JP2003080385A - Laser-welded steel structural member and steel material used in its steel structural member - Google Patents

Laser-welded steel structural member and steel material used in its steel structural member

Info

Publication number
JP2003080385A
JP2003080385A JP2001246496A JP2001246496A JP2003080385A JP 2003080385 A JP2003080385 A JP 2003080385A JP 2001246496 A JP2001246496 A JP 2001246496A JP 2001246496 A JP2001246496 A JP 2001246496A JP 2003080385 A JP2003080385 A JP 2003080385A
Authority
JP
Japan
Prior art keywords
steel
welding
laser
weighted average
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001246496A
Other languages
Japanese (ja)
Other versions
JP3705171B2 (en
Inventor
Noboru Yoda
登 誉田
Kazushige Arimochi
和茂 有持
Tomoya Fujiwara
知哉 藤原
Ichiro Seta
一郎 瀬田
Tomoya Kawabata
友弥 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001246496A priority Critical patent/JP3705171B2/en
Publication of JP2003080385A publication Critical patent/JP2003080385A/en
Application granted granted Critical
Publication of JP3705171B2 publication Critical patent/JP3705171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel structural member having a laser welding part excellent in fatigue strength property and steel material used in its steel structural member. SOLUTION: In this laser-welded steel structural member, the value of weighted average of welding metal side vicat hardness in the region where the distance from the bonded part after laser welding is within 1.6 mm on the position of 1 mm depth from the surface of base material is <=1.6 times of the value of weighted average of welding heat affecting part side vicat hardness in the region where the distance is within 1.6 mm. Therein, the value of weighted average of the vicat hardness in the region where the distance from the bonded part is within 1.6 mm denotes the value calculated by the following expression when the test is performed with a test force of <=9.807N; 0.4×HV10.4 +0.3×HV10.8 +0.2×HV11.2 +0.1×HV11.6 , therein, the Vickers hardness on the position where the distance from the bonded part is L mm is HV1L.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ溶接された
鋼構造部材及びその鋼構造部材に用いる鋼材に関し、詳
しくは、疲労強度特性に優れたレーザ溶接部を有する鋼
構造部材及びその鋼構造部材に用いる鋼材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser welded steel structural member and a steel material used for the steel structural member. More specifically, the present invention relates to a steel structural member having a laser welded portion having excellent fatigue strength characteristics and a steel structural member thereof. Steel materials used for.

【0002】[0002]

【従来の技術】橋梁、船舶、海洋構造物、建築物、タン
クなど各種の鋼構造物、なかでもその溶接部は破壊の起
点となることも多く、強度、靱性、疲労特性など各種の
機械的性質に優れていることが要求され、上記鋼構造物
に使用される鋼材には、一般に構造安全性や経済性の観
点から優れた溶接施工性が要求される。
2. Description of the Related Art Various steel structures such as bridges, ships, offshore structures, buildings, and tanks, especially their welds are often the starting point of fracture, and various mechanical properties such as strength, toughness, fatigue properties, etc. It is required to have excellent properties, and the steel materials used for the above steel structures are generally required to have excellent weldability in terms of structural safety and economical efficiency.

【0003】前記鋼構造物に要求される機械的性質のう
ちでも特に疲労特性は、降伏応力以下の比較的小さな応
力でも構造物全体の破壊に到る可能性があるため、安全
確保の観点から重要な特性である。なお、鋼構造物にお
ける溶接部の疲労強度特性は母材のそれより劣ることが
多いので極めて重要である。
Among the mechanical properties required for the steel structure, particularly the fatigue property may lead to the destruction of the entire structure even with a relatively small stress equal to or lower than the yield stress. This is an important characteristic. It should be noted that the fatigue strength characteristic of the welded portion in the steel structure is often inferior to that of the base metal, and is therefore extremely important.

【0004】溶接金属と溶接熱影響部とからなる溶接部
の特性は、溶接方法、つまりエネルギ供給源の影響を受
ける。
The characteristics of the weld, which consists of the weld metal and the heat affected zone, are influenced by the welding method, that is, the energy supply source.

【0005】従来、溶接のエネルギ供給源としては、
電気的エネルギ、化学的エネルギ、機械的エネル
ギ、超音波エネルギ及び、光エネルギが知られてお
り、それぞれのエネルギ源の代表的な溶接方法として、
アーク溶接や抵抗溶接、ガス溶接やテルミット溶
接、摩擦溶接、超音波溶接、レーザ溶接などがあ
る。
Conventionally, as an energy supply source for welding,
Electrical energy, chemical energy, mechanical energy, ultrasonic energy, and light energy are known, and as typical welding methods of respective energy sources,
There are arc welding, resistance welding, gas welding, thermite welding, friction welding, ultrasonic welding, laser welding, etc.

【0006】上記溶接方法のなかでレーザ溶接はエネル
ギを極めて高い密度に収束できる。このため、その溶接
入熱量は他の溶接方法に比べて著しく低く、溶接による
変形を小さく抑えることが可能である。したがって、レ
ーザ溶接は薄鋼板の接合に加えて、近年では造船、建設
機械などの分野における厚鋼板の接合にもその用途を広
げつつあり、又、「レーザ加工」は薄鋼板や厚鋼板の切
断にも用いられつつある。なお、レーザ加工は非接触の
切断方法であるので加工歪みが生じやすい場合にも適用
できるし、レーザスポットの軌跡は任意に描くことが可
能なため様々な形状にも対応することができる。
Among the above welding methods, laser welding is capable of focusing energy to an extremely high density. Therefore, the amount of heat input for welding is remarkably lower than that of other welding methods, and it is possible to suppress deformation due to welding to be small. Therefore, in addition to joining thin steel sheets, laser welding has recently been expanding its application to joining thick steel sheets in fields such as shipbuilding and construction machinery, and "laser processing" refers to cutting thin steel sheets and thick steel sheets. It is being used for. Since laser processing is a non-contact cutting method, it can be applied even when processing distortion is likely to occur, and since the trajectory of the laser spot can be arbitrarily drawn, it can be used for various shapes.

【0007】レーザ溶接した場合の鋼構造物やその溶接
継手に対しても、従来の他の溶接方法による場合と同
様、高い疲労強度特性を確保することは極めて重要であ
る。
As with other conventional welding methods, it is extremely important to secure high fatigue strength characteristics for a steel structure and its welded joint after laser welding.

【0008】レーザ溶接した場合の溶接部疲労強度の向
上に関する技術として、特開平11−58060号公報
に「レーザ突き合わせ溶接用治具及びレーザ突き合わせ
溶接による溶接部構造」が開示されている。しかし、前
記公報で提案された技術はレーザ溶接施工技術に関連す
るもので、溶接部の疲労強度向上のためには特殊なレー
ザ突き合わせ溶接用治具を用いる必要があり、必ずしも
一般的な技術とはいい難い。
As a technique for improving the fatigue strength of the welded portion in the case of laser welding, Japanese Patent Application Laid-Open No. 11-58060 discloses "a jig for laser butt welding and a welded portion structure by laser butt welding". However, the technique proposed in the above publication is related to the laser welding construction technique, and in order to improve the fatigue strength of the welded portion, it is necessary to use a special laser butt welding jig, which is not always a general technique. Is hard to say.

【0009】特公平5−14782号公報には、「疲労
特性に優れたレーザ加工用鋼板」に関する技術が開示さ
れている。しかし、この公報で提案された技術は、単に
自由表面となっているレーザ切断部の疲労強度に優れる
レーザ加工用鋼板に関するものである。このため、この
技術をレーザ溶接に適用しても必ずしもレーザ溶接部の
疲労強度を高めることはできない。
Japanese Patent Publication No. 5-14782 discloses a technique relating to "a steel plate for laser processing having excellent fatigue characteristics". However, the technique proposed in this publication relates to a steel plate for laser processing which is excellent in fatigue strength of a laser cutting portion which is simply a free surface. Therefore, even if this technique is applied to laser welding, the fatigue strength of the laser welded portion cannot always be increased.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、疲労強度特性に優れ
たレーザ溶接部を有する鋼構造部材と、その鋼構造部材
に用いる鋼材を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a steel structural member having a laser welded portion excellent in fatigue strength characteristics and a steel material used for the steel structural member. To provide.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記
(1)〜(3)に示すレーザ溶接された鋼構造部材、
(4)及び(5)に示すその鋼構造部材に用いる鋼材に
ある。
The gist of the present invention is to provide a laser-welded steel structural member as set forth in (1) to (3) below.
The steel material used for the steel structural member shown in (4) and (5).

【0012】(1)母材表面から1mmの深さにある位
置で、レーザ溶接後のボンド部からの距離が1.6mm
以内の領域における溶接金属側ビッカース硬さの重み付
き平均値が、前記1.6mm以内の領域における溶接熱
影響部側ビッカース硬さの重み付き平均値の1.6倍以
下であるレーザ溶接された鋼構造部材。
(1) At a position 1 mm deep from the surface of the base metal, the distance from the bond portion after laser welding is 1.6 mm.
The weighted average value of the Vickers hardness on the weld metal side in the area within 1.6 mm is 1.6 times or less the weighted average value of the Vickers hardness on the welding heat affected zone in the area within 1.6 mm. Steel structural member.

【0013】ここで、上記ボンド部からの距離が1.6
mm以内の領域におけるビッカース硬さの重み付き平均
値とは、試験力9.807N以下で試験した際、ボンド
部からの距離がD(mm)の位置でのビッカース硬さを
HV1 として下記 (1)式で表される値を指す。
Here, the distance from the bond portion is 1.6.
The weighted average value of Vickers hardness in the region within mm is the following when the Vickers hardness at the position where the distance from the bond portion is D (mm) is HV1 D when tested with a test force of 9.807 N or less ( 1) Indicates the value represented by the formula.

【0014】 重み付き平均値=0.4×HV10.4 +0.3×HV10.8 +0.2× HV11.2 +0.1×HV11.6 ・・・(1)。Weighted average value = 0.4 × HV1 0.4 + 0.3 × HV1 0.8 + 0.2 × HV1 1.2 + 0.1 × HV1 1.6 (1)

【0015】(2)鋼が質量%で、C:0.003〜
0.07%、Si:0.1〜0.6%、Mn:0.3〜
2.0%、Al:0.01〜0.1%を含有し、残部は
Fe及び不純物からなる上記(1)に記載のレーザ溶接
された鋼構造部材。
(2) Steel is% by mass, C: 0.003 to
0.07%, Si: 0.1-0.6%, Mn: 0.3-
The laser-welded steel structural member according to (1) above, which contains 2.0%, Al: 0.01 to 0.1%, and the balance being Fe and impurities.

【0016】(3)鋼が質量%で、C:0.003〜
0.07%、Si:0.1〜0.6%、Mn:0.3〜
2.0%、Al:0.01〜0.1%を含有し、更に、 第1群:Cr:0.01〜0.15%、Ni:0.01
〜0.15%、Cu:0.1〜0.35%のうちの1種
以上、 第2群:V:0.01〜0.07%、Nb:0.01〜
0.06%のうちの1種以上、 第3群:Ti:0.003〜0.015%、Ca:0.
0005〜0.006%のうちの1種以上、 の1群以上をも含み、残部はFe及び不純物からなり、
不純物中のMoは0.08%以下である上記(1)に記
載のレーザ溶接された鋼構造部材。
(3) Steel is mass%, C: 0.003 to
0.07%, Si: 0.1-0.6%, Mn: 0.3-
2.0%, Al: 0.01 to 0.1% is contained, and further, the first group: Cr: 0.01 to 0.15%, Ni: 0.01
.About.0.15%, Cu: one or more of 0.1 to 0.35%, second group: V: 0.01 to 0.07%, Nb: 0.01 to
One or more of 0.06%, the third group: Ti: 0.003 to 0.015%, Ca: 0.0.
At least one of 0005 to 0.006%, including at least one group of, and the balance consisting of Fe and impurities,
The laser-welded steel structural member according to (1) above, wherein Mo in the impurities is 0.08% or less.

【0017】(4)レーザ出力L(W(ワット))、熱
効率η、溶接速度v(cm/秒)の条件でレーザ溶接さ
れ、母材表面から1mmの深さにある位置で、レーザ溶
接後のボンド部からの距離が1.6mm以内の領域にお
ける溶接金属側ビッカース硬さの重み付き平均値が、前
記1.6mm以内の領域における溶接熱影響部側ビッカ
ース硬さの重み付き平均値の1.6倍以下である厚さh
(cm)の鋼構造部材に用いる鋼材であって、質量%
で、C:0.003〜0.07%、Si:0.1〜0.
6%、Mn:0.3〜2.0%、Al:0.01〜0.
1%を含有し、残部はFe及び不純物からなり、不純物
中のMoは0.08%以下で、且つ下記 (2)で表される
値が100以下である鋼材。
(4) Laser welding was performed under the conditions of laser output L (W (watt)), thermal efficiency η, and welding speed v (cm / sec), and after laser welding at a position at a depth of 1 mm from the base metal surface. The weighted average value of the Vickers hardness on the weld metal side in the region within 1.6 mm from the bond portion is 1 of the weighted average value of the Vickers hardness on the weld heat affected region in the region within 1.6 mm. Thickness h less than 6 times
(Cm) Steel material used for steel structural members, in mass%
C: 0.003 to 0.07%, Si: 0.1 to 0.
6%, Mn: 0.3-2.0%, Al: 0.01-0.
A steel material containing 1%, the balance consisting of Fe and impurities, Mo in the impurities being 0.08% or less, and the value represented by the following (2) being 100 or less.

【0018】 {3.91×10×(Lη)−1.2×(vh)1.2}/(e−24(H P1−0.2) +1)・・・(2)、 ここで、HP1は元素記号をその合金元素の質量%での
含有量として下記 (3)式で表される値である。
{3.91 × 10 6 × (Lη) −1.2 × (vh) 1.2 } / (e −24 (H P1 −0.2) +1) (2), where , HP1 is a value represented by the following formula (3) with the element symbol being the content of the alloying element in mass%.

【0019】 HP1=C+(Si/50)+(Mn/20)+(Mo/30)・・・(3)。[0019]   HP1 = C + (Si / 50) + (Mn / 20) + (Mo / 30) (3).

【0020】(5)レーザ出力L(W(ワット))、熱
効率η、溶接速度v(cm/秒)の条件でレーザ溶接さ
れ、母材表面から1mmの深さにある位置で、レーザ溶
接後のボンド部からの距離が1.6mm以内の領域にお
ける溶接金属側ビッカース硬さの重み付き平均値が、前
記1.6mm以内の領域における溶接熱影響部側ビッカ
ース硬さの重み付き平均値の1.6倍以下である厚さh
(cm)の鋼構造部材に用いる鋼材であって、質量%
で、C:0.003〜0.07%、Si:0.1〜0.
6%、Mn:0.3〜2.0%、Al:0.01〜0.
1%を含有し、更に、 第1群:Cr:0.01〜0.15%、Ni:0.01
〜0.15%、Cu:0.1〜0.35%のうちの1種
以上、 第2群:V:0.01〜0.07%、Nb:0.01〜
0.06%のうちの1種以上、 第3群:Ti:0.003〜0.015%、Ca:0.
0005〜0.006%のうちの1種以上、 の1群以上をも含み、残部はFe及び不純物からなり、
不純物中のMoは0.08%以下で、且つ下記 (4)で表
される値が100以下である鋼材。
(5) Laser welding was performed under the conditions of laser output L (W (watt)), thermal efficiency η, and welding speed v (cm / sec), and after laser welding at a position 1 mm deep from the base metal surface. The weighted average value of the Vickers hardness on the weld metal side in the region within 1.6 mm from the bond portion is 1 of the weighted average value of the Vickers hardness on the weld heat affected region in the region within 1.6 mm. Thickness h less than 6 times
(Cm) Steel material used for steel structural members, in mass%
C: 0.003 to 0.07%, Si: 0.1 to 0.
6%, Mn: 0.3-2.0%, Al: 0.01-0.
1%, further, the first group: Cr: 0.01 to 0.15%, Ni: 0.01
.About.0.15%, Cu: one or more of 0.1 to 0.35%, second group: V: 0.01 to 0.07%, Nb: 0.01 to
One or more of 0.06%, the third group: Ti: 0.003 to 0.015%, Ca: 0.0.
At least one of 0005 to 0.006%, including at least one group of, and the balance consisting of Fe and impurities,
A steel material in which Mo in impurities is 0.08% or less and the value represented by the following (4) is 100 or less.

【0021】 {3.91×10×(Lη)−1.2×(vh)1.2}/(e−24(H P2−0.2) +1)・・・・・(4)、 ここで、HP2は元素記号をその合金元素の質量%での
含有量として下記 (5)式で表される値である。
{3.91 × 10 6 × (Lη) −1.2 × (vh) 1.2 } / (e −24 (H P2-0.2) +1) (4), Here, HP2 is a value represented by the following formula (5) with the element symbol being the content of the alloying element in mass%.

【0022】 HP2=C+(Si/50)+{(Mn+Cu+Cr)/20}+(Ni/6 0)+(V/20)+Ca+(Mo/30)・・・(5)。[0022]   HP2 = C + (Si / 50) + {(Mn + Cu + Cr) / 20} + (Ni / 6 0) + (V / 20) + Ca + (Mo / 30) ... (5).

【0023】なお、熱効率ηとはレーザ照射されたエネ
ルギがどの程度被処理材である鋼材中に投入されるかを
示す指標であり、出力エネルギに対する比率をいう。
The thermal efficiency η is an index showing how much energy irradiated by the laser is input into the steel material to be treated, and is a ratio to the output energy.

【0024】本発明者らは、疲労特性に優れたレーザ溶
接部を有する鋼構造部材を得るために、先ず、レーザ溶
接した場合の疲労亀裂発生部位に関して調査した。
In order to obtain a steel structural member having a laser welded portion having excellent fatigue characteristics, the present inventors first investigated the fatigue crack initiation site in laser welding.

【0025】その結果、レーザ溶接の場合にも従来の他
の溶接方法の場合と同様に溶接止端(以下、単に「止
端」という)で疲労亀裂が発生することが明らかになっ
た。なお、溶接継手における疲労亀裂発生部位が止端と
なるのは、止端は形状変化部であるため歪みが集中する
という形状要因と、母材の熱影響部と溶接金属との境界
であるボンド部の一部であるため材料面で不均質になっ
ているという材料面的要因とによるものである。
As a result, it was revealed that even in the case of laser welding, fatigue cracks occur at the weld toe (hereinafter simply referred to as "toe") as in the case of other conventional welding methods. Note that the fatigue crack initiation site in the welded joint becomes the toe, because the toe is the shape change portion and the strain is concentrated, and the shape factor and the boundary between the heat-affected zone of the base metal and the weld metal are the bonds. This is due to the material factor that the material is inhomogeneous because it is a part of the part.

【0026】次いで、本発明者らは、レーザ溶接した場
合の溶接接合部硬さ分布と疲労特性との関係について検
討を加えた。これは、レーザ溶接は従来の他の溶接方法
に比べて溶接入熱が極めて少なく溶接直後の冷却速度が
非常に速いので、レーザ溶接した場合、前記大きな冷却
速度のために鋼の成分系によっては溶接金属の硬さが母
材の硬さに比べてかなり高い値となり、溶接金属と溶接
熱影響部との境界であるボンド部の近傍における硬さ分
布が従来の他の溶接継手と大きく異なることがあるた
め、その影響を明らかにしようとするものである。
Next, the present inventors examined the relationship between the welded joint hardness distribution and the fatigue characteristics in the case of laser welding. This is because laser welding has very little welding heat input compared to other conventional welding methods and the cooling rate immediately after welding is very fast.Therefore, when laser welding is performed, depending on the composition system of the steel due to the large cooling rate. The hardness of the weld metal is much higher than the hardness of the base metal, and the hardness distribution near the bond, which is the boundary between the weld metal and the heat-affected zone, is significantly different from other conventional welded joints. Therefore, we are trying to clarify the effect.

【0027】すなわち、構造用鋼として適用可能な各種
の鋼を実験室規模で数多く溶製して鋼板を得、実際にレ
ーザ溶接を初めとする各種の溶接方法を施して溶接継手
を作製し、この継手から機械加工によって試験部幅が4
0mm、試験部平行長さが250mm、掴み部幅が70
mmで全長が700mmの軸力疲労試験片を採取し、軸
力荷重制限下のサイン波形(sin波形)で荷重比Rが
0.1の条件での疲労試験を行い、継手疲労強度を評価
した。
That is, a large number of various types of steel applicable as structural steels are melted on a laboratory scale to obtain steel sheets, and various welding methods including laser welding are actually applied to produce welded joints, The width of the test part is 4 by machining from this joint.
0 mm, parallel length of test part is 250 mm, grip part width is 70
A shaft fatigue test piece having a length of 700 mm and a total length of 700 mm was sampled, and a fatigue test was performed under a condition of a load ratio R of 0.1 with a sine waveform (sin waveform) under axial load limitation to evaluate the joint fatigue strength. .

【0028】その結果、先ず下記の事項が明らかになっ
た。
As a result, the following matters were first clarified.

【0029】(a)同じ素材鋼の場合、炭酸ガスアーク
溶接など従来の溶接方法では、鋼板の引張強度レベルを
変えると、鋼板自身の母材疲労強度は引張強度に応じて
向上するが、溶接継手の疲労強度には鋼板の強度レベル
による相違は認められない。
(A) In the case of the same material steel, in the conventional welding method such as carbon dioxide arc welding, when the tensile strength level of the steel sheet is changed, the base material fatigue strength of the steel sheet itself is improved according to the tensile strength. There is no difference in the fatigue strength of the steel sheets depending on the strength level of the steel sheet.

【0030】(b)レーザ溶接した場合の継手の疲労強
度には明瞭な鋼材依存性が認められる。
(B) A clear steel material dependency is recognized in the fatigue strength of the joint after laser welding.

【0031】そこで次に、レーザ溶接の場合に溶接継手
の疲労強度が鋼材に依存する現象に関し、溶接施工によ
って生じる継手部の材料的又は形状的不均質性に着目し
て詳細に検討した。その結果、次の新たな知見を得た。
Then, the phenomenon in which the fatigue strength of the welded joint depends on the steel material in the case of laser welding was examined in detail, focusing on the material or shape heterogeneity of the joint portion caused by the welding process. As a result, the following new findings were obtained.

【0032】(c)溶接金属と溶接熱影響部との境界で
あるボンド部の近傍における硬さ分布が疲労亀裂発生部
の応力分布に大きく影響し、上記ボンド部の近傍におけ
る硬さ分布は、母材となる鋼の化学組成の影響を受け
る。
(C) The hardness distribution in the vicinity of the bond portion, which is the boundary between the weld metal and the weld heat affected zone, greatly affects the stress distribution in the fatigue crack initiation portion, and the hardness distribution in the vicinity of the bond portion is It is affected by the chemical composition of the base steel.

【0033】(d)ボンド部近傍の形状及びこの部位の
材料によって疲労亀裂の発生と疲労強度が決定される。
(D) Fatigue crack initiation and fatigue strength are determined by the shape of the vicinity of the bond portion and the material of this portion.

【0034】そこで更に、レーザ溶接部の硬さ分布(す
なわち強度分布)を反映させて、ボンド部からの距離に
応じて応力−歪み関係を適切に入力、すなわち、予め鋼
板の引張強度と硬さとの関係をマスターカーブとして準
備しておき、硬さ値から引張強度を推定し、又、その引
張強度値を基に一様伸び、降伏応力を設定して弾塑性有
限要素解析することを行った。その結果下記の事項が判
明した。
Then, the hardness distribution (that is, strength distribution) of the laser welded portion is further reflected, and the stress-strain relationship is appropriately input according to the distance from the bond portion, that is, the tensile strength and hardness of the steel sheet are preliminarily set. Was prepared as a master curve, the tensile strength was estimated from the hardness value, and based on the tensile strength value, uniform elongation and yield stress were set and elasto-plastic finite element analysis was performed. . As a result, the following matters were found.

【0035】(e)ボンド部近傍における硬さ変化が大
きい場合、硬さ急変部での歪み集中が大きくなり疲労亀
裂の発生が容易になる。したがって、硬さ分布が均一な
ほど、レーザ溶接構造部材の疲労強度が向上する。
(E) When the change in hardness in the vicinity of the bond is large, the strain concentration in the sudden change in hardness is large, and fatigue cracks are easily generated. Therefore, the more uniform the hardness distribution, the higher the fatigue strength of the laser-welded structural member.

【0036】(f)疲労亀裂発生点での歪み分布は、形
状的な因子を除くと、継手内の疲労亀裂発生点近傍にお
ける強度分布(硬さ分布)で決定される。
(F) The strain distribution at the fatigue crack initiation point is determined by the strength distribution (hardness distribution) in the vicinity of the fatigue crack initiation point in the joint, except for the shape factor.

【0037】(g)疲労亀裂発生寿命を決定する亀裂発
生部の歪み集中は、各種加工、脱炭、酸化皮膜などの影
響がない母材表面から1mmの深さにある位置での硬さ
分布と相関を有する。すなわち、上記位置でのレーザ溶
接後の溶接金属側1.6mm以内の領域におけるボンド
部からの距離をパラメータとする硬さの重み付き平均値
と、ボンド部から母材側、つまり溶接熱影響部側1.6
mm以内の領域におけるボンド部からの距離をパラメー
タとする硬さの重み付き平均値との比率が亀裂発生部の
歪み集中に大きく影響し、上記比率が1.6以下の場合
にレーザ溶接構造部材は良好な疲労強度を有する。
(G) Strain concentration at the crack initiation portion that determines the fatigue crack initiation life is determined by the hardness distribution at a position at a depth of 1 mm from the surface of the base material that is not affected by various processes, decarburization, oxide film, etc. Correlates with. That is, a weighted average value of hardness with the distance from the bond portion as a parameter in the region within 1.6 mm of the weld metal side after laser welding at the above position and the base material side from the bond portion, that is, the weld heat affected zone. Side 1.6
The ratio of the hardness to the weighted average value with the distance from the bond portion as a parameter in the region within mm greatly influences the strain concentration of the crack generation portion, and when the ratio is 1.6 or less, the laser welded structural member Has good fatigue strength.

【0038】そこで更に、前記母材表面から1mmの深
さにある位置で、レーザ溶接後のボンド部からの距離が
1.6mm以内の領域における溶接金属側ビッカース硬
さの重み付き平均値が、前記1.6mm以内の領域にお
ける溶接熱影響部側ビッカース硬さの重み付き平均値の
1.6倍以下となる溶接構造部材を得るための、レーザ
溶接条件および鋼材の組合せを特定すべく検討を行っ
た。
Then, further, at a position at a depth of 1 mm from the surface of the base metal, a weighted average value of Vickers hardness on the weld metal side in a region within a distance of 1.6 mm from the bond portion after laser welding is: Study to identify the laser welding conditions and the combination of steel materials for obtaining a welded structural member having 1.6 times or less the weighted average value of the Vickers hardness on the weld heat affected zone in the region of 1.6 mm or less. went.

【0039】その結果、下記の事項が判明した。As a result, the following matters were found.

【0040】(h)HVmax を溶接部の最高ビッカース
硬さ、HVBMを母材のビッカース硬さとして、「(HV
max −HVBM)/(mm単位での溶接熱影響部の幅)」
の値が100以下となるようにレーザ溶接条件、鋼材成
分を組合せることによって、母材表面から1mmの深さ
にある位置で、レーザ溶接後のボンド部からの距離が
1.6mm以内の領域における溶接金属側ビッカース硬
さの重み付き平均値が、前記1.6mm以内の領域にお
ける溶接熱影響部側ビッカース硬さの重み付き平均値の
1.6倍以下を安定且つ確実に達成することができる。
なお、以下の説明において、「溶接熱影響部の幅」を
「HAZ幅」ということがある。
(H) HVmax is the maximum Vickers hardness of the welded portion, and HVBM is the Vickers hardness of the base metal.
max-HVBM) / (width of welding heat affected zone in mm) "
By combining laser welding conditions and steel material components so that the value of is 100 or less, the distance from the bond portion after laser welding is within 1.6 mm at a position at a depth of 1 mm from the base metal surface. The weighted average value of the Vickers hardness on the weld metal side can stably and reliably achieve 1.6 times or less of the weighted average value of the Vickers hardness on the weld heat affected zone in the region within 1.6 mm. it can.
In the following description, the "width of the welding heat affected zone" may be referred to as the "HAZ width".

【0041】本発明は、上記の知見に基づいて完成され
たものである。
The present invention has been completed based on the above findings.

【0042】[0042]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、化学成分の含有量の「%」は「質
量%」を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Each requirement of the present invention will be described in detail below. In addition, "%" of the content of a chemical component means "mass%".

【0043】本発明においては、母材表面から1mmの
深さにある位置におけるレーザ溶接後のボンド部の近傍
における硬さ分布を規定する。
In the present invention, the hardness distribution in the vicinity of the bond portion after laser welding at a position at a depth of 1 mm from the surface of the base material is defined.

【0044】これは、鋼構造部材を構成する鋼材の極表
層の硬さ値には、各種の加工、脱炭、酸化皮膜などが複
雑に影響するが、母材表面から1mmの深さにある位置
の硬さ値には、上記の各種加工、脱炭、酸化皮膜などが
影響することがないためである。
This is because the hardness value of the extreme surface layer of the steel material constituting the steel structural member is complicatedly affected by various processes, decarburization, oxide film, etc., but it is at a depth of 1 mm from the surface of the base material. This is because the hardness value at the position is not affected by the above-mentioned various processes, decarburization, oxide film and the like.

【0045】上記母材表面から1mmの深さにある位置
で、レーザ溶接後のボンド部からの距離が1.6mm以
内の領域における溶接金属側ビッカース硬さの重み付き
平均値が、前記1.6mm以内の領域における溶接熱影
響部側ビッカース硬さの重み付き平均値の1.6倍を超
えると、歪み集中が生じて疲労亀裂が著しく発生しやす
くなる。したがって、上記溶接金属側ビッカース硬さの
重み付き平均値を溶接熱影響部側ビッカース硬さの重み
付き平均値の1.6倍以下と規定した。ここで、上記ボ
ンド部からの距離が1.6mm以内の領域におけるビッ
カース硬さの重み付き平均値が、試験力9.807N以
下で試験した際、ボンド部からの距離がD(mm)の位
置でのビッカース硬さをHV1 として下記 (1)式で
表される値を指すことは既に述べたとおりであり、 (1)
式における各係数は、疲労亀裂発生部における歪み集中
係数に及ぼす影響度合いを考慮して決定したものであ
る。
At a position 1 mm deep from the surface of the base metal, the weighted average value of Vickers hardness on the weld metal side in the region within 1.6 mm from the bond portion after laser welding is the weighted average value. When it exceeds 1.6 times the weighted average value of the Vickers hardness on the weld heat affected zone in the region of 6 mm or less, strain concentration occurs and fatigue cracking is likely to occur remarkably. Therefore, the weighted average value of the Vickers hardness on the weld metal side is defined as 1.6 times or less the weighted average value of the Vickers hardness on the weld heat affected zone. Here, when a weighted average value of Vickers hardness in a region within a distance of 1.6 mm from the bond portion is tested with a test force of 9.807 N or less, a position where the distance from the bond portion is D (mm). As mentioned above, the Vickers hardness at HV1 D is the value expressed by the following equation (1).
Each coefficient in the equation is determined in consideration of the degree of influence on the strain concentration coefficient in the fatigue crack occurrence part.

【0046】 重み付き平均値=0.4×HV10.4 +0.3×HV10.8 +0.2× HV11.2 +0.1×HV11.6 ・・・(1)。Weighted average value = 0.4 × HV1 0.4 + 0.3 × HV1 0.8 + 0.2 × HV1 1.2 + 0.1 × HV1 1.6 (1).

【0047】なお、本発明においては硬さの測定間隔を
0.4mmとした。これは、弾塑性有限要素解析による
硬さ分布、すなわち材料強度分布が疲労亀裂発生部の歪
み集中に及ぼす影響を詳細に調査した結果、歪み集中を
精度良く評価するためには測定間隔を0.4mmとすれ
ば十分であると判明したことに基づくものである。硬さ
測定を0.4mm未満の間隔で行ってもよいが、時間と
労力が嵩む。
In the present invention, the hardness measurement interval is 0.4 mm. This is because the hardness distribution by elasto-plastic finite element analysis, that is, the effect of the material strength distribution on the strain concentration at the fatigue crack initiation part was investigated in detail, and the measurement interval was set to 0. It is based on the fact that 4 mm is found to be sufficient. The hardness measurement may be performed at intervals of less than 0.4 mm, but it takes time and labor.

【0048】ビッカース硬さ試験における試験力を9.
807N以下としたのは、これより大きな試験力では、
上記0.4mm間隔の硬さ測定を行う場合に、JIS Z 22
44のビッカース硬さ試験−試験方法に規定されたくぼみ
の位置条件を満たさない場合が生ずるからである。な
お、試験力は9.807N以下でありさえすればどんな
値としてもよいが、例えば前記JIS Z 2244の表1に記載
の0.09807〜9.807Nの試験力とすることが
好ましい。
The test force in the Vickers hardness test was set to 9.
The test force of 807 N or less is larger than this.
When performing hardness measurement at 0.4 mm intervals, JIS Z 22
This is because the Vickers hardness test of No. 44-the case where the positional condition of the depression defined in the test method is not satisfied may occur. The test force may be any value as long as it is 9.807 N or less. For example, the test force of 0.09807 to 9.807 N described in Table 1 of JIS Z 2244 is preferable.

【0049】次に、本発明のレーザ溶接された鋼構造部
材の素材鋼は、その化学組成を以下のようにするのがよ
い。
Next, the chemical composition of the material steel of the laser-welded steel structural member of the present invention is as follows.

【0050】C:0.003〜0.07% Cは、鋼構造物の強度確保のために0.003%以上の
含有量とするのがよい。一方、その含有量が0.07%
を超えると、小入熱を特徴とするレーザ溶接後の急速冷
却によって溶接金属の硬さが極めて高くなり、その結
果、通常のレーザ溶接条件の下では前記の硬さ規定を満
たすことができない場合がある。したがって、Cの含有
量は0.003〜0.07%とするのがよい。なお、C
含有量の上限は0.05%とすることがより好ましい。
C: 0.003 to 0.07% C is preferably contained in an amount of 0.003% or more in order to secure the strength of the steel structure. On the other hand, its content is 0.07%
If the hardness exceeds the above, the hardness of the weld metal becomes extremely high due to the rapid cooling after laser welding, which is characterized by a small heat input, and as a result, the above hardness regulations cannot be satisfied under normal laser welding conditions. There is. Therefore, the C content is preferably 0.003 to 0.07%. Note that C
The upper limit of the content is more preferably 0.05%.

【0051】Si:0.1〜0.6% Siは、脱酸作用を有するので0.1%以上の含有量と
するのがよい。一方、その含有量が0.6%を超える
と、破壊靱性値が低下する場合がある。したがって、S
iの含有量は0.1〜0.6%とするのがよい。なお、
Si含有量は0.25〜0.5%とすることがより好ま
しい。
Si: 0.1 to 0.6% Since Si has a deoxidizing effect, it is preferable that the Si content be 0.1% or more. On the other hand, if the content exceeds 0.6%, the fracture toughness value may decrease. Therefore, S
The content of i is preferably 0.1 to 0.6%. In addition,
The Si content is more preferably 0.25 to 0.5%.

【0052】Mn:0.3〜2.0% Mnは、鋼構造物の強度確保のためと、レーザ溶接時の
凝固割れの防止のために0.3%以上の含有量とするの
がよい。一方、その含有量が2.0%を超えると、レー
ザ溶接施工が困難となる場合がある。したがって、Mn
の含有量は0.3〜2.0%とするのがよい。なお、M
n含有量は0.5〜1.8%とすることがより好まし
い。
Mn: 0.3 to 2.0% Mn is preferably contained in an amount of 0.3% or more in order to secure the strength of the steel structure and prevent solidification cracking during laser welding. . On the other hand, if the content exceeds 2.0%, laser welding may become difficult. Therefore, Mn
The content of is preferably 0.3 to 2.0%. In addition, M
More preferably, the n content is 0.5 to 1.8%.

【0053】Al:0.01〜0.1% Alは、脱酸作用を有するので0.01%以上の含有量
とするのがよい。一方、その含有量が0.1%を超える
と、破壊靱性値が低下したり鋼の清浄性が確保し難くな
ることがある。したがって、Alの含有量は0.01〜
0.1%とするのがよい。なお、Al含有量の上限は
0.05%とすることがより好ましい。本発明でいうA
l含有量とは、sol.Al(酸可溶Al)量を指す。
Al: 0.01 to 0.1% Since Al has a deoxidizing effect, it is preferable that the content of Al is 0.01% or more. On the other hand, if the content exceeds 0.1%, the fracture toughness value may decrease or it may be difficult to secure the cleanliness of steel. Therefore, the content of Al is 0.01 to
It is better to set it to 0.1%. The upper limit of the Al content is more preferably 0.05%. A in the present invention
1 content means sol. Indicates the amount of Al (acid-soluble Al).

【0054】本発明のレーザ溶接された鋼構造部材の素
材鋼には、上記の各成分元素に加えて更に、前記第1群
〜第3群のうちの1群以上を含有させてもよい。これら
の合金元素の作用効果と望ましい含有量は下記のとおり
である。
The material steel of the laser-welded steel structural member of the present invention may further contain one or more of the first to third groups in addition to the above-mentioned respective constituent elements. The effects and desirable contents of these alloying elements are as follows.

【0055】Cr:0.01〜0.15%、Ni:0.
01〜0.15%、Cu:0.1〜0.35% Cr、Ni及びCuには微量で低温での靱性を改善する
作用があり、又、溶接熱影響部の靱性を改善する作用も
ある。そのため、低温での靱性や溶接接合部での靱性を
確保する目的で含有させてもよいが、上記3元素のいず
れについてもその含有量が0.01%未満では前記効果
が得難い。一方、Crを0.15%を超えて、Niを
0.15%を超えて、又、Cuを0.35%を超えて含
有させても、前記効果が飽和するばかりか、却って靱性
劣化を招く場合もある。したがって、上記のC〜Alに
加えて更に、Cr、Ni、Cuのうちの1種以上を添加
する場合には、Crの含有量を0.01〜0.15%、
Niの含有量を0.01〜0.15%、Cuの含有量を
0.1〜0.35%とするのがよい。
Cr: 0.01 to 0.15%, Ni: 0.
01 to 0.15%, Cu: 0.1 to 0.35% Cr, Ni, and Cu have an action of improving the toughness at a low temperature even in a small amount, and also have an action of improving the toughness of the weld heat affected zone. is there. Therefore, it may be contained for the purpose of ensuring toughness at a low temperature and toughness at a welded joint, but if the content of any of the above three elements is less than 0.01%, the above effect is difficult to obtain. On the other hand, if the content of Cr exceeds 0.15%, the content of Ni exceeds 0.15%, and the content of Cu exceeds 0.35%, not only the above effect is saturated but also the toughness deteriorates. It may be invited. Therefore, when one or more of Cr, Ni, and Cu are further added in addition to the above C to Al, the content of Cr is 0.01 to 0.15%,
The Ni content is preferably 0.01 to 0.15% and the Cu content is preferably 0.1 to 0.35%.

【0056】V:0.01〜0.07%、Nb:0.0
1〜0.06% V及びNbには靱性や強度を高める作用があるので、鋼
材に靱性や強度を確保させたい場合にはこれらの元素を
含有させてもよいが、いずれもその含有量が0.01%
未満では前記効果が得難い。一方、Vを0.07%を超
えて、又、Nbを0.06%を超えて含有させると、溶
接熱影響部の靱性が劣化する場合がある。したがって、
上記のC〜Alに加えて更に、V、Nbのうちの1種以
上を添加する場合には、Vの含有量を0.01〜0.0
7%、Nbの含有量を0.01〜0.06%とするのが
よい。
V: 0.01 to 0.07%, Nb: 0.0
1 to 0.06% Since V and Nb have the action of enhancing toughness and strength, these elements may be contained if it is desired to secure toughness and strength in the steel material. 0.01%
If it is less than the above, the above effect is difficult to obtain. On the other hand, if the content of V exceeds 0.07% and the content of Nb exceeds 0.06%, the toughness of the weld heat affected zone may deteriorate. Therefore,
When one or more kinds of V and Nb are added in addition to the above C to Al, the content of V is 0.01 to 0.0.
It is preferable that the content of Nb is 7% and the content of Nb is 0.01 to 0.06%.

【0057】Ti:0.003〜0.015%、Ca:
0.0005〜0.006% Ti及びCaには溶接熱影響部の組織を微細化する作用
があるので、溶接熱影響部組織を微細化して機械的性質
を高める等の目的で含有させてもよいが、Ti含有量が
0.003%未満、Ca含有量が0.0005%未満で
は前記溶接熱影響部組織の微細化効果が得難い。一方、
Tiを0.015%を超えて含有させると靱性が劣化す
るし、Caを0.006%を超えて含有させるとCaO
介在物の含有量が多くなり過ぎて鋼の清浄度が著しく低
下する。したがって、上記のC〜Alに加えて更に、T
i、Caのうちの1種以上を添加する場合には、Tiの
含有量を0.003〜0.015%、Caの含有量を
0.0005〜0.006%とするのがよい。
Ti: 0.003 to 0.015%, Ca:
0.0005 to 0.006% Since Ti and Ca have the effect of refining the structure of the weld heat affected zone, even if they are contained for the purpose of refining the structure of the weld heat affected zone to enhance mechanical properties. However, if the Ti content is less than 0.003% and the Ca content is less than 0.0005%, it is difficult to obtain the effect of refining the structure of the weld heat affected zone. on the other hand,
If the Ti content exceeds 0.015%, the toughness deteriorates, and if the Ca content exceeds 0.006%, CaO increases.
The content of inclusions becomes too large, and the cleanliness of the steel remarkably decreases. Therefore, in addition to the above C to Al, T
When one or more of i and Ca are added, the Ti content is preferably 0.003 to 0.015% and the Ca content is preferably 0.0005 to 0.006%.

【0058】なお、不純物元素としてのMoは、その含
有量を以下のとおりにするのがよい。
The content of Mo as an impurity element is preferably set as follows.

【0059】Mo:0.08%以下 Moは、COD(亀裂開口変位)特性など破壊靱性に悪
影響を及ぼす島状マルテンサイト組織の生成を助長し、
特にその含有量が0.08%を超えると島状マルテンサ
イト組織の割合が増加して溶接部の破壊靱性が著しく低
下する場合がある。したがって、不純物としてのMoの
含有量は0.08%以下とするのがよい。
Mo: 0.08% or less Mo promotes the formation of island martensite structure which adversely affects fracture toughness such as COD (crack opening displacement) characteristics,
In particular, if its content exceeds 0.08%, the proportion of island martensite structure may increase and the fracture toughness of the welded part may be significantly reduced. Therefore, the content of Mo as an impurity is preferably 0.08% or less.

【0060】又、本発明の出力L(W(ワット))、熱
効率η、溶接速度v(cm/秒)の条件でレーザ溶接さ
れ、母材表面から1mmの深さにある位置で、レーザ溶
接後のボンド部からの距離が1.6mm以内の領域にお
ける溶接金属側ビッカース硬さの重み付き平均値が、前
記1.6mm以内の領域における溶接熱影響部側ビッカ
ース硬さの重み付き平均値の1.6倍以下である厚さh
(cm)の鋼構造部材に用いる鋼材は、その化学組成を
前記したC〜Moの範囲にするとともに、前記(2)又は
(4)で表される値が100以下を満たすようにするのが
よい。
Laser welding is performed under the conditions of the output L (W (watt)), thermal efficiency η, and welding speed v (cm / sec) of the present invention, and laser welding is performed at a position at a depth of 1 mm from the base metal surface. The weighted average value of the Vickers hardness of the weld metal side in the area within 1.6 mm from the subsequent bond portion is the weighted average value of the Vickers hardness of the weld heat affected zone in the area within 1.6 mm. Thickness h less than 1.6 times
The steel material used for the steel structural member of (cm) has a chemical composition in the range of C to Mo described above, and the above (2) or
It is preferable that the value represented by (4) satisfies 100 or less.

【0061】すなわち、上記厚さh(cm)の鋼構造部
材に用いる鋼材が、質量%で、C:0.003〜0.0
7%、Si:0.1〜0.6%、Mn:0.3〜2.0
%、Al:0.01〜0.1%を含有し、残部はFe及
び不純物からなり、不純物中のMoは0.08%以下の
場合、前記 (2)で表される値が100以下を満たすよう
にするのがよい。
That is, the steel material used for the steel structural member having the above thickness h (cm) is C: 0.003 to 0.0 in mass%.
7%, Si: 0.1 to 0.6%, Mn: 0.3 to 2.0
%, Al: 0.01 to 0.1%, the balance consisting of Fe and impurities, and when Mo in the impurities is 0.08% or less, the value represented by (2) above is 100 or less. It is better to meet.

【0062】又、上記厚さh(cm)の鋼構造部材に用
いる鋼材が、質量%で、C:0.003〜0.07%、
Si:0.1〜0.6%、Mn:0.3〜2.0%、A
l:0.01〜0.1%を含有し、更に、 第1群:Cr:0.01〜0.15%、Ni:0.01
〜0.15%、Cu:0.1〜0.35%のうちの1種
以上、 第2群:V:0.01〜0.07%、Nb:0.01〜
0.06%のうちの1種以上、 第3群:Ti:0.003〜0.015%、Ca:0.
0005〜0.006%のうちの1種以上、 の1群以上をも含み、残部はFe及び不純物からなり、
不純物中のMoは0.08%以下である場合、前記 (4)
で表される値が100以下を満たすようにするのがよ
い。
The steel material used for the steel structural member having the above thickness h (cm) is, in mass%, C: 0.003 to 0.07%,
Si: 0.1-0.6%, Mn: 0.3-2.0%, A
1: 0.01-0.1%, and further 1st group: Cr: 0.01-0.15%, Ni: 0.01
.About.0.15%, Cu: one or more of 0.1 to 0.35%, second group: V: 0.01 to 0.07%, Nb: 0.01 to
One or more of 0.06%, the third group: Ti: 0.003 to 0.015%, Ca: 0.0.
At least one of 0005 to 0.006%, including at least one group of, and the balance consisting of Fe and impurities,
If Mo in the impurities is 0.08% or less, the above (4)
It is preferable that the value represented by is 100 or less.

【0063】以下、前記(2)又は(4)で表される値が10
0以下を満たすようにするのがよい理由について説明す
る。
Hereinafter, the value represented by the above (2) or (4) is 10
The reason why it is preferable to satisfy 0 or less will be described.

【0064】図2は縦軸に溶接金属側ビッカース硬さの
重み付き平均値と溶接熱影響部側ビッカース硬さの重み
付き平均値との比(硬さ比)、横軸に「(HVmax −H
VBM)/(mm単位でのHAZ幅)」の値の測定値をと
って整理した図である。この図から、「(HVmax −H
VBM)/(mm単位でのHAZ幅)」の値が100以下
であれば、母材表面から1mmの深さにある位置で、レ
ーザ溶接後のボンド部からの距離が1.6mm以内の領
域における溶接金属側ビッカース硬さの重み付き平均値
が、前記1.6mm以内の領域における溶接熱影響部側
ビッカース硬さの重み付き平均値の1.6倍以下という
条件が安定且つ確実に達成でき、したがって、疲労強度
に優れた溶接構造部材の実現可能なことが明らかであ
る。
In FIG. 2, the vertical axis represents the ratio (hardness ratio) of the weighted average value of the Vickers hardness of the weld metal side to the weighted average value of the Vickers hardness of the weld heat affected zone, and the horizontal axis represents “(HVmax − H
VBM) / (HAZ width in mm) ”is a diagram arranged by taking measured values. From this figure, "(HVmax-H
If the value of (VBM) / (HAZ width in mm) is 100 or less, the distance from the bond portion after laser welding is 1.6 mm or less at a position at a depth of 1 mm from the base metal surface. The condition that the weighted average value of the Vickers hardness on the weld metal side is 1.6 times or less than the weighted average value of the Vickers hardness on the weld heat affected zone in the region within 1.6 mm can be stably and reliably achieved. Therefore, it is clear that a welded structural member having excellent fatigue strength can be realized.

【0065】なお、上記「(HVmax −HVBM)/(m
m単位でのHAZ幅)」の値(つまり、HVmax 、HV
BM及びmm単位でのHAZ幅の具体的な値)の測定は、
実際にレーザ溶接した小型サンプルを用いて測定しても
良いが、多くの時間と労力とが必要になる。したがっ
て、前記の値を実際のレーザ溶接を行うことなく見積も
ることが極めて重要になる。
The above "(HVmax-HVBM) / (m
value of HAZ width in units of m) (that is, HVmax, HV
The specific value of the HAZ width in BM and mm) can be measured by
The measurement may be performed using a small laser-welded sample, but it requires a lot of time and labor. Therefore, it is extremely important to estimate the above value without performing actual laser welding.

【0066】そこで、本発明者らが種々検討を行った結
果、下記(A)〜(E)の手順に従って処理することで、レー
ザ溶接条件としてのレーザ出力L(W(ワット))、熱
効率η及び溶接速度v(cm/秒)、並びに鋼構造部材
の厚さh(cm)とその部材に用いる鋼材の化学組成が
わかれば、実際にレーザ溶接を行わなくても「(HVma
x −HVBM)/(mm単位でのHAZ幅)」の値の見積
もりができることが明らかになった。
Therefore, as a result of various investigations by the present inventors, the laser power L (W (watt)) and the thermal efficiency η as the laser welding conditions can be obtained by performing processing in accordance with the following procedures (A) to (E). If the welding speed v (cm / sec), the thickness h (cm) of the steel structural member, and the chemical composition of the steel material used for the member are known, “(HVma
x-HVBM) / (HAZ width in mm) ".

【0067】(A) レーザ溶接条件として、レーザ出力L
(W)、熱効率η、溶接速度v(cm/秒)及び被処理
材である鋼材の厚さh(cm)を設定する。
(A) As laser welding conditions, laser output L
(W), thermal efficiency η, welding speed v (cm / sec), and thickness h (cm) of the steel material to be treated are set.

【0068】(B) 2次元熱流を仮定することにより、8
00〜500℃の温度域での冷却時間(秒)とHAZ幅
(mm)を理論解から導出する。
(B) By assuming a two-dimensional heat flow,
The cooling time (second) and HAZ width (mm) in the temperature range of 00 to 500 ° C. are derived from the theoretical solution.

【0069】(C) 上記 (B)の800〜500℃の温度域
での冷却時間(秒)と、被処理材である鋼材の化学組成
(すなわち母材の化学組成)から、800〜500℃の
温度域での冷却時間が1秒における(HVmax −HVB
M)の値を推定する。
(C) From the cooling time (second) in the temperature range of 800 to 500 ° C. in (B) above and the chemical composition of the steel material to be treated (that is, the chemical composition of the base material), 800 to 500 ° C. (HVmax-HVB in the cooling time of 1 second in the temperature range of
Estimate the value of M).

【0070】(D) 800〜500℃の温度域での冷却時
間が1秒における(HVmax −HVBM)の推定値を用い
て、溶接条件から推定される冷却時間における(HVma
x −HVBM)の値を導出する。
(D) Using the estimated value of (HVmax-HVBM) in the cooling time in the temperature range of 800 to 500 ° C. for 1 second, (HVma) in the cooling time estimated from the welding conditions is used.
x-HVBM) is derived.

【0071】(E) 2次元熱流を仮定して求めた上記 (B)
のHAZ幅から、「(HVmax −HVBM)/(mm単位
でのHAZ幅)」の値を算出する。
(E) The above (B) obtained by assuming a two-dimensional heat flow
The value of "(HVmax-HVBM) / (HAZ width in mm)" is calculated from the HAZ width of.

【0072】以下、上記(A)〜(E)に関して詳しく説明す
る。
The above (A) to (E) will be described in detail below.

【0073】手順 (A): ここでは、レーザ溶接条件と
して、レーザ出力L(W)、熱効率η、溶接速度v(c
m/秒)及び被処理材である鋼材の厚さh(cm)を設
定する。
Procedure (A): Here, as laser welding conditions, laser output L (W), thermal efficiency η, welding speed v (c
m / sec) and the thickness h (cm) of the steel material to be treated.

【0074】通常、レーザ溶接施工においては、被処理
材である鋼材の厚さh(cm)を貫通させるようなレー
ザ出力と溶接速度の組合せを用いる。具体的な組合せに
ついては、例えば、木谷の解説(圧力技術、第36巻第
6号(1998年)、第460〜465ページ)に記さ
れているものを用いることにすればよい。
Usually, in laser welding, a combination of laser output and welding speed is used so as to penetrate the thickness h (cm) of the steel material to be treated. For a specific combination, for example, those described in the explanation of Kitani (Pressure Technology, Vol. 36, No. 6, 1998, 460 to 465) may be used.

【0075】なお、既に述べたように熱効率ηとはレー
ザ照射されたエネルギがどの程度被処理材である鋼材中
に投入されるかを示す指標で、出力エネルギに対する比
率を指す。この熱効率は、一般にシールドガスの影響な
ども受け、溶接・接合便覧(編者:社団法人溶接学会、
発行所:丸善株式会社、発行日:平成2年9月30日)
には、熱効率ηが60%の場合があることも示されてい
る。ここでは、後述する (B)の2次元熱流理論解析によ
る800〜500℃の温度域での冷却時間(秒)と、熱
電対を用いた800〜500℃の温度域での冷却時間の
実測値とを比較し、両者の対応から、フォーカス量が
2.5mm以上の場合には熱効率ηとして0.5を用い
ればよく、フォーカス量が2.5mm未満の場合には、
熱効率ηとして0.25を用いればよいことがわかっ
た。なお、「フォーカス量」とは、レーザ光を円錐状に
集束する際の、集束した点と被処理材である鋼材表面と
の距離を指す。
As described above, the thermal efficiency η is an index showing how much energy irradiated by the laser is put into the steel material which is the material to be treated, and indicates the ratio to the output energy. This thermal efficiency is generally affected by the shielding gas, and the welding and joining handbook (editor: Japan Welding Society,
(Publisher: Maruzen Co., Ltd., Date of issue: September 30, 1990)
Also show that the thermal efficiency η may be 60%. Here, the measured value of the cooling time (second) in the temperature range of 800 to 500 ° C and the cooling time in the temperature range of 800 to 500 ° C using the thermocouple by the two-dimensional heat flow theoretical analysis of (B) described later. From the correspondence between the two, the thermal efficiency η should be 0.5 when the focus amount is 2.5 mm or more, and when the focus amount is less than 2.5 mm,
It was found that 0.25 should be used as the thermal efficiency η. The "focus amount" refers to the distance between the focused point and the surface of the steel material that is the material to be processed when the laser light is focused into a conical shape.

【0076】手順 (B): 溶接冶金学(著者:松田福
久、発行所:日刊工業新聞社、発行日:昭和50年8月
20日)において、レーザ溶接のようなエネルギビーム
溶接を行った際の温度分布は、2次元熱流によって精度
良く近似できることが明らかにされている。すなわち、
2次元熱流の仮定をおくと、下記の (6)式から温度θ
(℃)における冷却速度CR「θ」(℃/秒)が又、
(7)式から、温度θ1(℃)からθ2(℃)までの冷却時
間CT「θ1〜θ2」(秒)が各々与えられる。
Procedure (B): When performing energy beam welding such as laser welding in welding metallurgy (author: Fukuhisa Matsuda, publisher: Nikkan Kogyo Shimbun, date of issue: August 20, 1975) It has been clarified that the temperature distribution of can be accurately approximated by a two-dimensional heat flow. That is,
Assuming a two-dimensional heat flow, the temperature θ
The cooling rate CR "θ" (° C / sec) at (° C)
From the equation (7), the cooling time CT “θ1 to θ2” (seconds) from the temperature θ1 (° C.) to the temperature θ2 (° C.) is given.

【0077】上記『溶接冶金学』おいては、λを熱伝導
度(cal/(cm・℃・秒)、cを比熱(cal/
(g・℃)、ρを密度(g/cm )、vを溶接速度
(cm/分)、hを被処理材である鋼材の厚さ(c
m)、Lをレーザ出力(W)、ηを熱効率、Qを入熱で
Lηに相当するもの、θを冷却速度を求めている温度
(℃)、θ1とθ2をそれぞれ冷却時間を求めようとして
いる高温側温度(℃)と低温側温度(℃)、又、θ0を
初期温度(或いは環境温度、(℃))として、以下の式
が示されている。
In the above "welding metallurgy", λ is the thermal conductivity (cal / (cm · ° C. · second)) and c is the specific heat (cal /
(G · ° C.), ρ is density (g / cm 3 ), v is welding speed (cm / min), h is the thickness of the steel material (c)
m), L is the laser output (W), η is the thermal efficiency, Q is the heat input and corresponds to Lη, θ is the temperature (° C) for which the cooling rate is being sought, and θ1 and θ2 are the cooling times, respectively. The following equations are shown with the high temperature side (° C.) and the low temperature side (° C.) existing, and θ 0 as the initial temperature (or environmental temperature, (° C.)).

【0078】 CR「θ」=2πλcρ(vh/Q) (θ−θ0) ・・・(6)、 CT「θ1〜θ2」=(4πλcρ)−1(Q/vh) {(θ2−θ0)−2−(θ1 −θ0)−2}・・・(7)。CR “θ” = 2πλcρ (vh / Q) 2 (θ−θ0) 3 (6), CT “θ1 to θ2” = (4πλcρ) −1 (Q / vh) 2 {(θ2− θ0) −2 − (θ1 −θ0) −2 } (7).

【0079】上記 (7)式から、任意の溶接条件での冷却
時間CT(秒)が容易に計算できる。橋本らは、この理
論式に基づいて論文(溶接学会誌、第33巻第10号
(1964年)、第918〜927ページ)中で、電子
ビーム溶接した際の溶接熱影響部における800〜50
0℃の温度域での冷却時間CT「800〜500」
(秒)について、次の (8)式を提案している。
From the above equation (7), the cooling time CT (second) under arbitrary welding conditions can be easily calculated. Hashimoto et al., Based on this theoretical formula, in a paper (Journal of Japan Welding Society, Vol. 33, No. 10 (1964), pages 918 to 927) 800 to 50 in a welding heat affected zone at the time of electron beam welding.
Cooling time CT in the temperature range of 0 ° C "800-500"
For (seconds), the following equation (8) is proposed.

【0080】 CT「800〜500」=3.8×10−2×{(EI・η)/(vh)} ×{(500−θ0)−2− (800−θ0)−2}・・・(8)、 ここで、EIは電子ビームの出力(W)を指し、その他
の記号は既に述べたものと同じである。
CT “800 to 500” = 3.8 × 10 −2 × {(EI · η) / (vh)} 2 × {(500−θ0) −2 − (800−θ0) −2 } ·· (8), where EI indicates the output (W) of the electron beam, and other symbols are the same as those already described.

【0081】本発明が対象とするレーザ溶接の熱伝導挙
動は、上記電子ビーム溶接の熱伝導挙動と極めて類似し
ている。したがって、レーザ溶接に対しては、上記 (8)
式と同様の (9)式が適用できると考えてよい。
The heat conduction behavior of laser welding targeted by the present invention is very similar to the heat conduction behavior of electron beam welding described above. Therefore, for laser welding, see (8) above.
It may be considered that Eq. (9) similar to Eq.

【0082】 CT「800〜500」=3.8×10−2×{(Lη)/(vh)} ×{ (500−θ0)−2− (800−θ0)−2}・・・(9)。CT “800 to 500” = 3.8 × 10 −2 × {(Lη) / (vh)} 2 × {(500−θ0) −2 − (800−θ0) −2 } ... ( 9).

【0083】ここで、CT「800〜500」はレーザ
溶接した際の溶接熱影響部における800〜500℃の
温度域での冷却時間(秒)である。初期温度(或いは環
境温度)のθ0を20℃とすれば、下記 (10)式が得られ
る。なお、既に述べたようにLはレーザ出力(W)を指
す。
Here, CT “800 to 500” is the cooling time (second) in the temperature range of 800 to 500 ° C. in the welding heat affected zone at the time of laser welding. If the initial temperature (or environmental temperature) θ0 is 20 ° C, the following equation (10) is obtained. As mentioned above, L indicates the laser output (W).

【0084】 CT「800〜500」=1.025×10−7×{(Lη)/(vh)} ・・・(10)。CT “800 to 500” = 1.025 × 10 −7 × {(Lη) / (vh)} 2 (10).

【0085】この(10)式から、フォーカス量が2.5m
m以上の場合には熱効率ηとして0.5を用い、又、フ
ォーカス量が2.5mm未満の場合には、熱効率ηとし
て0.25を用いることで、800〜500℃の温度域
での冷却時間(秒)を推定することが可能である。
From the equation (10), the focus amount is 2.5 m.
When the focus amount is less than 2.5 mm, the thermal efficiency η is set to 0.5 when m or more, and when the focus amount is less than 2.5 mm, the thermal efficiency η is set to 0.25 to cool in the temperature range of 800 to 500 ° C. It is possible to estimate the time (seconds).

【0086】一方、cm単位でのHAZ幅はある特定の
最高到達温度(℃)に対し、その等温度線から求めるこ
とができ、mm単位でのHAZ幅は上記cm単位でのH
AZ幅を10倍することで求められる。
On the other hand, the HAZ width in cm can be obtained from the isothermal line of a certain maximum ultimate temperature (° C.), and the HAZ width in mm is H in cm.
It is obtained by multiplying the AZ width by 10.

【0087】すなわち、2次元熱流を仮定した場合、あ
る特定の最高到達温度θmax (℃)に対し、その等温度
線と溶融境界線との距離y「θmax」(cm)は、前記
した溶接冶金学によれば下記(11)式で表される。
That is, when a two-dimensional heat flow is assumed, the distance y “θmax” (cm) between the isothermal line and the melting boundary line for a specific maximum ultimate temperature θmax (° C.) is the above-mentioned welding metallurgy. According to the study, it is expressed by the following equation (11).

【0088】 (θmax−θ0)−1={4.13cρh・y「θmax」/(Q/v)}+(θm −θ0)−1・・・(11)、 ここで、θmaxは最高到達温度(℃)、θmは被処理材で
ある鋼材の溶融点温度(℃)を指し、その他の記号は既
に述べたものと同じである。
(Θmax−θ0) −1 = {4.13cρh · y “θmax” / (Q / v)} + (θm −θ0) −1 (11), where θmax is the maximum temperature reached (° C.) and θm indicate the melting point temperature (° C.) of the steel material to be treated, and other symbols are the same as those already described.

【0089】上記(11)式をy「θmax」(cm)につい
て解けば、(12)式が得られる。この(12)式から、ある設
定された温度θmax(℃)に到達した位置の溶融境界線
からの距離を求めることができる。
By solving the above equation (11) for y "θmax" (cm), equation (12) is obtained. From this equation (12), the distance from the melting boundary line at a position where a certain set temperature θmax (° C) is reached can be obtained.

【0090】 yθ「max」= {(θmax−θ0)−1−(θm−θ0)−1}(Q/v)/(4.1 3cρh)・・・(12)。Yθ “max” = {(θmax−θ0) −1 − (θm−θ0) −1 } (Q / v) / (4.13cρh) (12).

【0091】例えば、mm単位でのHAZ幅を見積もる
のに際し、最高到達温度θmaxがそれぞれ1350℃と
750℃で挟まれた領域を溶接熱影響部(すなわちHA
Z)とし、溶融点温度θmを1530℃、θ0を20℃、
cρを前記した溶接冶金学に記載の3.9cal/(c
・℃)とすることで、先ず、cm単位でのHAZ
幅を下記 (13)式を用いて算出することができる。そし
て、(13)式を用いて算出したcm単位でのHAZ幅を1
0倍することでcm単位でのHAZ幅を求めることがで
きる。
For example, when estimating the HAZ width in mm, the regions where the maximum attainable temperature θmax is sandwiched between 1350 ° C. and 750 ° C. are the heat affected zone of the welding (that is, HA
Z), the melting point temperature θm is 1530 ° C., θ0 is 20 ° C.,
cρ is 3.9 cal / (c as described in the above-mentioned welding metallurgy.
m 3 · ℃), first, HAZ in cm unit
The width can be calculated using the following equation (13). Then, the HAZ width in cm unit calculated using the equation (13) is 1
The HAZ width in cm can be obtained by multiplying by 0.

【0092】 HAZ幅 =y「750」−y「1350」 =〔{(730)−1−(1510)−1}−{(1330)−1−(1510)−1 }〕(Q/v)/(16.11h) =6.180×10−4(Q/v)/(16.11h) =3.836×10−5Q/(vh) =3.836×10−5(Lη)/(vh)・・・・・(13)。HAZ width = y “750” −y “1350” = [{(730) −1 − (1510) −1 } − {(1330) −1 − (1510) −1 }] (Q / v) /(16.11h)=6.180×10 −4 (Q / v) / (16.11h) = 3.836 × 10 −5 Q / (vh) = 3.836 × 10 −5 (Lη) / (Vh) (13).

【0093】以上説明した手順(A)及び(B)に基づいて、
レーザ出力Lが5〜30kW、熱効率ηが0.5と0.
6、溶接速度vが50〜250cm/分、すなわち0.
83〜4.2cm/秒、被処理材である鋼材の厚さhが
0.2〜1.7cmの場合について、800〜500℃
の温度域での冷却時間(秒)とHAZ幅(mm)を計算
した結果の一例を、表1〜5に示す。
Based on the procedures (A) and (B) described above,
The laser output L is 5 to 30 kW and the thermal efficiency η is 0.5 and 0.
6. The welding speed v is 50 to 250 cm / min, that is, 0.
800 to 500 ° C. in the case of 83 to 4.2 cm / sec and the thickness h of the steel material to be treated of 0.2 to 1.7 cm
Tables 1 to 5 show examples of the results of calculation of the cooling time (second) and the HAZ width (mm) in the temperature range of.

【0094】なお、計算で得られたHAZ幅が0.8m
m以下の場合には、溶融部が鋼材の厚さ方向に貫通しな
いと判断し、表に解析結果を示さなかった。又、低いレ
ーザ出力で貫通溶接できる場合、高出力のレーザを照射
することは実際の施工では考えられない。そこで、レー
ザ出力が5kWを超える出力に対しては、その出力未満
では溶接できない条件の解析結果のみを示した。
The HAZ width obtained by calculation is 0.8 m.
In the case of m or less, it was judged that the fusion zone did not penetrate in the thickness direction of the steel material, and the analysis result was not shown in the table. Further, when penetration welding can be performed with a low laser output, irradiation with a high output laser cannot be considered in actual construction. Therefore, for the laser output exceeding 5 kW, only the analysis result of the condition that welding cannot be performed below the output is shown.

【0095】[0095]

【表1】 [Table 1]

【0096】[0096]

【表2】 [Table 2]

【0097】[0097]

【表3】 [Table 3]

【0098】[0098]

【表4】 [Table 4]

【0099】[0099]

【表5】 [Table 5]

【0100】上記の、手順(A)及び(B)に基づいて計算し
た結果の一例を示す表1〜5から、下記〜の事項が
明らかである。
The following items (1) to (3) are apparent from Tables 1 to 5 showing examples of the results calculated based on the above procedures (A) and (B).

【0101】実用的な溶接条件下では、HAZ幅は高
々1.8mm程度である。
Under practical welding conditions, the HAZ width is at most about 1.8 mm.

【0102】実用的な溶接条件下では、800〜50
0℃の温度域での冷却時間はほぼ1〜2秒であり、0.
2〜5秒の範囲をカバーすれば十分である。
Under practical welding conditions, 800 to 50
The cooling time in the temperature range of 0 ° C. is approximately 1 to 2 seconds, and
It is sufficient to cover the range of 2-5 seconds.

【0103】レーザ出力の上昇に伴い、溶接可能な板
厚(すなわち、被処理材である鋼材の厚さ)と溶接速度
が大きくなる。
As the laser output increases, the weldable plate thickness (that is, the thickness of the steel material to be treated) and the welding speed increase.

【0104】熱効率によって、HAZ幅、800〜5
00℃の温度域での冷却時間がともに変化する。
Depending on thermal efficiency, HAZ width, 800-5
Both the cooling time in the temperature range of 00 ° C. changes.

【0105】手順 (C): 次に、800〜500℃の温
度域での任意の冷却時間t(秒)における(HVmax −
HVBM)の値(以下、単に(HVmax −HVBM)と表記
する)を導出するために、冷却時間が1秒における(H
Vmax −HVBM)の値((HVmax「1」 −HVBM)と
表記することがある)を推定する。
Procedure (C): Next, (HVmax − at an arbitrary cooling time t (sec) in the temperature range of 800 to 500 ° C.
In order to derive the value of (HVBM) (hereinafter simply referred to as (HVmax-HVBM)), the cooling time (H
Estimate the value of (Vmax-HVBM) (sometimes referred to as (HVmax "1" -HVBM)).

【0106】本発明者らは、予備実験を行って、レーザ
出力L(W(ワット))、被処理材である鋼材の厚さh
(mm)、溶接速度v(cm/秒)の各種組合せの場合
に、800〜500℃の温度域での冷却時間が1秒とな
る条件を見出し、これに基づいて各種鋼材に対しレーザ
溶接を行い、(HVmax「1」 −HVBM)の値を実測し
た。
The inventors conducted a preliminary experiment to find out the laser output L (W (watt)) and the thickness h of the steel material to be treated.
(Mm) and welding speed v (cm / sec) in various combinations, a condition was found that the cooling time in the temperature range of 800 to 500 ° C was 1 second, and based on this, laser welding was performed on various steel materials. Then, the value of (HVmax "1" -HVBM) was measured.

【0107】その結果、800〜500℃の温度域での
冷却時間が1秒における(HVmax−HVBM)の値、す
なわち(HVmax「1」 −HVBM)は、被処理材である
鋼材の化学組成によって一義的に決まることが判明し
た。更に、800〜500℃の温度域での冷却時間が1
秒における(HVmax「1」 −HVBM)の値は、下記(1
4)式によって高い相関で近似できることも新たに判明し
た。
As a result, the value of (HVmax-HVBM) at the cooling time of 1 second in the temperature range of 800 to 500 ° C, that is, (HVmax "1" -HVBM) depends on the chemical composition of the steel material to be treated. It turned out to be uniquely determined. Further, the cooling time in the temperature range of 800 to 500 ° C is 1
The value of (HVmax "1" -HVBM) in seconds is (1
It has been newly found that the equation (4) can be approximated with a high correlation.

【0108】 (HVmax「1」 −HVBM)「800〜500」=300/(e−24(HP −0.2) +1)・・・(14)。(HVmax “1” −HVBM) “800 to 500” = 300 / (e −24 (HP −0.2) +1) (14).

【0109】ここで、HPは元素記号をその合金元素の
質量%での含有量として、既に述べた(5)式(又は(3)
式)に対応するものである。
Here, HP is the above-mentioned formula (5) (or (3) where the element symbol is the content of the alloying element in mass%.
Expression).

【0110】手順 (D): 次に、800〜500℃の温
度域での任意の冷却時間t(秒)における(HVmax −
HVBM)の値を導出する。
Procedure (D): Next, (HVmax − at an arbitrary cooling time t (sec) in the temperature range of 800 to 500 ° C.
HVBM) value is derived.

【0111】既に手順 (B)の項で述べたように、実用的
な溶接条件下では、800〜500℃の温度域での冷却
時間はほぼ1〜2秒であり、0.2〜5秒の範囲をカバ
ーすれば十分である。
As already described in the procedure (B), under practical welding conditions, the cooling time in the temperature range of 800 to 500 ° C. is approximately 1 to 2 seconds, and 0.2 to 5 seconds. It is enough to cover the range.

【0112】本発明者らが、レーザ出力L(W(ワッ
ト))、被処理材である鋼材の厚さh(mm)、溶接速
度v(cm/秒)を種々変えて実験を行った結果、80
0〜500℃の温度域での冷却時間tが0.2〜5秒の
範囲では、横軸に対数目盛での冷却時間をとり、縦軸に
(HVmax −HVBM)の値をとった場合に、実験結果の
プロットはいずれも右下がりの直線で精度良く近似で
き、しかも、その直線は被処理材である鋼材の化学組成
に依存せずほぼ−10の同じ傾きを有していることが明
らかになった。
The results of experiments conducted by the present inventors by varying the laser output L (W (watt)), the thickness h (mm) of the steel material to be treated, and the welding speed v (cm / sec). , 80
When the cooling time t in the temperature range of 0 to 500 ° C is in the range of 0.2 to 5 seconds, the horizontal axis represents the cooling time on a logarithmic scale, and the vertical axis represents the value of (HVmax-HVBM). All the plots of the experimental results can be accurately approximated by a straight line descending to the right, and it is clear that the straight line has the same slope of -10 regardless of the chemical composition of the steel material to be treated. Became.

【0113】以上の結果、(HVmax「1」 −HVBM)
の値が得られれば、上述の冷却時間と硬さとの関係か
ら、800〜500℃の温度域での任意の冷却時間t
(秒)(但し、tは0.2〜5)において、(HVmax
−HVBM)の値を精度良く見積もることができる。
As a result of the above, (HVmax "1" -HVBM)
From the relationship between the cooling time and hardness described above, an arbitrary cooling time t in the temperature range of 800 to 500 ° C.
(Second) (where t is 0.2 to 5), (HVmax
The value of −HVBM) can be accurately estimated.

【0114】下記に、このようにして求めた冷却時間が
0.2〜5秒の範囲における任意の冷却時間t(秒)で
の(HVmax −HVBM)の値を実験式として示す。
The value of (HVmax-HVBM) at an arbitrary cooling time t (second) within the cooling time range of 0.2 to 5 seconds thus obtained is shown below as an empirical formula.

【0115】 (HVmax −HVBM)=(HVmax「1」 −HVBM)t−0.1 ・・・(15) 。[0115] (HVmax -HVBM) = (HVmax "1" -HVBM) t -0.1 ··· (15) .

【0116】(14)式と(15)式を組合わせると、元素記号
をその合金元素の質量%での含有量として、既に述べた
(5)式(又は(3)式)に対応するHPと800〜500℃
の温度域での冷却時間t(秒)を入力データとして、
(HVmax −HVBM)を下記(16)式で表すことができ
る。
Combining the equations (14) and (15), the element symbol is the content of the alloying element in% by mass, which has already been described.
HP corresponding to formula (5) (or formula (3)) and 800-500 ° C
Cooling time t (second) in the temperature range of
(HVmax-HVBM) can be expressed by the following equation (16).

【0117】 (HVmax −HVBM)={300/(e−24(HP−0.2)+1)}t 0.1 ・・・(16)。(HVmax-HVBM) = {300 / (e- 24 (HP-0.2) +1)} t - 0.1 (16).

【0118】手順 (E): 既に述べたように2次元熱流
の仮定をおけば、(13)式に示すcm単位でのHAZ幅を
精度良く見積もることができるので、(16)式と(13)式か
ら、「(HVmax −HVBM)/(mm単位でのHAZ
幅)」の値を、下記(17)式によって導出することができ
る。
Procedure (E): As described above, if the two-dimensional heat flow is assumed, the HAZ width in cm unit shown in equation (13) can be accurately estimated. Therefore, equation (16) and (13) From the formula, “(HVmax-HVBM) / (HAZ in mm unit
The value of “width)” can be derived by the following equation (17).

【0119】 (HVmax −HVBM)/(mm単位でのHAZ幅) ={3.91×10×(Lη)−1.2×(vh)1.2}/(e−24( HP−0.2) +1)・・・(17)。(HVmax−HVBM) / (HAZ width in mm) = {3.91 × 10 6 × (Lη) −1.2 × (vh) 1.2 } / (e- 24 ( HP-0 2) +1) ... (17).

【0120】図3に、(HVmax −HVBM)/(mm単
位でのHAZ幅)の測定値と、(17)式によって求めた計
算値との関係を示す。この図から、今回の条件範囲では
両者は極めてよく一致することが明らかである。
FIG. 3 shows the relationship between the measured value of (HVmax-HVBM) / (HAZ width in mm) and the calculated value obtained by the equation (17). From this figure, it is clear that the two agree very well in the present condition range.

【0121】この結果、例えばレーザ溶接の条件が決ま
っている場合には、必要とされる継手疲労強度から鋼材
の成分を決定することができるし、逆に、適用する鋼材
を基に確保すべき疲労強度に対しレーザ溶接条件を選定
することも可能である。
As a result, for example, when the conditions of laser welding are determined, the composition of the steel material can be determined from the required joint fatigue strength, and conversely, it should be secured based on the steel material to be applied. It is also possible to select laser welding conditions for fatigue strength.

【0122】次に、実施例により本発明を更に詳しく説
明する。
Next, the present invention will be described in more detail by way of examples.

【0123】[0123]

【実施例】表6〜8に示す化学組成を有する鋼を通常の
方法によって試験炉溶製した。
EXAMPLES Steels having the chemical compositions shown in Tables 6 to 8 were melted in a test furnace by a usual method.

【0124】[0124]

【表6】 [Table 6]

【0125】[0125]

【表7】 [Table 7]

【0126】[0126]

【表8】 [Table 8]

【0127】次いで、これらの鋼を通常の熱間鍛造によ
って厚さ80〜120mmの鋼片とした後、900〜1
100℃に加熱してから熱間圧延し、板厚18〜12m
mに仕上げた。
Next, these steels were made into steel pieces having a thickness of 80 to 120 mm by ordinary hot forging, and then 900 to 1
After heating to 100 ° C, hot rolling, plate thickness 18-12m
finished to m.

【0128】熱間圧延して得た鋼板は元厚のまま、又は
板厚16〜3mmに両面平面研削した後、室温で突き合
わせレーザ溶接して継手を作製した。
The steel plate obtained by hot rolling was subjected to butt laser welding at room temperature to produce a joint as it was, or after flat-face grinding on both sides to a plate thickness of 16 to 3 mm.

【0129】すなわち、上記した厚さ3〜18mmの鋼
板にI型開先を加工し、ギャップを取らずに完全に押し
当てた状態で、炭酸ガスレーザ(CO レーザ)又は
イットリウム・アルミニウム・ガーネットレーザ(YA
Gレーザ)を片面から照射して継手を作製した。表9及
び表10に、レーザ溶接条件の詳細を示す。これらの表
における「フォーカス量」とは、既に述べたように、レ
ーザ光を円錐状に集束する際の、集束した点と鋼板表面
との距離を意味する。「フィラー添加有無」とは、溶接
ビードの形成において、母材鋼板の共材である溶接材料
をレーザ照射部に挿入したか否かを意味する。なお、表
9、表10の各継手番号の溶接継手からは、後述する疲
労試験片を各継手番号あたり少なくとも6体作製した。
That is, a carbon dioxide gas laser (CO 2 laser) or a yttrium aluminum garnet laser was produced by processing an I-shaped groove on the above-mentioned steel plate having a thickness of 3 to 18 mm and pressing it completely with no gap. (YA
(G laser) was irradiated from one side to produce a joint. Tables 9 and 10 show the details of the laser welding conditions. As described above, the “focus amount” in these tables means the distance between the focused point and the surface of the steel sheet when the laser beam is focused into a conical shape. “Presence or absence of addition of filler” means whether or not a welding material, which is a co-material of the base steel plate, is inserted into the laser irradiation portion in the formation of the welding bead. In addition, from the welded joints having the respective joint numbers in Tables 9 and 10, at least six fatigue test pieces described below were produced for each joint number.

【0130】[0130]

【表9】 [Table 9]

【0131】[0131]

【表10】 [Table 10]

【0132】上記のようにして作製した突き合わせ溶接
継手から、機械加工によって、試験片長手方向が溶接方
向に対して直角方向となるように突合せ軸力疲労試験片
を採取した。なお、上記軸力疲労試験片の寸法は、板厚
が鋼板板厚のままの18〜3mmで、試験部の幅が40
mm、掴み部の幅が70mm、長さが700mmであ
る。
From the butt-welded joint produced as described above, a butt-axial fatigue test piece was sampled by machining so that the longitudinal direction of the test piece was perpendicular to the welding direction. The dimensions of the axial fatigue test piece are 18 to 3 mm with the plate thickness being the plate thickness of the steel plate, and the width of the test portion is 40 mm.
mm, the width of the grip portion is 70 mm, and the length is 700 mm.

【0133】疲労試験は、室温大気中で閉ループ型電気
油圧式疲労試験機を用いて、すなわち、動的な荷重容量
が±500kNの試験機に前記の軸力疲労試験片を油圧
チャックによって装着し、荷重比Rが0.1のサイン波
(sin波)となる片振り引張荷重の荷重制御下で実施
した。この際、荷重範囲(つまり、最大荷重−最小荷
重)ΔPを実験パラメータとして疲労破断寿命を測定し
た。なお、荷重範囲ΔPと余盛りを含まない公称断面積
とから公称応力範囲Δσを求め、各継手番号毎に各疲労
試験片の疲労破断寿命からSN曲線を作成した。
The fatigue test was carried out in a room temperature atmosphere using a closed loop electrohydraulic fatigue tester, that is, by mounting the above axial force fatigue test piece on a tester with a dynamic load capacity of ± 500 kN by a hydraulic chuck. , And the load ratio R was 0.1 sine wave (sin wave). At this time, the fatigue rupture life was measured using the load range (that is, the maximum load-minimum load) ΔP as an experimental parameter. The nominal stress range Δσ was obtained from the load range ΔP and the nominal cross-sectional area that does not include extra, and an SN curve was created from the fatigue fracture life of each fatigue test piece for each joint number.

【0134】前記試験において、繰返し速度は試験荷重
や変位量に応じて3〜8Hzの条件で行い、試験片表面
で発生した疲労亀裂が破面を形成しながら進展して試験
機の荷重制御が困難になった時点を疲労破断寿命と定義
した。
In the above-mentioned test, the repetition rate is set to 3 to 8 Hz according to the test load and the displacement amount, and the fatigue cracks generated on the surface of the test piece propagate while forming a fracture surface to control the load of the tester. The time when it became difficult was defined as the fatigue fracture life.

【0135】又、繰返し数による疲労試験打切り条件は
3×10 回を基準としたが、一部の供試体において
は上記の繰返し数で打切ることなく試験を継続した。
Although the fatigue test cutoff condition based on the number of repetitions was set to 3 × 10 6 times as a standard, the test was continued on some test specimens without being cut off at the above number of repetitions.

【0136】上記のようにして作成したSN曲線はほぼ
直線状であり、明瞭な折曲がりが見られなかったので、
繰返し数が2×10 回での時間強度をその継手の疲
労強度Δσwとして評価した。
The SN curve created as described above was almost linear, and no clear bending was observed.
The fatigue strength Δσw of the joint was evaluated by the time strength when the number of repetitions was 2 × 10 6 .

【0137】各継手番号毎の疲労強度Δσwを表11〜
13に示す。なお、いずれの供試体の場合にも、疲労亀
裂の発生位置は溶接止端であった。
The fatigue strength Δσw for each joint number is shown in Tables 11 to 11.
13 shows. In addition, in all of the specimens, the fatigue crack generation position was the weld toe.

【0138】[0138]

【表11】 [Table 11]

【0139】[0139]

【表12】 [Table 12]

【0140】[0140]

【表13】 [Table 13]

【0141】表9、表10の各継手番号の溶接継手につ
いて、母材表面から1mmの深さにある位置において、
レーザ溶接後のボンド部から溶接金属側に0.4mmピ
ッチで1.6mmまで、又、レーザ溶接後のボンド部か
ら溶接熱影響部側にも0.4mmピッチで1.6mmま
で、試験力9.807Nでビッカース硬さHV1(D
=0.4、0.8、1.2及び1.6)の測定を行っ
た。
Regarding the welded joints having the respective joint numbers shown in Tables 9 and 10, at a position at a depth of 1 mm from the surface of the base metal,
From the bond portion after laser welding to the weld metal side at a 0.4 mm pitch to 1.6 mm, and from the bond portion after laser welding to the welding heat affected zone side at a 0.4 mm pitch to 1.6 mm, test force 9 Vickers hardness HV1 D (D
= 0.4, 0.8, 1.2 and 1.6) were measured.

【0142】上記HV1 の測定結果、 (1)式で表さ
れる重み付き平均値及び、溶接金属側の重み付き平均値
と溶接熱影響部側の重み付き平均値との比を、表11〜
13に併せて示した。又、図1に、各継手番号毎の疲労
強度Δσwに及ぼす溶接金属側の重み付き平均値と溶接
熱影響部側の重み付き平均値との比の影響の一例を示
す。なお、表11〜13及び図1においては、溶接金属
側の重み付き平均値と溶接熱影響部側の重み付き平均値
との比を「硬さ比」と表示した。更に、表11〜13に
おいては、重み付き平均値を「AV」と表示した。
Table 11 shows the HV1 D measurement results, the weighted average value represented by the equation (1), and the ratio of the weighted average value on the weld metal side to the weighted average value on the welding heat affected zone. ~
13 is also shown. FIG. 1 shows an example of the influence of the ratio of the weighted average value on the weld metal side and the weighted average value on the weld heat affected zone side on the fatigue strength Δσw for each joint number. In Tables 11 to 13 and FIG. 1, the ratio of the weighted average value on the weld metal side to the weighted average value on the welding heat affected zone side is indicated as “hardness ratio”. Further, in Tables 11 to 13, the weighted average value is indicated as “AV”.

【0143】表11〜13及び図1から、上記「硬さ
比」と継手の疲労強度Δσwとの間には極めて強い相関
があり、しかも「硬さ比」が1.6以下である継手番号
1〜9、11〜14、18、20、22、24、27、
28、30〜32、36、37及び40の場合は、Δσ
wで200MPaを超える大きな継手疲労強度が得られ
ている。
From Tables 11 to 13 and FIG. 1, there is an extremely strong correlation between the "hardness ratio" and the fatigue strength Δσw of the joint, and the "hardness ratio" is 1.6 or less. 1-9, 11-14, 18, 20, 22, 24, 27,
In the case of 28, 30 to 32, 36, 37 and 40, Δσ
A large joint fatigue strength of more than 200 MPa is obtained with w.

【0144】なお、表9及び表10の各継手番号の母材
については、室温大気中での引張特性、靱性、清浄度及
び溶接性についても調査した。
With respect to the base materials with the respective joint numbers in Tables 9 and 10, the tensile properties, toughness, cleanliness and weldability in room temperature atmosphere were also investigated.

【0145】引張試験片は、板厚が6mmを超える母材
鋼板からはJIS Z 2201に記載の1A号試験片を、板厚が
6mm以下の母材鋼板からは同じJIS Z 2201に記載の5
号試験片を採取し、室温大気中での降伏強度を測定し
た。
For the tensile test piece, the No. 1A test piece described in JIS Z 2201 was used for the base material steel sheet having a plate thickness of more than 6 mm, and the same No. 5 test described in JIS Z 2201 was used for the base material steel sheet having a plate thickness of 6 mm or less.
No. 4 test piece was sampled and the yield strength in room temperature atmosphere was measured.

【0146】又、板厚が10〜18mmの母材の中心部
から、JIS Z 2202に記載の幅が10mmのフルサイズシ
ャルピーVノッチ試験片を、同様に板厚が5mmと7m
mの母材の中心部及び板厚が3mmと4mmの母材の中
心部から、それぞれ上記JISZ 2202に記載の幅が5m
m、幅が2.5mmのサブサイズシャルピーVノッチ試
験片を採取し、衝撃試験を行って破面遷移温度を測定し
て靱性を調査した。
From the center of the base material having a plate thickness of 10 to 18 mm, a full-size Charpy V-notch test piece having a width of 10 mm described in JIS Z 2202 was similarly prepared.
The width described in JIS Z 2202 is 5 m from the center of the base material of m and the center of the base material with plate thickness of 3 mm and 4 mm, respectively.
A subsize Charpy V-notch test piece with m and a width of 2.5 mm was sampled, an impact test was performed, and a fracture surface transition temperature was measured to investigate the toughness.

【0147】更に、18〜3mmの板厚の母材に対し、
板厚中心部からブロック状の試験片を採取し、非金属介
在物の顕微鏡観察試験を行った。
Furthermore, for a base material having a plate thickness of 18 to 3 mm,
A block-shaped test piece was sampled from the center of the plate thickness, and a microscopic observation test of non-metallic inclusions was performed.

【0148】又、各母材を予熱することなく室温でレー
ザ溶接し、溶接割れが生じるか否かで溶接性を調査し
た。
Further, each base material was laser-welded at room temperature without being preheated, and the weldability was examined by whether or not weld cracking occurred.

【0149】一方、表9及び表10の各継手番号の溶接
継手について、溶接部最高硬さ、溶接継手部靱性、溶接
溶融線(フュジョンライン)から母材側に1mm離れた
位置(所謂「HAZ1mm」)でのフェライト結晶粒径
の調査も行った。
On the other hand, with respect to the welded joints having the respective joint numbers shown in Tables 9 and 10, the maximum hardness of the welded portion, the toughness of the welded joint, and the position 1 mm away from the weld fusion line (fusion line) on the base metal side (so-called " HAZ 1 mm ") was also investigated.

【0150】先ず、ブロック状の鋼板にショートビード
を置き、試験力9.807Nでビッカース硬さHVを測
定し、溶接部最高硬さを調査した。
First, a short bead was placed on a block-shaped steel plate, the Vickers hardness HV was measured with a test force of 9.807 N, and the maximum weld hardness was investigated.

【0151】次に、溶接継手部靱性の評価は、溶接溶融
線から母材側に1mm離れた位置である「HAZ1m
m」がVノッチの底となるように試験片を加工した。試
験片寸法に関しては、母材板厚に応じてそれぞれ前記母
材の場合と同様のJIS Z 2202に記載の幅が10mmのフ
ルサイズシャルピーVノッチ試験片、幅が5mm、幅が
2.5mmのサブサイズシャルピーVノッチ試験片と
し、上記衝撃試験を行い、破面遷移温度を測定して靱性
を調査した。
Next, the evaluation of the toughness of the welded joint was carried out by "HAZ1m
The test piece was processed so that "m" was the bottom of the V notch. Regarding the size of the test piece, a full-size Charpy V-notch test piece with a width of 10 mm and a width of 5 mm and a width of 2.5 mm described in JIS Z 2202, which is the same as the case of the base material, is used according to the thickness of the base material. The sub-size Charpy V-notch test piece was subjected to the above impact test, and the fracture surface transition temperature was measured to investigate the toughness.

【0152】更に、鋼板からブロック状の試料を切り出
し、樹脂に埋め込んで通常の方法で鏡面研磨した後、3
%ナイタルで腐食して顕微鏡観察し、フェライト結晶粒
径を測定した。
Further, a block-shaped sample was cut out from the steel plate, embedded in a resin, and mirror-polished by a usual method, and then 3
% Corrosion with nital and microscopic observation were performed to measure the ferrite crystal grain size.

【0153】表14、表15に上記の各試験結果をまと
めて符号で示した。
In Tables 14 and 15, the above-mentioned test results are summarized and shown by reference numerals.

【0154】表14、表15における母材の「強度」欄
の「◎」、「○」、「×」はそれぞれ、室温大気中での
降伏強度が350MPa以上、294MPa以上で35
0MPa未満、294MPa未満であったことを示す。
"A", "○", and "X" in the "strength" column of the base materials in Tables 14 and 15 are 35 at yield strengths of 350 MPa or more and 294 MPa or more in room temperature atmosphere.
It is less than 0 MPa and less than 294 MPa.

【0155】母材の「靱性」欄の「◎」、「○」、
「×」はそれぞれ、50%破面遷移温度が−30℃未
満、−30℃以上で0℃未満、0℃以上であったことを
示す。
“◎”, “○” in the “Toughness” column of the base material,
“X” indicates that the 50% fracture surface transition temperature was less than −30 ° C., less than −30 ° C. and less than 0 ° C., and 0 ° C. or more, respectively.

【0156】母材の「清浄度」欄の「○」、「×」は、
JIS G 0555に記載の「標準図による顕微鏡試験方法」に
基づいて評価したもので、A系、B系、C系及びD系い
ずれの介在物も上記JIS G 0555の付属書AのASTM標
準図における番号で1.5以下の場合を「○」、それ以
外の場合を「×」とした。
“○” and “x” in the “cleanliness” column of the base material are
It was evaluated based on the "microscopic examination method according to the standard drawing" described in JIS G 0555, and all the inclusions of A type, B type, C type and D type are ASTM standard diagrams of Annex A of JIS G 0555 mentioned above. In the case of the number of 1.5 or less, "○" was given, and in other cases, "x" was given.

【0157】母材の「溶接性」欄の「○」、「×」はそ
れぞれ、溶接割れが生じなかったこと、溶接割れが生じ
たことを示す。
[0157] "O" and "x" in the "weldability" column of the base material indicate that no weld cracks occurred and weld cracks occurred, respectively.

【0158】一方、表14、表15における溶接継手の
「最高硬さ」欄の「×」、「○」はそれぞれ、ビッカー
ス硬さ(HV)で400以上の部分が存在したこと、H
Vで400未満であったことを示す。
On the other hand, “X” and “◯” in the “maximum hardness” column of the welded joints in Tables 14 and 15 indicate that there are 400 or more parts in Vickers hardness (HV).
It was shown that V was less than 400.

【0159】溶接継手の「靱性」欄の「○」、「×」は
それぞれ、50%破面遷移温度が0℃未満、0℃以上で
あったことを示す。
“O” and “x” in the “toughness” column of the welded joints indicate that the 50% fracture surface transition temperatures were below 0 ° C. and above 0 ° C., respectively.

【0160】溶接継手の「粒径」欄の「◎」、「○」は
それぞれ、フェライト平均結晶粒径が5μm以下、5μ
mを超えて25μm以下であったことを示す
"A" and "○" in the "particle size" column of the welded joint indicate that the ferrite average crystal grain size is 5 μm or less and 5 μm, respectively.
It shows that it was more than m and 25 μm or less.

【0161】[0161]

【表14】 [Table 14]

【0162】[0162]

【表15】 [Table 15]

【0163】表14及び表15から、母材と溶接継手の
特性は化学組成の影響を受けることがわかる。すなわ
ち、前記した第1群の元素であるCr、Ni、Cuは母
材靱性や溶接部靱性を改善している。しかし、過剰の含
有の場合には却って靱性の低下が認められる。又、前記
した第2群の元素であるV、Nbは靱性や強度を高める
ことができるが、過剰に含有させると溶接部靱性の低下
することが認められる。更に、前記した第3群の元素で
あるTi、CaはHAZの金属組織を微細にすることが
できるが、Tiを過剰に含有させると靱性が低下し、C
aを過剰に含有させると鋼の清浄度が低下することが認
められる。
From Tables 14 and 15, it can be seen that the properties of the base material and the welded joint are influenced by the chemical composition. That is, the above-mentioned elements of the first group, Cr, Ni, and Cu, improve the toughness of the base metal and the toughness of the weld zone. However, when the content is excessive, the toughness is rather decreased. Further, V and Nb, which are the elements of the second group described above, can enhance the toughness and strength, but it is recognized that when they are contained in excess, the toughness of the welded portion is lowered. Further, Ti and Ca, which are the elements of the third group described above, can make the metal structure of the HAZ fine, but if Ti is contained excessively, the toughness decreases and C
It is recognized that if a is contained excessively, the cleanliness of the steel decreases.

【0164】[0164]

【発明の効果】本発明によれば、疲労強度特性に優れた
レーザ溶接部を有する鋼構造部材と、その鋼構造部材に
用いる鋼材が得られるので、構造物全体の軽量化など高
機能化を推進することができる。
According to the present invention, since a steel structural member having a laser welded portion having excellent fatigue strength characteristics and a steel material used for the steel structural member can be obtained, it is possible to improve the function such as reducing the weight of the entire structure. Can be promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で調査した継手の疲労強度Δσwに及ぼ
す溶接金属側の重み付き平均値と溶接熱影響部側の重み
付き平均値との比の影響の一例を示す図である。
FIG. 1 is a diagram showing an example of the influence of the ratio of the weighted average value on the weld metal side and the weighted average value on the weld heat affected zone side on the fatigue strength Δσw of the joint investigated in the examples.

【図2】溶接金属側ビッカース硬さの重み付き平均値と
溶接熱影響部側ビッカース硬さの重み付き平均値との比
と、(HVmax−HVBM)/(mm単位でのHAZ幅)
の値との相関関係を示す図である。
[Fig. 2] Ratio of the weighted average value of Vickers hardness on the weld metal side to the weighted average value of Vickers hardness on the weld heat affected zone, and (HVmax-HVBM) / (HAZ width in mm)
It is a figure which shows the correlation with the value of.

【図3】(HVmax −HVBM)/(mm単位でのHAZ
幅)の実測値と、(17)式によって求めた計算値との関係
を示す図である。
FIG. 3 (HVmax-HVBM) / (HAZ in mm)
It is a figure which shows the relationship between the measured value of (width) and the calculated value calculated by (17) formula.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 知哉 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 瀬田 一郎 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 川畑 友弥 茨城県鹿嶋市大字光3番地 住友金属工業 株式会社鹿島製鉄所内 Fターム(参考) 4E068 DB01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomoya Fujiwara             4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture             Sumitomo Metal Industries, Ltd. (72) Inventor Ichiro Seta             4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture             Sumitomo Metal Industries, Ltd. (72) Inventor Tomoya Kawabata             Sumitomo Metal Industries, No. 3, Hikari, Oshima, Kashima City, Ibaraki Prefecture             Kashima Steel Works Co., Ltd. F-term (reference) 4E068 DB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】母材表面から1mmの深さにある位置で、
レーザ溶接後のボンド部からの距離が1.6mm以内の
領域における溶接金属側ビッカース硬さの重み付き平均
値が、前記1.6mm以内の領域における溶接熱影響部
側ビッカース硬さの重み付き平均値の1.6倍以下であ
るレーザ溶接された鋼構造部材。ここで、上記ボンド部
からの距離が1.6mm以内の領域におけるビッカース
硬さの重み付き平均値とは、試験力9.807N以下で
試験した際、ボンド部からの距離がD(mm)の位置で
のビッカース硬さをHV1 として下記 (1)式で表さ
れる値を指す。 重み付き平均値=0.4×HV10.4 +0.3×HV10.8 +0.2× HV11.2 +0.1×HV11.6 ・・・(1)。
1. A position at a depth of 1 mm from the surface of the base material,
The weighted average value of the Vickers hardness on the weld metal side in the region within 1.6 mm from the bond portion after laser welding is the weighted average of the Vickers hardness on the weld heat affected region in the region within 1.6 mm. A laser welded steel structural member having a value of 1.6 times or less. Here, the weighted average value of Vickers hardness in the region where the distance from the bond portion is within 1.6 mm means that the distance from the bond portion is D (mm) when tested with a test force of 9.807 N or less. The Vickers hardness at the position is HV1 D , and indicates the value expressed by the following equation (1). Weighted average value = 0.4 × HV1 0.4 + 0.3 × HV1 0.8 + 0.2 × HV1 1.2 + 0.1 × HV1 1.6 (1).
【請求項2】鋼が質量%で、C:0.003〜0.07
%、Si:0.1〜0.6%、Mn:0.3〜2.0
%、Al:0.01〜0.1%を含有し、残部はFe及
び不純物からなる請求項1に記載のレーザ溶接された鋼
構造部材。
2. Steel in mass%, C: 0.003 to 0.07
%, Si: 0.1 to 0.6%, Mn: 0.3 to 2.0
%, Al: 0.01 to 0.1%, and the balance being Fe and impurities. The laser-welded steel structural member according to claim 1.
【請求項3】鋼が質量%で、C:0.003〜0.07
%、Si:0.1〜0.6%、Mn:0.3〜2.0
%、Al:0.01〜0.1%を含有し、更に、 第1群:Cr:0.01〜0.15%、Ni:0.01
〜0.15%、Cu:0.1〜0.35%のうちの1種
以上、 第2群:V:0.01〜0.07%、Nb:0.01〜
0.06%のうちの1種以上、 第3群:Ti:0.003〜0.015%、Ca:0.
0005〜0.006%のうちの1種以上、の1群以上
をも含み、残部はFe及び不純物からなり、不純物中の
Moは0.08%以下である請求項1に記載のレーザ溶
接された鋼構造部材。
3. Steel in mass%, C: 0.003 to 0.07
%, Si: 0.1 to 0.6%, Mn: 0.3 to 2.0
%, Al: 0.01 to 0.1%, and further, the first group: Cr: 0.01 to 0.15%, Ni: 0.01
.About.0.15%, Cu: one or more of 0.1 to 0.35%, second group: V: 0.01 to 0.07%, Nb: 0.01 to
One or more of 0.06%, the third group: Ti: 0.003 to 0.015%, Ca: 0.0.
The laser welding according to claim 1, further comprising at least one group of 0005 to 0.006%, the balance being Fe and impurities, and Mo in the impurities being 0.08% or less. Steel structural members.
【請求項4】レーザ出力L(W(ワット))、熱効率
η、溶接速度v(cm/秒)の条件でレーザ溶接され、
母材表面から1mmの深さにある位置で、レーザ溶接後
のボンド部からの距離が1.6mm以内の領域における
溶接金属側ビッカース硬さの重み付き平均値が、前記
1.6mm以内の領域における溶接熱影響部側ビッカー
ス硬さの重み付き平均値の1.6倍以下である厚さh
(cm)の鋼構造部材に用いる鋼材であって、質量%
で、C:0.003〜0.07%、Si:0.1〜0.
6%、Mn:0.3〜2.0%、Al:0.01〜0.
1%を含有し、残部はFe及び不純物からなり、不純物
中のMoは0.08%以下で、且つ下記 (2)で表される
値が100以下である鋼材。 {3.91×10×(Lη)−1.2×(vh)1.2}/(e−24(HP 1−0.2) +1)・・・(2)、 ここで、HP1は元素記号をその合金元素の質量%での
含有量として下記 (3)式で表される値である。 HP1=C+(Si/50)+(Mn/20)+(Mo/30)・・・(3)。
4. Laser welding is performed under the conditions of laser output L (W (watt)), thermal efficiency η, and welding speed v (cm / sec).
At a position at a depth of 1 mm from the surface of the base metal, a weighted average value of Vickers hardness on the weld metal side in a region within a distance of 1.6 mm from the bond portion after laser welding is within the region of 1.6 mm. Thickness h which is 1.6 times or less of the weighted average value of Vickers hardness on the welding heat affected zone side in
(Cm) Steel material used for steel structural members, in mass%
C: 0.003 to 0.07%, Si: 0.1 to 0.
6%, Mn: 0.3-2.0%, Al: 0.01-0.
A steel material containing 1%, the balance consisting of Fe and impurities, Mo in the impurities being 0.08% or less, and the value represented by the following (2) being 100 or less. {3.91 × 10 6 × (Lη) −1.2 × (vh) 1.2 } / (e −24 (HP 1−0.2) +1) ... (2), where HP1 is It is a value represented by the following formula (3) where the element symbol is the content of the alloying element in mass%. HP1 = C + (Si / 50) + (Mn / 20) + (Mo / 30) (3).
【請求項5】レーザ出力L(W(ワット))、熱効率
η、溶接速度v(cm/秒)の条件でレーザ溶接され、
母材表面から1mmの深さにある位置で、レーザ溶接後
のボンド部からの距離が1.6mm以内の領域における
溶接金属側ビッカース硬さの重み付き平均値が、前記
1.6mm以内の領域における溶接熱影響部側ビッカー
ス硬さの重み付き平均値の1.6倍以下である厚さh
(cm)の鋼構造部材に用いる鋼材であって、質量%
で、C:0.003〜0.07%、Si:0.1〜0.
6%、Mn:0.3〜2.0%、Al:0.01〜0.
1%を含有し、更に、 第1群:Cr:0.01〜0.15%、Ni:0.01
〜0.15%、Cu:0.1〜0.35%のうちの1種
以上、 第2群:V:0.01〜0.07%、Nb:0.01〜
0.06%のうちの1種以上、 第3群:Ti:0.003〜0.015%、Ca:0.
0005〜0.006%のうちの1種以上、の1群以上
をも含み、残部はFe及び不純物からなり、不純物中の
Moは0.08%以下で、且つ下記 (4)で表される値が
100以下である鋼材。 {3.91×10×(Lη)−1.2×(vh)1.2}/(e−24(HP 2−0.2) +1)・ ・・(4)、 ここで、HP2は元素記号をその合金元素の質量%での
含有量として下記 (5)式で表される値である。 HP2=C+(Si/50)+{(Mn+Cu+Cr)/20}+(Ni/60 )+(V/20)+Ca+(Mo/30)・・・(5)。
5. Laser welding is performed under the conditions of laser output L (W (watt)), thermal efficiency η, and welding speed v (cm / sec).
At a position at a depth of 1 mm from the surface of the base metal, a weighted average value of Vickers hardness on the weld metal side in a region within a distance of 1.6 mm from the bond portion after laser welding is within the region of 1.6 mm. Thickness h which is 1.6 times or less of the weighted average value of Vickers hardness on the welding heat affected zone side in
(Cm) Steel material used for steel structural members, in mass%
C: 0.003 to 0.07%, Si: 0.1 to 0.
6%, Mn: 0.3-2.0%, Al: 0.01-0.
1%, further, the first group: Cr: 0.01 to 0.15%, Ni: 0.01
.About.0.15%, Cu: one or more of 0.1 to 0.35%, second group: V: 0.01 to 0.07%, Nb: 0.01 to
One or more of 0.06%, the third group: Ti: 0.003 to 0.015%, Ca: 0.0.
One or more of 0005 to 0.006%, including one or more groups, the balance consisting of Fe and impurities, Mo in the impurities is 0.08% or less, and is represented by the following (4). Steel with a value of 100 or less. {3.91 × 10 6 × (Lη) −1.2 × (vh) 1.2 } / (e −24 (HP 2−0.2) +1) ··· (4), where HP2 is It is a value represented by the following equation (5), where the element symbol is the content of the alloying element in mass%. HP2 = C + (Si / 50) + {(Mn + Cu + Cr) / 20} + (Ni / 60) + (V / 20) + Ca + (Mo / 30) (5).
JP2001246496A 2000-08-21 2001-08-15 Laser welded steel structural member and steel material used for the steel structural member Expired - Fee Related JP3705171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246496A JP3705171B2 (en) 2000-08-21 2001-08-15 Laser welded steel structural member and steel material used for the steel structural member

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-249316 2000-08-21
JP2000249316 2000-08-21
JP2001190935 2001-06-25
JP2001-190935 2001-06-25
JP2001246496A JP3705171B2 (en) 2000-08-21 2001-08-15 Laser welded steel structural member and steel material used for the steel structural member

Publications (2)

Publication Number Publication Date
JP2003080385A true JP2003080385A (en) 2003-03-18
JP3705171B2 JP3705171B2 (en) 2005-10-12

Family

ID=27344384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246496A Expired - Fee Related JP3705171B2 (en) 2000-08-21 2001-08-15 Laser welded steel structural member and steel material used for the steel structural member

Country Status (1)

Country Link
JP (1) JP3705171B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054533A1 (en) * 2003-12-01 2005-06-16 Sumitomo Metal Industries, Ltd. Steel product excellent in fatigue characteristics and method for production thereof
WO2017141470A1 (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Laser-welded shaped steel and method for producing same
JP2019048319A (en) * 2017-09-11 2019-03-28 株式会社Ihi Method for estimation of heat-affected zone width of weld part and welding method by use of estimation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054533A1 (en) * 2003-12-01 2005-06-16 Sumitomo Metal Industries, Ltd. Steel product excellent in fatigue characteristics and method for production thereof
KR100774805B1 (en) * 2003-12-01 2007-11-07 수미도모 메탈 인더스트리즈, 리미티드 Steel product excellent in fatigue characteristics and method for production thereof
WO2017141470A1 (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Laser-welded shaped steel and method for producing same
JP6197126B1 (en) * 2016-02-16 2017-09-13 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
CN108698168A (en) * 2016-02-16 2018-10-23 日新制钢株式会社 Laser welding shaped steel and its manufacturing method
US20190084086A1 (en) * 2016-02-16 2019-03-21 Nisshin Steel Co., Ltd. Laser-welded shaped steel and method for producing same
US10603746B2 (en) 2016-02-16 2020-03-31 Nippon Steel Nisshin Co., Ltd. Laser-welded shaped steel and method for producing same
JP2019048319A (en) * 2017-09-11 2019-03-28 株式会社Ihi Method for estimation of heat-affected zone width of weld part and welding method by use of estimation method

Also Published As

Publication number Publication date
JP3705171B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
Guo et al. Microstructure and mechanical properties of laser welded S960 high strength steel
Choi et al. Evaluation of weldability for resistance spot welded single-lap joint between GA780DP and hot-stamped 22MnB5 steel sheets
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP2005144552A5 (en) Large heat input butt welded joint for hulls with excellent brittle fracture resistance
Guo et al. Laser welding of high strength steels (S960 and S700) with medium thickness
Shin et al. Low temperature impact toughness of structural steel welds with different welding processes
Suherman et al. GTA Welding Dissimilar of AISI 309 to AISI 201 Stainless Steels by Using AISI 308L Filler Metals
Dahmen et al. Weld metallurgy and mechanical properties of high manganese ultra-high strength steel dissimilar welds
Pavlík et al. Influence of electron beam welding parameters on the properties of dissimilar copper–stainless steel overlapped joints
JPWO2019225527A1 (en) Lap laser welded joint, method for manufacturing lap laser welded joint, and automobile frame component
JP2016216819A (en) Thick steel plate and welded joint
Fortan et al. The strength of stainless steel fillet welds using GMAW
Venkatesh Kannan et al. Studies on microstructure and mechanical properties of weldments produced in 12 mm thick naval grade high strength low alloy steel for sub-zero application by single and double pass hybrid laser arc welding
규백안 et al. Evaluation of fracture safety according to plastic deformation with high strength steel weld joints
JP3705171B2 (en) Laser welded steel structural member and steel material used for the steel structural member
Kurc-Lisiecka et al. Laser welding of stainless steel
Sufizadeh et al. Microstructures and mechanical properties of dissimilar Nd: YAG laser weldments of AISI4340 and AISI316L steels
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
Chen et al. Metallurgical and Mechanical Properties of Fibrous Laser Welded Thick Q890 High Strength Low Alloy Steel with Varying Weld Geometries
Prabhakaran et al. Weld strength and microstructure analysis on resistance spot welding of austenitic AISI 347 stainless steel and duplex AISI 2205 stainless steel
Sehsah et al. Dissimilar Welding of Ductile Cast Iron to 304 Stainless Steel
Pita et al. The effect of different brands of welding electrode on the mechanical properties of welded joints in mild steel
JP2018076563A (en) High strength steel
JP5606741B2 (en) Tailored blank manufacturing method and steel plate for tailored blank
Nolting et al. Mechanical properties of HSLA-65 hybrid laser arc welds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Ref document number: 3705171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees