JP7485946B2 - Joint, automobile part, and method for manufacturing joint - Google Patents

Joint, automobile part, and method for manufacturing joint Download PDF

Info

Publication number
JP7485946B2
JP7485946B2 JP2020153852A JP2020153852A JP7485946B2 JP 7485946 B2 JP7485946 B2 JP 7485946B2 JP 2020153852 A JP2020153852 A JP 2020153852A JP 2020153852 A JP2020153852 A JP 2020153852A JP 7485946 B2 JP7485946 B2 JP 7485946B2
Authority
JP
Japan
Prior art keywords
joint
shaft portion
cross
welded
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020153852A
Other languages
Japanese (ja)
Other versions
JP2022047845A (en
Inventor
翔 松井
千智 吉永
真二 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020153852A priority Critical patent/JP7485946B2/en
Publication of JP2022047845A publication Critical patent/JP2022047845A/en
Application granted granted Critical
Publication of JP7485946B2 publication Critical patent/JP7485946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、接合継手、自動車部品、及び接合継手の製造方法に関する。 The present invention relates to a joint, an automobile part, and a method for manufacturing a joint.

部材を接合して接合継手を製造する方法の一つとして、摩擦圧接接合が知られている。摩擦圧接接合とは、部材同士を摩擦しながら加圧することにより、部材同士を固相接合する技術である。部材同士の摩擦は、例えば、一方の部材の圧接面を回転対称形状(例えば円状又は多角形形状)とし、これを高速回転させることにより行われる。 Friction welding is known as one method for joining components to produce a welded joint. Friction welding is a technique for joining components together in a solid state by applying pressure while rubbing them together. The friction between the components is achieved, for example, by making the weld surface of one of the components rotationally symmetrical (e.g., circular or polygonal) and rotating it at high speed.

摩擦圧接接合の特徴のひとつは、接合部において部材の溶融又は撹拌が生じない点にある。溶接は、部材を溶融及び再凝固させることにより接合部を形成する接合方法である。摩擦撹拌接合は、圧入部材を高速回転させて部材同士の接触部を撹拌することにより接合部を形成する接合方法である。従って、溶接又は摩擦撹拌接合によって形成された接合継手の接合部では、部材が混じり合っている。一方、摩擦圧接接合によって形成された接合継手では、部材が混じり合った領域は存在しないか、又は極めて小さい。摩擦圧接接合によって形成された接合継手の接合部の断面を観察すると、摩擦圧接面を介して部材が分かれている様子が判別できる。例えば特許文献1及び特許文献2等に、摩擦圧接接合の方法が開示されている。 One of the features of friction welding is that the materials are not melted or stirred at the joint. Welding is a joining method in which a joint is formed by melting and resolidifying the materials. Friction stir welding is a joining method in which a press-in member is rotated at high speed to stir the contact area between the materials, forming a joint. Therefore, the materials are mixed at the joint of a joint formed by welding or friction stir welding. On the other hand, in a joint formed by friction welding, the area where the materials are mixed is either nonexistent or extremely small. When observing the cross section of the joint of a joint formed by friction welding, it is possible to distinguish how the materials are separated via the friction welding surface. For example, Patent Document 1 and Patent Document 2 disclose methods of friction welding.

また、摩擦圧接接合のもう一つの特徴は、異種材料の接合継手の製造に適用可能である点にある。例えば、鋼およびアルミニウムの丸棒の端面同士を突き合わせ、適切な条件で片方を回転し、加圧することで接合が可能である。また、摩擦圧接接合を活用することで、重ねられた板における異種材料の接合継手の製造も可能である。例えば、重ねられた上板及び下板と、上板を貫通し、下板と摩擦圧接接合された接合部材とからなる接合継手においては、上板と接合部材の頭部とを用いて下板を挟持することにより、上板及び下板の材質を異ならせることができる。 Another feature of friction welding is that it can be used to manufacture joints of dissimilar materials. For example, the end faces of steel and aluminum round bars can be butted together and one side can be rotated and pressed under appropriate conditions to join them. Friction welding can also be used to manufacture joints of dissimilar materials between stacked plates. For example, in a joint consisting of stacked upper and lower plates and a joining member that penetrates the upper plate and is friction-welded to the lower plate, the upper plate and the head of the joining member can be used to clamp the lower plate, making the upper and lower plates made of different materials.

重ねられた板(特に金属板)の接合手段としてもっともよく用いられているのは溶接(特にスポット溶接)である。例えば特許文献3には、高強度鋼板のスポット溶接方法が開示されている。しかし、溶接部において溶融材料の混合を生じさせる接合手段である溶接を、異種材料の接合に適用することは困難である。摩擦圧接接合は、例えば材料選定の自由度を向上させる点で、スポット溶接に対する優位性がある。 The most commonly used method for joining stacked plates (particularly metal plates) is welding (particularly spot welding). For example, Patent Document 3 discloses a method for spot welding high-strength steel plates. However, it is difficult to apply welding, which is a joining method that causes the molten materials to mix at the weld, to joining dissimilar materials. Friction welding has an advantage over spot welding in that it improves the freedom of material selection, for example.

特開2006-297398号公報JP 2006-297398 A 特開2004-141933号公報JP 2004-141933 A 国際公開第2014/171495号International Publication No. 2014/171495

本発明者らは、摩擦圧接接合を、様々な材料の接合に適用することを試みた。そして本発明者らは、高強度鋼板に鋼の丸棒や多角柱を摩擦圧接接合すると、接合部に外力が付与された際に接合部にき裂が生じやすくなり、接合部の強度が低下することを知見した。従来技術においては、摩擦圧接接合を高強度鋼材に適用した例がほとんど存在せず、接合強度の低下については何ら検討されていない。 The inventors have attempted to apply friction welding to the joining of various materials. They have discovered that when a steel round bar or polygonal column is friction-welded to a high-strength steel plate, cracks are likely to occur at the joint when an external force is applied to the joint, reducing the strength of the joint. In the prior art, there are almost no examples of applying friction welding to high-strength steel materials, and no consideration has been given to the reduction in joint strength.

上記事情に鑑みて、本発明は、高い接合強度を有する接合継手、及び自動車部品を提供することを課題とする。さらに本発明は、高い接合強度を有する接合継手の製造方法を提供することを課題とする。 In view of the above, the present invention aims to provide a joint having high joint strength and an automobile part. Furthermore, the present invention aims to provide a method for manufacturing a joint having high joint strength.

本発明の要旨は以下の通りである。
(1)本発明の一態様に係る接合継手は、軸部を有する鋼製の第1の部材と、前記軸部の断面よりも大きい接合面を有する鋼製の第2の部材と、前記第1の部材の第1の端部と、前記接合面とを摩擦圧接してなる接合部と、を備える接合継手であって、前記軸部の軸線を通る、前記接合継手の断面において、前記接合面から深さ0.1mmの位置を、前記接合部及びその周辺にわたって連続的に硬さ測定することによって得られる、前記接合部の両端の最高硬さの平均値Haveが、式1を満たす。
Have≦761.6×C-1897.2×C+1848.8×C+168.3……(式1)
ここで、前記式1における記号「C」は、前記第2の部材の単位質量%での炭素量である。
(2)上記(1)に記載の接合継手では、前記第2の部材が、前記第1の部材と前記第2の部材との界面である摩擦圧接界面から深さ0.1mm以内の領域において、焼戻しマルテンサイトを有してもよい。
(3)上記(1)又は(2)に記載の接合継手では、前記第2の部材の前記炭素量が0.20質量%以上であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の接合継手では、前記第1の部材と前記第2の部材との界面である摩擦圧接界面は、前記第2の部材に入り込んでおり、前記軸線を通る、前記接合継手の前記断面において測定される、前記第2の部材の前記接合面に対する前記摩擦圧接界面の最大深さが0.3mm以上であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の接合継手では、前記第2の部材が、板厚0.8~3.0mmの鋼板であってもよい。
(6)上記(1)~(5)のいずれか一項に記載の接合継手では、前記接合面の面積が、前記軸部の断面積の3.0倍以上であってもよい。
(7)上記(1)~(6)のいずれか一項に記載の接合継手では、前記軸部の、前記軸線に垂直な断面が回転対称形状であり、当該断面の外接円の直径が2.0~10.0mmであってもよい。
(8)上記(7)に記載の接合継手では、前記軸部の、前記軸線に垂直な断面が円、又は正多角形であってもよい。
(9)上記(1)~(8)のいずれか一項に記載の接合継手では、前記第1の部材が、その第2の端部に配された頭部を有し、前記接合継手は、前記頭部と前記第2の部材との間に設けられた第3の部材をさらに備え、前記第1の部材の前記軸部は、前記第3の部材を貫通し、前記第3の部材は、前記第1の部材の前記頭部と、前記第2の部材の接合面とによって挟持されていてもよい。
(10)上記(9)に記載の接合継手では、前記第3の部材が鋼板であってもよい。
(11)本発明の別の態様に係る自動車部品上記(1)~(10)のいずれか一項に記載の接合継手を有する。
(12)本発明の別の態様に係る接合継手の製造方法は、軸部を有する鋼製の第1の部材の第1の端部を、前記軸部の断面よりも大きい接合面を有する鋼製の第2の部材に、回転させながら押し付けることにより、前記軸部の前記第1の端部と前記接合面とを摩擦圧接してなる接合部を形成する工程と、電極を用いて、前記第1の部材及び前記第2の部材を、前記第1の部材の前記軸部の軸線方向に挟持し、電流値をIとして通電することにより、前記接合部を焼き戻す工程と、を備え、前記電流値Iを、下記式2を満たす範囲内とする。

Figure 0007485946000001
ここで、式3、式4、及び式5によって定義されるImin、Imax1、及びImax2の単位はkAであり、式3、式4、及び式5において、記号「D」は、前記軸部の前記断面の外接円の、単位mmでの直径であり、記号「D」は、前記軸部の中空部の前記断面の外接円の、単位mmでの直径であり、前記軸部が中実である場合はD=0とされ、記号「t」は、単位秒での通電時間であり、記号「F」は、単位kNでの加圧力であり、式6において、記号「C」「Si」「Mn」及び「Cr」は、それぞれ、前記第2の部材の単位質量%でのC含有量、Si含有量、Mn含有量、及びCr含有量である。
(13)上記(12)に記載の接合継手の製造方法は、さらに、前記接合部の形成の前に、前記第2の部材に第3の部材を重ねる工程と、前記第3の部材に前記第1の部材の前記軸部を貫通させる工程と、を備え、前記第1の部材が、その第2の端部に頭部を有してもよい。 The gist of the present invention is as follows.
(1) A bonded joint according to one aspect of the present invention is a bonded joint comprising a first steel member having a shaft, a second steel member having a bonding surface larger than a cross section of the shaft, and a bonded joint formed by frictionally welding a first end of the first member and the bonding surface, wherein an average value Have of maximum hardness at both ends of the bonded joint obtained by continuously measuring hardness at a position 0.1 mm deep from the bonding surface in a cross section of the bonded joint passing through the axis of the shaft, over the bonded joint and its periphery satisfies Equation 1.
Have≦761.6×C 3 −1897.2×C 2 +1848.8×C+168.3……(Formula 1)
Here, the symbol "C" in the formula 1 is the carbon content in unit mass % of the second member.
(2) In the welded joint described in (1) above, the second member may have tempered martensite in a region within a depth of 0.1 mm from a friction welded interface, which is an interface between the first member and the second member.
(3) In the welded joint described in (1) or (2) above, the carbon content of the second member may be 0.20 mass % or more.
(4) In the bonded joint described in any one of (1) to (3) above, a friction welded interface, which is an interface between the first member and the second member, may penetrate into the second member, and a maximum depth of the friction welded interface relative to the bonding surface of the second member, measured in the cross section of the bonded joint passing through the axis, may be 0.3 mm or more.
(5) In the joint described in any one of (1) to (4) above, the second member may be a steel plate having a plate thickness of 0.8 to 3.0 mm.
(6) In the joint described in any one of (1) to (5) above, an area of the joining surface may be 3.0 times or more the cross-sectional area of the shaft portion.
(7) In the joint described in any one of (1) to (6) above, a cross section of the shaft portion perpendicular to the axis may have a rotationally symmetric shape, and a diameter of a circumscribing circle of the cross section may be 2.0 to 10.0 mm.
(8) In the joint described in (7) above, a cross section of the shaft portion perpendicular to the axis may be a circle or a regular polygon.
(9) In the joint joint described in any one of (1) to (8) above, the first member has a head disposed at a second end thereof, and the joint joint further includes a third member provided between the head and the second member, the shaft portion of the first member penetrating the third member, and the third member being clamped between the head of the first member and the joint surface of the second member.
(10) In the joint described in (9) above, the third member may be a steel plate.
(11) An automobile part according to another aspect of the present invention, comprising the bonded joint according to any one of (1) to (10) above.
(12) A method for manufacturing a joined joint according to another aspect of the present invention includes the steps of: pressing a first end of a first steel member having a shank against a second steel member having a joining surface larger than a cross section of the shank while rotating the first end of the shank, thereby frictionally welding the first end of the shank and the joining surface; and tempering the joint by using electrodes to hold the first member and the second member in the axial direction of the shank of the first member and passing a current of I through the electrodes, wherein the current I is within a range that satisfies the following formula 2:
Figure 0007485946000001
Here, the units of Imin, Imax1, and Imax2 defined by Equation 3, Equation 4, and Equation 5 are kA, and in Equation 3, Equation 4, and Equation 5, the symbol "D 1 " is the diameter, in mm, of the circumscribing circle of the cross section of the shaft portion, the symbol "D 2 " is the diameter, in mm, of the circumscribing circle of the cross section of the hollow portion of the shaft portion, and if the shaft portion is solid, D 2 = 0, the symbol "t" is the current flow time, in seconds, and the symbol "F" is the pressing force, in kN, and in Equation 6, the symbols "C", "Si", "Mn", and "Cr" are the C content, Si content, Mn content, and Cr content, in mass %, of the second member, respectively.
(13) The method for manufacturing a joint described in (12) above may further include a step of overlapping a third member on the second member before forming the joint, and a step of passing the shaft portion of the first member through the third member, and the first member may have a head at its second end.

本発明によれば、高い接合強度を有する接合継手、及び自動車部品を提供することができる。さらに本発明によれば、高い接合強度を有する接合継手の製造方法を提供することができる。 According to the present invention, it is possible to provide a joint having high joining strength, and an automobile part. Furthermore, according to the present invention, it is possible to provide a manufacturing method for a joint having high joining strength.

破断試験後の接合継手における、二相域加熱部の写真である。1 is a photograph of a two-phase region heated portion of a welded joint after a fracture test. 本実施形態に係る接合継手の、軸部の軸線を含む断面図である。3 is a cross-sectional view including the axis of the shaft portion of the joint according to the embodiment. FIG. 本実施形態に係る接合継手、及び鋼材の摩擦圧接接合後に後処理をしなかった接合継手の、接合面から深さ0.1mmの位置を連続的に硬さ測定することによって得られる硬さ分布曲線の概略図である。FIG. 1 is a schematic diagram of hardness distribution curves obtained by continuously measuring the hardness at a position 0.1 mm deep from the joint surface of a welded joint according to this embodiment and a welded joint that was not subjected to post-treatment after friction welding of steel materials. 第3の部材を含む本実施形態に係る接合継手の、軸部の軸線を含む断面図である。11 is a cross-sectional view including the axis of the shaft portion of a joint according to the present embodiment, the joint including a third member. FIG. 本実施形態に係る接合継手の、通電焼戻し方法の一例の模式図である。FIG. 2 is a schematic diagram of an example of a method for electric tempering of a joint according to the present embodiment. テーパ形状を有する軸部111の直径Dの特定方法を説明する模式図である。10 is a schematic diagram illustrating a method for determining a diameter D1 of a shaft portion 111 having a tapered shape. FIG.

本発明者らは、軸部111を有する鋼製の第1の部材11と、軸部111の断面よりも大きい接合面121を有する鋼製の第2の部材12とを摩擦圧接接合して得られた種々の接合継手の、破断試験を実施した。そして本発明者らは、破断部を詳細に調査し、以下の事柄を知見した。 The inventors conducted fracture tests on various joints obtained by friction welding a first steel member 11 having a shaft portion 111 and a second steel member 12 having a joint surface 121 larger than the cross section of the shaft portion 111. The inventors then investigated the fractured portions in detail and discovered the following:

まず、破断が、接合部14の外周付近であって、且つ、第2の部材12の二相域加熱部にあたる箇所において生じる傾向にあることが発見された。二相域加熱部とは、摩擦圧接接合の際に摩擦熱によってAc1点以上Ac3点以下の温度域(二相域)まで加熱され、次いで冷却された部位のことである。二相域加熱部の金属組織は、硬質相(例えばマルテンサイト、ベイナイト、及び焼戻しマルテンサイト等)と軟質相(例えばフェライト等)とが混在したものとなる。 First, it was discovered that fractures tend to occur near the outer periphery of the joint 14 and at locations that correspond to the two-phase region heated portion of the second member 12. The two-phase region heated portion is a portion that is heated to a temperature range (two-phase region) between Ac1 and Ac3 by frictional heat during friction welding and then cooled. The metal structure of the two-phase region heated portion is a mixture of hard phases (e.g., martensite, bainite, and tempered martensite) and soft phases (e.g., ferrite).

次に、本発明者らが破断試験後の二相域加熱部を詳細に観察したところ、硬質相と軟質相との間に多数のボイドが存在する様子が確認された。図1に、破断試験後の二相域加熱部の写真を示す。これら多数のボイドが破壊の起点として働いたと推定された。また、ボイドが生じた理由は、軟質相と硬質相の硬度差が大きく、これらの界面にひずみが集中したからであると推定された。 Next, the inventors closely observed the two-phase region heated area after the fracture test and confirmed the presence of numerous voids between the hard and soft phases. Figure 1 shows a photograph of the two-phase region heated area after the fracture test. It was presumed that these numerous voids acted as the starting points of fracture. It was also presumed that the reason the voids were generated was because the difference in hardness between the soft and hard phases was large, causing strain to concentrate at the interface between them.

以上の知見に基づいて本発明者らは、二相域加熱部の通電焼戻しによって、前述の硬度差を低減し、ひずみ集中を緩和することを試みた。しかしながら、通電量が小さい場合は、接合強度の向上が認められなかった。一方、通電量が大きい場合は、第1の部材11が軟化して、通電加熱中に第1の部材11の座屈が生じた。 Based on the above findings, the inventors attempted to reduce the hardness difference and alleviate strain concentration by electrically tempering the two-phase region heated portion. However, when the amount of current flow was small, no improvement in the joint strength was observed. On the other hand, when the amount of current flow was large, the first member 11 softened and buckled during electrically heating.

なお、通電焼戻しはスポット溶接において実施されることがある。しかしながら、スポット溶接部の通電焼戻しにおいては、スポット溶接の際の電流値及び発熱量の実績値を考慮することにより、焼戻しのために必要な温度を達成するための電流条件を予測可能である。一方、摩擦圧接接合部の通電焼戻しにおいてはこのような電流条件予測をすることはできない。また、スポット溶接部の通電焼戻しにおいて溶接部の座屈は生じないので、座屈回避について、先行技術ではなんら検討されていない。従って、スポット溶接部の通電焼戻しを単純に摩擦圧接接合部の通電焼戻しに転用することは困難であった。 Electric current tempering is sometimes performed in spot welding. However, in electric current tempering of spot welds, it is possible to predict the current conditions to achieve the temperature required for tempering by considering the actual current value and heat generation value during spot welding. On the other hand, such prediction of current conditions is not possible in electric current tempering of friction welded joints. In addition, since buckling of the weld does not occur in electric current tempering of spot welds, no consideration has been given to avoiding buckling in the prior art. Therefore, it has been difficult to simply convert electric current tempering of spot welds to electric current tempering of friction welded joints.

本発明者らはそこで一層の検討を重ねた。その結果、本発明者らは、第2の部材12の成分、第1の部材11の大きさ、通電時間、及び加圧力などを総合的に考慮しながら通電条件を最適化することにより、接合部14を適切に軟化させ、接合強度を向上させられることを知見した。 The inventors then conducted further investigations. As a result, they discovered that by optimizing the current conditions while comprehensively taking into account the components of the second member 12, the size of the first member 11, the current application time, and the pressure, it is possible to appropriately soften the joint 14 and improve the joint strength.

以上の知見に基づき完成した本発明の一態様に係る接合継手1は、例えば図2に示されるように軸部111を有する鋼製の第1の部材11と、軸部111の断面よりも大きい接合面121を有する鋼製の第2の部材12と、第1の部材11の第1の端部と、接合面121とを摩擦圧接してなる接合部14と、を備え、軸部111の軸線Yを通る、接合継手1の断面において、接合面121から深さ0.1mmの位置Xを、接合部14及びその周辺にわたって連続的に硬さ測定することによって得られる、接合部14の両端の最高硬さの平均値Haveが、式1を満たす。
Have≦761.6×C-1897.2×C+1848.8×C+168.3……(式1)
ここで、式1における記号「C」は、第2の部材12の単位質量%での炭素量である。以下、本実施形態に係る接合継手1について詳細に説明する。
A bonded joint 1 according to one embodiment of the present invention completed based on the above findings comprises, for example, as shown in FIG. 2 , a first steel member 11 having a shaft portion 111, a second steel member 12 having a joint surface 121 larger than a cross section of the shaft portion 111, and a bonded joint 14 formed by frictionally welding a first end of the first member 11 to the joint surface 121, and the average value Have of the maximum hardness at both ends of the bonded joint 14 obtained by continuously measuring the hardness of the bonded joint 14 and its periphery at a position X at a depth of 0.1 mm from the joint surface 121 in a cross section of the bonded joint 1 passing through the axis Y of the shaft portion 111 satisfies Equation 1.
Have≦761.6×C 3 −1897.2×C 2 +1848.8×C+168.3……(Formula 1)
Here, the symbol "C" in formula 1 is the carbon content in unit mass % of the second member 12. Hereinafter, the welded joint 1 according to this embodiment will be described in detail.

(第1の部材11)
鋼製の第1の部材11は、第2の部材12と接合される軸部111を有する。軸部111には、第2の部材12と摩擦圧接接合されることが可能となるような形状を有する限り、任意の形状を適用することができる。便宜上、第1の部材11の両端部のうち、第2の部材12の接合面121と接合される側の端部を第1の端部と称し、もう一方の端部を第2の端部と称する。
(First member 11)
The first member 11 made of steel has a shaft portion 111 to be joined to the second member 12. Any shape can be applied to the shaft portion 111 as long as it has a shape that enables it to be friction-welded to the second member 12. For convenience, of both ends of the first member 11, the end on the side to be joined to the joining surface 121 of the second member 12 will be referred to as the first end, and the other end will be referred to as the second end.

(第2の部材12)
第2の部材12は、第1の部材11が接合される接合面121の大きさが、第1の部材11の軸部111の断面(より具体的には、軸部111の第1の端部の近傍において、摩擦圧接接合による変形が小さい箇所での軸線Yに垂直な断面)よりも大きいものとされる。換言すると、接合面121を平面視した際に、接合面121が軸部111の断面を包含するものとされる。この要件を満たす限り、第2の部材12には、任意の形状を適用することができる。なお、用語「接合面121」とは、接合に供される面という意味であり、後述する摩擦圧接界面15(2つの部材が接合される面)とは異なる概念である。
(Second member 12)
The second member 12 has a joint surface 121 to which the first member 11 is joined that is larger in size than the cross section of the shaft portion 111 of the first member 11 (more specifically, a cross section perpendicular to the axis Y at a location near the first end of the shaft portion 111 where deformation due to friction welding is small). In other words, when the joint surface 121 is viewed in plan, it encompasses the cross section of the shaft portion 111. As long as this requirement is satisfied, any shape can be applied to the second member 12. Note that the term "join surface 121" means a surface to be used for joining, and is a different concept from the friction welding interface 15 (a surface where two members are joined) described later.

(接合部14)
接合部14は、第1の部材11の端部と、第2の部材12の接合面121とを摩擦圧接接合することによって形成された部分である。本実施形態において、接合部14とは、摩擦圧接接合の影響によって熱影響や変形が生じた領域と定義される。図2に、接合部14の外縁を概略的に破線で示す。ただし、溶接によって形成される溶接部とは異なり、摩擦圧接接合によって形成される接合部14では、第1の部材11と第2の部材12とが混じり合っておらず、これらの界面を明瞭に確認することができる。本実施形態において、第1の部材11と第2の部材12との界面は、摩擦圧接界面15と称される。
(Joint 14)
The joint 14 is a portion formed by friction welding an end of the first member 11 and a joint surface 121 of the second member 12. In this embodiment, the joint 14 is defined as a region where thermal effects and deformation occur due to the effects of friction welding. In FIG. 2, the outer edge of the joint 14 is shown by a dashed line. However, unlike a welded portion formed by welding, in the joint 14 formed by friction welding, the first member 11 and the second member 12 are not mixed together, and the interface between them can be clearly confirmed. In this embodiment, the interface between the first member 11 and the second member 12 is referred to as a friction welding interface 15.

(接合部14の両端の最高硬さの平均値Have)
鋼製の部材を摩擦圧接接合して得られる通常の接合継手においては、摩擦熱によって、接合部14に焼入れ硬化が生じる。一方、本実施形態に係る接合継手1においては、接合部14の焼入れ硬化を緩和することによって、接合強度を高めている。そのため、本実施形態に係る接合継手1においては、接合部14の両端の最高硬さの平均値Haveが、式1を満たす。最高硬さの平均値Haveは、軸部111の軸線Yを通る接合継手1の断面において、接合面121から深さ0.1mmの位置Xを、接合部及びその周辺にわたって連続的に硬さ測定することによって得られる。
Have≦761.6×C-1897.2×C+1848.8×C+168.3……(式1)
ここで、式1における記号「C」は、第2の部材12の単位質量%での炭素量である。
(Average value Have of maximum hardness at both ends of joint 14)
In a normal welded joint obtained by friction welding steel members, quench hardening occurs in the welded portion 14 due to frictional heat. On the other hand, in the welded joint 1 according to this embodiment, the weld strength is increased by mitigating the quench hardening of the welded portion 14. Therefore, in the welded joint 1 according to this embodiment, the average value Have of the maximum hardness at both ends of the welded portion 14 satisfies formula 1. The average value Have of the maximum hardness is obtained by continuously measuring the hardness of the welded portion and its periphery at a position X at a depth of 0.1 mm from the welded surface 121 in a cross section of the welded joint 1 passing through the axis Y of the shaft portion 111.
Have≦761.6×C 3 −1897.2×C 2 +1848.8×C+168.3……(Formula 1)
Here, the symbol “C” in formula 1 is the carbon content in unit mass % of the second member 12 .

接合面121から深さ0.1mmの位置Xとは、図2において符号「X」が付された直線によって示される位置である。接合面121は、接合部14において著しく変形している。しかしながら、接合面121から深さ0.1mmの位置Xは、変形を受けていない接合面121に基づいて特定される。即ち、変形を受けていない接合面121を延長することによって、摩擦圧接接合を実施する前の接合面121を推定し、これに基づいて接合面121から深さ0.1mmの位置Xを特定する。通常、摩擦圧接界面15は第2の部材12の内部に食い込んでいる。そのため、軸線Yの付近では、接合面121から深さ0.1mmの位置Xに、第1の部材11が配されている場合がある。 Position X, which is 0.1 mm deep from the joint surface 121, is the position indicated by the straight line marked with the symbol "X" in FIG. 2. The joint surface 121 is significantly deformed at the joint 14. However, position X, which is 0.1 mm deep from the joint surface 121, is identified based on the joint surface 121 that is not deformed. That is, by extending the joint surface 121 that is not deformed, the joint surface 121 before friction welding is performed is estimated, and position X, which is 0.1 mm deep from the joint surface 121, is identified based on this. Usually, the friction welding interface 15 is embedded in the second member 12. Therefore, in the vicinity of the axis Y, the first member 11 may be located at position X, which is 0.1 mm deep from the joint surface 121.

接合面121から深さ0.1mmの位置Xを、接合部及びその周辺にわたって連続的に硬さ測定することによって、例えば図3に示されるような、接合面121から深さ0.1mmの位置Xに沿った硬さ分布曲線を得ることができる。接合部14の両端の最高硬さとは、硬さ分布曲線における、軸線Yの左側での硬さの最大値、及び軸線Yの右側での硬さの最大値である。 By continuously measuring the hardness at position X, 0.1 mm deep from the joint surface 121, throughout the joint and its periphery, it is possible to obtain a hardness distribution curve along position X, 0.1 mm deep from the joint surface 121, as shown in FIG. 3, for example. The maximum hardness at both ends of the joint 14 is the maximum hardness value on the left side of axis Y and the maximum hardness value on the right side of axis Y in the hardness distribution curve.

硬さ分布曲線において硬さが最大になる箇所は、接合面121から深さ0.1mmの位置Xと、摩擦圧接界面15との交点の近傍になることが通常である。この箇所は、摩擦圧接接合の際の摩擦熱によって、著しい焼入れ硬化が生じる箇所である。図3に示される破線の硬さ分布曲線は、鋼材を摩擦圧接接合した後で、特段の後処理を行わなかった接合継手の硬さ分布曲線の一例である。このような接合継手の硬さ分布曲線では、焼入れ硬化によって、軸線Yの両側に著しいピークが存在する。 The point where the hardness is maximum on the hardness distribution curve is usually near the intersection of position X, 0.1 mm deep from the joint surface 121, and the friction welded interface 15. This is the point where significant quench hardening occurs due to the frictional heat generated during friction welding. The dashed hardness distribution curve shown in Figure 3 is an example of a hardness distribution curve for a welded joint in which no special post-processing was performed after the steel materials were friction welded. In the hardness distribution curve for such a welded joint, significant peaks exist on both sides of the axis Y due to quench hardening.

一方、本実施形態に係る接合継手1では、焼入れ硬化が緩和されている。そのため、硬さ分布曲線における硬さピークの高さは小さくなる。図3に示される実線の硬さ分布曲線は、本実施形態に係る接合継手1の硬さ分布曲線の一例である。本実施形態に係る接合継手1の硬さ分布曲線では、軸線Yの少なくとも片側において、硬さピークの高さが破線よりも低くなる。 On the other hand, in the bonded joint 1 according to this embodiment, quench hardening is mitigated. Therefore, the height of the hardness peak in the hardness distribution curve is smaller. The solid line hardness distribution curve shown in FIG. 3 is an example of the hardness distribution curve of the bonded joint 1 according to this embodiment. In the hardness distribution curve of the bonded joint 1 according to this embodiment, the height of the hardness peak is lower than the dashed line on at least one side of the axis Y.

本実施形態に係る接合継手1における、接合部14の両端の最高硬さの平均値Haveを定量的に規定するために、本発明者らは、第2の部材12の炭素量に着目した。第2の部材12の焼き入れ後の硬さは、第2の部材12の炭素量に応じて決まる。そのため、接合部14の両端の最高硬さの平均値Haveの上限値を、第2の部材12の炭素量の関数「761.6×C-1897.2×C+1848.8×C+168.3」とした。接合部14の両端の最高硬さの平均値Haveが式1を満たす場合、接合継手1は良好な接合強度を有する。なお、接合部14の両端の最高硬さの平均値Haveが式1を満たす限り、接合部14の一方の端部の最高硬さが「761.6×C-1897.2×C+1848.8×C+168.3」を上回ることは許容される。接合部14の両端の最高硬さの平均値Haveを上述の範囲内とするための手段は特に限定されないが、例えば後述する条件に従った通電焼戻しが好適である。平均値Haveの上限値は、好ましくは「761.6×C3-1897.2×C2+1848.8×C+168.3」の95%以下、90%以下、又は85%以下である。なお、平均値Haveの下限値は特に制限されないが、例えば第2の部材12の母材硬さの60%以上、70%以上、80%以上、又は90%以上と規定してもよい。第2の部材12の母材硬さとは、第2の部材12における、摩擦圧接接合の熱影響及び変形が生じていない領域の硬さのことである。 In order to quantitatively define the average value Have of the maximum hardness at both ends of the joint 14 in the joint joint 1 according to this embodiment, the inventors focused on the carbon content of the second member 12. The hardness of the second member 12 after quenching is determined according to the carbon content of the second member 12. Therefore, the upper limit value of the average value Have of the maximum hardness at both ends of the joint 14 is set to a function of the carbon content of the second member 12, "761.6 x C3 - 1897.2 x C2 + 1848.8 x C + 168.3". When the average value Have of the maximum hardness at both ends of the joint 14 satisfies formula 1, the joint joint 1 has good joint strength. As long as the average value Have of the maximum hardness at both ends of the joint 14 satisfies formula 1, it is permitted that the maximum hardness at one end of the joint 14 exceeds "761.6 x C 3 - 1897.2 x C 2 + 1848.8 x C + 168.3". The means for setting the average value Have of the maximum hardness at both ends of the joint 14 within the above range is not particularly limited, but for example, current tempering according to the conditions described below is suitable. The upper limit value of the average value Have is preferably 95% or less, 90% or less, or 85% or less of "761.6 x C 3 - 1897.2 x C 2 + 1848.8 x C + 168.3". The lower limit value of the average value Have is not particularly limited, but may be specified as, for example, 60% or more, 70% or more, 80% or more, or 90% or more of the base material hardness of the second member 12. The base material hardness of the second member 12 refers to the hardness of a region of the second member 12 that is not affected by heat or deformed by friction welding.

接合部14の両端の最高硬さの平均値Haveの測定方法は、以下の通りである。
まず、接合継手1を、第1の部材11の軸部111の軸線Yを実質的に含む断面で切断し、断面を適宜研磨する。なお、この断面が軸線Yから若干外れることは許容される。
次に、接合面121から深さ0.1mmの位置Xを特定する。接合面121は、接合部14において著しく変形しているので、変形を受けていない接合面121を延長することによって、摩擦圧接接合を実施する前の接合面121を推定し、これに平行であり且つ0.1mm離れた線X(図2参照)を特定する。接合面121が曲面である場合は、線Xもこれに合わせた曲線とされる。
そして、線Xに沿って、接合部及びその周辺にわたって連続的にビッカース硬さ測定をする。ビッカース硬さの測定荷重は200gとし、ビッカース硬さの測定間隔は0.2mmとする。
得られた硬さ測定結果を、軸線Yからの距離を横軸とし、硬さを縦軸としたグラフにプロットして、硬さ分布曲線を作成する。そして、軸線Yの左側における硬さの最大値と、軸線Yの右側における硬さの最大値とを特定し、これらの値を平均することにより、接合部14の両端の最高硬さの平均値Haveを算出する。
The method for measuring the average value Have of the maximum hardness at both ends of the joint 14 is as follows.
First, the welded joint 1 is cut at a cross section that substantially includes the axis Y of the shaft portion 111 of the first member 11, and the cross section is appropriately polished. Note that it is permissible for this cross section to deviate slightly from the axis Y.
Next, position X is identified at a depth of 0.1 mm from the joint surface 121. Since the joint surface 121 is significantly deformed at the joint 14, the joint surface 121 before friction welding is performed is estimated by extending the joint surface 121 that is not deformed, and a line X (see FIG. 2) that is parallel to the joint surface 121 and spaced 0.1 mm apart is identified. If the joint surface 121 is a curved surface, the line X is also made to be a curve that matches the curve.
Then, the Vickers hardness is measured continuously over the joint and its periphery along the line X. The load for measuring the Vickers hardness is 200 g, and the measurement interval for the Vickers hardness is 0.2 mm.
The hardness measurement results are plotted on a graph with the horizontal axis representing the distance from the axis Y and the vertical axis representing the hardness to create a hardness distribution curve. Then, the maximum hardness value on the left side of the axis Y and the maximum hardness value on the right side of the axis Y are identified, and these values are averaged to calculate the average value Have of the maximum hardnesses at both ends of the joint 14.

以上、本実施形態に係る接合継手1の基本的態様について説明した。以下、本実施形態に係る接合継手1の一層好ましい態様について説明する。 The above describes the basic aspects of the joint 1 according to this embodiment. Below, we will explain more preferred aspects of the joint 1 according to this embodiment.

本実施形態に係る接合継手1の金属組織は特に限定されない。接合部14の焼入れ硬化が上述の通り抑制されている限り、本実施形態に係る接合継手1は、その金属組織に関わらず優れた接合強度を確保可能である。一方、例えば、第2の部材12が、第1の部材11と第2の部材12との界面である摩擦圧接界面15から深さ0.1mm以内の領域において、焼戻しマルテンサイトを有してもよい。換言すると、第2の部材12における、摩擦圧接界面15から深さ0.1mm以内の領域の一部または全部の金属組織が焼戻しマルテンサイトであってもよい。 The metal structure of the welded joint 1 according to this embodiment is not particularly limited. As long as the quench hardening of the welded portion 14 is suppressed as described above, the welded joint 1 according to this embodiment can ensure excellent joint strength regardless of its metal structure. On the other hand, for example, the second member 12 may have tempered martensite in a region within 0.1 mm deep from the friction welded interface 15, which is the interface between the first member 11 and the second member 12. In other words, the metal structure of part or all of the region within 0.1 mm deep from the friction welded interface 15 in the second member 12 may be tempered martensite.

鋼材を摩擦圧接接合した後に、特段の後処理が行われていない接合継手においては、摩擦圧接界面15から深さ0.1mm以内の領域には焼戻しマルテンサイトが存在しない。何故なら、該領域は摩擦圧接接合の際の摩擦熱によって焼き入れされるからである。たとえ、鋼材が焼戻しマルテンサイトを含むものであったとしても、この焼戻しマルテンサイトは摩擦圧接接合の際の焼き入れによってフレッシュマルテンサイト(焼戻しされていないマルテンサイト)となる。一方、第2の部材12における、摩擦圧接界面15から深さ0.1mm以内の領域の一部または全部の金属組織を焼戻しマルテンサイトとすることにより、第2の部材12から発生する破壊を一層抑制し、接合継手1の接合強度を一層高めることができる。 In a welded joint in which no special post-processing is performed after the steel materials are friction welded, tempered martensite does not exist in the region within 0.1 mm depth from the friction weld interface 15. This is because the region is quenched by the frictional heat during friction welding. Even if the steel material contains tempered martensite, this tempered martensite becomes fresh martensite (untempered martensite) due to quenching during friction welding. On the other hand, by making the metal structure of part or all of the region within 0.1 mm depth from the friction weld interface 15 in the second member 12 into tempered martensite, it is possible to further suppress fracture occurring in the second member 12 and further increase the joining strength of the welded joint 1.

なお、接合部14の金属組織は焼戻し組織であることが好ましいが、接合部14以外の箇所が焼き戻されている必要はない。例えば、第1の部材11及び第2の部材12、並びに後述する第3の部材13の一部または全部を、焼戻しされていない組織(例えばフレッシュマルテンサイト)としてもよい。 The metal structure of the joint 14 is preferably a tempered structure, but it is not necessary for parts other than the joint 14 to be tempered. For example, the first member 11, the second member 12, and part or all of the third member 13 described below may have an untempered structure (e.g., fresh martensite).

第1の部材11及び第2の部材12は鋼製とされる。これらの化学成分は特に限定されない。一方、第1の部材11及び第2の部材12の一方又は両方の炭素量が、例えば0.20質量%以上、0.22質量%以上、0.25質量%以上、又は0.30質量%以上であってもよい。これにより、高強度である第2の部材12との摩擦圧接接合をより安定して行うことができる。なお、第2の部材12における炭素量が0.20質量%以上である鋼材の摩擦圧接接合においては、接合強度の低下が問題となるが、本実施形態に係る接合継手1においては、接合部14の両端の最高硬さの平均値Haveが式1を満たすように接合部14の焼入れ硬化が抑制されているので、第2の部材12の炭素量が0.20質量%以上であっても接合強度が確保される。 The first member 11 and the second member 12 are made of steel. Their chemical components are not particularly limited. On the other hand, the carbon content of one or both of the first member 11 and the second member 12 may be, for example, 0.20 mass% or more, 0.22 mass% or more, 0.25 mass% or more, or 0.30 mass% or more. This allows for more stable friction welding with the high-strength second member 12. In addition, in friction welding of steel materials in which the carbon content in the second member 12 is 0.20 mass% or more, a decrease in joint strength is a problem. However, in the joint joint 1 according to this embodiment, the quench hardening of the joint 14 is suppressed so that the average value Have of the maximum hardness at both ends of the joint 14 satisfies formula 1, so that the joint strength is ensured even if the carbon content of the second member 12 is 0.20 mass% or more.

第1の部材11及び第2の部材12の機械的性質も特に限定されない。一方、第1の部材11及び第2の部材12の強度が高いほど、接合継手1を有する部品の特性を高めることができるので好ましい。また、本実施形態に係る接合継手1では、接合部14における焼入れ硬化が抑制されているので、第1の部材11及び第2の部材12の強度が高い場合であっても、接合強度を確保することができる。従って、例えば第1の部材11及び第2の部材12の一方又は両方の引張強さを590MPa以上としてもよい。 The mechanical properties of the first member 11 and the second member 12 are not particularly limited. On the other hand, the higher the strength of the first member 11 and the second member 12, the better because the characteristics of the part having the joint 1 can be improved. In addition, in the joint joint 1 according to this embodiment, quench hardening at the joint 14 is suppressed, so that the joint strength can be ensured even if the strength of the first member 11 and the second member 12 is high. Therefore, for example, the tensile strength of one or both of the first member 11 and the second member 12 may be 590 MPa or more.

本実施形態に係る接合継手1において、接合部14の形状は特に限定されない。図2に示されるように、摩擦圧接接合の際に第1の部材11及び第2の部材12が変形し、バリが形成されることがある。接合部14が、このようなバリを有してもよい。一方、接合部14からバリを機械的に除去してもよい。 In the bonded joint 1 according to this embodiment, the shape of the bonded portion 14 is not particularly limited. As shown in FIG. 2, the first member 11 and the second member 12 may be deformed during friction welding, resulting in the formation of burrs. The bonded portion 14 may have such burrs. Alternatively, the burrs may be mechanically removed from the bonded portion 14.

また、接合部14において、第1の部材11が第2の部材12の内部に入り込んでいることが好ましい。換言すると、第1の部材11と第2の部材12との界面である摩擦圧接界面15が、第2の部材12に入り込んでいてもよい。この場合、軸線Yを通る接合継手1の断面において測定される、第2の部材12の接合面121に対する摩擦圧接界面15の最大深さが0.1mm以上、0.3mm以上、又は0.5mm以上であってもよい。これにより、摩擦圧接界面15における接合不良が抑制され、接合継手1の接合強度が一層向上する。 In addition, it is preferable that the first member 11 penetrates into the second member 12 at the joint 14. In other words, the friction welded interface 15, which is the interface between the first member 11 and the second member 12, may penetrate into the second member 12. In this case, the maximum depth of the friction welded interface 15 relative to the joint surface 121 of the second member 12, measured in a cross section of the welded joint 1 passing through the axis Y, may be 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. This suppresses poor welding at the friction welded interface 15, and further improves the joint strength of the welded joint 1.

第1の部材11及び第2の部材12の形状も特に限定されないが、以下に、第1の部材11及び第2の部材12の形状の好適な例を示す。 The shapes of the first member 11 and the second member 12 are not particularly limited, but the following are preferred examples of the shapes of the first member 11 and the second member 12.

第2の部材12は、例えば板厚0.8~3.0mmの鋼板であることが好ましい。このような板厚の鋼板は、自動車部品の材料として非常に好適である。第2の部材12の板厚を1.0mm以上、1.2mm以上、又は1.5mm以上としてもよい。第2の部材12の板厚を2.8mm以下、2.5mm以下、又は2.0mm以下としてもよい。一方、第2の部材12を丸棒、又は角棒などとすることも妨げられない。 The second member 12 is preferably a steel plate having a thickness of, for example, 0.8 to 3.0 mm. Steel plates of such thickness are very suitable as materials for automobile parts. The thickness of the second member 12 may be 1.0 mm or more, 1.2 mm or more, or 1.5 mm or more. The thickness of the second member 12 may be 2.8 mm or less, 2.5 mm or less, or 2.0 mm or less. On the other hand, it is not prevented that the second member 12 is a round bar, a square bar, or the like.

第2の部材12の接合面121の面積が、第1の部材11の軸部111の断面積の3.0倍以上、4.0倍以上、又は5.0倍以上であってもよい。これにより、接合継手1の形状を柔軟に設計することができるようになる。なお、第1の部材11の軸部111の断面積が、軸線Y方向に沿って一定ではない場合(例えば軸部111がテーパ形状を有する場合)は、第1の部材11の軸部111の断面積とは、軸部111の外周面と第2の部材12の接合面121との交線がなす領域の面積を意味する。接合部14がバリを有する場合は、軸部111の外周面とは、その延長面を意味する。 The area of the joint surface 121 of the second member 12 may be 3.0 times or more, 4.0 times or more, or 5.0 times or more the cross-sectional area of the shaft portion 111 of the first member 11. This allows for flexible design of the shape of the joint joint 1. If the cross-sectional area of the shaft portion 111 of the first member 11 is not constant along the axis Y direction (for example, if the shaft portion 111 has a tapered shape), the cross-sectional area of the shaft portion 111 of the first member 11 means the area of the region formed by the intersection line between the outer circumferential surface of the shaft portion 111 and the joint surface 121 of the second member 12. If the joint portion 14 has burrs, the outer circumferential surface of the shaft portion 111 means its extended surface.

第1の部材11の軸部111の形状は特に限定されないが、例えば、軸部111の、軸線Yに垂直な断面(以下、「軸部111の断面」と略する場合がある)が回転対称形状であることが好ましい。具体的には、軸部111の断面が円又は正多角形であることが好ましい。軸部111の大きさは特に限定されないが、例えば、軸部111の断面の外接円の直径(軸部111の断面が円である場合は、断面の直径)が2.0~10.0mmの範囲内であることが好ましい。軸部111の外接円の直径は、軸線Yに沿って一定であってもよく、相違させてもよい。例えば、軸部111は、その先端に向かって太さが小さくなるテーパ形状を有してもよい。また、軸部111は中空構造(例えば円筒状構造等)でも、中実構造であっても良い。軸部111が中空構造である場合の、軸部111の断面の内形は回転対称形状、例えば円又は正多角形であることが好ましい。 The shape of the shaft portion 111 of the first member 11 is not particularly limited, but for example, it is preferable that the cross section of the shaft portion 111 perpendicular to the axis Y (hereinafter, sometimes abbreviated as "cross section of the shaft portion 111") is rotationally symmetric. Specifically, it is preferable that the cross section of the shaft portion 111 is a circle or a regular polygon. The size of the shaft portion 111 is not particularly limited, but for example, it is preferable that the diameter of the circumscribing circle of the cross section of the shaft portion 111 (when the cross section of the shaft portion 111 is a circle, the diameter of the cross section) is within the range of 2.0 to 10.0 mm. The diameter of the circumscribing circle of the shaft portion 111 may be constant along the axis Y or may vary. For example, the shaft portion 111 may have a tapered shape in which the thickness decreases toward the tip. In addition, the shaft portion 111 may have a hollow structure (for example, a cylindrical structure, etc.) or a solid structure. When the shaft portion 111 has a hollow structure, it is preferable that the inner shape of the cross section of the shaft portion 111 is rotationally symmetric, for example, a circle or a regular polygon.

第1の部材11は、第2の端部に、軸部111よりも断面径が大きい頭部112を備えてもよい。頭部112は、後述する第3の部材13を固定する働きを有する。この場合、第1の部材11はリベット形状であってもよい。頭部112の外接円の直径は、軸部111の外接円の直径の1.5倍以上であることが好ましい。また、軸部111の長さ(第1の部材11全体の長さから、頭部112の厚さを除いた値)は、第3の部材13の厚さの1.5倍以上であることが好ましい。一方、接合継手1が第3の部材13を含まなくてもよいし、第1の部材11が軸部111のみからなる棒状部材であってもよい。 The first member 11 may have a head 112 at the second end, the head 112 having a cross-sectional diameter larger than that of the shaft 111. The head 112 has a function of fixing the third member 13 described later. In this case, the first member 11 may be rivet-shaped. The diameter of the circumscribing circle of the head 112 is preferably 1.5 times or more the diameter of the circumscribing circle of the shaft 111. In addition, the length of the shaft 111 (the total length of the first member 11 minus the thickness of the head 112) is preferably 1.5 times or more the thickness of the third member 13. On the other hand, the joint 1 may not include the third member 13, and the first member 11 may be a rod-shaped member consisting of only the shaft 111.

第1の部材11が頭部112を有する場合、接合継手1は、第1の部材11の頭部112と第2の部材12との間に設けられた第3の部材13をさらに備えてもよい。例えば図4に示されるように、第1の部材11を、リベットのような軸部111と頭部112とを有する形状とし、第3の部材13に軸部111を貫通させ、第3の部材13を頭部112及び第2の部材12の接合面121によって挟持してもよい。この場合、第2の部材12及び第3の部材13が、第1の部材11を用いて緊密に接合されるので好ましい。また、このような構成を有する接合継手1では、第1の部材11及び第3の部材13が、溶接を適用できないような異種材料とすることができるので好ましい。第3の部材13は、例えば鋼板、軽金属板、及び樹脂板等である。軽金属板とは、例えばアルミ板などである。第1の部材11を高強度鋼材とすれば、第3の部材13が高強度鋼板であったとしても、第1の部材11を第3の部材13に貫通させることができる。接合継手1が、さらに別の部材を有することも妨げられない。 When the first member 11 has a head 112, the joint 1 may further include a third member 13 provided between the head 112 of the first member 11 and the second member 12. For example, as shown in FIG. 4, the first member 11 may be shaped to have a shaft 111 and a head 112 like a rivet, and the shaft 111 may be inserted through the third member 13, and the third member 13 may be sandwiched between the head 112 and the joint surface 121 of the second member 12. In this case, the second member 12 and the third member 13 are preferably tightly joined using the first member 11. In addition, in the joint 1 having such a configuration, the first member 11 and the third member 13 are preferably made of different materials to which welding cannot be applied. The third member 13 is, for example, a steel plate, a light metal plate, a resin plate, etc. The light metal plate is, for example, an aluminum plate. If the first member 11 is a high-strength steel material, the first member 11 can penetrate the third member 13 even if the third member 13 is a high-strength steel plate. There is no prohibition on the joint 1 having further members.

第3の部材13は、軸部111が挿通される孔を予め有していてもよい。孔は、軸部111を挿通させる前に予め第3の部材13に設けられていてもよく、高速回転する軸部111を第3の部材13に押し付けることにより形成されてもよい。第3の部材13の孔の形状は特に限定されない。頭部112を用いて第3の部材13を固定するためには、貫通孔の直径を頭部112の直径より小さくすることがよい。 The third member 13 may already have a hole through which the shaft portion 111 is inserted. The hole may be provided in the third member 13 before the shaft portion 111 is inserted, or may be formed by pressing the shaft portion 111 rotating at high speed against the third member 13. The shape of the hole in the third member 13 is not particularly limited. In order to fix the third member 13 using the head portion 112, it is preferable to make the diameter of the through hole smaller than the diameter of the head portion 112.

第1の部材11、第2の部材12、及び第3の部材13の1つ以上が表面処理層を有してもよい。表面処理層とは、例えばめっき層、塗膜、及び化成処理皮膜などである。第1の部材11、及び第2の部材12における表面処理層は、摩擦圧接接合の際に除去されるので、接合部14の形成の妨げとはならない。また、第3の部材13は第1の部材11を介して第2の部材12と機械的に接合されるものであるが、第2の部材12と第3の部材13とが、第1の部材11以外の手段(例えば溶接)によってさらに接合されていてもよい。即ち、第3の部材13を有する本実施形態に係る接合継手1は、第2の部材12及び第3の部材13を接合する追加の接合部(例えば溶接部など)をさらに備えてもよい。 One or more of the first member 11, the second member 12, and the third member 13 may have a surface treatment layer. The surface treatment layer may be, for example, a plating layer, a coating, or a chemical conversion coating. The surface treatment layers of the first member 11 and the second member 12 are removed during friction welding, so they do not interfere with the formation of the joint 14. In addition, the third member 13 is mechanically joined to the second member 12 via the first member 11, but the second member 12 and the third member 13 may be further joined by a means other than the first member 11 (for example, welding). That is, the joint joint 1 according to this embodiment having the third member 13 may further include an additional joint (for example, a welded part) that joins the second member 12 and the third member 13.

次に、本発明の別の態様に係る自動車部品について以下に説明する。本実施形態に係る自動車部品は、本実施形態に係る接合継手1を有する。これにより、本実施形態に係る自動車部品は、高い接合強度を有する。 Next, an automobile part according to another aspect of the present invention will be described below. The automobile part according to this embodiment has the joint 1 according to this embodiment. As a result, the automobile part according to this embodiment has high joint strength.

次に、本発明の別の態様に係る接合継手の製造方法の一例について以下に説明する。上述された本実施形態に係る接合継手の製造方法は特に限定されないが、以下に説明する手段によれば、これを好適に製造することが可能となる。 Next, an example of a method for manufacturing a joint according to another aspect of the present invention will be described below. The method for manufacturing the joint according to the present embodiment described above is not particularly limited, but the method described below makes it possible to manufacture the joint in an appropriate manner.

本実施形態に係る接合継手の製造方法は、
(S1)軸部111を有する鋼製の第1の部材11の第1の端部を、軸部111の断面よりも大きい接合面121を有する鋼製の第2の部材12に、回転させながら押し付けることにより、軸部111の第1の端部と接合面121とを摩擦圧接してなる接合部14を形成する工程と、
(S2)電極Eを用いて、第1の部材11及び第2の部材12を、第1の部材11の軸部111の軸線Y方向に挟持し、電流値をIとして通電することにより、接合部14を焼き戻す工程と、
を備える。ここで、電流値Iを、下記式2を満たす範囲内とする。

Figure 0007485946000002
式2において、記号Iminは式3によって定義される値であり、記号Iminは式4によって定義される値であり、記号Iminは式5によって定義される値であり、これら値の単位はkAである。
式3、式4、及び式5において、記号「D」は、軸部の断面の外接円の、単位mmでの直径である。記号「D」は、軸部の中空部の断面の外接円の、単位mmでの直径である。ここで、軸部が中実である場合はD=0とされる。記号「t」は、単位秒での通電時間である。記号「F」は、単位kNでの加圧力である。記号「A」は、式6によって定義される値である。
式6において、記号「C」「Si」「Mn」及び「Cr」は、それぞれ、第2の部材の単位質量%でのC含有量、Si含有量、Mn含有量、及びCr含有量である。 The manufacturing method of the joint according to the present embodiment is as follows:
(S1) a step of pressing a first end of a first steel member 11 having a shaft portion 111 against a second steel member 12 having a joint surface 121 larger than a cross section of the shaft portion 111 while rotating the first steel member 11 against the joint surface 121 to form a joint 14 formed by friction welding the first end of the shaft portion 111 and the joint surface 121;
(S2) a process of using an electrode E to clamp the first member 11 and the second member 12 in the axis Y direction of the shaft portion 111 of the first member 11, and passing a current of a value I through the electrodes E to temper the joint portion 14;
Here, the current value I is set to be within a range that satisfies the following formula 2.
Figure 0007485946000002
In Equation 2, the symbol Imin is a value defined by Equation 3, the symbol Imin is a value defined by Equation 4, and the symbol Imin is a value defined by Equation 5, and these values are in kA.
In Equation 3, Equation 4, and Equation 5, the symbol "D 1 " is the diameter, in mm, of the circumscribing circle of the cross section of the shaft portion. The symbol "D 2 " is the diameter, in mm, of the circumscribing circle of the cross section of the hollow portion of the shaft portion. Here, when the shaft portion is solid, D 2 =0. The symbol "t" is the current application time, in seconds. The symbol "F" is the applied pressure, in kN. The symbol "A" is a value defined by Equation 6.
In formula 6, the symbols "C", "Si", "Mn" and "Cr" respectively represent the C content, Si content, Mn content and Cr content in unit mass % of the second component.

(S1)
本実施形態に係る接合継手の製造方法では、まず、軸部111を有する鋼製の第1の部材11の第1の端部を、軸部111の断面よりも大きい接合面121を有する鋼製の第2の部材12に、回転させながら押し付けることにより、軸部111の第1の端部と接合面121とを摩擦圧接してなる接合部14を形成する。摩擦圧接接合の条件は特に限定されず、第1の部材11及び第2の部材12の形状等に応じて適宜選択すればよい。例えば、直径30mm未満の軸部111の回転を利用して摩擦圧接接合を行う場合、軸部111の回転数を1000~8000rpmとし、軸部111を第2の部材12に押し付ける際の加圧力を5kN以上とすればよい。
(S1)
In the manufacturing method of the joint according to the present embodiment, first, a first end of a first steel member 11 having a shaft portion 111 is pressed against a second steel member 12 having a joint surface 121 larger than the cross section of the shaft portion 111 while rotating, thereby forming a joint 14 formed by frictionally welding the first end of the shaft portion 111 and the joint surface 121. The conditions of the friction welding are not particularly limited, and may be appropriately selected according to the shapes of the first member 11 and the second member 12. For example, when friction welding is performed by utilizing the rotation of the shaft portion 111 having a diameter of less than 30 mm, the rotation speed of the shaft portion 111 may be set to 1000 to 8000 rpm, and the pressure when pressing the shaft portion 111 against the second member 12 may be set to 5 kN or more.

軸部111の回転を利用して摩擦圧接接合を行う場合、摩擦圧接接合の前の軸部111の先端の形状は、例えば円錐形状、角錐形状、又は部分球形状とすることが好ましい。軸部111の先端の頂点は、軸部111の軸線Y上にあることが好ましい。また、円錐や角錐の高さや部分球の高さが大きすぎる場合、接合により押しつぶしきれない可能性があるため、高さは2.0mm以下が好ましい。 When friction welding is performed using the rotation of the shaft portion 111, it is preferable that the shape of the tip of the shaft portion 111 before friction welding is, for example, a cone shape, a pyramid shape, or a partial sphere shape. It is preferable that the apex of the tip of the shaft portion 111 is on the axis Y of the shaft portion 111. Furthermore, if the height of the cone or pyramid or the height of the partial sphere is too large, it may not be possible to completely crush them during welding, so the height is preferably 2.0 mm or less.

(S2)
本実施形態に係る接合継手の製造方法では、次に図5に示されるように、電極Eを用いて、第1の部材11及び第2の部材12を、第1の部材11の軸部111の軸線Y方向に挟持し、電流値をIとして通電することにより、接合部14を焼き戻す。この通電焼戻しにより、接合部14の焼入れ硬化を減少させる。電極Eの種類は特に限定されないが、例えば銅電極が好ましい。通電焼戻しを行うための装置は特に限定されないが、例えば抵抗スポット溶接機を通電焼戻し用の装置として用いてもよい。
(S2)
In the manufacturing method of the joint joint according to the present embodiment, as shown in Fig. 5, the first member 11 and the second member 12 are clamped in the axial direction Y of the shaft portion 111 of the first member 11 using an electrode E, and a current value I is passed through the electrode E to temper the joint 14. This electric tempering reduces the quench hardening of the joint 14. The type of the electrode E is not particularly limited, but a copper electrode is preferable, for example. The device for performing electric tempering is not particularly limited, but for example, a resistance spot welding machine may be used as the device for electric tempering.

通電焼戻しにおいては、電流値Iを、式3及び式6によって算出されるImin以上とする必要がある。なお、電流値Iは一定であってもよく、通電焼戻しの間に変化させてもよい。電流値Iが一定ではない場合、通電焼戻しの間の電流値の平均値を、電流値Iとみなす。式3及び式6中の記号の意味は上述の通りである。 In electric tempering, the current value I must be equal to or greater than Imin, which is calculated using formulas 3 and 6. The current value I may be constant or may be changed during electric tempering. If the current value I is not constant, the average current value during electric tempering is regarded as the current value I. The symbols in formulas 3 and 6 have the same meanings as described above.

なお、式3等に含まれる「D -D 」は、軸部111の断面積の指標である。上述の通り、軸部111は中空構造(例えば円筒状構造等)でも、中実構造であっても良い。軸部111が中空構造を有する場合を考慮して、式3は、軸部111の中空部の大きさが変数として含まれている。軸部111が中実構造を有するときは、中空部の外接円の直径Dに0を代入し、軸部111の外接円Dのみに基づいてIminを算出する。 It should be noted that "D 1 2 -D 2 2 " included in Equation 3 etc. is an index of the cross-sectional area of shaft portion 111. As described above, shaft portion 111 may have a hollow structure (e.g., a cylindrical structure, etc.) or a solid structure. Considering the case where shaft portion 111 has a hollow structure, Equation 3 includes the size of the hollow portion of shaft portion 111 as a variable. When shaft portion 111 has a solid structure, 0 is substituted for diameter D 2 of the circumscribing circle of the hollow portion, and Imin is calculated based only on circumscribing circle D 1 of shaft portion 111.

また、上述の通り、第1の部材11の軸部111がテーパ形状を有していてもよい。この場合、D及びDは、第2の部材12の接合面121に一致すると推定される面において測定される値とすればよい。このような面は、第1の部材11の押し込み量Pを考慮して特定することができる。従って、第1の部材11の軸部111を、軸部111の先端から軸線Yに沿ってPだけ離れており、且つ軸線Yに垂直な面で切断して得られる切断面における、軸部111の外接円をDとし、中空部の外接円をDとすればよい。 As described above, the shaft portion 111 of the first member 11 may have a tapered shape. In this case, D1 and D2 may be values measured on a surface estimated to coincide with the joining surface 121 of the second member 12. Such a surface can be specified by taking into consideration the amount of pressing P of the first member 11. Therefore, the circumscribing circle of the shaft portion 111 and the circumscribing circle of the hollow portion in a cut surface obtained by cutting the shaft portion 111 of the first member 11 along the axis Y by a distance P from the tip of the shaft portion 111 and perpendicular to the axis Y may be defined as D1 and D2 , respectively.

図6に、テーパ形状を有する軸部111のDの測定方法を図示する。説明の便宜のために、図6に記載される軸部111のテーパ角度は、実際よりも大きくされている。図6に記載された横方向の一点鎖線は、軸部111の先端から軸線Yに沿ってPだけ離れており、且つ軸線Yに垂直な面を示している。図6に示される軸部111を、押し込み量をPとして第2の部材12に接合すると、第2の部材12の接合面121は、軸部111の先端から軸線Yに沿ってPだけ離れており、且つ軸線Yに垂直な面と一致する。図6に中空部は図示されていないが、軸部111が中空部を有する場合も、Dと同様にDを測定すればよい。摩擦圧接接合の際には、通常の方法で押し込み量Pを所定の値に制御し、さらに、押し込み量Pに基づいて測定されたD及びDに基づいて電流値の下限値Iminを決定すればよい。後述されるImax1及びImax2も、Iminと同様に決定すればよい。 FIG. 6 illustrates a method for measuring D1 of the shaft portion 111 having a tapered shape. For convenience of explanation, the taper angle of the shaft portion 111 illustrated in FIG. 6 is made larger than the actual angle. The horizontal dashed line illustrated in FIG. 6 indicates a surface that is P away from the tip of the shaft portion 111 along the axis Y and perpendicular to the axis Y. When the shaft portion 111 illustrated in FIG. 6 is joined to the second member 12 with the amount of pushing in set to P, the joining surface 121 of the second member 12 is P away from the tip of the shaft portion 111 along the axis Y and coincides with a surface perpendicular to the axis Y. Although a hollow portion is not illustrated in FIG. 6, even when the shaft portion 111 has a hollow portion, D2 may be measured in the same manner as D1 . During friction welding, the amount of pushing in P is controlled to a predetermined value by a normal method, and the lower limit value Imin of the current value may be determined based on D1 and D2 measured based on the amount of pushing in P. Imax1 and Imax2, which will be described later, may be determined in the same manner as Imin.

また、式6によって算出される「A」は、第2の部材12の電気抵抗に関する指標である。Aが大きい鋼材ほど焼入れによる硬さの上昇が著しい。 In addition, "A" calculated by formula 6 is an index related to the electrical resistance of the second member 12. The larger A is, the greater the increase in hardness due to quenching.

Iminは、接合部14の熱処理条件に関連する値である。軸部111の断面積の指標「D -D 」が大きいほど、Iminは大きくなる。これは、軸部111によって形成される接合部14の断面積が広いほど、電流密度を確保するための電流値が増大するからである。一方、入熱量は電流値と通電時間との積に比例するので、通電時間tが大きいほど、Iminは小さくなる。また、電気抵抗の指標Aが大きいほど、Iminは小さくなる。 Imin is a value related to the heat treatment conditions of joint 14. The larger the index "D 1 2 -D 2 2 " of the cross-sectional area of shaft portion 111, the larger Imin becomes. This is because the larger the cross-sectional area of joint 14 formed by shaft portion 111, the larger the current value required to ensure current density becomes. On the other hand, since the heat input is proportional to the product of the current value and the current flow time, the longer the current flow time t, the smaller Imin becomes. Also, the larger the electrical resistance index A, the smaller Imin becomes.

また、通電焼戻しにおいては、電流値Iを、上述の式4及び上述の式6によって算出されるImax1以下、且つ式5によって算出されるImax2以下とする必要がある。換言すると、Imax1及びImax2のうち小さい方の値が、電流値Iの上限となる。式中の記号の意味は上述の通りである。
Imax1は、接合部14の熱処理条件に関連する値である。通電焼戻しの際の電流値がImax1を超える場合、接合部14が過度に焼き戻されて接合部の強度が低下したり、接合部14が焼入れられたりするおそれがある。
Imax2は、第1の部材11の座屈防止に関連する値である。通電焼戻しの際の電流値がImax2を超える場合、第1の部材11が座屈し、接合継手が製造できなくなる恐れがある。なお、軸部111の断面積の指標「D -D 」が大きいほどImax2が大きくなり、通電時間tが大きいほどImax2が小さくなる理由は、Iminのそれと同じである。加圧力F(kN)が大きいほどImax2が小さくなる理由は、加圧力Fが大きいほど座屈が生じやすいので、通電による第1の部材11の軟化を抑制しなければならないからである。また、接合部の寸法精度として座屈を許容できる場合は、Imax2を超える電流値であっても適用可能な範囲が存在する場合がある。
通電時間t(s)は、安定して焼戻しを行うために0.4s以上とすることが好ましい。また、通電時間t(s)が長すぎると接合部以外の母材部まで焼戻してしまう可能性があることから、2.0s以下が好ましい。
In the electric tempering, the current value I needs to be equal to or less than Imax1 calculated by the above-mentioned formula 4 and formula 6, and equal to or less than Imax2 calculated by formula 5. In other words, the smaller of Imax1 and Imax2 is the upper limit of the current value I. The symbols in the formulas have the same meanings as described above.
Imax1 is a value related to the heat treatment conditions of the joint 14. If the current value during electric tempering exceeds Imax1, the joint 14 may be excessively tempered, reducing the strength of the joint, or the joint 14 may be quenched.
Imax2 is a value related to the prevention of buckling of the first member 11. If the current value during current tempering exceeds Imax2, the first member 11 may buckle, making it impossible to manufacture a joint. The reason why Imax2 increases as the cross-sectional area index "D 1 2 -D 2 2 " of the shaft portion 111 increases, and Imax2 decreases as the current flow time t increases, is the same as that of Imin. The reason why Imax2 decreases as the pressure force F (kN) increases is that the greater the pressure force F, the more likely buckling occurs, so the softening of the first member 11 due to current flow must be suppressed. In addition, if buckling can be tolerated as a dimensional accuracy of the joint, there may be a range in which a current value exceeding Imax2 is applicable.
The current application time t (s) is preferably 0.4 s or more in order to perform stable tempering, and is preferably 2.0 s or less because if the current application time t (s) is too long, the base material portion other than the joint portion may be tempered.

接合継手の製造方法がさらに、摩擦圧接面の形成の前に、第2の部材12に第3の部材13を重ねる工程と、第3の部材13に第1の部材11の軸部111を貫通させる工程と、を備えてもよい。第1の部材11は、軸部111よりも断面径が大きい頭部112を有するものとすればよい。これにより、第1の部材11の頭部112及び第2の部材12の接合面121によって第3の部材13が挟持される構成を有する接合継手1を製造可能である。 The method for manufacturing a bonded joint may further include a step of overlapping the third member 13 on the second member 12 and a step of passing the shaft portion 111 of the first member 11 through the third member 13 before forming the friction welded surface. The first member 11 may have a head portion 112 having a cross-sectional diameter larger than that of the shaft portion 111. This makes it possible to manufacture a bonded joint 1 having a configuration in which the third member 13 is sandwiched between the head portion 112 of the first member 11 and the bonding surface 121 of the second member 12.

第3の部材13に軸部111を貫通させる手段は特に限定されない。例えば、第3の部材13の硬さが軸部111よりも大幅に軟質である場合、軸部111を高速回転させながら第3の部材13に押し付けることにより、第3の部材13を容易に貫通することができる。例えば、第1の部材11が高強度鋼材であり、第3の部材13が軽金属や板厚の薄い軟鋼である場合に、上述の貫通手段を利用可能である。上述の貫通手段は、貫通及び摩擦圧接接合を連続的に実施することができるので、接合作業効率上好ましい。 The means for penetrating the shaft portion 111 through the third member 13 is not particularly limited. For example, if the hardness of the third member 13 is significantly softer than that of the shaft portion 111, the shaft portion 111 can be pressed against the third member 13 while rotating at high speed, thereby easily penetrating the third member 13. For example, the above-mentioned penetrating means can be used when the first member 11 is a high-strength steel material and the third member 13 is a light metal or a thin mild steel plate. The above-mentioned penetrating means is preferable in terms of the efficiency of the joining work, since it allows the penetration and friction welding to be performed continuously.

一方、第3の部材13に予め貫通孔を設け、軸部111を貫通孔に挿通させてもよい。貫通孔の直径は、軸部111の直径より大きいことが好ましい。ただし、材質及び軸部111の回転数などを適切に選定すれば、たとえ貫通孔の直径が軸部111の直径より小さくとも、軸部111を第3の部材13に貫通させることは可能である。一方、頭部112を用いて第3の部材13を固定するためには、貫通孔の直径を頭部112の直径より小さくすることが求められる。 On the other hand, a through hole may be provided in advance in the third member 13, and the shaft portion 111 may be inserted through the through hole. The diameter of the through hole is preferably larger than the diameter of the shaft portion 111. However, if the material and the number of rotations of the shaft portion 111 are appropriately selected, it is possible to pass the shaft portion 111 through the third member 13 even if the diameter of the through hole is smaller than the diameter of the shaft portion 111. On the other hand, in order to fix the third member 13 using the head portion 112, it is necessary to make the diameter of the through hole smaller than the diameter of the head portion 112.

なお、上述の接合継手の製造方法は、上述された本実施形態に係る接合継手1の製造方法の一例にすぎない。上述の製造方法では通電条件の最適化により接合部14の軟質化を達成しているが、その他の方法を用いることも妨げられない。 The above-mentioned manufacturing method for the joint is merely one example of a manufacturing method for the joint 1 according to the present embodiment. In the above-mentioned manufacturing method, the softening of the joint 14 is achieved by optimizing the current flow conditions, but other methods may also be used.

実施例により本発明の一態様の効果を更に具体的に説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例に過ぎない。本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。 The effect of one aspect of the present invention will be explained in more detail using an example. However, the conditions in the example are merely one example of conditions adopted to confirm the feasibility and effect of the present invention. The present invention is not limited to this one example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and the object of the present invention is achieved.

軸部を有する鋼製の第1の部材の第1の端部を、軸部の断面よりも大きい接合面を有する鋼製の第2の部材に、回転させながら押し付けることにより、軸部の第1の端部と接合面とを摩擦圧接してなる接合部を形成する工程と、電極を用いて、第1の部材及び第2の部材を、第1の部材の軸部の軸線方向に挟持し、電流値をIとして通電することにより、接合部を焼き戻す工程とを含む製造方法によって、種々の接合継手を作製した。 Various types of joints were produced by a manufacturing method including a process of pressing a first end of a first steel member having a shaft against a second steel member having a joint surface larger than the cross section of the shaft while rotating the first end of the shaft to frictionally weld the first end of the shaft to the joint surface, and a process of using electrodes to hold the first member and the second member in the axial direction of the shaft of the first member and pass a current of I through the electrodes to temper the joint.

試験条件は以下の通りとした。なお、第1の部材の種類はすべての接合継手において同一とした。表において、発明範囲外の値には下線を付した。
●第1の部材の種類:炭素量0.22質量%且つ引張強さ1000MPa級の鋼材
●第1の部材の形状:先端が高さ0.8mmの円錐形状である丸棒(直径は表2に記載の通り)
●第2の部材の種類:表1に記載の成分を有する高強度鋼材a~cのいずれか
●第2の部材の形状:接合面の面積が2500cm以上である鋼板
他の条件は、表1又は表2に記載の通りとした。なお、一部の接合継手には通電焼戻しを実施せず、これらの通電条件は表2中で「-」と表記した。表1に記載の成分の残部は鉄及び不純物であった。
The test conditions were as follows. The type of the first member was the same for all the welded joints. In the table, values outside the range of the invention are underlined.
Type of first member: Steel material with a carbon content of 0.22% by mass and a tensile strength of 1000 MPa class Shape of first member: Round bar with a conical tip having a height of 0.8 mm (diameter as shown in Table 2)
● Type of second member: Any of high-strength steel materials a to c having the components listed in Table 1 ● Shape of second member: Steel plate with a joining surface area of 2500 cm2 or more Other conditions were as listed in Table 1 or Table 2. Note that no current tempering was performed on some of the joined joints, and these current conditions are indicated as "-" in Table 2. The balance of the components listed in Table 1 was iron and impurities.

Figure 0007485946000003
Figure 0007485946000003

Figure 0007485946000004
Figure 0007485946000004

これにより得られた種々の接合継手を評価した。具体的には、これら接合継手において接合部の両端の最高硬さの平均値Have、及び接合部の強度を測定し、さらに座屈の有無を確認した。
接合部の両端の最高硬さの平均値Haveは、上述された方法で測定した。接合部の強度は、第2の部材の端を固定し、接合面の垂直方向に第1の部材を引張り、破断するまでに測定された最大荷重とした。
座屈の有無の判断に関して、目視で明らかに曲がっているものや、表の記載と同様の条件にて接合部を作製し、断面観察した際に見られる第1の部材の軸部の直径が元の直径よりも増加していたものを座屈有と判断した。ただし、座屈が生じないほうが好ましいものの、座屈によって接合部の強度が損なわれることが無いのであれば、座屈は許容される。
これらの評価結果を表3に示す。発明範囲外の値には下線を付した。また、参考のために、第2の部材の炭素量Cを「761.6×C-1897.2×C+1848.8×C+168.3」に代入して得られる値を、有効上限硬さとして表3に記載した。
The various bonded joints thus obtained were evaluated. Specifically, the average maximum hardness Have of both ends of the bonded joint and the strength of the bonded joint were measured, and the presence or absence of buckling was also confirmed.
The average value Have of the maximum hardness at both ends of the joint was measured by the method described above. The strength of the joint was defined as the maximum load measured when the end of the second member was fixed and the first member was pulled in the direction perpendicular to the joint surface until the first member broke.
Regarding the judgment of the presence or absence of buckling, those that were clearly bent by visual inspection, and those that, when a joint was made under the same conditions as those described in the table and a cross-section was observed and the diameter of the shaft of the first member was found to have increased from the original diameter, were judged to have buckling. However, although it is preferable that buckling does not occur, buckling is permissible as long as it does not impair the strength of the joint.
These evaluation results are shown in Table 3. Values outside the range of the invention are underlined. For reference, the value obtained by substituting the carbon content C of the second member into "761.6×C 3 - 1897.2×C 2 + 1848.8×C + 168.3" is listed in Table 3 as the effective upper limit hardness.

Figure 0007485946000005
Figure 0007485946000005

番号1の接合継手には、通電焼戻しが行われなかった。そのため、番号1の接合継手においては、Haveが式1を満たさず、十分な接合強度が得られなかった。
番号2~5の接合継手は、電流値及び通電時間以外は、番号1と同じ製造条件が適用されたものである。これらのうち、通電時間に対して電流値が大きすぎる条件で製造された番号3及び6の接合継手においては、丸棒の座屈及び再焼き入れが生じた。通電時間に対して電流値が小さすぎる条件で製造された番号4の接合継手においては、Haveが過剰となり、接合強度を高めることができなかった。一方、通電時間に対する電流値が適正範囲内である条件で製造された番号2及び5の接合継手は、Haveが式1を満たし、番号1の接合継手と比較して接合強度が飛躍的に高められていた。
No electric tempering was performed on the welded joint of No. 1. Therefore, in the welded joint of No. 1, Have did not satisfy Formula 1, and sufficient joint strength was not obtained.
The bonded joints Nos. 2 to 5 were manufactured under the same manufacturing conditions as No. 1, except for the current value and current flow time. Among these, the bonded joints Nos. 3 and 6, which were manufactured under conditions where the current value was too large compared to the current flow time, suffered from buckling and re-quenching of the round bar. The bonded joint No. 4, which was manufactured under conditions where the current value was too small compared to the current flow time, had excessive Have and could not increase the joint strength. On the other hand, the bonded joints Nos. 2 and 5, which were manufactured under conditions where the current value was within the appropriate range relative to the current flow time, satisfied the Have formula 1, and the joint strength was dramatically increased compared to the bonded joint No. 1.

番号7~12の接合継手の製造においては、丸棒の直径(第1の部材の軸部の直径に相当)及び電流値が異なっていたが、その他の条件は同一であった。丸棒の直径に対して電流値が大きすぎる条件で製造された番号7の接合継手においては、座屈及び再焼き入れが生じた。丸棒の直径に対して電流値が大きすぎる条件で製造された番号9及び11の接合継手においては、再焼き入れが生じた。これら接合継手は、高い接合強度を有しなかった。一方、丸棒の直径及び電流値の関係が適正範囲内である条件で製造された番号8、10、及び12の接合継手は、Haveが式1を満たし、高い接合強度を有した。 In the manufacture of joints Nos. 7 to 12, the diameter of the round bar (corresponding to the diameter of the shaft of the first member) and the current value were different, but the other conditions were the same. In joint No. 7, which was manufactured under conditions where the current value was too large compared to the diameter of the round bar, buckling and re-quenching occurred. In joints Nos. 9 and 11, which were manufactured under conditions where the current value was too large compared to the diameter of the round bar, re-quenching occurred. These joints did not have high joint strength. On the other hand, joints Nos. 8, 10, and 12, which were manufactured under conditions where the relationship between the diameter of the round bar and the current value was within the appropriate range, had high joint strength, with Have satisfying formula 1.

番号13及び14の接合継手の製造においては、加圧力が異なっていたが、その他の条件は同一であった。加圧力に対して電流値が大きすぎる条件で製造された番号14の接合継手においては、丸棒の座屈が生じた。一方、加圧力及び電流値の関係が適正範囲内である条件で製造された番号13の接合継手は、Haveが式1を満たし、高い接合強度を有した。ただし、番号14の接合継手には座屈が生じたが、その接合部強度は合否基準を満たしていた。そのため、番号14の接合継手も発明例として取り扱った。 The applied pressure was different in the manufacture of joints No. 13 and 14, but the other conditions were the same. In joint No. 14, which was manufactured under conditions where the current value was too high compared to the applied pressure, buckling occurred in the round bar. On the other hand, in joint No. 13, which was manufactured under conditions where the relationship between the applied pressure and the current value was within the appropriate range, Have satisfied formula 1 and had high joint strength. However, although buckling occurred in joint No. 14, the joint strength met the pass/fail criteria. Therefore, joint No. 14 was also treated as an example of the invention.

番号15及び17の接合継手には、通電焼戻しが行われなかった。そのため、番号15及び17の接合継手においては、Haveが式1を満たさず、十分な接合強度が得られなかった。
番号16及び18の接合継手は、第2の部材の成分が、番号15及び17の接合継手とそれぞれ同一であった。番号16及び18の接合継手は、適切な条件による通電焼戻しが行われたので、Haveが式1を満たし、番号15及び17の接合継手それぞれと比較して接合強度が飛躍的に高められていた。
No electric tempering was performed on the welded joints of Nos. 15 and 17. Therefore, in the welded joints of Nos. 15 and 17, Have did not satisfy Formula 1, and sufficient joint strength was not obtained.
The bonded joints of Nos. 16 and 18 had the same composition of the second member as the bonded joints of Nos. 15 and 17, respectively. The bonded joints of Nos. 16 and 18 were subjected to electric tempering under appropriate conditions, so that Have satisfied Formula 1 and the bond strength was dramatically increased compared to the bonded joints of Nos. 15 and 17, respectively.

1 接合継手
11 第1の部材
111 軸部
112 頭部
12 第2の部材
121 接合面
13 第3の部材
14 接合部
15 摩擦圧接界面
X 接合面から深さ0.1mmの位置
Y 軸線
E 電極
Reference Signs List 1: Welded joint 11: First member 111: Shank 112: Head 12: Second member 121: Welding surface 13: Third member 14: Welded portion 15: Friction welded interface X: Position Y at a depth of 0.1 mm from the welded surface: Axis E: Electrode

Claims (13)

軸部を有する鋼製の第1の部材と、
前記軸部の断面よりも大きい接合面を有する鋼製の第2の部材と、
前記第1の部材の第1の端部と、前記接合面とを摩擦圧接してなる接合部と、
を備える接合継手であって、
前記軸部の軸線を通る、前記接合継手の断面において、前記接合面から深さ0.1mmの位置を、前記接合部及びその周辺にわたって連続的に硬さ測定することによって得られる、前記接合部の両端の最高硬さの平均値Haveが、式1を満たす
接合継手。
Have≦761.6×C-1897.2×C+1848.8×C+168.3……(式1)
ここで、前記式1における記号「C」は、前記第2の部材の単位質量%での炭素量である。
a first member made of steel and having a shaft portion;
a second member made of steel having a joining surface larger than a cross section of the shaft portion;
a joint formed by frictionally welding a first end portion of the first member and the joint surface;
A joint joint comprising:
A bonded joint, in which an average value Have of maximum hardness at both ends of the bonded joint, obtained by continuously measuring hardness over the bonded joint and its periphery at a position 0.1 mm deep from the bonded surface in a cross section of the bonded joint passing through the axis of the shaft portion, satisfies Formula 1.
Have≦761.6×C 3 −1897.2×C 2 +1848.8×C+168.3……(Formula 1)
Here, the symbol "C" in the formula 1 is the carbon content in unit mass % of the second member.
前記第2の部材が、前記第1の部材と前記第2の部材との界面である摩擦圧接界面から深さ0.1mm以内の領域において、焼戻しマルテンサイトを有する
ことを特徴とする請求項1に記載の接合継手。
The welded joint according to claim 1, characterized in that the second member has tempered martensite in a region within a depth of 0.1 mm from a friction welded interface, which is an interface between the first member and the second member.
前記第2の部材の前記炭素量が0.20質量%以上である
ことを特徴とする請求項1又は2に記載の接合継手。
3. The welded joint according to claim 1, wherein the carbon content of the second member is 0.20 mass % or more.
前記第1の部材と前記第2の部材との界面である摩擦圧接界面は、前記第2の部材に入り込んでおり、
前記軸線を通る、前記接合継手の前記断面において測定される、前記第2の部材の前記接合面に対する前記摩擦圧接界面の最大深さが0.3mm以上である
ことを特徴とする請求項1~3のいずれか一項に記載の接合継手。
a friction welded interface between the first member and the second member penetrates into the second member,
The welded joint according to any one of claims 1 to 3, characterized in that a maximum depth of the friction welded interface with respect to the welded surface of the second member, measured in the cross section of the welded joint passing through the axis, is 0.3 mm or more.
前記第2の部材が、板厚0.8~3.0mmの鋼板である
ことを特徴とする請求項1~4のいずれか一項に記載の接合継手。
The joint according to any one of claims 1 to 4, characterized in that the second member is a steel plate having a thickness of 0.8 to 3.0 mm.
前記接合面の面積が、前記軸部の断面積の3.0倍以上である
ことを特徴とする請求項1~5のいずれか一項に記載の接合継手。
6. The joint according to claim 1, wherein the area of the joining surface is 3.0 times or more the cross-sectional area of the shaft portion.
前記軸部の、前記軸線に垂直な断面が回転対称形状であり、
当該断面の外接円の直径が2.0~10.0mmである
ことを特徴とする請求項1~6のいずれか一項に記載の接合継手。
A cross section of the shaft portion perpendicular to the axis line has a rotationally symmetric shape,
7. The joint according to claim 1, wherein the diameter of the circumscribing circle of the cross section is 2.0 to 10.0 mm.
前記軸部の、前記軸線に垂直な断面が円、又は正多角形である
ことを特徴とする請求項7に記載の接合継手。
8. The joint according to claim 7, wherein a cross section of the shaft portion perpendicular to the axis is a circle or a regular polygon.
前記第1の部材が、その第2の端部に配された頭部を有し、
前記接合継手は、前記頭部と前記第2の部材との間に設けられた第3の部材をさらに備え、
前記第1の部材の前記軸部は、前記第3の部材を貫通し、
前記第3の部材は、前記第1の部材の前記頭部と、前記第2の部材の接合面とによって挟持されている
ことを特徴とする請求項1~8のいずれか一項に記載の接合継手。
the first member having a head disposed at a second end thereof;
The joint further includes a third member provided between the head and the second member,
The shaft portion of the first member passes through the third member,
The joint joint according to any one of claims 1 to 8, characterized in that the third member is clamped between the head of the first member and the joint surface of the second member.
前記第3の部材が鋼板である
ことを特徴とする請求項9に記載の接合継手。
The bonded joint of claim 9, wherein the third member is a steel plate.
請求項1~10のいずれか一項に記載の接合継手を有する自動車部品。 An automobile part having a joint according to any one of claims 1 to 10. 軸部を有する鋼製の第1の部材の第1の端部を、前記軸部の断面よりも大きい接合面を有する鋼製の第2の部材に、回転させながら押し付けることにより、前記軸部の前記第1の端部と前記接合面とを摩擦圧接してなる接合部を形成する工程と、
電極を用いて、前記第1の部材及び前記第2の部材を、前記第1の部材の前記軸部の軸線方向に挟持し、電流値をIとして通電することにより、前記接合部を焼き戻す工程と、
を備え、
前記電流値Iを、下記式2を満たす範囲内とする
接合継手の製造方法。
Figure 0007485946000006
ここで、式3、式4、及び式5によって定義されるImin、Imax1、及びImax2の単位はkAであり、
式3、式4、及び式5において、記号「D」は、前記軸部の前記断面の外接円の、単位mmでの直径であり、記号「D」は、前記軸部の中空部の前記断面の外接円の、単位mmでの直径であり、前記軸部が中実である場合はD=0とされ、記号「t」は、単位秒での通電時間であり、記号「F」は、単位kNでの加圧力であり、
式6において、記号「C」「Si」「Mn」及び「Cr」は、それぞれ、前記第2の部材の単位質量%でのC含有量、Si含有量、Mn含有量、及びCr含有量である。
a step of pressing a first end of a first steel member having a shaft portion against a second steel member having a joint surface larger than a cross section of the shaft portion while rotating the first steel member, thereby forming a joint by frictionally welding the first end of the shaft portion and the joint surface;
a step of using electrodes to clamp the first member and the second member in an axial direction of the shaft portion of the first member, and passing a current of a value I through the electrodes to temper the joint;
Equipped with
A method for manufacturing a joint, in which the current value I is within a range that satisfies the following formula 2.
Figure 0007485946000006
where Imin, Imax1, and Imax2 defined by Equation 3, Equation 4, and Equation 5 have units of kA;
In Equation 3, Equation 4, and Equation 5, the symbol "D 1 " is the diameter, in mm, of the circumscribing circle of the cross section of the shaft portion, the symbol "D 2 " is the diameter, in mm, of the circumscribing circle of the cross section of the hollow portion of the shaft portion, and when the shaft portion is solid, D 2 = 0, the symbol "t" is the current application time, in seconds, and the symbol "F" is the applied pressure, in kN.
In formula 6, the symbols "C", "Si", "Mn" and "Cr" respectively represent the C content, Si content, Mn content and Cr content in unit mass % of the second member.
前記接合継手の製造方法がさらに、前記接合部の形成の前に、
前記第2の部材に第3の部材を重ねる工程と、
前記第3の部材に前記第1の部材の前記軸部を貫通させる工程と、
を備え、
前記第1の部材が、その第2の端部に頭部を有する
ことを特徴とする請求項12に記載の接合継手の製造方法。
The method for manufacturing the bonded joint further comprises, before forming the bonded portion,
overlaying a third member on the second member;
a step of passing the shaft portion of the first member through the third member;
Equipped with
The method of claim 12, wherein the first member has a head at a second end thereof.
JP2020153852A 2020-09-14 2020-09-14 Joint, automobile part, and method for manufacturing joint Active JP7485946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020153852A JP7485946B2 (en) 2020-09-14 2020-09-14 Joint, automobile part, and method for manufacturing joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020153852A JP7485946B2 (en) 2020-09-14 2020-09-14 Joint, automobile part, and method for manufacturing joint

Publications (2)

Publication Number Publication Date
JP2022047845A JP2022047845A (en) 2022-03-25
JP7485946B2 true JP7485946B2 (en) 2024-05-17

Family

ID=80781511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020153852A Active JP7485946B2 (en) 2020-09-14 2020-09-14 Joint, automobile part, and method for manufacturing joint

Country Status (1)

Country Link
JP (1) JP7485946B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184742A (en) 2010-03-09 2011-09-22 Kobe Steel Ltd Steel for machine structure suitable for friction pressure welding, and friction pressure-welded component
WO2014168142A1 (en) 2013-04-11 2014-10-16 株式会社フジコー Method for producing rolling roll, rolling roll, and device for producing rolling roll

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184742A (en) 2010-03-09 2011-09-22 Kobe Steel Ltd Steel for machine structure suitable for friction pressure welding, and friction pressure-welded component
WO2014168142A1 (en) 2013-04-11 2014-10-16 株式会社フジコー Method for producing rolling roll, rolling roll, and device for producing rolling roll
US20170095884A1 (en) 2013-04-11 2017-04-06 Fujico Co., Ltd. Method for manufacturing mill roll, mill roll and manufacturing apparatus of mill roll

Also Published As

Publication number Publication date
JP2022047845A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
KR100785557B1 (en) Steel sheet for dissimilar materials weldbonding to aluminum material and dissimilar materials bonded body
JP4968201B2 (en) Laser welded structural member and manufacturing method thereof
US20100143747A1 (en) Liquid phase diffusion bonding method of metal machine part and such metal machine part
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
RU2633150C2 (en) Obtained by point arc welding connection and method of its manufacture
JP6001478B2 (en) Spot welded joint
WO2018038045A1 (en) Automobile member having resistance weld
JP5895430B2 (en) Resistance spot welding joint and resistance spot welding method of high strength thin steel sheet
JP2007332452A (en) High-tensile steel sheet for resistance welding and joining process therefor
JP7127129B2 (en) Welded steel parts used as automobile parts and method for manufacturing said welded steel parts
JP7485946B2 (en) Joint, automobile part, and method for manufacturing joint
JP2006159212A (en) Liquid phase diffusion joining method for metallic machine component, and metallic machine component
JP6793042B2 (en) Fittings
JPH11104865A (en) Welding and welding structure
JP2003266182A (en) Friction stir welding method for different kind of metallic material
KR20190021385A (en) Arc spot welding method
JP5008173B2 (en) High strength steel plate for resistance welding and joining method thereof
JP7156541B2 (en) Bonded joint, automotive member, and method for manufacturing bonded joint
KR102589430B1 (en) Resistance spot welds and resistance spot welding methods, and resistance spot welding joints and manufacturing methods of resistance spot welding joints
CN112739486A (en) Joining structure, joining method, and automotive member
JP2021171774A (en) Joint member, welded joint, method for manufacturing welded joint, and method for manufacturing joint member
JP7151762B2 (en) SPOT WELD JOINTS, MOTOR VEHICLE STRUCTURE COMPONENTS WITH SPOT WELD JOINTS, AND METHOD FOR MANUFACTURING THE SPOT WELD JOINTS
JP7368716B2 (en) Manufacturing method of resistance spot welding joints
JP2003080385A (en) Laser-welded steel structural member and steel material used in its steel structural member
Aibara et al. Cold spot joining of high-strength steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7485946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150