JP7484895B2 - Water Treatment Systems - Google Patents
Water Treatment Systems Download PDFInfo
- Publication number
- JP7484895B2 JP7484895B2 JP2021512004A JP2021512004A JP7484895B2 JP 7484895 B2 JP7484895 B2 JP 7484895B2 JP 2021512004 A JP2021512004 A JP 2021512004A JP 2021512004 A JP2021512004 A JP 2021512004A JP 7484895 B2 JP7484895 B2 JP 7484895B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment
- treated
- adsorption
- condensed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 240
- 238000001179 sorption measurement Methods 0.000 claims description 57
- 150000002894 organic compounds Chemical class 0.000 claims description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 238000003795 desorption Methods 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 238000009833 condensation Methods 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 1
- 208000028659 discharge Diseases 0.000 description 15
- 239000007789 gas Substances 0.000 description 12
- 239000003463 adsorbent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- -1 triethylene glycol, organic acids Chemical class 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- HTWIZMNMTWYQRN-UHFFFAOYSA-N 2-methyl-1,3-dioxolane Chemical compound CC1OCCO1 HTWIZMNMTWYQRN-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
Description
本発明は、有機化合物を含有する水(以下、被処理水という)から有機化合物を除去することで当該被処理水を清浄化する一方で、被処理水から除去された有機化合物を含む濃縮水を高濃縮化するシステムに関する。 The present invention relates to a system that purifies water containing organic compounds (hereinafter referred to as treated water) by removing organic compounds from the water, while highly concentrating concentrated water containing the organic compounds removed from the treated water.
従来、工場や研究施設等から排出される被処理水には有害な性質を有する有機化合物が含有されることがあり、被処理水を下水中等にそのまま排出することができない。そのため、被処理水に含まれる有機化合物を除去し清浄化された処理水を排出する水処理装置が使用されている。 Conventionally, untreated water discharged from factories, research facilities, etc. has sometimes contained organic compounds with harmful properties, and the untreated water cannot be discharged directly into sewage, etc. For this reason, water treatment devices are used that remove the organic compounds contained in the untreated water and discharge purified treated water.
そのような水処理装置として、活性炭等の吸着素子を用いた吸着装置が広く用いられている。たとえば、特許文献1、特許文献2および特許文献3に記載の水処理装置は、被処理水を清浄化するための吸着素子を備えており、吸着素子に被処理水を通液させることで、被処理水中の有機化合物が吸着素子で吸着除去され、清浄化された水(以下、処理水という)として排出される。その後有機化合物を吸着した吸着素子に水蒸気を通気させることで、吸着素子に吸着していた有機化合物が脱着され、有機化合物を含むガス(以下、脱着ガスという)として排出される。脱着ガスはコンデンサに導入されて、冷却・凝縮され、有機化合物の濃縮された水(以下、濃縮水という)として排出される。As such water treatment devices, adsorption devices using adsorption elements such as activated carbon are widely used. For example, the water treatment devices described in Patent Documents 1, 2, and 3 are equipped with adsorption elements for purifying the water to be treated. By passing the water to be treated through the adsorption element, the organic compounds in the water to be treated are adsorbed and removed by the adsorption element, and the water is discharged as purified water (hereinafter referred to as treated water). Then, by passing water vapor through the adsorption element that has adsorbed the organic compounds, the organic compounds adsorbed on the adsorption element are desorbed, and the water is discharged as a gas containing the organic compounds (hereinafter referred to as desorbed gas). The desorbed gas is introduced into a condenser, cooled and condensed, and discharged as water in which the organic compounds are concentrated (hereinafter referred to as concentrated water).
ところで、前記濃縮水は廃棄する場合、産廃業者へ廃棄処理してもらうかあるいは燃焼等の後処理をするか、二次処理の必要がある。濃縮水の量は二次処理のコストに直結しているため、濃縮水の減量すなわち高濃縮化が求められている。また、高付加価値の有機溶剤については、再利用可能な濃度まで高濃縮して回収することが求められている。When the concentrated water is to be disposed of, it must be disposed of by an industrial waste disposal company, or it must be burned or otherwise treated as a secondary process. Since the amount of concentrated water is directly linked to the cost of secondary treatment, there is a demand to reduce the amount of concentrated water, i.e., to make it more concentrated. In addition, there is a demand to concentrate high-added-value organic solvents to a reusable concentration before recovering them.
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、有機化合物を含有する濃縮水の高濃縮化に優れた水処理システムを提供することにある。The present invention was made against the background of the problems of the conventional technology. That is, the object of the present invention is to provide a water treatment system that is excellent in highly concentrating concentrated water containing organic compounds.
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成からなる。
1.有機化合物を含有する被処理水を吸着素子に通流させて有機化合物を吸着させる吸着処理と、前記吸着素子に水蒸気を通流させて吸着された有機化合物を脱着して脱着ガスとして排出する脱着処理とを交互に行う処理槽、及び、前記脱着ガスを凝縮して凝縮水として排出する凝縮手段、を備えた水処理装置と、前記凝縮水を濃縮水として系外へ排出する系外ラインと、を備えた水処理システムにおいて、前記凝縮水を循環水として前記被処理水へ戻す循環ラインと、前記凝縮水を前記濃縮水として排出するか前記循環水として前記被処理水へ戻すかを振り分ける振分調整手段と、を備えている。
2.前記振分調整手段は、前記凝縮水の一部を前記濃縮水として排出し、残りの前記凝縮水を前記循環水として前記被処理水へ戻すよう調整する1に記載の水処理システム。
3.前記凝縮水を前記凝縮手段から排出する排出ラインに、または前記処理水を前記処理槽に導入する導入ラインに、有機化合物濃度を測定する測定手段を備え、前記振分調整手段は、前記測定手段にて測定した有機化合物濃度が所定値になると、前記循環水と前記濃縮水との割合を変更する1または2に記載の水処理システム。
4.前記処理槽を2つ以上備え、少なくとも1つの処理槽が前記吸着処理を実施する間に、別の少なくとも1つの処理槽が前記脱着処理を実施する1から3のいずれか1つに記載の水処理システム。
5.前記吸着素子は、活性炭・活性炭素繊維またはゼオライトの内、少なくとも一つを含む1から4のいずれか1つに記載の水処理システム。
6.前記吸着素子は、BET比表面積が700~2500m2/g、細孔容積が0.4~0. 9cm3/g、平均細孔径が15~18Åである活性炭素繊維を含む1から4のいずれか1つに記載の水処理システム。
7.前記吸着処理により前記吸着素子に付着した水を除去して除去水として排出する脱水手段を備えた1から6のいずれか1つに記載の水処理システム。
8.前記除去水が前記水処理装置に再度供給される再供給ラインを備えた7に記載の水処理システム。
As a result of extensive investigations, the present inventors have found that the above problems can be solved by the means described below, and have arrived at the present invention. That is, the present invention has the following configuration.
1. A water treatment system including a treatment tank that alternately performs an adsorption process in which water to be treated containing organic compounds is passed through an adsorption element to adsorb the organic compounds, and a desorption process in which water vapor is passed through the adsorption element to desorb the adsorbed organic compounds and discharged as a desorbed gas, and a condensation means that condenses the desorbed gas and discharges it as condensed water, and an external line that discharges the condensed water to the outside of the system as concentrated water, the water treatment system also includes a circulation line that returns the condensed water to the water to be treated as circulating water, and a distribution adjustment means that distributes the condensed water so that it is either discharged as the concentrated water or returned to the water to be treated as the circulating water.
2. The water treatment system according to 1, wherein the distribution adjustment means adjusts the distribution so that a portion of the condensed water is discharged as the concentrated water and the remaining condensed water is returned to the water to be treated as the circulating water.
3. The water treatment system according to 1 or 2, further comprising a measuring means for measuring an organic compound concentration in a discharge line for discharging the condensed water from the condensing means or in an introduction line for introducing the treated water into the treatment tank, and the distribution adjustment means changes the ratio of the circulating water to the concentrated water when the organic compound concentration measured by the measuring means reaches a predetermined value.
4. The water treatment system according to any one of 1 to 3, comprising two or more treatment tanks, wherein while at least one treatment tank performs the adsorption treatment, at least another treatment tank performs the desorption treatment.
5. The water treatment system according to any one of 1 to 4, wherein the adsorption element includes at least one of activated carbon, activated carbon fiber, and zeolite.
6. The water treatment system according to any one of 1 to 4, wherein the adsorption element comprises activated carbon fibers having a BET specific surface area of 700 to 2500 m 2 /g, a pore volume of 0.4 to 0.9 cm 3 /g, and an average pore diameter of 15 to 18 Å.
7. The water treatment system according to any one of 1 to 6, further comprising a dehydration means for removing water adhered to the adsorption element by the adsorption treatment and discharging the water as removed water.
8. The water treatment system according to 7, further comprising a resupply line through which the removed water is resupplied to the water treatment device.
本発明により、有機化合物を含有する濃縮水の高濃縮化が可能になる。よって濃縮水の二次処理コストの削減が可能になる。また、高付加価値の有機溶剤については、再利用可能な濃度まで高濃縮して回収することができる。 The present invention makes it possible to highly concentrate concentrated water containing organic compounds. This makes it possible to reduce the cost of secondary treatment of the concentrated water. In addition, high-value-added organic solvents can be highly concentrated to a reusable concentration and then recovered.
以下、本発明の実施の形態について、図1を参照して詳細に説明する。 Below, an embodiment of the present invention is described in detail with reference to Figure 1.
図1は、本実施の形態の水処理システム1の構成図である。水処理システム1は、水処理装置100と、配管ラインL1~L7とを備え、導入される被処理水から有機化合物を除去して清浄化された処理水を排出し、有機溶剤を含有する濃縮水を高濃度にして排出するシステムである。 Figure 1 is a configuration diagram of a water treatment system 1 according to the present embodiment. The water treatment system 1 is equipped with a water treatment device 100 and piping lines L1 to L7, and is a system that removes organic compounds from the treated water introduced therein, discharges purified treated water, and discharges concentrated water containing organic solvents at a high concentration.
水処理装置100は、被処理水から有機化合物を吸着・除去し、清浄化された処理水を排出する装置であり、吸着素子120が収容された処理槽130を有している。処理槽130は1つでも複数でもよい。図1では、処理槽130が2つの場合を示しており、これに従って説明すると、一方の処理槽130は吸着処理を行う吸着槽、他方の処理槽130は脱着処理を行う脱着槽として機能する。吸着槽として機能する処理槽130は、被処水が吸着素子120に供給されると、被処理水に含有される有機化合物を吸着して、処理水を排出する。これにより、被処理水から有機化合物が除去される。脱着槽として機能する処理槽130は、水蒸気が吸着材に供給されると、吸着した有機化合物を脱着し、脱着ガスを排出する。これにより、吸着材120が再生される。各処理槽130において、吸着槽と脱着槽とは経時的に交互に切り替わるように構成されている。The water treatment device 100 is a device that adsorbs and removes organic compounds from the water to be treated and discharges the purified treated water, and has a treatment tank 130 in which an adsorption element 120 is housed. There may be one or more treatment tanks 130. FIG. 1 shows a case in which there are two treatment tanks 130, and according to this description, one treatment tank 130 functions as an adsorption tank that performs adsorption processing, and the other treatment tank 130 functions as a desorption tank that performs desorption processing. When the water to be treated is supplied to the adsorption element 120, the treatment tank 130 that functions as an adsorption tank adsorbs the organic compounds contained in the water to be treated and discharges the treated water. This removes the organic compounds from the water to be treated. When water vapor is supplied to the adsorbent, the treatment tank 130 that functions as a desorption tank desorbs the adsorbed organic compounds and discharges the desorption gas. This regenerates the adsorbent 120. In each treatment tank 130, the adsorption tank and the desorption tank are configured to alternate over time.
排出された脱着ガス(有機化合物および水蒸気)はコンデンサ(凝縮手段)140に導入されて冷却凝縮され、凝縮水として排出される。一般に吸着材の性質として、有機化合物の吸着材への吸着量には濃度依存性があり、有機化合物濃度が高いほど、有機化合物の吸着材への吸着量が増大することが知られている。そこで本実施の形態の水処理システム1では、この性質を利用し、凝縮水を循環水として再び被処理水へ循環させ、被処理水中の有機化合物の濃度を高くすることで、吸着素子への有機化合物の吸着量を増やし、これを脱着することで、系外へ排出する凝集水である濃縮水を高濃度化させる。
以下に各構成について詳細に説明する。
The discharged desorbed gas (organic compounds and water vapor) is introduced into a condenser (condensation means) 140, where it is cooled and condensed, and discharged as condensed water. It is generally known that the nature of an adsorbent is that the amount of organic compounds adsorbed to the adsorbent is concentration-dependent, and the higher the organic compound concentration, the greater the amount of organic compounds adsorbed to the adsorbent. In this embodiment, the water treatment system 1 utilizes this property, circulates the condensed water as circulating water back into the water to be treated, and increases the concentration of organic compounds in the water to be treated, thereby increasing the amount of organic compounds adsorbed to the adsorption element, and by desorbing this, the concentrated water, which is the condensed water to be discharged outside the system, is concentrated.
Each component will be described in detail below.
(吸着素子)
吸着素子120は、有機化合物を吸着する吸着材を含んで構成される。吸着素子120は、活性炭、活性炭素繊維またはゼオライトの内、少なくとも一つの吸着材を含むことが好ましい。吸着材として、粒状、繊維状、ハニカム状等の活性炭やゼオライトが利用できるが、その中でも活性炭素繊維が好ましい。活性炭素繊維は表面にミクロ孔を有する繊維状構造を持ち、水との接触効率が高く、特に水中の有機化合物の吸着速度が速くなり、他の吸着材に比べて極めて高い吸着効率を実現可能な材料であるからである。
(Adsorption element)
The adsorption element 120 is configured to include an adsorbent that adsorbs organic compounds. The adsorption element 120 preferably includes at least one adsorbent selected from the group consisting of activated carbon, activated carbon fiber, and zeolite. Activated carbon and zeolite in granular, fibrous, honeycomb, and other shapes can be used as the adsorbent, with activated carbon fiber being preferred. Activated carbon fiber has a fibrous structure with micropores on the surface, which allows for high contact efficiency with water, and in particular, a high adsorption rate for organic compounds in water, making it a material that can achieve extremely high adsorption efficiency compared to other adsorbents.
吸着素子120として利用可能な活性炭素繊維の物性は、特に限定されるものではないが、BET比表面積が700~2500m2/g、細孔容積が0.4~0. 9cm3/g、平均細孔径が15~18Åであるものが好ましい。これは、BET比表面積が700m2/g以上、細孔容積が0.4m3/g以上、平均細孔径が15Å以上であると、有機化合物の吸着量を高くすることが容易だからである。また、BET比表面積が2500m2/g以下、細孔容積が0.9m3/g以下、平均細孔径が18Å以下であると、分子量の小さな物質等の吸着能力を上げたり、強度を強くしたり、材料コストを低減させたりすることを容易にでき、好ましい。 The physical properties of the activated carbon fiber that can be used as the adsorption element 120 are not particularly limited, but it is preferable that the BET specific surface area is 700 to 2500 m 2 /g, the pore volume is 0.4 to 0.9 cm 3 /g, and the average pore diameter is 15 to 18 Å. This is because it is easy to increase the amount of organic compounds adsorbed when the BET specific surface area is 700 m 2 /g or more, the pore volume is 0.4 m 3 /g or more, and the average pore diameter is 15 Å or more. It is also preferable that the BET specific surface area is 2500 m 2 /g or less, the pore volume is 0.9 m 3 /g or less, and the average pore diameter is 18 Å or less, because it is easy to increase the adsorption capacity of small molecular weight substances, increase the strength, and reduce material costs.
(水処理装置)
水処理装置100は、吸着素子120が収容された処理槽130を2つと、コンデンサ140とを備えている。
(Water Treatment Device)
The water treatment device 100 includes two treatment tanks 130 each containing an adsorption element 120 , and a condenser 140 .
被処理水は配管ラインL1から、吸着槽として機能する処理槽130へ導入され、当該処理槽130に充填された吸着素子120を通液する。The water to be treated is introduced through piping line L1 into the treatment tank 130, which functions as an adsorption tank, and passes through the adsorption element 120 filled in the treatment tank 130.
吸着素子120に被処理水を通液させると、被処理水中に含有された有機化合物が吸着素子120に吸着し、被処理水は清浄化された処理水として配管ラインL2から排出される。When the water to be treated is passed through the adsorption element 120, the organic compounds contained in the water to be treated are adsorbed by the adsorption element 120, and the water to be treated is discharged from the piping line L2 as purified treated water.
水処理装置100は、脱着槽として機能する処理槽130の吸着素子120に配管ライ
ンL3から導入した水蒸気を導入させて、吸着素子120に吸着した有機化合物を脱着する。脱着ガスは、配管ラインL4を通り、コンデンサ140に導入され、冷却凝縮され、
配管ラインL5から凝縮水として排出される。
In the water treatment device 100, water vapor is introduced from a piping line L3 into the adsorption element 120 in the treatment tank 130, which functions as a desorption tank, to desorb the organic compounds adsorbed in the adsorption element 120. The desorbed gas passes through a piping line L4 and is introduced into a condenser 140, where it is cooled and condensed.
The condensed water is discharged from the piping line L5.
コンデンサ140から排出された凝縮水は、バルブ(振分調整手段)200を介して、配管ラインL6か配管ラインL7かのどちらへ導入される。
配管ラインL6は、凝縮水を循環水として被処理水へ戻す循環ラインであり、配管ラインL7は、凝縮水を濃縮水として系外へ排出する系外ラインである。バルブ200は、凝縮水を循環させる循環水にするか、凝縮水を系外に排出する濃縮水にするか、を振り分ける。
The condensed water discharged from the condenser 140 is introduced via a valve (division adjustment means) 200 into either the piping line L6 or the piping line L7.
The piping line L6 is a circulation line that returns the condensed water to the water to be treated as circulating water, and the piping line L7 is an external line that discharges the condensed water to the outside of the system as concentrated water. The valve 200 selects whether the condensed water is to be used as circulating water for circulating or as concentrated water for discharging to the outside of the system.
水処理システム1では、バルブ200の制御により、凝縮水の一部を濃縮水として排出し、残りの凝縮水を循環水として被処理水へ循環させるように構成されていてもよい。あるいは、吸着処理、脱着処理、凝縮処理、循環水の循環及び濃縮水の排出の処理、を1サイクルとして、所定のサイクル数までは、全ての凝縮水を循環水として循環させ、所定のサイクル数を超えると、凝縮水の一部を濃縮水として排出し、残りの凝縮水を循環水として被処理水へ循環させる、あるいは、所定のサイクル数を超えると、全ての凝縮水を濃縮水として系外に排出するように構成されていてもよい。あるいは、段階的に循環水を減らして濃縮水を増やすように調整してもよい。In the water treatment system 1, the valve 200 may be controlled to discharge a portion of the condensed water as concentrated water and circulate the remaining condensed water as circulating water to the water to be treated. Alternatively, the system may be configured to circulate all of the condensed water as circulating water up to a predetermined number of cycles, with the adsorption process, desorption process, condensation process, circulation of the circulating water, and discharge of the concentrated water being one cycle, and to discharge a portion of the condensed water as concentrated water and circulate the remaining condensed water as circulating water to the water to be treated, or to discharge all of the condensed water as concentrated water to the outside of the system, once the predetermined number of cycles has been exceeded. Alternatively, the system may be adjusted to gradually reduce the amount of circulating water and increase the amount of concentrated water.
水処理システム1は、凝縮水中あるいは処理水中の有機化合物濃度を測定する図示しない測定器(測定手段)を備えていてもよい。そして、測定器により測定された有機化合物濃度が一定値になった際に、バルブ200の制御により、凝縮水を循環水として循環させるか、濃縮水として排出するかを振り分けてもよい。
なお、バルブ200の制御は、手動でも自動でもよい。
The water treatment system 1 may include a measuring device (measuring means) (not shown) that measures the concentration of organic compounds in the condensed water or the treated water. When the organic compound concentration measured by the measuring device reaches a certain value, the condensed water may be either circulated as circulating water or discharged as concentrated water by controlling the valve 200.
The valve 200 may be controlled manually or automatically.
このように、水処理システム1により、有機化合物を含有する濃縮水の高濃縮化が可能になる。よって濃縮水の二次処理コストの削減が可能になる。また、高付加価値の有機溶剤については、再利用可能な濃度まで高濃縮して回収することができる。また、水処理システム1により、高濃度の被処理水を処理する場合でも、有機化合物を除去するのに必要な吸着素子の量を増やすことなく、清浄化できる。In this way, the water treatment system 1 makes it possible to highly concentrate concentrated water containing organic compounds. This makes it possible to reduce the cost of secondary treatment of the concentrated water. In addition, high-added-value organic solvents can be highly concentrated to a reusable concentration and recovered. Furthermore, the water treatment system 1 can purify even high-concentration water to be treated without increasing the amount of adsorption elements required to remove organic compounds.
水処理システム1は、特に限定されるものではないが、被処理水貯留用タンク及びポンプを備え、被処理水貯蔵タンクからポ被処理水がポンプにより配管ラインL1を通って処理槽130に供給される構成であってもよい。The water treatment system 1 may be configured, without being particularly limited thereto, to include a tank for storing treated water and a pump, and the treated water is supplied from the treated water storage tank to the treatment tank 130 via piping line L1 by the pump.
水処理装置100は、処理槽130が吸着槽から脱着槽に切替わる際に、吸着素子120に付着する水分を除去(脱水)して除去水として排出してから、水蒸気による脱着を開始する構成であると好ましい。吸着処理により吸着素子120に付着した付着水を脱着前に除去してから脱着を行う方が、脱着効率を高めることができるからである。付着水の除去手段は、自重抜き、空気・水蒸気・窒素・不活性ガスなどのガスでの高速パージ、真空ポンプなどを用いた吸引などの手段が使用できるが、水蒸気による高速パージが好ましい。脱水効率が高く、装置の流路構成がシンプルとなるからである。It is preferable that the water treatment device 100 is configured such that when the treatment tank 130 is switched from the adsorption tank to the desorption tank, the moisture adhering to the adsorption element 120 is removed (dehydrated) and discharged as removed water before starting desorption with water vapor. This is because the desorption efficiency can be improved by removing the adhering water that has adhered to the adsorption element 120 by the adsorption process before desorption. Means for removing the adhering water include self-weight removal, high-speed purging with gas such as air, water vapor, nitrogen, or inert gas, and suction using a vacuum pump, but high-speed purging with water vapor is preferable. This is because it has high dehydration efficiency and the flow path configuration of the device is simple.
また、除去水は水処理装置100に再度供給されるように構成された方が好ましい。除去水を別途処理する必要がなくなるからである。この場合、除去水は、コンデンサ140を通らずに、水処理装置100戻される構成となる(図示無)。It is also preferable that the removed water is resupplied to the water treatment device 100. This is because there is no need to treat the removed water separately. In this case, the removed water is returned to the water treatment device 100 without passing through the condenser 140 (not shown).
本実施形態の水処理システム1の処理対象となる被処理水に含まれる有機化合物は、特に限定されないが、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレインなどのアルデヒド類、メチルエチルケトン、ジアセチル、メチルイソブチルケトン、アセトンなどのケトン類、1,4-ジオキサン、2-メチル-1,3-ジオキソラン、1,3-ジオキソラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、エタノール、n-プロピルアルコール、イソプロピルアルコール、ブタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール類、酢酸、プロピオン酸などの有機酸、フェノール類、トルエン、キシレン、シクロヘキサンなどの芳香族有機化合物、ジエチルエーテル、アリルグリシジルエーテルなどのエーテル類、アクリロニトリルなどの二トリル類、ジクロロメタン、1,2-ジクロロエタン、トリクロロエチレン、エピクロロヒドリンなどの塩素有機化合物、N-メチル-2-ピロリドン、ジメチルアセトアミド、N,N-ジメチルホルムアミドの有機化合物などが一例として挙げられる。被処理水は、これらを1種または複数種含んでいてもよい。The organic compounds contained in the water to be treated by the water treatment system 1 of this embodiment are not particularly limited, but may include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, and acrolein, ketones such as methyl ethyl ketone, diacetyl, methyl isobutyl ketone, and acetone, esters such as 1,4-dioxane, 2-methyl-1,3-dioxolane, 1,3-dioxolane, tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, alcohols such as ethanol, n-propyl alcohol, isopropyl alcohol, and butanol, and esters such as ethyl acetate, propyl acetate, and butyl acetate. Examples of the organic compounds include glycols such as ethylene glycol, propylene glycol, diethylene glycol, and triethylene glycol, organic acids such as acetic acid and propionic acid, phenols, aromatic organic compounds such as toluene, xylene, and cyclohexane, ethers such as diethyl ether and allyl glycidyl ether, nitriles such as acrylonitrile, chlorine organic compounds such as dichloromethane, 1,2-dichloroethane, trichloroethylene, and epichlorohydrin, and organic compounds such as N-methyl-2-pyrrolidone, dimethylacetamide, and N,N-dimethylformamide. The water to be treated may contain one or more of these compounds.
上記実施の形態にて説明した本発明にかかる水処理システムの詳細を、さらに以下の実施例を用いて説明する。しかし、本発明は以下実施例に限定されるものでない。まず、後述の実施例の特性の評価方法について説明する。The details of the water treatment system according to the present invention described in the above embodiment will be further explained using the following examples. However, the present invention is not limited to the following examples. First, the method for evaluating the characteristics of the examples described below will be explained.
(全酸性基量)
表面酸性基量はBoehm滴定法により測定した。活性炭試料約1gに対し0.01mol/Lの水酸化ナトリウム水溶液を60ml加え、25℃で約2時間浸透させた。活性炭試料と溶液をガラス濾過器で通過分離した濾液を25ml採取した。濾液に指示薬としてフェノールフタレインを適量加え、撹拌しながら0.01mol/L の塩酸を滴下して、中和した時点での残留塩基量を滴定し、以下の式で全酸性基量を算出した。
全酸性基量(meq/g)=(D×50×K)/(W×25)
D:吸着塩基性量(ml)
K:塩酸濃度(mol/L)
W:活性炭素試料
(Total amount of acidic groups)
The amount of surface acidic groups was measured by Boehm titration. 60 ml of 0.01 mol/L aqueous sodium hydroxide solution was added to approximately 1 g of activated carbon sample, and the sample was allowed to soak at 25°C for approximately 2 hours. 25 ml of filtrate was collected after the activated carbon sample and the solution were separated through a glass filter. An appropriate amount of phenolphthalein was added to the filtrate as an indicator, and 0.01 mol/L hydrochloric acid was added dropwise while stirring to titrate the amount of residual base at the time of neutralization, and the total amount of acidic groups was calculated using the following formula.
Total amount of acidic groups (meq/g)=(D×50×K)/(W×25)
D: Amount of adsorbed basicity (ml)
K: Hydrochloric acid concentration (mol / L)
W: Activated carbon sample
(BET比表面積)
BET比表面積は、液体窒素の沸点(-195.8℃)雰囲気下、相対圧力0.0~0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより料単位質量あたりの表面積(m2/g)を求めた。
(BET specific surface area)
The BET specific surface area was determined by measuring the amount of nitrogen adsorption to a sample at several points when the relative pressure was increased in the range of 0.0 to 0.15 in an atmosphere of the boiling point of liquid nitrogen (-195.8°C), and calculating the surface area per unit mass of the material ( m2 /g) by BET plot.
(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(Pore volume)
The pore volume was measured by a gas adsorption method using nitrogen gas at a relative pressure of 0.95.
(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m2/g)
(Average pore diameter)
The average pore diameter was calculated by the following formula.
dp=40,000 Vp/S (where dp: average pore diameter (Å))
Vp: pore volume (cc / g)
S: BET specific surface area ( m2 /g)
(有機物質濃度評価)
被処理水、処理水及び濃縮水中の有機化合物濃度はガスクロマトグラフ法により測定した。
(Evaluation of organic substance concentration)
The organic compound concentrations in the water to be treated, the treated water and the concentrated water were measured by gas chromatography.
(実施例1)
実施例1として、図1に示す水処理システム1を用いた。
吸着素子120として、全酸性基量が0.06meq/g、平均細孔径17Å、BET比表面積2000m2/g、全細孔容積0.85cm3/g、質量140g/m2、厚さ2mmの活性炭素繊維を各処理槽130に充填し、内径φ23mm、全長150mmの筒状処理槽を作成した。その時の充填した活性
炭素繊維の重量は6.4gであった。
Example 1
As Example 1, a water treatment system 1 shown in FIG. 1 was used.
As the adsorption element 120, activated carbon fiber having a total acidic group amount of 0.06 meq/g, an average pore diameter of 17 Å, a BET specific surface area of 2000 m2 /g, a total pore volume of 0.85 cm3 /g, a mass of 140 g/ m2 , and a thickness of 2 mm was packed into each treatment tank 130 to prepare a cylindrical treatment tank having an inner diameter of φ23 mm and a total length of 150 mm. The weight of the packed activated carbon fiber was 6.4 g.
被処理水として、5mg/Lの1,4-ジオキサンを、水処理装置100に導入し、36cc/minで処理槽130に20min間通液した後、120℃の水蒸気で1,4-ジオキサンの脱着を行い、脱着した脱着ガスを10℃のコンデンサ140で冷却凝縮した。凝縮水の内、1割を濃縮水として配管ラインL7から排出し、9割を循環水として被処理水に混入させるようL6にて循環させた。吸着処理、脱着処理、凝縮処理、循環水の循環及び濃縮水の排出の処理、を1サイクルとしたとき、13サイクル運転時の被処理水濃度は19mg/L、処理槽130通液後の処理水濃度は0.01mg/L以下、濃縮水濃
度は57mg/Lであり、13サイクルの間に排出された濃縮水の総量は0.195Lであった。
5 mg/L of 1,4-dioxane was introduced into the water treatment device 100 as the water to be treated, and the water was passed through the treatment tank 130 at 36 cc/min for 20 minutes, after which 1,4-dioxane was desorbed with steam at 120°C, and the desorbed gas was cooled and condensed in the condenser 140 at 10°C. 10% of the condensed water was discharged from the piping line L7 as concentrated water, and 90% was circulated in L6 as circulating water to be mixed with the water to be treated. When the adsorption treatment, desorption treatment, condensation treatment, circulation of the circulating water, and discharge of the concentrated water were considered as one cycle, the concentration of the water to be treated during 13 cycles was 19 mg/L, the concentration of the treated water after passing through the treatment tank 130 was 0.01 mg/L or less, the concentrated water concentration was 57 mg/L, and the total amount of concentrated water discharged during the 13 cycles was 0.195 L.
(比較例1)
比較例1として、図1に示す水処理システム1において配管ラインL6の無い、従来の水処理システムを用いた。この比較例1の従来システムでは、凝縮水は循環せず濃縮水として系外に排出される。比較例1の従来システムを用いて、被処理水として5mg/Lの1,4-ジオキサンを36cc/minで処理槽130に20min間通液した後、120℃の水蒸気で1.4-ジオキサンの脱着を行い、脱着した脱着ガスを10℃のコンデンサ140で冷却凝縮した。処理槽130通液後の処理水濃度は0.01mg/L以下、濃縮水濃度は17mg/Lであり、吸着処理、脱着処理、凝縮処理、濃縮水の排出処理を1サイクルとしたとき、13サイクルの間に排出された濃縮水の総量は1.95Lであった。
(Comparative Example 1)
As Comparative Example 1, a conventional water treatment system was used that does not have the piping line L6 in the water treatment system 1 shown in FIG. 1. In the conventional system of Comparative Example 1, the condensed water is not circulated but is discharged outside the system as concentrated water. Using the conventional system of Comparative Example 1, 5 mg/L of 1,4-dioxane was passed through the treatment tank 130 at 36 cc/min for 20 minutes as the water to be treated, and then 1.4-dioxane was desorbed with steam at 120°C, and the desorbed gas was cooled and condensed in the condenser 140 at 10°C. After passing through the treatment tank 130, the treated water concentration was 0.01 mg/L or less, and the concentrated water concentration was 17 mg/L. When the adsorption treatment, desorption treatment, condensation treatment, and concentrated water discharge treatment were considered as one cycle, the total amount of concentrated water discharged during 13 cycles was 1.95 L.
実施例1および比較例1にについて測定した被処理水濃度、処理水濃度、濃縮水濃度を表1に示す。The concentrations of the treated water, treated water, and concentrated water measured for Example 1 and Comparative Example 1 are shown in Table 1.
表1から、水処理システム1を用いた実施例1は従来システムを用いた比較例1に比べて、1,4-ジオキサンの処理水濃度は同じだが、濃縮水濃度は高くなっていることがわかる。つまり、水処理システム1は、従来システムと同等の除去性能を維持しつつ、高濃縮化が可能であることを示している。 From Table 1, it can be seen that in Example 1 using Water Treatment System 1, the treated water concentration of 1,4-dioxane is the same as in Comparative Example 1 using a conventional system, but the concentrated water concentration is higher. In other words, Water Treatment System 1 shows that it is possible to achieve high concentration while maintaining the same removal performance as the conventional system.
なお、上記開示した実施の形態、各変形例、および実施例はすべて例示であり制限的なものではない。また、実施の形態、各変形例、および実施例を適宜組み合わせた形態も本発明の範疇に含まれる。つまり、本発明の技術的範囲は、特許請求の範囲によって有効であり、特許請求の範囲の記載と均等の意味および範囲内のすべての変更・修正・置き換え等を含むものである。 Note that the above disclosed embodiments, variations, and examples are all illustrative and not restrictive. Furthermore, suitable combinations of the embodiments, variations, and examples are also included in the scope of the present invention. In other words, the technical scope of the present invention is defined by the claims, and includes all changes, modifications, replacements, etc. that are equivalent in meaning to and within the scope of the claims.
本発明は、被処理水中の有機化合物を従来と同等の除去性能を維持しつつ、凝縮水を従来以上に高濃縮することができ、濃縮水の減量が可能となる。よって、濃縮水の廃棄等の二次処理コストの削減を実現することができることから、産業界に大いに寄与できる。また、高付加価値の有機溶剤を再利用可能な濃度まで高濃縮・回収することにより、産業界に大いに寄与できる。 The present invention can concentrate condensed water to a higher level than before while maintaining the same level of organic compound removal performance in the treated water as before, making it possible to reduce the amount of concentrated water. This can therefore contribute greatly to the industrial sector by reducing the cost of secondary treatment, such as the disposal of concentrated water. In addition, the present invention can contribute greatly to the industrial sector by concentrating and recovering high-added-value organic solvents to a reusable concentration.
1 水処理システム
100 水処理装置
120 吸着素子
130 処理槽
140 コンデンサ
200 バルブ(切替調整手段)
L1~L7 配管ライン
REFERENCE SIGNS LIST 1 Water treatment system 100 Water treatment device 120 Adsorption element 130 Treatment tank 140 Condenser 200 Valve (switching adjustment means)
L1 to L7 piping lines
Claims (7)
前記凝縮水を循環水として前記被処理水へ戻す循環ラインと、
前記凝縮水を前記濃縮水として排出するか前記循環水として前記被処理水へ戻すかを振り分ける振分調整手段と、を備え、
さらに、前記凝縮水を前記凝縮手段から排出する排出ラインに、または前記被処理水を前記処理槽に導入する導入ラインに、有機化合物濃度を測定する測定手段を備え、
前記振分調整手段は、前記測定手段にて測定した有機化合物濃度が所定値になると、前記循環水と前記濃縮水との割合を変更する水処理システム。 A water treatment system including a treatment tank that alternately performs an adsorption treatment in which water to be treated containing organic compounds is passed through an adsorption element to adsorb the organic compounds, and a desorption treatment in which water vapor is passed through the adsorption element to desorb the adsorbed organic compounds and discharge the desorbed organic compounds as a desorbed gas, and a condensation means that condenses the desorbed gas and discharges it as condensed water, and an external line that discharges the condensed water to the outside of the system,
A circulation line for returning the condensed water to the water to be treated as circulating water;
A distribution adjustment means for distributing the condensed water so that the condensed water is either discharged as the concentrated water or returned to the water to be treated as the circulating water,
Further, a measuring means for measuring an organic compound concentration is provided in a discharge line for discharging the condensed water from the condensing means or in an introduction line for introducing the water to be treated into the treatment tank,
The distribution adjustment means changes the ratio of the circulating water to the concentrated water when the organic compound concentration measured by the measurement means reaches a predetermined value .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019067521 | 2019-03-29 | ||
JP2019067521 | 2019-03-29 | ||
PCT/JP2020/014036 WO2020203779A1 (en) | 2019-03-29 | 2020-03-27 | Water treatment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020203779A1 JPWO2020203779A1 (en) | 2020-10-08 |
JP7484895B2 true JP7484895B2 (en) | 2024-05-16 |
Family
ID=72668029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021512004A Active JP7484895B2 (en) | 2019-03-29 | 2020-03-27 | Water Treatment Systems |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7484895B2 (en) |
KR (1) | KR20210134922A (en) |
CN (1) | CN113646077A (en) |
TW (1) | TW202043160A (en) |
WO (1) | WO2020203779A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010142790A (en) | 2008-12-22 | 2010-07-01 | Toyobo Co Ltd | System for treating exhaust |
JP2010142729A (en) | 2008-12-18 | 2010-07-01 | Toyobo Co Ltd | Wastewater treatment system |
JP2015139731A (en) | 2014-01-28 | 2015-08-03 | 三井造船株式会社 | Equipment and method for processing ammonia in liquid |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2137743T3 (en) * | 1996-03-19 | 1999-12-16 | Degussa | PROCEDURE FOR THE PURIFICATION OF WATERS CONTAINING ORGANIC SUBSTANCES. |
JP2005125228A (en) * | 2003-10-23 | 2005-05-19 | Yasukura Sakai | Treating method and treating apparatus of organic waste water |
JP2010142792A (en) * | 2008-12-22 | 2010-07-01 | Toyobo Co Ltd | Wastewater treatment system |
CN103068740A (en) * | 2010-08-11 | 2013-04-24 | 东洋纺株式会社 | Waste water treatment system |
CN202048575U (en) * | 2011-01-11 | 2011-11-23 | 烟台绿环再生资源有限公司 | High concentration organic waste water concentration and incineration disposal line |
CN104071940B (en) * | 2013-03-28 | 2016-02-10 | 中国石油天然气股份有限公司 | Treatment method of butanol and octanol waste alkali liquor |
JP6428992B2 (en) | 2013-04-12 | 2018-11-28 | 東洋紡株式会社 | Wastewater treatment system |
JP6393965B2 (en) | 2013-04-12 | 2018-09-26 | 東洋紡株式会社 | Wastewater treatment system |
JP6167685B2 (en) * | 2013-06-17 | 2017-07-26 | 東洋紡株式会社 | Wastewater treatment system |
JP6332586B2 (en) | 2013-08-26 | 2018-05-30 | 東洋紡株式会社 | Water treatment device and water treatment system |
JP6332599B2 (en) * | 2014-01-17 | 2018-05-30 | 東洋紡株式会社 | Water treatment system |
CN104587796B (en) * | 2015-01-23 | 2016-09-07 | 马军 | The device of organic solvent is reclaimed from industrial waste gas |
JP2017000992A (en) * | 2015-06-15 | 2017-01-05 | 東洋紡株式会社 | Water treatment system |
JP6699129B2 (en) * | 2015-10-20 | 2020-05-27 | 東洋紡株式会社 | Water treatment system |
JP6862680B2 (en) * | 2016-05-16 | 2021-04-21 | 東洋紡株式会社 | Water treatment system |
-
2020
- 2020-03-27 WO PCT/JP2020/014036 patent/WO2020203779A1/en active Application Filing
- 2020-03-27 CN CN202080025218.6A patent/CN113646077A/en active Pending
- 2020-03-27 KR KR1020217030630A patent/KR20210134922A/en unknown
- 2020-03-27 JP JP2021512004A patent/JP7484895B2/en active Active
- 2020-03-27 TW TW109110386A patent/TW202043160A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010142729A (en) | 2008-12-18 | 2010-07-01 | Toyobo Co Ltd | Wastewater treatment system |
JP2010142790A (en) | 2008-12-22 | 2010-07-01 | Toyobo Co Ltd | System for treating exhaust |
JP2015139731A (en) | 2014-01-28 | 2015-08-03 | 三井造船株式会社 | Equipment and method for processing ammonia in liquid |
Also Published As
Publication number | Publication date |
---|---|
CN113646077A (en) | 2021-11-12 |
JPWO2020203779A1 (en) | 2020-10-08 |
KR20210134922A (en) | 2021-11-11 |
TW202043160A (en) | 2020-12-01 |
WO2020203779A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103370127B (en) | For the adsorbent of viral adsorption and/or antibacterial, carbon/polymer complex and adsorption plate | |
RU2666424C2 (en) | Method for reducing the total organic carbon in wastewater | |
JP5643680B2 (en) | Method and apparatus for removing organic solvent | |
KR20190120247A (en) | Adsorbent and Manufacturing Method | |
JP6897572B2 (en) | Water treatment equipment, adsorption elements, and water treatment methods | |
JP2019098324A (en) | Polar substance adsorption active carbon | |
JP2010149040A (en) | Organic solvent-containing gas treating system | |
JP6393965B2 (en) | Wastewater treatment system | |
JP7484895B2 (en) | Water Treatment Systems | |
JP2008188493A (en) | Water treatment apparatus | |
JP6409589B2 (en) | Water treatment equipment | |
JP7124454B2 (en) | Water treatment system and water treatment method | |
JP2021159859A (en) | Water treatment system | |
JP2011092870A (en) | Organic solvent recovery system | |
JP6862680B2 (en) | Water treatment system | |
JP2011251232A (en) | Waste water treatment apparatus | |
JP6699129B2 (en) | Water treatment system | |
JP6765921B2 (en) | Water treatment equipment, water treatment system and water treatment method | |
JP5978808B2 (en) | Wastewater treatment system | |
JP2019005680A (en) | Organic solvent treatment system | |
JP2001170622A (en) | Desorption method for absorptive substance, concentrator and concentration method | |
JP2005138038A (en) | Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus | |
JP2016193412A (en) | Organic solvent-containing gas treating system | |
JP2017000992A (en) | Water treatment system | |
JP2005001681A (en) | Cartridge storing method, and water purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230220 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20230410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231010 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7484895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |