において不可避的に混入する元素を1.0質量%以下含有することが許容される。
<< Inevitable Impurities >>
The cemented carbide tool according to the present embodiment is allowed to contain 1.0% by mass or less of elements inevitably mixed in the manufacturing process.

<Co結晶粒の結晶構造の分布>
本実施形態に係る超硬工具は、面心立方構造(fcc結晶構造)を有するCo結晶粒の面積割合が、その表面、すなわち、表面に存在する黒皮、塗装等の表面層に接する超硬工具本体の最も深い谷底(最も超硬工具本体の内部にある部分)を起点として、この起点からの深さが50μmのまでの表面領域の値(A)が50.0~100.0面積%、その表面から深さが50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33であることが好ましい。
<Distribution of crystal structure of Co crystal grains>
In the cemented carbide tool according to the present embodiment, the area ratio of Co crystal grains having a face-to-center cubic structure (fcc crystal structure) is the cemented carbide in contact with the surface, that is, the surface layer such as black skin and coating existing on the surface. Starting from the deepest valley bottom of the tool body (the part inside the most carbide tool body), the value (A) of the surface area up to a depth of 50 μm from this starting point is 50.0 to 100.0 area%. The value (B) of the internal region having a depth of more than 50 μm from the surface is preferably 30.0 to 90.0 area%, and the A / B is preferably 0.70 to 3.33.

面心立方構造を有するCo結晶粒の面積%と面積%の比が、この範囲を満足すると、耐亀裂伝搬性が向上し、優れた耐摩耗性を維持し、耐欠損性も向上する。
なお、超硬工具が削孔工具(削孔チップ)のとき、前記表面領域の値(A)は60.0~97.0面積%、前記内部領域の値(B)は40.0~90.0面積%、前記A/Bは0.70~2.20が好ましい。
When the ratio of the area% to the area% of the Co crystal grains having a face-centered cubic structure satisfies this range, the crack propagation resistance is improved, excellent wear resistance is maintained, and the fracture resistance is also improved.
When the carbide tool is a drilling tool (drilling tip), the value (A) of the surface area is 60.0 to 97.0 area%, and the value (B) of the internal area is 40.0 to 90. The area% is 0.0, and the A / B is preferably 0.70 to 2.20.

この耐亀裂伝搬性が向上し、優れた耐欠損性を示し、耐摩耗性も向上するという性質により、本実施形態に係る超硬工具は、削孔工具として用いたとき、例えば、一軸圧縮強度が150MPa以上の硬岩(例:花崗岩)の削岩、高圧力作動ハンマーで使用される削孔工具として好適といえる。 Due to the properties of improved crack propagation resistance, excellent fracture resistance, and improved wear resistance, the carbide tool according to the present embodiment has, for example, uniaxial compressive strength when used as a drilling tool. It can be said that it is suitable as a drilling tool used for drilling hard rock (eg granite) having a pressure of 150 MPa or more and a high pressure working hammer.

この耐亀裂伝搬性が向上し優れた耐欠損性を示す理由は、定かではないところがあるが、超硬工具の使用中に発生した工具表面のクラックの表面から内部に向かう進展が、面心立方構造を有するCo結晶粒が最密六方晶構造(hcp結晶構造)へ変化することによって抑制されて、際だった優れた耐欠損性を与え、さらに、最密六方晶構造のCo結晶粒は高強度であるため耐摩耗性も向上するためと推定している。また、最密六方晶構造のすべり系が3個(1面×3方向)であるのに対し、面心立方構造はすべり系が12個(4面×3方向)あるため延性に富み、歪み代があり、耐衝撃性が高いため際だった優れた耐欠損性を与えると考えている。 The reason why this crack propagation resistance is improved and the excellent fracture resistance is shown is not clear, but the progress of cracks on the tool surface generated during the use of a carbide tool from the surface to the inside is face-centered cubic. Co crystal grains having a structure are suppressed by changing to a close-packed hexagonal structure (hcp crystal structure), giving outstanding excellent fracture resistance, and further, Co crystal grains having a close-packed hexagonal structure are high. It is presumed that because of its strength, it also improves wear resistance. In addition, the face-centered cubic structure has 12 slip systems (4 faces x 3 directions), whereas the close-packed hexagonal structure has 3 slip systems (1 plane x 3 directions), so it is highly ductile and distorted. It has a margin and is considered to give outstanding fracture resistance due to its high impact resistance.

ここで、面心立方構造(fcc結晶構造)を有するCo結晶粒の面積割合は、超硬工具の表面に垂直な断面において複数の観察視野(例えば、3視野)を設定し、各観察視野の黒皮、塗装等の表面層に接する超硬工具本体の最も深い谷底(最も超硬工具本体の内部にある部分)を起点として深さを測定し、前記表面領域と前記内部領域における面積率を求めて、その平均値をとることによって得る。
具体的には以下の「Co結晶粒の結晶粒界の画定と結晶構造の決定」の手順に従う。
Here, the area ratio of Co crystal grains having a surface-centered cubic structure (fcc crystal structure) sets a plurality of observation fields (for example, 3 fields) in a cross section perpendicular to the surface of the cemented carbide tool, and the area ratio of each observation field. The depth is measured starting from the deepest valley bottom of the cemented carbide tool body (the part inside the cemented carbide tool body) that is in contact with the surface layer such as black skin and paint, and the area ratio in the surface area and the internal area is measured. Obtained by finding and taking the average value.
Specifically, the procedure of "defining the grain boundaries of Co crystal grains and determining the crystal structure" is followed.

<Co結晶粒の結晶粒界の画定と結晶構造の決定>
<<Co結晶粒の結晶粒界の画定>>
電子後方散乱回折を用いた結晶方位測定によりCo結晶の結晶粒界を特定する。まず、工具表面に垂直な面(縦断面)を耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、イオンミリング装置を用いて断面イオン加工を行って、測定面を作製する。次に、結晶方位測定を、EBSD測定装置と、解析ソフトを用いて行う。EBSD測定装置の電子線の加速電圧は15kV、測定視野は20μm×30μm、結晶方位測定の測定点間隔(Step Size)は0.05μmとする。EBSD測定装置で得られたデータを、解析ソフトを用いて処理する。
<Definition of grain boundaries and determination of crystal structure of Co crystal grains>
<< Definition of grain boundaries of Co crystal grains >>
The grain boundaries of Co crystals are specified by crystal orientation measurement using electron backscatter diffraction. First, a surface perpendicular to the tool surface (vertical cross section) is mechanically polished with water-resistant abrasive paper and diamond abrasive grains, and then cross-sectional ion processing is performed using an ion milling device to prepare a measurement surface. Next, the crystal orientation measurement is performed using an EBSD measuring device and analysis software. The acceleration voltage of the electron beam of the EBSD measuring device is 15 kV, the measurement field is 20 μm × 30 μm, and the measurement point interval (Step Size) for crystal orientation measurement is 0.05 μm. The data obtained by the EBSD measuring device is processed by using analysis software.

<<Co結晶粒の結晶の決定>>
ここで、測定した結晶方位は測定面上を離散的に調べたものであり、隣接測定点間の中間までの領域をその測定結果で代表させることにより測定面全体の方位分布として求めるものである。なお、測定点で代表させた領域(以下、ピクセルということがある)として正六角形状のものが例示できる。
<< Determination of Co crystal grains >>
Here, the measured crystal orientation is obtained by examining the measurement surface discretely, and by representing the region up to the middle between adjacent measurement points with the measurement result, the orientation distribution of the entire measurement surface is obtained. .. A regular hexagonal shape can be exemplified as a region represented by a measurement point (hereinafter, may be referred to as a pixel).

このピクセルのうち隣接するもの同士の間で5度以上の結晶方位の角度差がある場合、または隣接するピクセルの片方のみが面心立方構造または最密六方晶構造を示す場合は、これらピクセルの接する領域の辺を粒界とする。そして、この粒界とされた辺により囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある、あるいは、隣接する面心立方構造を有する測定点がないような、単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界の判定を行い、結晶粒を特定し、結晶粒構造毎にその結晶粒の占める面積%を算出する。 If there is a crystal orientation angle difference of 5 degrees or more between adjacent pixels, or if only one of the adjacent pixels exhibits a face-centered cubic or close-packed hexagonal structure, then these pixels The side of the contact area is the grain boundary. Then, the region surrounded by the sides defined as the grain boundaries is defined as one crystal grain. However, pixels that exist independently, such as those that have an orientation difference of 5 degrees or more from all adjacent pixels or that do not have a measurement point with an adjacent face-centered cubic structure, are not crystal grains and two or more pixels are connected. Treat what is as a crystal grain. In this way, the grain boundaries are determined, the crystal grains are specified, and the area% occupied by the crystal grains is calculated for each crystal grain structure.

<ビッカース硬度>
本実施形態に係る超硬工具は、その内部領域において、ISO6507、またはASTM E385規定された方法により荷重490N(50kgf)で測定するビッカース硬度が1400Hv以上であることが好ましい。ビッカース硬度が1500Hv以上であると、前記超硬工具は、より一層、耐摩耗性、耐欠損性、靭性に優れる。
なお、ビッカース硬度の上限値は特段の制約がないが、後述する実施例の製造法では1550Hv程度が上限になる。
<Vickers hardness>
The cemented carbide tool according to the present embodiment preferably has a Vickers hardness of 1400 Hv or more in the internal region thereof, as measured by a method specified by ISO 6507 or ASTM E385 with a load of 490 N (50 kgf). When the Vickers hardness is 1500 Hv or more, the cemented carbide tool is further excellent in wear resistance, fracture resistance, and toughness.
The upper limit of the Vickers hardness is not particularly limited, but the upper limit is about 1550 Hv in the manufacturing method of the examples described later.

<破壊靭性値>
本実施形態に係る超硬工具は、破壊靭性値(K1c)が12.00MPa・m1/2以上であることが好ましい。破壊靭性値が12.00MPa・m1/2以上であると、前記超硬工具は、耐摩耗性、耐欠損性、靭性がより一層優れる。
ここで、破壊靭性値の測定は、公知のものが使用でき、例えば、JIS R1607で規定された方法により測定する圧痕とクラック長から靭性値を算出するIF法、十分なクラック長が得られない領域ではSEPB法やSEVNB法を用いて測定を行う。
なお、破壊靭性の上限値は特段の制約がないが、後述する実施例の製造法では25.00MPa・m1/2程度が上限になる。
<Fracture toughness value>
The cemented carbide tool according to this embodiment preferably has a fracture toughness value (K 1c ) of 12.00 MPa · m 1/2 or more. When the fracture toughness value is 12.00 MPa · m 1/2 or more, the cemented carbide tool is further excellent in wear resistance, fracture resistance, and toughness.
Here, a known fracture toughness value can be used, for example, an IF method in which the toughness value is calculated from the indentation and the crack length measured by the method specified in JIS R1607, and a sufficient crack length cannot be obtained. In the region, the measurement is performed using the SEBP method or the SEVNB method.
The upper limit of fracture toughness is not particularly limited, but in the manufacturing method of the examples described later, the upper limit is about 25.00 MPa · m 1/2 .

以下に、実施例を挙げて本発明を説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples.

<実施例A>
以下、実施例Aとして、超硬工具がボタンビット(BB036A)の削孔チップである場合を例として挙げて本発明を説明する。
<Example A>
Hereinafter, the present invention will be described as Example A by exemplifying a case where the cemented carbide tool is a drilling tip of a button bit (BB036A).

図1に示すボタンビット用削孔チップを得るべく、各実施例において、6個のφ(T:直径)が10mmのバリスティックタイプ(ゲージチップ)と3個のφ(T:直径)が9mmのバリスティックタイプ(フェイスチップ)を、以下の手順により製造した。
すなわち、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、バリ取り工程、再焼結工程を経て製造した。
In order to obtain the drilling tip for the button bit shown in FIG. 1, in each embodiment, a ballistic type (gauge tip) having 6 φ (T: diameter) of 10 mm and 3 φ (T: diameter) of 9 mm. Ballistic type (face chip) was manufactured by the following procedure.
That is, it was manufactured through a preparation step of raw material powder, a compounding / mixing and press molding step, a sintering step, a pressure treatment step, a deburring step, and a resintering step.

1.原料粉末の準備工程
原料粉末として、いずれも3.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. 1. Preparation process of raw material powder As raw material powder, WC powder and Co powder, both having an average particle size of 3.0 μm, and Cr 3 C 2 powder, VC, both having an average particle size of 0.1 to 3.0 μm. The powder was prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表1に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表1に示す配合割合が、ボタンビット用ゲ削孔チップの組成である。
2. 2. Blending / Mixing and Press Molding Process The prepared raw material powder is blended into the blending composition shown in Table 1, further paraffin wax is added, mixed in a solvent containing 85% ethanol using a ball mill for 24 hours, and dried under reduced pressure. After that, it was press-molded into a green compact so as to have a compression ratio of 20%.
The blending ratio shown in Table 1 is the composition of the button bit drilling tip.

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. 3. Sintering step The press-molded green compact is held in a vacuum of 20 Pa or less at a temperature rise of 4 ° C./min for 60 minutes at a temperature within the range of 1350 to 1500 ° C., and after sintering, Ar. The gas was used to cool to 50 ° C. at a cooling rate of 6 ° C./min.

4.加圧処理工程(HIP処理およびS-HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
また、HIP処理に代えて、焼結とHIP処理を同時に行うS-HIP処理を行った。S-HIP処理は、3℃/minの昇温温度で1350~1500℃間に真空加熱した後、その到達温度域でArガス雰囲気下の5MPaにて90分間の加圧をした処理を行った。その後は、3/minの冷却速度で50℃まで冷却した。
4. Pressurization process (HIP process and S-HIP process)
Next, the temperature was raised to 1320 ° C. at a temperature rise temperature of 7 ° C./min and held at a pressure of 900 MPa for 60 minutes for HIP treatment. Then, it was cooled to 50 ° C. at a cooling rate of 6 ° C./min.
Further, instead of the HIP treatment, an S-HIP treatment in which sintering and HIP treatment are performed at the same time was performed. The S-HIP treatment was performed by vacuum heating at a temperature rise temperature of 3 ° C./min between 1350 and 1500 ° C., and then pressurizing for 90 minutes at 5 MPa under an Ar gas atmosphere in the reached temperature range. .. After that, it was cooled to 50 ° C. at a cooling rate of 3 / min.

5.バリ取り工程
次に、必要に応じて以下(1)~(3)のいずれかのバリ取り加工を行った。
5. Deburring Step Next, any of the following (1) to (3) deburring processing was performed as needed.

(1)バレル研磨
設備 振動式バレル研磨機
容量 20リットル
周波数 60Hz
研磨メディア 珪藻土
(1) Barrel polishing equipment Vibration type barrel polishing machine Capacity 20 liters Frequency 60Hz
Abrasive media diatomaceous earth

(2)プロファイル研磨
砥粒 #200のダイヤモンド砥粒
周速 1000m/min
ストローク数 90回/min
切込量 0.1mm
(2) Profile polishing Abrasive grain # 200 diamond abrasive grain Peripheral speed 1000 m / min
Number of strokes 90 times / min
Cut amount 0.1 mm

(3)サンドブラスト
エア圧 0.3~0.2MPa
ブラストガン Φ19mm
アルミナ径 425~300μm(FA46)
単位面積当たりの処理時間 3~6s/cm
(3) Sandblast air pressure 0.3-0.2MPa
Blast gun Φ19mm
Alumina diameter 425-300 μm (FA46)
Processing time per unit area 3-6 s / cm 2

6.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
6. Resintering step In a vacuum of 1 Pa or less, the temperature is raised to 1100 ° C to a temperature of 5 ° C / min, held for 60 minutes for resintering, and then cooled to 50 ° C at a cooling rate of 15 ° C / min. did.

このようにして、得られた実施例1~7のバリスティックタイプの各チップに対して、その中から任意の1個を取り出し、前述の方法により面心立方構造を有する結晶粒の面積割合を求めた。結果を表2に示す。ここで、EBSD装置は、カールツァイス社製 走査型電子顕微鏡Ultra55、EDAX/TSL社製 OIM Data Collectionを、解析ソフトとして、EDAX/TSL社製 OIM Data Analysis ver.7.3を用いた。また、ビッカース硬度は前述の方法により、破壊靭性値はIF法によりそれぞれ測定した。 For each of the obtained ballistic type chips of Examples 1 to 7, any one is taken out from the chips, and the area ratio of the crystal grains having a face-centered cubic structure is determined by the above-mentioned method. I asked. The results are shown in Table 2. Here, the EBSD apparatus uses a scanning electron microscope Ultra55 manufactured by Carl Zeiss and an OIM Data Collection manufactured by EDAX / TSL as analysis software, and OIM Data Analysis ver. 7.3 was used. The Vickers hardness was measured by the above-mentioned method, and the fracture toughness value was measured by the IF method.

これに対して、比較例1~7として、各比較例において実施例と同じ形状のφ10mmのバリスティックタイプ(ゲージチップ)6個とφ9mmのバリスティックタイプ(フェイスチップ)3個を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有する結晶粒の面積割合を求めた。結果を表2に示す。 On the other hand, as Comparative Examples 1 to 7, six φ10 mm ballistic types (gauge chips) and three φ9 mm ballistic types (face chips) having the same shape as those of the examples were used in the examples. Using the same raw material powder as the raw material powder, it was produced according to the same manufacturing process as in the example except that it did not have a resintering step, and the area ratio of the crystal grains having a face-centered cubic structure was determined in the same manner as in the example. The results are shown in Table 2.

Figure 2022079855000002
Figure 2022079855000002

Figure 2022079855000003
Figure 2022079855000003

削孔試験
実施例1~7、比較例1~7のバリスティックタイプチップを図3、4に示すゲージ径Gが47.0mmのボタンビットのヘッドに、6個のチップ径Tが10mmの前記チップをゲージチップとして、3個のチップ径Tが9mmの前記チップをフェイスチップとして、それぞれ取り付けて、以下の削孔試験を行った。
Drilling test The ballistic type tips of Examples 1 to 7 and Comparative Examples 1 to 7 are attached to the head of a button bit having a gauge diameter G of 47.0 mm and six tip diameters T of 10 mm as shown in FIGS. The following drilling test was performed by attaching the tip as a gauge tip and the three tips having a tip diameter T of 9 mm as face tips.

1.削孔試験装置(穿孔装置)の仕様
打撃圧 20MPa
打撃周波数 93Hz
推力 8MPa
回転圧 7.5MPa
1. 1. Specifications of drilling test equipment (drilling equipment) Impact pressure 20MPa
Batter frequency 93Hz
Thrust 8MPa
Rotational pressure 7.5MPa

2.削孔
削孔長さ(1回当たり) 4m
削孔径 45mm
岩盤-軸圧縮強度 210MPa
2. 2. Drilling Drilling length (per time) 4m
Drilling diameter 45 mm
Bedrock-Axial Compressive Strength 210MPa

3.再研磨
10回の削孔(合計40mの削孔)が終了する毎に実施
3. 3. Performed every time 10 regrinding holes (40 m in total) are completed

そして、以下の評価を行った。結果を表3に示す。
(1)5回の削孔(合計20mの削孔)の終了毎に削孔チップの形状を観察し、
(2)ゲージ径測定治具を用い、ボタンビットのゲージ径Gが44mm未満になった時点
で摩耗、あるいは、チップ径の1/3以上の長さに欠損(部分的な欠損、全欠損のいずれか)の有無を目視で観察し、ゲージチップ、フェイスチップに関わらず9個あるチップのうちの3個以上に欠損が発生した際に寿命と判断し、寿命に至るまでの総削孔長さ(メートル)を測定した。
Then, the following evaluation was performed. The results are shown in Table 3.
(1) Observe the shape of the drilling tip after each drilling 5 times (20 m in total).
(2) Using a gauge diameter measuring jig, when the gauge diameter G of the button bit becomes less than 44 mm, it is worn or damaged to a length of 1/3 or more of the chip diameter (partial defect or total defect). By visually observing the presence or absence of either), it is judged that the life is reached when 3 or more of the 9 chips, regardless of the gauge chip or face chip, are defective, and the total drilling length until the end of the life is reached. The diameter (meter) was measured.

Figure 2022079855000004
Figure 2022079855000004

表3から明らかなように、実施例1~7の削孔チップは、20m削孔直後のチップには異常が発生せず、総切削長が長く、いずれも優れた耐摩耗性、耐欠損性、靭性を示した。一方、比較例1~7の削孔チップは、20m削孔直後のチップに欠損が発生したものがあり、いずれも、総削孔長が短く、早期に、欠損、摩耗が発生した。 As is clear from Table 3, the drilled inserts of Examples 1 to 7 have no abnormality in the insert immediately after 20 m drilling, have a long total cutting length, and have excellent wear resistance and fracture resistance. , Showed toughness. On the other hand, some of the drilling tips of Comparative Examples 1 to 7 had a chip immediately after the 20 m drilling, and all of them had a short total drilling length, and the chipping and wear occurred at an early stage.

<実施例B>
以下、実施例Bとして、一辺の長さが10mmの立方体形状の試験片を作成し、図4、5に示すラトラ試験を行って、同試験片の耐摩耗性、耐欠損性、靭性について評価を行った。
試験片の作成は、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、研磨工程、再焼結工程を経て製造した。
<Example B>
Hereinafter, as Example B, a cube-shaped test piece having a side length of 10 mm is prepared, and the rattra test shown in FIGS. 4 and 5 is performed to evaluate the wear resistance, fracture resistance, and toughness of the test piece. Was done.
The test piece was produced through a raw material powder preparation step, a compounding / mixing and press forming step, a sintering step, a pressure treatment step, a polishing step, and a resintering step.

1.原料粉末の準備工程
原料粉末として、いずれも1.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. 1. Preparation process of raw material powder As raw material powder, WC powder and Co powder, both having an average particle size of 1.0 μm, and Cr 3 C 2 powder, VC, both having an average particle size of 0.1 to 3.0 μm. The powder was prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表4に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表4に示す配合割合が、試験片の組成である。
2. 2. Blending / Mixing and Press Molding Process The prepared raw material powder is blended into the blending composition shown in Table 4, further added with paraffin wax, mixed in a solvent containing 85% ethanol using a ball mill for 24 hours, and dried under reduced pressure. After that, it was press-molded into a green compact so as to have a compression ratio of 20%.
The blending ratio shown in Table 4 is the composition of the test piece.

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. 3. Sintering step The press-molded green compact is held in a vacuum of 20 Pa or less at a temperature rise of 4 ° C./min for 60 minutes at a temperature within the range of 1350 to 1500 ° C., and after sintering, Ar. The gas was used to cool to 50 ° C. at a cooling rate of 6 ° C./min.

4.加圧処理工程(HIP処理およびS-HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
また、HIP処理に代えて、焼結とHIP処理を同時に行うS-HIP処理を行った。S-HIP処理は、3℃/minの昇温温度で1350~1500℃間に真空加熱した後、その到達温度域でArガス雰囲気下の5MPaにて90分間の加圧をした処理を行った。その後は、3/minの冷却速度で50℃まで冷却した。
4. Pressurization process (HIP process and S-HIP process)
Next, the temperature was raised to 1320 ° C. at a temperature rise temperature of 7 ° C./min and held at a pressure of 900 MPa for 60 minutes for HIP treatment. Then, it was cooled to 50 ° C. at a cooling rate of 6 ° C./min.
Further, instead of the HIP treatment, an S-HIP treatment in which sintering and HIP treatment are performed at the same time was performed. The S-HIP treatment was performed by vacuum heating at a temperature rise temperature of 3 ° C./min between 1350 and 1500 ° C., and then pressurizing for 90 minutes at 5 MPa under an Ar gas atmosphere in the reached temperature range. .. After that, it was cooled to 50 ° C. at a cooling rate of 3 / min.

5.研磨工程
平面研削盤を使用し、#140砥石を用いて試験片の6面を研磨した。
5. Polishing process Using a surface grinding machine, 6 surfaces of the test piece were polished with a # 140 grindstone.

6.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
6. Resintering step In a vacuum of 1 Pa or less, the temperature is raised to 1100 ° C to a temperature of 5 ° C / min, held for 60 minutes for resintering, and then cooled to 50 ° C at a cooling rate of 15 ° C / min. did.

このようにして、得られた実施例11~15の試験片を、実施例Aと同様に面心立方構造を有するCo結晶粒の面積割合を求めた。結果を表5に示す。 In this way, the area ratio of Co crystal grains having a face-centered cubic structure in the obtained test pieces of Examples 11 to 15 was determined in the same manner as in Example A. The results are shown in Table 5.

これに対して、比較例11~15を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有するCo結晶粒の面積割合を求めた。結果を表5に示す。 On the other hand, Comparative Examples 11 to 15 were prepared using the same raw material powder as the raw material powder of the example and according to the same manufacturing process as the example except that the raw material powder did not have a resintering step. The area ratio of Co crystal grains having a face-centered cubic structure was determined. The results are shown in Table 5.

Figure 2022079855000005
Figure 2022079855000005

Figure 2022079855000006
Figure 2022079855000006

ラトラ試験
実施例11~15、および、比較例11~15の各試験片に対して、図4に断面の模式図、図55に側面の模式図を示すラトラ試験機を用いて、欠損率を評価した。
Rattra test For each of the test pieces of Examples 11 to 15 and Comparative Examples 11 to 15, the defect rate was determined by using a ratra tester showing a schematic cross-sectional view in FIG. 4 and a schematic side view in FIG. 55. evaluated.

ラトラ試験の条件は次のとおりであった。
ラトラ試験の容器の寸法 内径φ110mm
長さ 200mm
ボール φ20mm アルミナボール(総質量 480g)
容器の回転数 250rpm
試験時間 180分
The conditions for the ratla test were as follows.
Rattra test container dimensions Inner diameter φ110 mm
Length 200mm
Ball φ20mm Alumina ball (total mass 480g)
Container rotation speed 250 rpm
Test time 180 minutes

試験片の試験前の質量と試験後の質量を比較し、次の欠損率を求めて、試験片の耐摩耗性、耐欠損性、靭性について評価を行った。結果を表6に示す。
欠損率(%)=(試験前の質量-試験後の質量)/(試験前の質量)×100
The mass of the test piece before the test and the mass after the test were compared, and the following fracture rate was obtained to evaluate the wear resistance, fracture resistance, and toughness of the test piece. The results are shown in Table 6.
Defect rate (%) = (mass before test-mass after test) / (mass before test) x 100

Figure 2022079855000007
Figure 2022079855000007

表6から明らかなように、実施例11~15の試験片は、試験後の欠損率(%)が小さく、いずれも優れた耐摩耗性、耐欠損性、靭性を有するといえる。一方、比較例11~15の試験片は欠損率(%)が高く、耐摩耗性、耐欠損性、靭性が劣っていることは明らかである。 As is clear from Table 6, it can be said that the test pieces of Examples 11 to 15 have a small defect rate (%) after the test, and all have excellent wear resistance, fracture resistance, and toughness. On the other hand, it is clear that the test pieces of Comparative Examples 11 to 15 have a high defect rate (%) and are inferior in wear resistance, fracture resistance, and toughness.

<実施例C>
以下、実施例Cとして、超硬工具が図6に示すような回転式切断工具(ロータリーダイカッター)である場合を例に挙げて説明する。
回転式切断工具は、原料粉末の準備工程、配合・混合とプレス成形工程、焼結工程、加圧処理工程、再焼結工程、研磨工程を経て製造した。
<Example C>
Hereinafter, as Example C, a case where the cemented carbide tool is a rotary cutting tool (rotary die cutter) as shown in FIG. 6 will be described as an example.
The rotary cutting tool was manufactured through a raw material powder preparation process, a compounding / mixing and press forming process, a sintering process, a pressure treatment process, a resintering process, and a polishing process.

1.原料粉末の準備工程
原料粉末として、いずれも1.0μmの平均粒径を有するWC粉末とCo粉末、および、いずれも0.1~3.0μmの平均粒径を有するCr粉末、VC粉末を用意した。
1. 1. Preparation process of raw material powder As raw material powder, WC powder and Co powder, both having an average particle size of 1.0 μm, and Cr 3 C 2 powder, VC, both having an average particle size of 0.1 to 3.0 μm. The powder was prepared.

2.配合・混合とプレス成形工程
用意した原料粉末を、表7に示される配合組成に配合し、さらにパラフィンワックスを加えて、エタノールを85%含む溶媒中で24時間ボールミルを使って混合し、減圧乾燥した後、20%の圧縮率となるように、圧粉体にプレス成形した。
なお、表7に示す配合割合が、回転式切断工具の組成である。
2. 2. Blending / Mixing and Press Molding Process The prepared raw material powder is blended into the blending composition shown in Table 7, further added with paraffin wax, mixed in a solvent containing 85% ethanol using a ball mill for 24 hours, and dried under reduced pressure. After that, it was press-molded into a green compact so as to have a compression ratio of 20%.
The blending ratio shown in Table 7 is the composition of the rotary cutting tool.

3.焼結工程
プレス成形した圧粉体を20Pa以下の真空中で、4℃/minの昇温温度で1350~1500℃の範囲内の温度に60分間保持して焼結し、焼結後、Arガスを使用して6℃/minの冷却速度で50℃まで冷却した。
3. 3. Sintering step The press-molded green compact is held in a vacuum of 20 Pa or less at a temperature rise of 4 ° C./min for 60 minutes at a temperature within the range of 1350 to 1500 ° C., and after sintering, Ar. The gas was used to cool to 50 ° C. at a cooling rate of 6 ° C./min.

4.加圧処理工程(HIP処理)
次に、7℃/minの昇温温度で1320℃まで昇温し、900MPaの圧力で60分間保持してHIP処理を行った。その後、6℃/minの冷却速度で50℃まで冷却した。
4. Pressurization process (HIP process)
Next, the temperature was raised to 1320 ° C. at a temperature rise temperature of 7 ° C./min and held at a pressure of 900 MPa for 60 minutes for HIP treatment. Then, it was cooled to 50 ° C. at a cooling rate of 6 ° C./min.

5.再焼結工程
1Pa以下の真空中で、5℃/minの昇温温度に1100℃まで昇温し、60分間保持して再焼結した後、15℃/minの冷却速度で50℃まで冷却した。
5. Resintering step In a vacuum of 1 Pa or less, the temperature is raised to 1100 ° C to a temperature of 5 ° C / min, held for 60 minutes for resintering, and then cooled to 50 ° C at a cooling rate of 15 ° C / min. did.

6.研磨工程
仕上がり面粗さ(Rz)が0.8μmとなるように、以下のような研磨加工を行った。
加工機:円筒研磨機およびマシニングセンター
砥石番手:♯140(荒加工)~♯1000(仕上げ加工)
6. Polishing process The following polishing process was performed so that the finished surface roughness (Rz) was 0.8 μm.
Processing machine: Cylindrical polishing machine and machining center Grindstone count: # 140 (rough processing) to # 1000 (finishing)

このようにして、得られた実施例21~23の回転式切断工具に対して、実施例Aと同じ手段を用いて面心立方構造を有する結晶粒の面積割合を求めた。結果を表8に示す。 In this way, for the obtained rotary cutting tools of Examples 21 to 23, the area ratio of the crystal grains having a face-centered cubic structure was determined by using the same means as in Example A. The results are shown in Table 8.

これに対して、比較例21~23を、実施例の原料粉と同じ原料粉を用い、再焼結工程を有しない点以外は実施例と同じ製造工程に従って作製し、実施例と同様に面心立方構造を有する結晶粒の面積割合を求めた。結果を表8に示す。 On the other hand, Comparative Examples 21 to 23 were prepared according to the same manufacturing process as in Example except that they used the same raw material powder as in Example and did not have a resintering step. The area ratio of the crystal grains having a face-centered cubic structure was determined. The results are shown in Table 8.

Figure 2022079855000008
Figure 2022079855000008

Figure 2022079855000009
Figure 2022079855000009

耐久性の評価
図6に模式的に示す回転式切断工具を組み立て、
回転数 600rpm
押付圧力 1.5MPa
刃先突き出し量 1.5μm
として、10万回転毎に刃先の状態を目視により確認し、欠損が認められた時点までの累積回転数を寿命に至るまでの回転数とした。結果を表9に示す。表9において、寿命とは、寿命に至るまでの回転数である。
Evaluation of durability Assemble the rotary cutting tool schematically shown in Fig. 6.
Rotation speed 600 rpm
Pressing pressure 1.5MPa
Cutting edge protrusion amount 1.5 μm
As a result, the state of the cutting edge was visually confirmed every 100,000 rotations, and the cumulative rotation speed up to the time when a defect was found was defined as the rotation speed until the end of the service life. The results are shown in Table 9. In Table 9, the life is the number of revolutions until the life is reached.

Figure 2022079855000010
Figure 2022079855000010

表9から明らかなにように、実施例21~23の累積回転数は高く、いずれも優れた耐摩耗性、耐欠損性、靭性を有するといえる。一方、比較例21~23の試験片は累積回転数が低く、耐摩耗性、耐欠損性、靭性が劣っていることは明らかである。 As is clear from Table 9, the cumulative rotation speeds of Examples 21 to 23 are high, and it can be said that all of them have excellent wear resistance, fracture resistance, and toughness. On the other hand, it is clear that the test pieces of Comparative Examples 21 to 23 have a low cumulative rotation speed and are inferior in wear resistance, fracture resistance, and toughness.

1 バリスティックタイプチップ(ゲージチップ)
2 チップバリスティックタイプ(フェイスチップ)
3 ボタンビット
4 ラトラ試験機の容器
5 障害板
6 試験片
7 アルミナボール
8 ダイカットロール
9 アンビルロール
10 刃先
11 ベアラ
T バリスティックタイプチップのチップ径
G ボタンビットのゲージ径
R 回転方向
1 Ballistic type tip (gauge tip)
2 Tip ballistic type (face tip)
3 Button bit 4 Rattra tester container 5 Obstacle plate 6 Test piece 7 Alumina ball 8 Die-cut roll 9 Anvil roll 10 Cutting edge 11 Bearer T Ballistic type tip tip diameter G Button bit gauge diameter R Rotation direction

Claims (6)

Coを2.0~30.0質量%を含み、残部がWCおよび不可避的不純物である組成を有し、結合相を形成しているCo結晶粒のうちの面心立方構造を有する結晶粒の面積割合につき、その表面から深さ50μmまでの表面領域の値(A)が50.0~100.0面積%、その表面から50μmを超える内部領域の値(B)が30.0~90.0面積%であり、かつ、A/Bが0.70~3.33であることを特徴とする超硬工具。 A crystal grain having a face-to-face cubic structure among Co crystal grains forming a bonded phase, which contains 2.0 to 30.0% by mass of Co and has a composition in which the balance is WC and an unavoidable impurity. For the area ratio, the value (A) of the surface region from the surface to the depth of 50 μm is 50.0 to 100.0 area%, and the value (B) of the internal region exceeding 50 μm from the surface is 30.0 to 90. A super hard tool having 0 area% and an A / B of 0.70 to 3.33. Crを0.2~3.5質量%および/またはVCを0.2~3.7質量%含有することを特徴とする請求項1に記載の超硬工具。 The cemented carbide tool according to claim 1, wherein Cr 3 C 2 is contained in an amount of 0.2 to 3.5% by mass and / or VC is contained in an amount of 0.2 to 3.7% by mass. Niを0.4~21.0質量%含有することを特徴とする請求項1または2に記載の超硬工具。 The cemented carbide tool according to claim 1 or 2, wherein the carbide tool contains 0.4 to 21.0% by mass of Ni. 前記内部領域のビッカース硬度が1500Hv以上であることを特徴とする請求項1~3のいずれかに記載の超硬工具。 The cemented carbide tool according to any one of claims 1 to 3, wherein the Vickers hardness of the internal region is 1500 Hv or more. 破壊靭性値が12.00Mpam1/2以上であることを特徴とする請求項1~4のいずれかに記載の超硬工具。 The cemented carbide tool according to any one of claims 1 to 4, wherein the fracture toughness value is 12.00 Mpam 1/2 or more. 前記超硬工具は、鉱山土木用ボタンビットのチップであることを特徴とする請求項1~5のいずれかに記載の超硬工具。 The cemented carbide tool according to any one of claims 1 to 5, wherein the cemented carbide tool is a tip of a button bit for mine civil engineering.
JP2020190694A 2020-11-17 2020-11-17 Carbide Tools Active JP7488752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190694A JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190694A JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Publications (2)

Publication Number Publication Date
JP2022079855A true JP2022079855A (en) 2022-05-27
JP7488752B2 JP7488752B2 (en) 2024-05-22

Family

ID=81731462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190694A Active JP7488752B2 (en) 2020-11-17 2020-11-17 Carbide Tools

Country Status (1)

Country Link
JP (1) JP7488752B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024810A (en) 1998-07-15 2000-01-25 Toho Kinzoku Co Ltd Cemented carbide tip
JP2003013169A (en) 2001-04-27 2003-01-15 Allied Material Corp WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JP5826138B2 (en) 2012-09-06 2015-12-02 有限会社Mts Tough cemented carbide and coated cemented carbide
JP5606612B1 (en) 2013-10-22 2014-10-15 冨士ダイス株式会社 WC-Co base cemented carbide with a small amount of Ni or a tool using the same

Also Published As

Publication number Publication date
JP7488752B2 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US8764876B2 (en) PCBN material, tool elements comprising same and method for using same
KR20120041265A (en) Super hard alloy and cutting tool using same
CN106457415B (en) Composite component and cutting element
WO2018030309A1 (en) Friction stir welding tool member and friction stir welding device using same, and friction stir welding method
JP2009202264A (en) Cutting tool and its manufacturing method
KR20170108457A (en) Composite sintered body for cutting tools and cutting tools using the same
EP1637258B1 (en) Method for toughening surface of sintered material cutting tool
JP6029004B2 (en) PCD drill
Braghini Jr et al. An investigation of the wear mechanisms of polycrystalline cubic boron nitride (PCBN) tools when end milling hardened steels at low/medium cutting speeds
TWI704105B (en) Diamond polycrystal and tool including same
CN103128345A (en) Pcd bore bit
JP6213935B1 (en) Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
TWI690488B (en) Diamond polycrystal and tool including same
JP2022079855A (en) Cemented Carbide Tool
JP7120524B2 (en) Diamond bonded body and method for manufacturing diamond bonded body
JP7470622B2 (en) Drilling tools
WO2018105706A1 (en) Method for manufacturing fine free carbon dispersion type cemented carbide, cutting tip with exchangeable cutting edge, machined product formed from alloy, and method for manufacturing same
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
Staniewicz-Brudnik et al. The influence of the diamond wheel grinding process on the selected properties of boron nitride dispersion in cemented carbide (BNDCC) composites
JP6819018B2 (en) TiCN-based cermet cutting tool
Li et al. Performance evaluation of ultra-fine grain carbide in high-speed milling of Ti-6Al-4V
JP4284153B2 (en) Cutting method
JP7216916B2 (en) Diamond-coated cemented carbide tools
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP5397677B2 (en) Cemented carbide drill with excellent breakage resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510