JP2019098324A - Polar substance adsorption active carbon - Google Patents
Polar substance adsorption active carbon Download PDFInfo
- Publication number
- JP2019098324A JP2019098324A JP2018217417A JP2018217417A JP2019098324A JP 2019098324 A JP2019098324 A JP 2019098324A JP 2018217417 A JP2018217417 A JP 2018217417A JP 2018217417 A JP2018217417 A JP 2018217417A JP 2019098324 A JP2019098324 A JP 2019098324A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- adsorption
- polar substance
- chloramine
- prototype
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
本発明は、例えば、極性物質の吸着性能を有する活性炭に関する。 The present invention relates to, for example, activated carbon having an adsorption ability of polar substances.
水道水等の飲料用水から残留成分や異物を除去するために用いられる浄水器は、活性炭やセラミック等の無機材料の吸着部材と、必要により濾過用の有機高分子膜等を備えた構造である。 A water purifier used to remove residual components and foreign substances from drinking water such as tap water has a structure provided with an adsorbing member of an inorganic material such as activated carbon or ceramic and, if necessary, an organic polymer membrane for filtration, etc. .
極性物質は、一般に可溶であり、特にアンモニアやクロラミン等の化合物は特有の臭気を呈する。水道水は衛生上の観点から塩素等による殺菌が義務づけられている。しかし、殺菌を目的に添加される塩素、次亜塩素酸等とアンモニアとの反応から、クロラミンのような塩素化合物が生成される。また、近年では、クロラミン自体が上水の消毒目的で使用される。そのため、取水した原水の状態、添加する塩素化合物の量、さらには、クロラミンの添加量によっては、臭気が問題となることが多い。このクロラミンは塩素よりも揮発性に乏しい。このため、水道水を飲用するに際し、特に除去の要望が近年高まっている。 Polar substances are generally soluble, and in particular compounds such as ammonia and chloramine exhibit a distinctive odor. Tap water is required to be disinfected with chlorine from the viewpoint of hygiene. However, a chlorine compound such as chloramine is produced from the reaction of ammonia, which is added for the purpose of sterilization, hypochlorous acid, etc. with ammonia. Also, in recent years, chloramine itself is used for the purpose of disinfecting clean water. Therefore, depending on the condition of the raw water withdrawn, the amount of chlorine compounds to be added, and the amount of chloramine added, the odor often becomes a problem. This chloramine is less volatile than chlorine. For this reason, when drinking tap water, in particular the demand for removal has increased in recent years.
近年では、浄水器や空気清浄器の高性能化の要望に伴い、これらのフィルター等には活性炭が多用されている。例えば、クロラミンやアンモニアは塩基性であることから活性炭表面に酸性官能基を備えた活性炭が有効であると考えられる(例えば、特許文献1参照)。すなわち、酸−塩基反応を利用した化学結合により吸着効率が高められる。 In recent years, with the demand for higher performance of water purifiers and air purifiers, activated carbon is frequently used for these filters and the like. For example, since chloramine and ammonia are basic, it is considered that activated carbon having an acidic functional group on the activated carbon surface is effective (see, for example, Patent Document 1). That is, the adsorption efficiency is enhanced by the chemical bonding using the acid-base reaction.
そこで、活性炭における酸性官能基量の好適な発達と、活性炭自体の物性を制御することにより、クロラミンやアンモニアとともにこれ以外の低分子成分の吸着能力に効果的な活性炭を開発するに至った。 Then, it came to develop an activated carbon effective in the adsorption capacity of other low molecular components with chloramine and ammonia by controlling the suitable development of the amount of acidic functional groups in activated carbon, and the physical property of activated carbon itself.
本発明は、前記の点に鑑みなされたものであり、極性物質を化学的に吸着するとともに細孔を通じた捕捉も可能であり、しかも、活性炭の細孔に由来する吸着能力も備えた極性物質吸着活性炭を提供するものである。 The present invention has been made in view of the above-mentioned point, and is capable of chemically adsorbing a polar substance and being capable of trapping through a pore, and further having an adsorption ability derived from the pore of activated carbon. An adsorption activated carbon is provided.
すなわち、第1の発明は、極性物質を吸着するための吸着活性炭であって、前記吸着活性炭の表面における表面酸化物量が0.35meq/g以上であり、BET比表面積を900〜2020m2/gであることを特徴とする極性物質吸着活性炭に係る。 That is, the first invention is an adsorption activated carbon for adsorbing a polar substance, wherein the surface oxide amount on the surface of the adsorption activated carbon is 0.35 meq / g or more, and the BET specific surface area is 900 to 2020 m 2 / g The present invention relates to a polar substance-adsorbed activated carbon characterized in that
第2の発明は、前記吸着活性炭が、全細孔容積を0.4〜1.2cm3/g、平均細孔直径を1.8〜2.6nmとする第1の発明に記載の極性物質吸着活性炭に係る。 A second invention is the polar substance according to the first invention, wherein the adsorption activated carbon has a total pore volume of 0.4 to 1.2 cm 3 / g and an average pore diameter of 1.8 to 2.6 nm. It relates to adsorption activated carbon.
第3の発明は、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭のメチレンブルー吸着性能が120mL/g以上であり、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭の充填密度が0.56g/mL以下である第1または2の発明に記載の極性物質吸着活性炭に係る。 3rd invention is the methylene blue adsorption performance of the said adsorption activated carbon in the measurement based on JISK1474-1 (2014) is 120 mL / g or more, The said adsorption activated carbon in the measurement based on JISK1474-1 (2014) The polar substance-adsorbed activated carbon according to the first or the second aspect of the present invention, wherein the packing density of
第4の発明は、前記極性物質が、クロラミン又はアンモニアのどちらか一方又は両方である第1ないし3の発明のいずれかに記載の極性物質吸着活性炭に係る。 A fourth invention relates to the polar substance-adsorbed activated carbon according to any one of the first to third inventions, wherein the polar substance is either or both of chloramine and ammonia.
第1の発明に係る極性物質吸着活性炭によると、極性物質を吸着するための吸着活性炭であって、前記吸着活性炭の表面における表面酸化物量が0.35meq/g以上であり、BET比表面積を900〜2020m2/gであるため、極性物質を化学的に吸着するとともに細孔を通じた捕捉も可能であり、しかも、活性炭の細孔に由来する吸着能力も備える。 According to the polar substance-adsorbed activated carbon of the first invention, it is an adsorptive activated carbon for adsorbing a polar substance, wherein the surface oxide amount on the surface of the adsorptive activated carbon is 0.35 meq / g or more, and the BET specific surface area is 900 Since it is -20 20 m 2 / g, it is possible to adsorb polar substances chemically and capture through pores, and further, it has an adsorption capacity derived from the pores of activated carbon.
第2の発明に係る極性物質吸着活性炭によると、第1の発明において、細孔容積を0.4〜1.2cm3/g、平均細孔直径を1.8〜2.6nmとするため、活性炭の細孔制御を通じてより極性物質の吸着効率を高めることができる。 According to the polar substance-adsorbed activated carbon of the second invention, in the first invention, the pore volume is 0.4 to 1.2 cm 3 / g and the average pore diameter is 1.8 to 2.6 nm. The adsorption efficiency of polar substances can be further enhanced through pore control of activated carbon.
第3の発明に係る極性物質吸着活性炭によると、第1または2の発明において、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭のメチレンブルー吸着性能が120mL/g以上であり、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭の充填密度が0.56g/mL以下であるため、活性炭に必要とされる吸着性能も具備可能となる。 According to the polar substance-adsorbed activated carbon of the third invention, in the first or second invention, the methylene blue adsorption performance of the adsorptive activated carbon in measurement according to JIS K 1474-1 (2014) is 120 mL / g or more, JIS Since the packing density of the adsorptive activated carbon in the measurement according to K1474-1 (2014) is 0.56 g / mL or less, the adsorption performance required for the activated carbon can also be provided.
第4の発明に係る極性物質吸着活性炭によると、第1ないし3のいずれかの発明において、前記極性物質が、クロラミン又はアンモニアのどちらか一方又は両方であるため、効果的にクロラミンやアンモニアを吸着することができる。 According to the polar substance-adsorbed activated carbon of the fourth aspect of the invention, in any of the first to third aspects of the invention, the polar substance is either one or both of chloramine and ammonia, so that chloramine and ammonia are effectively adsorbed. can do.
原水となる水道水を浄化する家庭用、産業用等の浄水器には、濾材として通常活性炭が使用される。活性炭は安価かつ濾過能力に優れ、品質も安定している。このような浄水器の対象物質の濾過性能は、JIS S 3201(2010)の規定において、「遊離残留塩素、濁り、2−クロロ−4,6−ビスエチルアミノ−1,3,5−トリアジン(CATと略す。)、2−メチルイソボルネオール(2−MIBと略す。)、溶解性鉛、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルム、テトラクロロエチレン、トリクロロエチレン、1,1,1−トリクロロエタン、さらに総トリハロメタン」の最大で計13項目により評価される。 Activated carbon is usually used as a filter material in household and industrial water purifiers that purify tap water that is raw water. Activated carbon is inexpensive, excellent in filtration capacity, and stable in quality. According to JIS S 3201 (2010), the filtration performance of the target substance of such a water purifier is “free residual chlorine, turbidity, 2-chloro-4,6-bisethylamino-1,3,5-triazine ( CAT (abbreviated as CAT), 2-methylisoborneol (abbreviated as 2-MIB), soluble lead, chloroform, bromodichloromethane, dibromochloromethane, bromoform, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and total trihalomethane The evaluation is based on a total of 13 items.
これに加え、近年水道水の殺菌用の使用が増えているクロラミン(モノクロラミン:NH2Cl,ジクロラミン:NHCl2,トリクロラミン:NCl3等)の吸着需要が高まっている。そこで、本発明の吸着活性炭は、酸−塩基反応を利用しながらクロラミンの吸着に力点を置きつつ、さらには活性炭に発達した細孔の吸着性能を生かした水道水等の浄水用途に好適な活性炭である。加えて、人工透析において、クロラミンの高度な除去が望まれていることから、人工透析用の機器内の使用も想定される。 In addition to this, the adsorptive demand for chloramine (monochloramine: NH 2 Cl, dichloramine: NHCl 2 , trichloramine: NCl 3 etc.) is increasing in recent years because of increasing use for tap water sterilization. Therefore, the activated carbon of the present invention is suitable for water purification applications such as tap water utilizing the adsorption performance of pores developed in activated carbon while placing emphasis on adsorption of chloramine while utilizing acid-base reaction. It is. In addition, in hemodialysis, the high removal of chloramine is desired, so use in the device for hemodialysis is also envisaged.
活性炭の原料としては、木材(廃材、間伐材、オガコ)、コーヒー豆の絞りかす、椰子殻、樹皮、果物の実等の原料がある。これらの天然物由来の原料は炭化、賦活により細孔が発達しやすくなる。また廃棄物等の二次的利用であるため安価に調達可能である。他にも、タイヤ、石油ピッチ、ウレタン樹脂、フェノール樹脂等の合成樹脂由来の焼成物、さらには、石炭等も原料として使用することができる。なお、後記の各試作例では安定調達を加味して椰子殻と石炭を原料としている。 The raw materials of activated carbon include wood (waste wood, thinning wood, sawfish), coffee grounds, coconut shell, bark, fruits and the like. The raw materials derived from these natural products tend to develop pores by carbonization and activation. Moreover, since it is secondary use of waste etc., it can be procured inexpensively. In addition, tires, petroleum pitches, baked products derived from synthetic resins such as urethane resins and phenol resins, and also coal and the like can be used as raw materials. In each trial production example described later, coconut shell and coal are used as raw materials in consideration of stable procurement.
椰子殻等の活性炭原料は、200℃〜600℃の温度域で加熱炭化されることにより微細孔が形成される。続いて、活性炭原料は600℃〜1200℃の温度域で水蒸気、炭酸ガスに曝露されて賦活処理される。この結果、各種の細孔が発達した活性炭は出来上がる。なお、賦活に際しては、他に塩化亜鉛賦活等もある。また、逐次の洗浄も行われる。 Activated carbon materials such as coconut husks are heated and carbonized in a temperature range of 200 ° C. to 600 ° C. to form micropores. Subsequently, the activated carbon raw material is exposed to water vapor and carbon dioxide in a temperature range of 600 ° C. to 1200 ° C. to be activated. As a result, activated carbon having various pores developed is completed. In addition, there is also zinc chloride activation and the like at the time of activation. In addition, sequential cleaning is also performed.
こうして出来上がる活性炭においても、活性炭の表面に酸性官能基が形成され所定の酸性状態が形成される。しかしながら、前出のクロラミンのように低分子かつ塩基性の分子吸着の効率をさらに上げようとする場合、単純に細孔に依存するのみでは限界がある。そこで、吸着能力の向上を目指して活性炭の表面に酸性官能基をさらに増加させることに成功した。 Also in the activated carbon thus produced, an acidic functional group is formed on the surface of the activated carbon to form a predetermined acidic state. However, in order to further increase the efficiency of small molecule and basic molecule adsorption as in the above-mentioned chloramine, there is a limit to simply relying on the pore. Therefore, we succeeded in increasing the number of acidic functional groups on the surface of activated carbon in order to improve the adsorption capacity.
原料炭素源を焼成、賦活して得た活性炭には、活性炭表面に種々の官能基が存在する。活性炭の表面酸化により増加する酸性官能基は主にカルボキシル基、フェノール性水酸基等の親水性基であり、吸着能力に影響を与える。これらの酸性官能基量については、表面酸化物量として把握することができる。活性炭の表面酸化物量が増加すると、活性炭表面の親水性が高まり、疎水性物質の吸着は低下しやすくなる。 In the activated carbon obtained by firing and activating the raw carbon source, various functional groups exist on the surface of the activated carbon. The acidic functional groups, which are increased by the surface oxidation of activated carbon, are mainly hydrophilic groups such as carboxyl groups and phenolic hydroxyl groups, which affect the adsorption capacity. The amount of these acidic functional groups can be grasped as the amount of surface oxide. When the surface oxide amount of the activated carbon is increased, the hydrophilicity of the activated carbon surface is increased, and the adsorption of the hydrophobic substance tends to be reduced.
具体的には、活性炭はロータリーキルン等に搬入され再度加熱され、表面残基の酸化が進み酸性官能基が発達する。すなわち、空気または酸素雰囲気下における酸化である。あるいは、同時に空気雰囲気下にて温度25〜40℃、湿度60〜90%の空気も導入される。そこで、150〜900℃にて1〜10時間かけて加熱され、本発明の吸着活性炭が完成する。湿潤な空気を伴った加熱により活性炭表面に存在したアルキル基等の炭化水素基が酸化されたり、水の水酸基が表面に導入されたりして酸性官能基は増加すると考えられる。 Specifically, activated carbon is carried into a rotary kiln or the like and heated again, and oxidation of surface residues proceeds to develop an acidic functional group. That is, oxidation in an air or oxygen atmosphere. Alternatively, at the same time, air having a temperature of 25 to 40 ° C. and a humidity of 60 to 90% is also introduced under an air atmosphere. Then, it heats at 150-900 degreeC over 1 to 10 hours, and the adsorption activated carbon of this invention is completed. It is believed that heating with wet air causes oxidation of hydrocarbon groups such as alkyl groups present on the surface of activated carbon, and introduction of hydroxyl groups of water to the surface to increase the acid functional groups.
当該吸着活性炭の表面における酸性官能基の量は後記の各試作例のとおり、表面酸化物量として測定可能である。具体的には、表面酸化物量は、0.2meq/g以上、より好ましくは0.35meq/g以上の範囲である。0.2meq/gを下回る場合、活性炭の疎水性が高くなり過ぎて濾過対象の水との接触効率を悪くしてしまう。このことから、活性炭の細孔が活かされず吸着の対象物質の濾過性能の低下となり、所望の極性物質であるクロラミンやアンモニアの吸着性能が減少する。 The amount of the acidic functional group on the surface of the adsorption activated carbon can be measured as the amount of surface oxide as in each of the following trial production examples. Specifically, the surface oxide amount is in the range of 0.2 meq / g or more, more preferably 0.35 meq / g or more. If it is less than 0.2 meq / g, the hydrophobicity of the activated carbon becomes too high, which deteriorates the contact efficiency with the water to be filtered. As a result, the pores of the activated carbon are not activated and the filtration performance of the target substance of adsorption decreases, and the adsorption performance of the desired polar substance chloramine and ammonia decreases.
次に、活性炭自体の物性を規定する指標も加えられる。この規定は前述の賦活の条件により制御される。一つ目に、当該活性炭の比表面積は900〜2020m2/gの範囲である。本明細書中、各試作例の比表面積はいずれもBET法(Brunauer,Emmett及びTeller法)による測定である。比表面積900m2/gを下回る場合、細孔容積が小さくなり、単一の活性炭により吸着できる物質種が限られることとなる。比表面積2020m2/gを超える場合、細孔径が大きく広がり、低分子量分子の除去性能が低下する。このことから本発明に係る極性物質吸着活性炭において、前記の比表面積の範囲値が適切として導き出される。 Next, an index that defines the physical properties of the activated carbon itself is also added. This definition is controlled by the above-mentioned conditions of activation. First, the specific surface area of the activated carbon is in the range of 900 to 2020 m 2 / g. In the present specification, the specific surface area of each trial example is a measurement by the BET method (Brunauer, Emmett and Teller method). If the specific surface area is less than 900 m 2 / g, the pore volume will be small, and the species that can be adsorbed by a single activated carbon will be limited. When the specific surface area exceeds 2020 m 2 / g, the pore diameter is greatly expanded, and the removal performance of low molecular weight molecules is lowered. From this, in the polar substance-adsorbed activated carbon according to the present invention, the range value of the specific surface area is derived as appropriate.
二つ目に、全細孔容積は0.4〜1.2cm3/gの範囲である。全細孔容積が増加することにより、目的のクロラミンやアンモニアに加え、他の化合物の吸着にも効果を発揮し、総じて活性炭吸着材としての能力が向上する。当該全細孔容積が0.4cm3/gを下回る範囲では、細孔自体が少なく十分な活性炭の吸着能力を得ることができない。また、上限の1.2cm3/gは本発明の目的の活性炭を作成する上での限界から考えられる値である。 Second, the total pore volume is in the range of 0.4 to 1.2 cm 3 / g. By increasing the total pore volume, it exerts an effect on the adsorption of other compounds in addition to the desired chloramine and ammonia, and as a whole, the capacity as an activated carbon adsorbent is improved. If the total pore volume is less than 0.4 cm 3 / g, the pores themselves are too small to obtain sufficient adsorption capacity of activated carbon. Also, the upper limit of 1.2 cm 3 / g is a value considered from the limit in producing the activated carbon of the object of the present invention.
三つ目に、平均細孔直径は1.8〜2.6nmの範囲である。この範囲の平均細孔直径は主にミクロ孔の範囲に対応する。前出のクロラミンは低分子量化合物であることから、活性炭に発達させる細孔は低分子量の化合物に対応させてミクロ孔の領域が発達している。平均細孔直径が上記の範囲内であると、ミクロ孔、メソ孔、マクロ孔それぞれが発達し、活性炭自体の分子吸着能力を向上させつつ、クロラミン等の低分子量化合物の吸着も可能となると考えられる。 Third, the average pore diameter is in the range of 1.8 to 2.6 nm. The average pore diameter in this range mainly corresponds to the micropore range. Since chloramine as described above is a low molecular weight compound, the pores developed in the activated carbon have micropores developed corresponding to the low molecular weight compounds. If the average pore diameter is in the above range, micropores, mesopores, and macropores are developed, and it is possible to adsorb low molecular weight compounds such as chloramine while improving the molecular adsorption capacity of activated carbon itself. Be
これら活性炭自体の物性に加え、さらに、活性炭の吸着能力の指標も加えて吸着活性炭の物性を規定することが可能である。具体的に、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭のメチレンブルー吸着性能が120mL/g以上である。メチレンブルーは極性分子であり、クロラミン吸着活性炭の具備するべき極性分子の吸着能力の指標として簡便である。そこで、下限は120mL/g以上、より好ましくは160mL/g以上である。上限については、活性炭の性能上250mL/gと考えられる。 In addition to the physical properties of the activated carbon itself, it is possible to define the physical properties of the adsorptive activated carbon by adding an indicator of the adsorption capacity of the activated carbon. Concretely, the methylene blue adsorption performance of the said adsorption activated carbon in the measurement based on JISK1474-1 (2014) is 120 mL / g or more. Methylene blue is a polar molecule and is convenient as an indicator of the adsorption capacity of the polar molecule to be provided by chloramine-adsorbed activated carbon. Therefore, the lower limit is 120 mL / g or more, more preferably 160 mL / g or more. The upper limit is considered to be 250 mL / g in terms of the performance of activated carbon.
また、同規格に準拠した測定における前記吸着活性炭の充填密度が0.56g/mL以下である。一般に充填密度は高いほど好ましい。しかしながら、高くなれば、緻密化して濾過時の通水効率の低下が懸念される。結果として、圧力損失が過大となり濾過効率が下がる。そのため、充填の効率を維持しつつ、濾過の効率が考慮され前述の充填密度が規定される。なお、充填密度の下限は0.35g/mL付近と考えられる。 Moreover, the packing density of the said adsorption activated carbon in the measurement based on the same specification is 0.56 g / mL or less. Generally, the higher the packing density, the better. However, if it becomes high, there is a concern that the water density at the time of filtration may decrease due to densification. As a result, the pressure loss is excessive and the filtration efficiency is reduced. Therefore, the efficiency of filtration is taken into consideration and the aforementioned packing density is defined while maintaining the efficiency of packing. The lower limit of the packing density is considered to be around 0.35 g / mL.
さらに、水銀細孔容積は、0.2g/mL以上である。水銀細孔容積が0.2g/mLを下回るとマクロ孔は発達不足となり、吸着対象物質の活性炭吸着材の内部への取り込みが遅くなってしまうと考えられるためである。 Furthermore, the mercury pore volume is 0.2 g / mL or more. If the mercury pore volume is less than 0.2 g / mL, it is considered that the macropores are underdeveloped and the uptake of the substance to be adsorbed into the activated carbon adsorbent is delayed.
諸物性の基づく要件により規定された本発明のクロラミン吸着活性炭は、例えば、浄水器等の濾過カラム内に直接充填されたり、活性炭とバインダー等を凝集した円筒状物に加工されて装置内に装填されたりする。また、人工透析器用の水濾過部位等のクロラミン除去の求められる部位にも適用される。 The chloramine-adsorbed activated carbon of the present invention defined by the requirements based on various physical properties is, for example, directly packed in a filtration column such as a water purifier, or processed into a cylindrical body in which activated carbon and a binder etc. are aggregated and loaded in the apparatus. Be done. It also applies to sites where chloramine removal is required, such as water filtration sites for artificial dialyzers.
[使用活性炭]
発明者らは、極性物質吸着活性炭を作成するため、下記の原料を使用した。
・活性炭
フタムラ化学株式会社製:ヤシ殻活性炭「太閤CW360BL」(平均粒径:0.34mm)
{以降、C1と表記する。}
フタムラ化学株式会社製:ヤシ殻活性炭「太閤CW360B」(平均粒径:0.34mm)
{以降、C2と表記する。}
フタムラ化学株式会社製:ヤシ殻活性炭「太閤CW360SZ」(平均粒径:0.40mm)
{以降、C3と表記する。}
フタムラ化学株式会社製:石炭活性炭「太閤GM360B」(平均粒径:0.34mm)
{以降、C4と表記する。}
[Used activated carbon]
The inventors used the following raw materials to make a polar substance-adsorbed activated carbon.
Activated carbon: Futamura Chemical Co., Ltd .: coconut shell activated carbon "Taiwa CW 360 BL" (average particle size: 0.34 mm)
{Hereafter, it is written as C1. }
Futamura Chemical Co., Ltd .: coconut shell activated carbon "Taiwa CW 360 B" (average particle size: 0.34 mm)
{Hereafter, it is written as C2. }
Futamura Chemical Co., Ltd .: coconut shell activated carbon "Taiba CW 360 SZ" (average particle size: 0.40 mm)
{Hereafter, it is written as C3. }
Futamura Chemical Co., Ltd .: Coal activated carbon "Taiba GM 360 B" (average particle size: 0.34 mm)
{Hereafter, it is written as C4. }
[吸着活性炭の処理]
〈試作例1〉
椰子殻を1日蒸し焼きにして得られたチャコールを破砕し、30〜60メッシュの篩で篩別して試作例1の吸着活性炭を作成した。
[Treatment of Adsorbed Activated Carbon]
Prototype 1
Charcoal obtained by steaming the coconut shell for one day was crushed and sieved with a 30 to 60 mesh sieve to prepare the adsorption activated carbon of Prototype Example 1.
〈試作例2〉
フタムラ化学製「太閤CW360BL」(C1)を試作例2の吸着活性炭とした。
Prototype 2
Futamura Chemical Co., Ltd. “Taiwa CW 360 BL” (C1) was used as the adsorption activated carbon of Trial Example 2.
〈試作例3〉
フタムラ化学製「太閤CW360B」(C2)を試作例3の吸着活性炭とした。
Prototype 3
Futamura Chemical Co., Ltd. “Taiwa CW 360 B” (C 2) was used as the adsorption activated carbon of Trial Example 3.
発明者らは椰子殻を原料とする活性炭(C1,2)を使用し、これら活性炭に対して熱処理を実施し、試作例4〜9の吸着活性炭を作製した。 The inventors used activated carbon (C1, 2) made of coconut husk as a raw material and performed heat treatment on these activated carbons to produce the adsorption activated carbons of Prototype Examples 4-9.
〈試作例4〉
ロータリーキルンに活性炭(C2)200gを投入し900℃まで昇温し、同温度を維持した。水を0.3mL/minの流量でロータリーキルン内に導入し、さらに900℃を維持しながら20時間加熱した。その後取り出して冷却して試作例4の吸着活性炭を作製した。
Prototype 4
In a rotary kiln, 200 g of activated carbon (C2) was charged and the temperature was raised to 900 ° C., and the temperature was maintained. Water was introduced into the rotary kiln at a flow rate of 0.3 mL / min and further heated for 20 hours while maintaining 900 ° C. After that, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 4.
〈試作例5〉
ロータリーキルンに活性炭(C1)200gを投入し300℃まで昇温し、同温度を維持した。加圧状態の空気を24L/minの流量によりロータリーキルン内に導入し、さらに300℃を維持しながら1時間加熱した。その後取り出して冷却して試作例5の吸着活性炭を作製した。
Prototype 5
The rotary kiln was charged with 200 g of activated carbon (C1), and the temperature was raised to 300 ° C., and the temperature was maintained. Pressurized air was introduced into the rotary kiln at a flow rate of 24 L / min and heated for 1 hour while maintaining 300 ° C. After that, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 5.
〈試作例6〉
ロータリーキルンに活性炭(C1)200gを投入し500℃まで昇温し、同温度を維持した。空気(5〜35℃、相対湿度45〜85%)を加圧状態として1L/minの流量によりロータリーキルン内に導入し、2時間加熱した。その後取り出して冷却して試作例6の吸着活性炭を作製した。
Prototype 6
In a rotary kiln, 200 g of activated carbon (C1) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air (5-35 ° C., relative humidity 45-85%) was introduced under pressure into a rotary kiln at a flow rate of 1 L / min and heated for 2 hours. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 6.
〈試作例7〉
ロータリーキルンに活性炭(C1)200gを投入し300℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、300℃を維持しながら1時間加熱した。その後取り出して冷却して試作例7の吸着活性炭を作製した。
Prototype Example 7
The rotary kiln was charged with 200 g of activated carbon (C1), and the temperature was raised to 300 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of approximately 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 1 hour while maintaining 300 ° C. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 7.
〈試作例8〉
ロータリーキルンに活性炭(C1)200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、500℃を維持しながら1時間加熱した。その後取り出して冷却して試作例8の吸着活性炭を作製した。
Prototype 8
In a rotary kiln, 200 g of activated carbon (C1) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of about 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 1 hour while maintaining 500 ° C. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 8.
〈試作例9〉
ロータリーキルンに活性炭(C1)200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、500℃を維持しながら2時間加熱した。その後取り出して冷却して試作例9の吸着活性炭を作製した。
Prototype Example 9
In a rotary kiln, 200 g of activated carbon (C1) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of about 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 500 ° C. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 9.
〈試作例10〉
ロータリーキルンに活性炭(C1)200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、500℃を維持しながら3時間加熱した。その後取り出して冷却して試作例10の吸着活性炭を作製した。
Prototype 10
In a rotary kiln, 200 g of activated carbon (C1) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of about 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 3 hours while maintaining 500 ° C. After that, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 10.
〈試作例11〉
フタムラ化学製「太閤CW360SZ」(C3)を試作例11の吸着活性炭とした。
Prototype 11
Futamura Chemical Co., Ltd. “Taiwa CW 360 SZ” (C3) was used as the adsorption activated carbon of Trial Example 11.
〈試作例12〉
ロータリーキルンに活性炭(C3)200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、500℃を維持しながら2時間加熱した。その後取り出して冷却して試作例12の吸着活性炭を作製した。
Prototype 12
In a rotary kiln, 200 g of activated carbon (C3) was charged, and the temperature was raised to 500 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of about 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 500 ° C. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 12.
〈試作例13〉
フタムラ化学製「太閤GM360B」(C4)を試作例11の吸着活性炭とした。
Prototype 13
Futamura Chemical "Taiba GM 360 B" (C4) was used as the adsorption activated carbon of Trial Example 11.
〈試作例14〉
ロータリーキルンに活性炭(C4)200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/minの流量によりロータリーキルン内に導入し、500℃を維持しながら2時間加熱した。その後取り出して冷却して試作例12の吸着活性炭を作製した。
Prototype 14
In a rotary kiln, 200 g of activated carbon (C4) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air at 30 ° C. humidified to a relative humidity of about 90% was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 500 ° C. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 12.
[吸着活性炭の測定]
表面酸化物量(meq/g)は、Boehmの方法を適用し、0.05N水酸化ナトリウム水溶液中において各例の吸着活性炭を振とうした後に濾過し、その濾液を0.05N塩酸で中和滴定した際の水酸化ナトリウム量とした。
[Measurement of Adsorbed Activated Carbon]
The amount of surface oxides (meq / g) is determined by applying Boehm's method, shaking the adsorbed activated carbon of each example in 0.05 N aqueous solution of sodium hydroxide and filtering it, and the filtrate is neutralized and titrated with 0.05 N hydrochloric acid. The amount of sodium hydroxide at the time of
比表面積(m2/g)は、マイクロトラック・ベル株式会社製,自動比表面積/細孔分布測定装置「BELSORP−miniII」を使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた(BET比表面積)。 The specific surface area (m 2 / g) is determined by the BET method by measuring the nitrogen adsorption isotherm at 77 K using an automatic specific surface area / pore distribution measuring apparatus “BELSORP-mini II” manufactured by Microtrac Bell Inc. (BET specific surface area).
全細孔容積(mL/g)は、上記の比表面積の測定に用いた装置を使用し、Gurvitschの法則を適用して相対圧0.990における窒素吸着量(V)を下記の数式(i)により液体窒素の体積(Vp)に換算して求めた。なお、数式(i)において、Mgは吸着質の分子量(窒素:28.020)、ρg(g/cm3)は吸着質の密度(窒素:0.808)である。 For the total pore volume (mL / g), the nitrogen adsorption amount (V) at a relative pressure of 0.990 is calculated according to the following formula (i) using the apparatus used to measure the specific surface area described above and applying Gurvitsch's law. And the volume of the liquid nitrogen (V p ). In Formula (i), M g is the molecular weight of the adsorbate (nitrogen: 28.020), and g g (g / cm 3 ) is the density of the adsorbate (nitrogen: 0.808).
平均細孔直径(nm)は、細孔の形状を円筒形と仮定し、前述の測定から得た細孔容積(mL/g)及び比表面積(m2/g)の値を用いて数式(ii)より求めた。 The average pore diameter (nm) is calculated using the values of pore volume (mL / g) and specific surface area (m 2 / g), assuming that the shape of the pore is cylindrical, and using the values of pore volume (mL / g) and specific surface area (m 2 / g) Obtained from ii).
水銀細孔容積(g/mL)は、株式会社島津製作所製、オートポア9500を使用し、接触画130°、表面張力484ダイン/cm(4.84mN/m)に設定し、細孔直径7.5ないし15000nmの水銀圧入法による細孔容積値(g/mL)を求めた。 The mercury pore volume (g / mL) is set at a contact angle of 130 °, a surface tension of 484 dynes / cm (4.84 mN / m) using an autopore 9500 manufactured by Shimadzu Corporation, and a pore diameter of 7. The pore volume value (g / mL) was determined by mercury porosimetry at 5 to 15000 nm.
メチレンブルー吸着性能(mL/g)及び充填密度(g/mL)の測定は、JIS K 1474(2014)に準拠して測定した。 The measurement of methylene blue adsorption performance (mL / g) and packing density (g / mL) was measured according to JIS K 1474 (2014).
各試作例の吸着活性炭の処理条件及び物性は表1〜3のとおりである。表1の上から順に、加熱温度(℃)、加熱時間(h)、加湿の有無、表面酸化物量(meq/g)、BET比表面積(m2/g)、全細孔容積(cm3/g)、平均細孔直径(nm)、水銀細孔容積(g/mL)、メチレンブルー吸着性能(mL/g)、及び充填密度(g/mL)である。 The processing conditions and physical properties of the adsorptive activated carbon of each of the prototype examples are as shown in Tables 1 to 3. From the top of Table 1, heating temperature (° C.), heating time (h), presence or absence of humidification, surface oxide amount (meq / g), BET specific surface area (m 2 / g), total pore volume (cm 3 / g) Average pore diameter (nm), mercury pore volume (g / mL), methylene blue adsorption performance (mL / g), and packing density (g / mL).
[クロラミン吸着量の測定]
アンモニア水と、次亜塩素酸ナトリウム溶液とを混合して、相互の反応からモノクロラミンを調製した。ここに水を添加し結合塩素濃度を約100μg/Lに希釈した。その後、塩酸を適量添加してpHを8.8〜9.2の範囲に収斂するようにクロラミン溶液を調整した。
[Measurement of chloramine adsorption amount]
Ammonia water and sodium hypochlorite solution were mixed to prepare monochloramine from mutual reaction. Water was added here to dilute the combined chlorine concentration to about 100 μg / L. Then, the chloramine solution was adjusted so that pH may be converged in the range of 8.8-9.2 by adding an appropriate amount of hydrochloric acid.
クロラミン吸着量の測定に際し、試作例の吸着活性炭を粉砕、かつ絶乾した。200mLのフラスコに所定量の吸着活性炭を投入し、ここに前記調製のクロラミン溶液を100mL注入した。25℃の恒温槽中で60分間振とうした。濾紙を用いて当該溶液を濾過し、各例の試験用溶液とした。残留するクロラミン量の測定は、溶液中の塩素量をDPD(ジエチル−p−フェニルジアミン)吸光光度法(553nm)により測定することにより、間接的に算出した。 In the measurement of the chloramine adsorption amount, the adsorption activated carbon of the prototype example was crushed and completely dried. A predetermined amount of adsorption activated carbon was charged into a 200 mL flask, into which 100 mL of the chloramine solution prepared above was injected. Shake for 60 minutes in a 25 ° C. thermostat. The solution was filtered using filter paper to make each solution for test. The amount of residual chloramine was calculated indirectly by measuring the amount of chlorine in the solution by DPD (diethyl-p-phenyldiamine) spectrophotometry (553 nm).
各例の試験用溶液中の塩素濃度と遊離塩素濃度を求め、その差から結合塩素濃度を算出した。この結合塩素濃度がクロラミンの濃度に対応する。つまり、クロラミンの吸着は結合塩素濃度と等価(等モル数)である。そこで、吸着活性炭を投入する前後の結合塩素吸着率(%)をクロラミン吸着率とした。当該試験は25℃にて実施した。 The concentration of chlorine and the concentration of free chlorine in the test solution of each example were determined, and the concentration of combined chlorine was calculated from the difference. The combined chlorine concentration corresponds to the concentration of chloramine. That is, the adsorption of chloramine is equivalent to the combined chlorine concentration (equivalent number of moles). Therefore, the combined chlorine adsorption rate (%) before and after charging the adsorption activated carbon was taken as the chloramine adsorption rate. The test was performed at 25 ° C.
表4〜6に、各試作例の吸着活性炭について量を変更して添加した際の活性炭添加濃度(g/L)、結合塩素濃度(mg/L)、活性炭単位質量当たりの吸着量(mg/g)、及び結合塩素吸着率(クロラミン吸着率)(%)を示した。 In Tables 4 to 6, the activated carbon addition concentration (g / L), the combined chlorine concentration (mg / L), and the adsorption amount per unit mass of activated carbon (mg / L) when the amount of the adsorption activated carbon of each prototype example is changed and added g) and combined chlorine adsorption rate (chloramine adsorption rate) (%).
[アンモニアの通気試験]
各例の活性炭10mlを直径25mmのカラムに充填し、濃度を16〜24ppmの範囲であって、湿度を45〜55%の範囲に収斂するようにアンモニアガスを調製した。当該ガスを流量2.9L/minで各カラムに吹き込んだ。その後、各カラムの入口と出口のアンモニアガスの濃度を測定して破過率を算出し、破過率が20%を超えるまでの処理時間を求めた。
[Ammonia ventilation test]
10 ml of activated carbon of each example was packed in a 25 mm diameter column, and ammonia gas was prepared so that the concentration was in the range of 16 to 24 ppm and the humidity was in the range of 45 to 55%. The gas was blown into each column at a flow rate of 2.9 L / min. Thereafter, the concentration of ammonia gas at the inlet and outlet of each column was measured to calculate the breakthrough rate, and the processing time until the breakthrough rate exceeded 20% was determined.
表7〜9に、各試作例の吸着活性炭についてアンモニアの通気試験を行った際の時間経過(min)におけるアンモニアガスのカラム入口での濃度(ppm)とカラム出口での濃度(ppm)及び破過率(%)を示した。 In Tables 7 to 9, the concentration (ppm) of the ammonia gas at the column inlet and the concentration (ppm) at the column outlet in the time course (min) when the aeration test of ammonia was conducted for the adsorption activated carbon of each trial example The excess rate (%) was shown.
また、各試作例について、破過率が20%となった時間を表10に示す。 In addition, Table 10 shows the time when the breakthrough rate is 20% for each of the prototype examples.
[結果と考察]
全例の傾向から結合塩素吸着率(クロラミン吸着率)は添加した吸着活性炭量に比例する。何らの処理の無い試作例1〜3及び空気導入を行っていない試作例4、そして空気導入と加熱処理の組合せによる試作例5,6の比較から、試作例5,6の結合塩素吸着率は同添加量において上昇した。また、通気試験の結果より、何らの処理の無い試作例1〜3及び空気導入を行っていない試作例4と空気導入と加熱処理の組合せによる試作例5,6から、アンモニアの吸着性能がより向上したことが示された。このことから、試作例5,6の空気導入と加熱の組み合わせの優位性を確認することができた。
[Results and discussion]
From the tendency of all examples, the bound chlorine adsorption rate (chloramine adsorption rate) is proportional to the amount of the activated carbon added. From the comparison of trial production examples 1 to 3 without any treatment, trial production example 4 without air introduction, and trial production examples 5 and 6 by a combination of air introduction and heat treatment, the combined chlorine adsorption rate of trial examples 5 and 6 is It rose in the same addition amount. Also, from the results of the aeration test, the adsorption performance of ammonia is higher than those of prototype examples 1 to 3 without any treatment, prototype example 4 without air introduction, and prototype examples 5 and 6 by a combination of air introduction and heat treatment. It showed that it improved. From this, it was possible to confirm the superiority of the combination of air introduction and heating in the fifth and sixth prototype examples.
試作例5と試作例7の主な相違は導入した空気の湿度である。これより、空気の湿度はさらに有効である。試作例8,9は加熱温度を高めた例である。この結果、同じ湿度の空気であっても、より性能が向上した。加えて、試作例8〜10は加熱時間を変化させた例である。この場合の傾向として、加熱時間が長くなるほど有効であることも確認した。 The main difference between Prototype 5 and Prototype 7 is the humidity of the introduced air. From this, the humidity of the air is more effective. Prototypes 8 and 9 are examples in which the heating temperature is raised. As a result, even with air of the same humidity, the performance is further improved. In addition, prototype examples 8 to 10 are examples in which the heating time is changed. As a tendency in this case, it was also confirmed that the longer the heating time, the more effective.
表4〜6の結合塩素吸着率の結果及び表7〜9の通ガス試験の結果と表1〜3の物性を重ねた。試作例1〜6,11,13と試作例7〜10,12,14との差から、表面酸化物量は0.35meq/g以上とすると極性物質の吸着性能がより向上することが分かった。 The physical properties of Tables 1 to 3 were overlapped with the results of bonded chlorine adsorption rates of Tables 4 to 6 and the results of gas passing tests of Tables 7 to 9, respectively. From the difference between the prototype examples 1 to 6, 11 and 13 and the prototype examples 7 to 10, 12 and 14, it was found that the adsorption performance of the polar substance is further improved when the surface oxide content is 0.35 meq / g or more.
BET比表面積については、試作例5,6の930m2/gよりも大きい方が結果が良いことから930ないし2020m2/gの範囲である。同様の傾向から、全細孔容積は0.4〜1.2cm3/g、平均細孔直径は1.8〜2.6nmの範囲である。 The BET specific surface area, to the 930 not because good results greater than 930 m 2 / g of Prototype Example 5 and 6 is in the range of 2020m 2 / g. From the same tendency, the total pore volume is in the range of 0.4 to 1.2 cm 3 / g, and the average pore diameter is in the range of 1.8 to 2.6 nm.
さらに、メチレンブルー吸着性能に着目すると、各試作例の差から下限は120mL/g以上、より好ましくは試作例5と6との差から160mL/g以上である。上限については、活性炭の性能上350mL/gと考えられる。また、充填密度については、0.56g/mL以下、好ましくは0.54g/mL以下となる。 Furthermore, focusing on methylene blue adsorption performance, the lower limit is 120 mL / g or more from the difference between each of the prototype examples, and more preferably 160 mL / g or more from the difference between the prototype examples 5 and 6. The upper limit is considered to be 350 mL / g in terms of the performance of activated carbon. In addition, the packing density is 0.56 g / mL or less, preferably 0.54 g / mL or less.
活性炭における各物性を重ねることによりクロラミンやアンモニア等の極性物質の吸着に効果的な吸着活性炭を得ることが出来た。そこで、極性物質の吸着に有効な活性炭を主体として構成する他、他の活性炭と組み合わせて吸着対象を広げることも可能である。 By overlapping the physical properties of activated carbon, it was possible to obtain an activated carbon that is effective for adsorbing polar substances such as chloramine and ammonia. Therefore, in addition to the active carbon that is effective for the adsorption of polar substances, it is also possible to combine with other active carbons to broaden the adsorption target.
本発明の極性物質吸着活性炭は、クロラミンやアンモニア等の極性物質の吸着に効果的であるため、水道水中から極性物質を除去する濾過材としての用途、さらには、人工透析用の精製水の濾過、調製の用途に好適である。 Since the polar substance-adsorbed activated carbon of the present invention is effective for adsorbing polar substances such as chloramine and ammonia, it is used as a filter material for removing polar substances from tap water, and further, filtration of purified water for artificial dialysis , Suitable for use in preparation.
これら活性炭自体の物性に加え、さらに、活性炭の吸着能力の指標も加えて吸着活性炭の物性を規定することが可能である。具体的に、JIS K 1474−1(2014)に準拠した測定における前記吸着活性炭のメチレンブルー吸着性能が120mL/g以上である。メチレンブルーは極性分子であり、クロラミン吸着活性炭の具備するべき極性分子の吸着能力の指標として簡便である。そこで、下限は120mL/g以上、より好ましくは160mL/g以上である。上限については、活性炭の性能上350mL/gと考えられる。 In addition to the physical properties of the activated carbon itself, it is possible to define the physical properties of the adsorptive activated carbon by adding an indicator of the adsorption capacity of the activated carbon. Concretely, the methylene blue adsorption performance of the said adsorption activated carbon in the measurement based on JISK1474-1 (2014) is 120 mL / g or more. Methylene blue is a polar molecule and is convenient as an indicator of the adsorption capacity of the polar molecule to be provided by chloramine-adsorbed activated carbon. Therefore, the lower limit is 120 mL / g or more, more preferably 160 mL / g or more. The upper limit is considered to be 350 mL / g in terms of the performance of activated carbon.
〈試作例6〉
ロータリーキルンに活性炭(C1)200gを投入し500℃まで昇温し、同温度を維持した。空気(5〜35℃、相対湿度45〜85%)を加圧状態として24L/minの流量によりロータリーキルン内に導入し、2時間加熱した。その後取り出して冷却して試作例6の吸着活性炭を作製した。
Prototype 6
In a rotary kiln, 200 g of activated carbon (C1) was charged and the temperature was raised to 500 ° C., and the temperature was maintained. Air (5-35 ° C., relative humidity 45-85%) was introduced under pressure into a rotary kiln at a flow rate of 24 L / min and heated for 2 hours. Thereafter, it was taken out and cooled to prepare an adsorption activated carbon of Prototype Example 6.
Claims (4)
前記吸着活性炭の表面における表面酸化物量が0.35meq/g以上であり、
BET比表面積を900〜2020m2/gである
ことを特徴とする極性物質吸着活性炭。 Adsorbed activated carbon for adsorbing polar substances,
The amount of surface oxides on the surface of the adsorption activated carbon is 0.35 meq / g or more,
A polar substance-adsorbed activated carbon characterized by having a BET specific surface area of 900 to 2020 m 2 / g.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017230705 | 2017-11-30 | ||
JP2017230705 | 2017-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019098324A true JP2019098324A (en) | 2019-06-24 |
Family
ID=66975151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018217417A Pending JP2019098324A (en) | 2017-11-30 | 2018-11-20 | Polar substance adsorption active carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019098324A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021162076A1 (en) * | 2020-02-14 | 2021-08-19 | フタムラ化学株式会社 | Per- and poly-fluoroalkyl compound trapping sampler for personal exposure measurement |
CN114302769A (en) * | 2019-08-20 | 2022-04-08 | 二村化学株式会社 | Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds |
CN114746175A (en) * | 2019-11-25 | 2022-07-12 | 关西热化学株式会社 | Molecular polar substance adsorption carbon |
CN116351398A (en) * | 2023-03-31 | 2023-06-30 | 中国科学院生态环境研究中心 | Nitrogen modified activated carbon for removing 2-MIB as well as preparation method and application thereof |
JP7354336B1 (en) | 2022-03-29 | 2023-10-02 | 関西熱化学株式会社 | porous carbon material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003251132A (en) * | 2002-02-28 | 2003-09-09 | Toyobo Co Ltd | Gas treatment apparatus and treatment method used for the same |
JP2004244414A (en) * | 2003-01-22 | 2004-09-02 | Meruku Hoei Kk | Medicamental adsorbent and method for producing the same |
JP2011037749A (en) * | 2009-08-10 | 2011-02-24 | Mylan Seiyaku Ltd | Orally administered adsorbent having excellent adsorption property |
WO2014017588A1 (en) * | 2012-07-26 | 2014-01-30 | 関西熱化学株式会社 | Activated carbon having large active surface area |
JP2015196102A (en) * | 2014-03-31 | 2015-11-09 | 東邦化工建設株式会社 | Adsorbent element for deodorization and production method thereof |
JP2016014057A (en) * | 2010-10-12 | 2016-01-28 | フタムラ化学株式会社 | Production method for sorbent for oral administration medicines |
WO2016067440A1 (en) * | 2014-10-31 | 2016-05-06 | 大阪ガスケミカル株式会社 | Fibrous activated carbon for solvent recovery |
JP2017172099A (en) * | 2016-03-15 | 2017-09-28 | 関西熱化学株式会社 | Active carbon fiber and method of producing the same |
-
2018
- 2018-11-20 JP JP2018217417A patent/JP2019098324A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003251132A (en) * | 2002-02-28 | 2003-09-09 | Toyobo Co Ltd | Gas treatment apparatus and treatment method used for the same |
JP2004244414A (en) * | 2003-01-22 | 2004-09-02 | Meruku Hoei Kk | Medicamental adsorbent and method for producing the same |
JP2011037749A (en) * | 2009-08-10 | 2011-02-24 | Mylan Seiyaku Ltd | Orally administered adsorbent having excellent adsorption property |
JP2016014057A (en) * | 2010-10-12 | 2016-01-28 | フタムラ化学株式会社 | Production method for sorbent for oral administration medicines |
WO2014017588A1 (en) * | 2012-07-26 | 2014-01-30 | 関西熱化学株式会社 | Activated carbon having large active surface area |
JP2015196102A (en) * | 2014-03-31 | 2015-11-09 | 東邦化工建設株式会社 | Adsorbent element for deodorization and production method thereof |
WO2016067440A1 (en) * | 2014-10-31 | 2016-05-06 | 大阪ガスケミカル株式会社 | Fibrous activated carbon for solvent recovery |
JP2017172099A (en) * | 2016-03-15 | 2017-09-28 | 関西熱化学株式会社 | Active carbon fiber and method of producing the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114302769A (en) * | 2019-08-20 | 2022-04-08 | 二村化学株式会社 | Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds |
CN114302769B (en) * | 2019-08-20 | 2024-03-19 | 二村化学株式会社 | Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds |
CN114746175A (en) * | 2019-11-25 | 2022-07-12 | 关西热化学株式会社 | Molecular polar substance adsorption carbon |
KR20220104742A (en) | 2019-11-25 | 2022-07-26 | 간사이네쯔카가꾸가부시끼가이샤 | Molecular polar substance adsorption bomb |
WO2021162076A1 (en) * | 2020-02-14 | 2021-08-19 | フタムラ化学株式会社 | Per- and poly-fluoroalkyl compound trapping sampler for personal exposure measurement |
JP7354336B1 (en) | 2022-03-29 | 2023-10-02 | 関西熱化学株式会社 | porous carbon material |
JP2023146963A (en) * | 2022-03-29 | 2023-10-12 | 関西熱化学株式会社 | porous carbon material |
CN116351398A (en) * | 2023-03-31 | 2023-06-30 | 中国科学院生态环境研究中心 | Nitrogen modified activated carbon for removing 2-MIB as well as preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019098324A (en) | Polar substance adsorption active carbon | |
JP6283435B2 (en) | Activated carbon molded body and water purifier using the same | |
ES2949850T3 (en) | Porous Cyclodextrin Polymeric Materials | |
Gedam et al. | Adsorption characterization of Pb (II) ions onto iodate doped chitosan composite: equilibrium and kinetic studies | |
CN101160169B (en) | Water filter materials comprising a mixture of microporous and mesoporous carbon particles and water filters with said filter materials | |
JP5936423B2 (en) | Activated carbon for water purifier and activated carbon cartridge using the same | |
RU2007137631A (en) | HIGH-EFFICIENCY ADSORBENTS BASED ON ACTIVATED CARBON WITH HIGH MICROPOROSITY | |
US20090211453A1 (en) | Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment | |
US20170121186A1 (en) | Adsorptive filter unit having extended useful cycle times and/or an extended service life | |
WO2018116859A1 (en) | Active carbon and production method thereof | |
JP2020506049A (en) | Adsorbent and manufacturing method | |
JP6783841B2 (en) | Filter manufacturing method and its filter | |
JP2017200670A (en) | Activated carbon molded body and water purification cartridge | |
JP4064309B2 (en) | Water purifier | |
JP3915597B2 (en) | Water purification cartridge | |
TW202106378A (en) | Carbonaceous material, method for producing same, filter for water purification and water purifier | |
JP2015515443A (en) | Reduction of arsenic and antimony leaching from activated carbon | |
JP2023147952A (en) | Residual chlorine removing filter body | |
JP7301591B2 (en) | Manufacturing method for residual chlorine removal filter body | |
JP2007296464A5 (en) | ||
JP2024080893A (en) | Activated carbon and activated carbon filter body | |
JP2005001681A (en) | Cartridge storing method, and water purifier | |
CN108348890B (en) | Porous carbon and organic halide removal device using same | |
JP2021176609A (en) | Water purification cartridge and water purifier | |
KR101627232B1 (en) | Method for manufacturing of carbon block filter including vitamin C ball |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220607 |