JP7484786B2 - Glass laminate and method for producing same - Google Patents

Glass laminate and method for producing same Download PDF

Info

Publication number
JP7484786B2
JP7484786B2 JP2021054796A JP2021054796A JP7484786B2 JP 7484786 B2 JP7484786 B2 JP 7484786B2 JP 2021054796 A JP2021054796 A JP 2021054796A JP 2021054796 A JP2021054796 A JP 2021054796A JP 7484786 B2 JP7484786 B2 JP 7484786B2
Authority
JP
Japan
Prior art keywords
infrared shielding
ultraviolet
film
glass
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021054796A
Other languages
Japanese (ja)
Other versions
JP2022152138A (en
Inventor
友哉 牛尾
晋平 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2021054796A priority Critical patent/JP7484786B2/en
Publication of JP2022152138A publication Critical patent/JP2022152138A/en
Application granted granted Critical
Publication of JP7484786B2 publication Critical patent/JP7484786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、ガラス積層体とその製造方法に関する。 The present invention relates to a glass laminate and a method for manufacturing the same.

自動車等の車両等の用途では、ガラス板の表面に、可視光線の透過率は高く、紫外線および赤外線の透過率は低い紫外線赤外線遮蔽膜を形成したガラス積層体が知られている。
紫外線赤外線遮蔽膜は例えば、紫外線吸収剤等の紫外線遮蔽剤および赤外線吸収剤等の赤外線遮蔽剤を含む膜である。
例えば、特許文献1には、ガラス板と、その表面上に形成された紫外線遮蔽膜とを備える紫外線遮蔽ガラスが開示されている(請求項1)。紫外線遮蔽膜形成用の組成物は、紫外線吸収剤および硬化性シランを含み、さらに好ましくはITO(インジウム錫酸化物)等の赤外線吸収剤および溶媒を含む(段落0035、0041、0047)。紫外線遮蔽膜は、ガラス板上に上記組成物を塗布し、乾燥し、硬化することで、形成できる(段落0042)。
2. Description of the Related Art For use in vehicles such as automobiles, a glass laminate is known in which an ultraviolet/infrared shielding film having high transmittance for visible light but low transmittance for ultraviolet and infrared light is formed on the surface of a glass sheet.
The ultraviolet and infrared shielding film is, for example, a film containing an ultraviolet shielding agent such as an ultraviolet absorber and an infrared shielding agent such as an infrared absorber.
For example, Patent Document 1 discloses an ultraviolet shielding glass comprising a glass plate and an ultraviolet shielding film formed on the surface of the glass plate (claim 1). The composition for forming the ultraviolet shielding film contains an ultraviolet absorber and a curable silane, and preferably contains an infrared absorber such as ITO (indium tin oxide) and a solvent (paragraphs 0035, 0041, and 0047). The ultraviolet shielding film can be formed by applying the composition onto a glass plate, drying, and curing the composition (paragraph 0042).

国際公開第2020/141601号International Publication No. 2020/141601

上記のような用途では、一般的に、ガラス板の内面側(乗員等がいる側)に紫外線赤外線遮蔽膜が形成される。太陽光はガラス板の外面に入射し、ガラス板を透過した光がガラス板の内面上に形成された紫外線赤外線遮蔽膜に入射する。
本発明者らの研究により、紫外線赤外線遮蔽膜を有するガラス積層体では、耐候性・耐光性試験において、赤外線遮蔽剤が劣化して可視光線透過率が低下する場合があることが分かった。
In the above-mentioned applications, an ultraviolet/infrared shielding film is generally formed on the inner surface of a glass plate (the side where passengers and the like are present). Sunlight is incident on the outer surface of the glass plate, and the light transmitted through the glass plate is incident on the ultraviolet/infrared shielding film formed on the inner surface of the glass plate.
The inventors have found through their research that in a glass laminate having an ultraviolet and infrared shielding film, the infrared shielding agent may deteriorate in weather resistance and light resistance tests, resulting in a decrease in visible light transmittance.

本発明は上記事情に鑑みてなされたものであり、紫外線および赤外線を良好に遮蔽でき、耐候性・耐光性が向上され、使用時の可視光線透過率の低下を抑制できるガラス積層体の提供を目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a glass laminate that can effectively block ultraviolet and infrared rays, has improved weather resistance and light resistance, and can suppress a decrease in visible light transmittance during use.

本発明は、以下のガラス積層体とその製造方法を提供する。
[1] ガラス板の表面上に、シリカと、紫外線遮蔽剤と、金属化合物を含む赤外線遮蔽粒子とを含む紫外線赤外線遮蔽膜が形成されたガラス積層体であって、
平面視にて、前記紫外線赤外線遮蔽膜の、前記ガラス板の上端辺から5cm以内に位置する上端部の少なくとも一部の領域において、
前記紫外線赤外線遮蔽膜中に存在するすべての前記赤外線遮蔽粒子に含まれる任意に選択された1種以上の金属元素の濃度を100atomic%とし、前記紫外線赤外線遮蔽膜の厚さを100%とし、前記紫外線赤外線遮蔽膜を膜表面から深さ方向に見たとき、
前記膜表面と前記膜表面から50%の深さとの間に存在する前記赤外線遮蔽粒子に含まれる前記1種以上の金属元素の濃度が55atomic%以上であり、
前記膜表面と前記膜表面から10%の深さとの間に存在する前記赤外線遮蔽粒子に含まれる前記1種以上の金属元素の濃度が12~20atomic%である、ガラス積層体。
The present invention provides the following glass laminate and method for producing the same.
[1] A glass laminate having an ultraviolet and infrared shielding film formed on a surface of a glass plate, the ultraviolet and infrared shielding film including silica, an ultraviolet shielding agent, and infrared shielding particles including a metal compound,
In a plan view, in at least a part of an upper end portion of the ultraviolet and infrared ray shielding film located within 5 cm from the upper end edge of the glass plate,
When the concentration of one or more arbitrarily selected metal elements contained in all of the infrared shielding particles present in the ultraviolet and infrared shielding film is taken as 100 atomic %, the thickness of the ultraviolet and infrared shielding film is taken as 100%, and the ultraviolet and infrared shielding film is viewed in the depth direction from the film surface,
the concentration of the one or more metal elements contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface is 55 atomic % or more;
a concentration of the one or more metal elements contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface is 12 to 20 atomic %.

[2] 硬化性シランと前記紫外線遮蔽剤と前記赤外線遮蔽粒子とを含む液状組成物を用意する工程(S1)と、
前記ガラス板の温度をT[℃]とし、前記液状組成物の温度をT[℃]としたとき、T>Tとなるよう、前記ガラス板および/または前記液状組成物の温度を調整する工程(S2)と、
前記ガラス板の表面上に、前記ガラス板より低い温度の前記液状組成物を塗工し塗工膜を形成して、塗工膜付きガラス板を得る工程(S3)と、
前記塗工膜側が下側になるように、前記塗工膜付きガラス板を略水平に配置する工程(S4)と、
前記塗工膜付きガラス板を加熱し、前記塗工膜を硬化する工程(S5)とを有する、[1]のガラス積層体の製造方法。
[2] A step (S1) of preparing a liquid composition containing a curable silane, the ultraviolet ray shielding agent, and the infrared ray shielding particles;
a step (S2) of adjusting the temperature of the glass plate and/or the liquid composition so that T S >T L , where T S is the temperature of the glass plate [°C] and T L is the temperature of the liquid composition [°C];
A step (S3) of applying the liquid composition having a temperature lower than that of the glass plate onto a surface of the glass plate to form a coating film, thereby obtaining a glass plate with a coating film;
A step (S4) of disposing the glass sheet with the coating film substantially horizontally so that the coating film side faces downward;
and (S5) heating the glass sheet with the coating film to harden the coating film.

本発明のガラス積層体では、紫外線赤外線遮蔽膜において赤外線遮蔽粒子が膜表面側に偏って分布している。本発明のガラス積層体では、比較的強い紫外線照射を受ける赤外線遮蔽粒子の数が相対的に少ないため、紫外線照射による赤外線遮蔽粒子の劣化とこれによる紫外線赤外線遮蔽膜の可視光線透過率の低下を効果的に抑制できる。本発明によれば、耐候性・耐光性が向上され、使用時の可視光線透過率の低下が抑制されたガラス積層体を提供できる。 In the glass laminate of the present invention, the infrared shielding particles are distributed unevenly toward the film surface side in the ultraviolet/infrared shielding film. In the glass laminate of the present invention, the number of infrared shielding particles that are exposed to relatively strong ultraviolet radiation is relatively small, so that deterioration of the infrared shielding particles due to ultraviolet radiation and the resulting decrease in the visible light transmittance of the ultraviolet/infrared shielding film can be effectively suppressed. According to the present invention, it is possible to provide a glass laminate that has improved weather resistance and light resistance and suppresses the decrease in visible light transmittance during use.

本発明に係る一実施形態のガラス積層体の模式平面図の一例である。1 is an example of a schematic plan view of a glass laminate according to an embodiment of the present invention. 本発明に係る一実施形態のガラス積層体の模式断面図である。1 is a schematic cross-sectional view of a glass laminate according to one embodiment of the present invention. 図2の部分拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view of FIG. 2 . 比較用のガラス積層体(左図)と本発明のガラス積層体(右図)との対比を示す部分拡大模式断面図である。FIG. 2 is a partially enlarged schematic cross-sectional view showing a comparison between a comparative glass laminate (left diagram) and a glass laminate of the present invention (right diagram). 本発明に係る一実施形態のガラス積層体の製造方法の工程(S3)を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a step (S3) of the method for producing a glass laminate according to the embodiment of the present invention. 本発明に係る一実施形態のガラス積層体の製造方法の工程(S4)を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a step (S4) of the method for producing a glass laminate according to the embodiment of the present invention. 本発明に係る一実施形態のガラス積層体の製造方法の工程(S4)を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a step (S4) of the method for producing a glass laminate according to the embodiment of the present invention. 例1で得られた紫外線赤外線遮蔽膜のXPSスペクトルである。1 is an XPS spectrum of the ultraviolet and infrared shielding film obtained in Example 1. 例2で得られた紫外線赤外線遮蔽膜のXPSスペクトルである。1 is an XPS spectrum of the ultraviolet and infrared shielding film obtained in Example 2. 例13で得られた紫外線赤外線遮蔽膜のXPSスペクトルである。1 is an XPS spectrum of the ultraviolet and infrared ray shielding film obtained in Example 13. 例1で得られたガラス積層体のSEM断面写真の例である。1 is an example of a SEM cross-sectional photograph of the glass laminate obtained in Example 1. 図7Aのトリミング処理および二値化処理後の画像である。7B is an image after the cropping process and the binarization process of FIG. 7A. 例2で得られたガラス積層体のSEM断面写真の例である。1 is an example of a SEM cross-sectional photograph of the glass laminate obtained in Example 2. 図8Aのトリミング処理および二値化処理後の画像である。8B is an image after the cropping process and the binarization process of FIG. 8A.

一般的に、薄膜構造体は、厚さに応じて、「フィルム」および「シート」等と称される。本明細書では、これらを明確には区別しない。したがって、本明細書で言う「フィルム」に「シート」が含まれる場合がある。
本明細書において、特に明記しない限り、「上下」は、ガラス積層体が車両等に嵌め込まれた状態(実際の使用状態)での「上下」である。
本明細書において、特に明記しない限り、紫外線は300~380nmの波長域の光であり、赤外線は780~2500nmの波長域の光であり、可視光線は380~780nmの波長域の光である。
本明細書において、特に明記しない限り、数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含む意味で使用される。
以下、本発明の実施の形態を説明する。
Generally, thin film structures are referred to as "films" and "sheets" depending on their thickness. In this specification, there is no clear distinction between them. Therefore, in this specification, "film" may include "sheets".
In this specification, unless otherwise specified, the terms "upper and lower" refer to the "upper and lower" in a state in which the glass laminate is fitted into a vehicle or the like (actual use state).
In this specification, unless otherwise specified, ultraviolet light is light in the wavelength range of 300 to 380 nm, infrared light is light in the wavelength range of 780 to 2500 nm, and visible light is light in the wavelength range of 380 to 780 nm.
In this specification, unless otherwise specified, the term "to" indicating a range of values is used to mean that the range includes the values before and after it as the lower and upper limits.
Hereinafter, an embodiment of the present invention will be described.

[ガラス積層体]
図面を参照して、本発明に係る一実施形態のガラス積層体の構造について、説明する。
図1は、本実施形態のガラス積層体の模式平面図の一例である。図2は、本実施形態のガラス積層体の模式断面図である。図3は、図2の部分拡大模式断面図である。
図2に示すように、本実施形態のガラス積層体1は、ガラス板10の一方の表面10S上に、シリカと、紫外線遮蔽剤と、金属化合物を含む赤外線遮蔽粒子とを含む紫外線赤外線遮蔽膜20が形成された積層体である。
ガラス板10の表面10Sは、ガラス板10の紫外線赤外線遮蔽膜20側の表面であり、ガラス板10と紫外線赤外線遮蔽膜20との界面とも言う。
[Glass laminate]
The structure of a glass laminate according to one embodiment of the present invention will be described with reference to the drawings.
Fig. 1 is an example of a schematic plan view of a glass laminate of the present embodiment. Fig. 2 is a schematic cross-sectional view of the glass laminate of the present embodiment. Fig. 3 is a partially enlarged schematic cross-sectional view of Fig. 2.
As shown in FIG. 2 , the glass laminate 1 of the present embodiment is a laminate in which an ultraviolet and infrared shielding film 20 containing silica, an ultraviolet shielding agent, and infrared shielding particles containing a metal compound is formed on one surface 10S of a glass plate 10.
The surface 10S of the glass plate 10 is the surface of the glass plate 10 on the ultraviolet and infrared ray shielding film 20 side, and is also referred to as the interface between the glass plate 10 and the ultraviolet and infrared ray shielding film 20.

本実施形態のガラス積層体1は例えば、自動車等の車両用のガラス(例えば、フロントガラス、サイドガラスおよびリアガラス)に好ましく適用できる。
車両等の用途では、紫外線赤外線遮蔽膜20は、ガラス板10の内面側(乗員等がいる側、通常凹面側)に形成される。
紫外線赤外線遮蔽膜20は、ガラス板10の一方の表面10Sの全面に形成されていてもよいし、ガラス板10の一方の表面10Sの周縁部(例えば、端辺から30mm以内の領域)の少なくとも一部を除く略全面に形成されていてもよい。紫外線赤外線遮蔽膜20は、少なくとも使用状態(例えば車両等に嵌め込まれた状態)で視認される領域に形成されていればよく、使用状態で視認されない周縁部には形成されていなくてもよい。
The glass laminate 1 of the present embodiment can be preferably applied to glass for vehicles such as automobiles (for example, a front glass, a side glass, and a rear glass).
In applications such as vehicles, the ultraviolet and infrared shielding film 20 is formed on the inner surface side of the glass plate 10 (the side where passengers and the like are present, usually the concave side).
The ultraviolet and infrared shielding film 20 may be formed on the entire surface of one surface 10S of the glass plate 10, or may be formed on substantially the entire surface except for at least a part of the peripheral portion (e.g., a region within 30 mm from an edge) of one surface 10S of the glass plate 10. The ultraviolet and infrared shielding film 20 needs to be formed at least in a region that is visible when the glass plate is in use (e.g., when the glass plate is fitted into a vehicle or the like), and does not need to be formed on the peripheral portion that is not visible when the glass plate is in use.

図1は、本実施形態のガラス積層体1の模式平面図の一例である。この例では、ガラス積層体1は、自動車の運転手席または助手席の横にあるサイドガラスである。
図示例では、ガラス板10は、上辺11、下辺12、前方側辺13および後方側辺14の4辺からなる外周を有し、下辺12は凹凸を有している。
図示例では、紫外線赤外線遮蔽膜20は、上辺21、下辺22、前方側辺23および後方側辺24の4辺からなる外周を有する。視認しやすくするため、紫外線赤外線遮蔽膜20の外周のうち、ガラス板10の外周と一致していない部分は、二点鎖線で示してある。
図示例では、紫外線赤外線遮蔽膜20の上辺21は、ガラス板10の上辺11より15mm程度内側に位置し、紫外線赤外線遮蔽膜20の前方側辺23はガラス板10の前方側辺13に一致し、紫外線赤外線遮蔽膜20の後方側辺24はガラス板10の後方側辺14に一致している。
ガラス板10の平面形状および紫外線赤外線遮蔽膜20の形成領域は、取り付けられる車両等の形態に応じて、適宜設計できる。
1 is a schematic plan view of a glass laminate 1 according to an embodiment of the present invention. In this example, the glass laminate 1 is a side glass located next to the driver's seat or passenger seat of an automobile.
In the illustrated example, the glass plate 10 has an outer periphery consisting of four sides, namely, an upper side 11, a lower side 12, a front side 13, and a rear side 14, and the lower side 12 has an uneven surface.
In the illustrated example, the ultraviolet and infrared shielding film 20 has an outer periphery consisting of four sides, namely, an upper side 21, a lower side 22, a front side side 23, and a rear side side 24. For easy visual recognition, the part of the outer periphery of the ultraviolet and infrared shielding film 20 that does not coincide with the outer periphery of the glass plate 10 is shown by a two-dot chain line.
In the illustrated example, the upper edge 21 of the ultraviolet and infrared ray shielding film 20 is located approximately 15 mm inside the upper edge 11 of the glass plate 10, the front side edge 23 of the ultraviolet and infrared ray shielding film 20 coincides with the front side edge 13 of the glass plate 10, and the rear side edge 24 of the ultraviolet and infrared ray shielding film 20 coincides with the rear side edge 14 of the glass plate 10.
The planar shape of the glass plate 10 and the area in which the ultraviolet and infrared ray shielding film 20 is formed can be appropriately designed according to the shape of the vehicle or the like to which it is to be attached.

(ガラス板)
ガラス板10としては、強化ガラス、複数のガラス板を中間膜を介して貼り合わせた合わせガラス、および有機ガラスが挙げられ、車両等の用途では、強化ガラスまたは合わせガラスが好ましい。図1および図2では、ガラス板10は平坦に図示してあるが、車両等の用途では、ガラス板10は、曲面を有する形状に加工されている。
強化ガラスおよび合わせガラスの材料であるガラス板の種類としては特に制限されず、ソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、リチウムシリケートガラス、石英ガラス、サファイアガラス、および無アルカリガラス等が挙げられる。
強化ガラスは、上記のようなガラス板に対して、イオン交換法および風冷強化法等の公知方法にて強化加工を施したものである。強化ガラスとしては、風冷強化ガラスが好ましい。
強化ガラスの厚さは特に制限されず、用途に応じて設計される。車両のフロントガラス、サイドガラスおよびリアガラス等の用途では、好ましくは2~6mmである。
合わせガラスの厚さは特に制限されず、用途に応じて設計される。車両のフロントガラス、サイドガラスおよびリアガラス等の用途では、好ましくは2~6mmである。
(Glass plate)
Examples of the glass sheet 10 include tempered glass, laminated glass in which a plurality of glass sheets are bonded together via an interlayer film, and organic glass, and tempered glass or laminated glass is preferred for applications such as vehicles. In Figures 1 and 2, the glass sheet 10 is illustrated as being flat, but for applications such as vehicles, the glass sheet 10 is processed into a shape having a curved surface.
The type of glass plate that is the material for the tempered glass and laminated glass is not particularly limited, and examples thereof include soda-lime glass, borosilicate glass, aluminosilicate glass, lithium silicate glass, quartz glass, sapphire glass, and non-alkali glass.
The tempered glass is obtained by subjecting the above-mentioned glass plate to tempering processing by a known method such as an ion exchange method, an air-cooling tempering method, etc. As the tempered glass, air-cooling tempered glass is preferable.
The thickness of the tempered glass is not particularly limited and is designed depending on the application. For applications such as windshields, side windows and rear windows of vehicles, the thickness is preferably 2 to 6 mm.
The thickness of the laminated glass is not particularly limited and is designed according to the application. For applications such as the windshield, side glass, and rear glass of a vehicle, the thickness is preferably 2 to 6 mm.

合わせガラスの中間膜は、樹脂膜からなる。その構成樹脂としては、複数のガラス板を良好に接着できる樹脂であれば特に制限されない。中間膜は例えば、ポリビニルブチラール(PVB)、エチレン酢酸ビニル共重合体(EVA)、シクロオレフィンポリマー(COP)、ポリウレタン(PU)、およびアイオノマー樹脂からなる群より選ばれる1種以上の樹脂を含むことが好ましい。
中間膜は必要に応じて、樹脂以外の1種以上の添加剤を含んでいてもよい。
中間膜の材料としては、上記例示の樹脂を含む樹脂フィルムが好ましい。
The interlayer film of the laminated glass is made of a resin film. There are no particular limitations on the constituent resin as long as it is a resin that can bond a plurality of glass sheets well. For example, the interlayer film preferably contains one or more resins selected from the group consisting of polyvinyl butyral (PVB), ethylene vinyl acetate copolymer (EVA), cycloolefin polymer (COP), polyurethane (PU), and ionomer resin.
The interlayer film may contain one or more additives other than the resin, if necessary.
As the material for the intermediate film, a resin film containing the above-exemplified resin is preferable.

強化ガラスおよび合わせガラスは、表面の少なくとも一部の領域に、撥水、低反射性、低放射性および着色等の機能を有する被膜を有していてもよい。
合わせガラスは、内部の少なくとも一部の領域に、低反射性、低放射性および着色等の機能を有する膜を有していてもよい。合わせガラスの中間膜の少なくとも一部の領域が、着色等の機能を有していてもよい。合わせガラスの中間膜は、単層膜でも積層膜でもよい。
The tempered glass and laminated glass may have a coating having functions such as water repellency, low reflectivity, low radiation, and coloring, on at least a partial region of the surface.
The laminated glass may have a film having functions such as low reflectivity, low emissivity, coloring, etc. in at least a part of the inner region. At least a part of the region of the interlayer of the laminated glass may have functions such as coloring, etc. The interlayer of the laminated glass may be a single layer film or a laminated film.

有機ガラスの材料としては、ポリカーボネート(PC)等のエンジニアリングプラスチック;ポリエチレンテレフタレート(PET):ポリメチルメタクリレート(PMMA)等のアクリル樹脂;ポリ塩化ビニル;ポリスチレン(PS);これらの組合せ等が挙げられ、ポリカーボネート(PC)等のエンジニアリングプラスチックが好ましい。 Materials for organic glass include engineering plastics such as polycarbonate (PC); acrylic resins such as polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA); polyvinyl chloride; polystyrene (PS); and combinations of these, with engineering plastics such as polycarbonate (PC) being preferred.

(紫外線赤外線遮蔽膜)
図3に示すように、紫外線赤外線遮蔽膜20は、シリカと、紫外線遮蔽剤と、金属化合物を含む赤外線遮蔽粒子20Pとを含む。紫外線赤外線遮蔽膜20は、紫外線遮蔽剤と赤外線遮蔽粒子20Pとを含むため、紫外線と赤外線を良好に遮蔽できる。
紫外線遮蔽剤としては公知のものを用いることができ、紫外線吸収タイプでも紫外線反射タイプでもよい。ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾジチオール系紫外線吸収剤、アゾメチン系紫外線吸収剤、インドール系紫外線吸収剤、およびトリアジン系紫外線吸収剤からなる群より選ばれる1種以上の紫外線吸収剤が好ましい。
(UV/IR shielding film)
3, the ultraviolet and infrared shielding film 20 contains silica, an ultraviolet shielding agent, and infrared shielding particles 20P containing a metal compound. Since the ultraviolet and infrared shielding film 20 contains an ultraviolet shielding agent and infrared shielding particles 20P, it can effectively shield ultraviolet and infrared rays.
The ultraviolet shielding agent may be a known agent, and may be either an ultraviolet absorbing type or an ultraviolet reflecting type. It is preferable to use one or more ultraviolet absorbers selected from the group consisting of benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzodithiol-based ultraviolet absorbers, azomethine-based ultraviolet absorbers, indole-based ultraviolet absorbers, and triazine-based ultraviolet absorbers.

赤外線遮蔽粒子20Pとしては公知のものを用いることができ、赤外線吸収タイプでも赤外線反射タイプでもよい。インジウム錫酸化物(ITO)、アンチモンドープ酸化錫(ATO)、セシウムドープ酸化タングステン(CWO(登録商標))、フッ素ドープ酸化錫(FTO)、六ホウ化ランタン(LaB)、および五酸化バナジウム(V)からなる群より選ばれる1種以上の金属化合物を含む金属化合物粒子が好ましい。 The infrared shielding particles 20P may be any known type, and may be either an infrared absorbing type or an infrared reflecting type. Metal compound particles containing one or more metal compounds selected from the group consisting of indium tin oxide (ITO), antimony doped tin oxide (ATO), cesium doped tungsten oxide (CWO (registered trademark)), fluorine doped tin oxide (FTO), lanthanum hexaboride (LaB 6 ), and vanadium pentoxide (V 2 O 5 ) are preferred.

赤外線遮蔽粒子20Pとしては、セシウムドープ酸化タングステン(CWO(登録商標))および/または六ホウ化ランタン(LaB)を含む金属化合物粒子が特に好ましい。この金属化合物粒子を用いる場合、800~1500nmの波長の光に対する紫外線赤外線遮蔽膜の吸光度を、紫外線赤外線遮蔽膜1cm当たりに含まれる赤外線遮蔽粒子の質量で割った値を比較的大きくでき、例えば1.5以上にできる。この場合、紫外線赤外線遮蔽膜中の赤外線遮蔽粒子20Pの含有量を減らせる。この場合、塗工膜の熱膨張性が高まり、塗工膜中の対流が生じやすくなり、赤外線遮蔽粒子20Pをより効果的に膜表面側に偏って分布させることができる。
紫外線赤外線遮蔽膜20は必要に応じて、上記以外の1種以上の任意成分を含むことができる。
As the infrared shielding particles 20P, metal compound particles containing cesium-doped tungsten oxide (CWO (registered trademark)) and/or lanthanum hexaboride (LaB 6 ) are particularly preferred. When these metal compound particles are used, the value obtained by dividing the absorbance of the ultraviolet and infrared shielding film for light with wavelengths of 800 to 1500 nm by the mass of the infrared shielding particles contained per cm 2 of the ultraviolet and infrared shielding film can be made relatively large, for example, 1.5 or more. In this case, the content of the infrared shielding particles 20P in the ultraviolet and infrared shielding film can be reduced. In this case, the thermal expansion of the coating film is increased, convection in the coating film is more likely to occur, and the infrared shielding particles 20P can be distributed more effectively biased toward the film surface side.
The ultraviolet and infrared shielding film 20 may contain one or more optional components other than those described above, as necessary.

紫外線赤外線遮蔽膜20は、硬化性シランと紫外線遮蔽剤と赤外線遮蔽粒子20Pとを含む液状組成物(LC)を用意し、この液状組成物(LC)をガラス板10の表面10S上に塗工し、加熱して塗工膜を硬化することで形成できる。 The ultraviolet/infrared shielding film 20 can be formed by preparing a liquid composition (LC) containing a curable silane, an ultraviolet shielding agent, and infrared shielding particles 20P, applying this liquid composition (LC) to the surface 10S of the glass plate 10, and heating to harden the coating film.

硬化性シランとは、1個以上の水酸基または1個以上の加水分解性基が結合したケイ素原子を1個以上有するケイ素化合物を言う。加水分解性基は、加水分解により水酸基となり得る基であり、アルコキシ基、塩素原子、アシル基およびアシルオキシ基等が挙げられる。硬化性シランとしては、2個以上のアルコキシ基が結合したケイ素原子を有するアルコキシシランが好ましく、アルコキシ基としては炭素原子数1~4のアルコキシ基が好ましい。 A curable silane is a silicon compound having one or more silicon atoms bonded to one or more hydroxyl groups or one or more hydrolyzable groups. The hydrolyzable group is a group that can become a hydroxyl group by hydrolysis, and examples of such groups include an alkoxy group, a chlorine atom, an acyl group, and an acyloxy group. As the curable silane, an alkoxysilane having a silicon atom bonded to two or more alkoxy groups is preferred, and as the alkoxy group, an alkoxy group having 1 to 4 carbon atoms is preferred.

硬化性シランとしては、テトラアルコキシシランおよびビスアルコキシシラン等が好ましい。テトラアルコキシシランとしては、テトラエトキシシラン(TEOS)およびテトラメトキシシラン等が挙げられる。ビスアルコキシシランとしては、下式(1)で表される化合物が挙げられる。
3-nSi-Q-SiR 3-m・・・(1)
上記式中、RおよびRはそれぞれ独立に、炭素原子数1~3の1価の炭化水素基である。XおよびXはそれぞれ独立に、アルコキシ基である。Qは、炭素原子数3~8の直鎖状または分岐鎖状の2価の炭化水素基である。nおよびmはそれぞれ独立に、0~2の整数である。
As the curable silane, tetraalkoxysilane and bisalkoxysilane are preferable. As the tetraalkoxysilane, tetraethoxysilane (TEOS) and tetramethoxysilane are preferable. As the bisalkoxysilane, a compound represented by the following formula (1) is preferable.
R 1 n X 1 3-n Si-Q-SiR 2 m X 2 3-m ... (1)
In the above formula, R1 and R2 are each independently a monovalent hydrocarbon group having 1 to 3 carbon atoms. X1 and X2 are each independently an alkoxy group. Q is a linear or branched divalent hydrocarbon group having 3 to 8 carbon atoms. n and m are each independently an integer of 0 to 2.

硬化性シランを含む液状組成物(LC)を加熱すると、硬化性シランの加水分解および重縮合を経て、シリカが生成される。ただし、硬化反応の終了後に、紫外線赤外線遮蔽膜20中に、硬化性シランの部分加水分解縮合物等の中間生成物が多少残っていてもよい。
本明細書で言う「シリカ」は、特に明記しない限り、硬化性シランの反応生成物であり、硬化性シランの部分加水分解縮合物を含んでいてもよい。
When the liquid composition (LC) containing the curable silane is heated, silica is generated through hydrolysis and polycondensation of the curable silane. However, after the curing reaction is completed, some intermediate products such as partial hydrolysis condensation products of the curable silane may remain in the ultraviolet and infrared shielding film 20.
Unless otherwise specified, "silica" as used herein is a reaction product of a curable silane and may include a partial hydrolysis condensate of the curable silane.

(赤外線遮蔽粒子と紫外線遮蔽剤の分布)
図3に示すように、本実施形態のガラス積層体1において、紫外線赤外線遮蔽膜20は、厚さ方向に見たとき、赤外線遮蔽粒子20Pの個数が分布を有する。
赤外線遮蔽粒子20Pに含まれる任意の1種以上の金属元素を選び、紫外線赤外線遮蔽膜20中に存在するすべての赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度を100atomic%とする。また、紫外線赤外線遮蔽膜20の厚さを100%とする。
例えば、赤外線遮蔽粒子20Pがインジウム錫酸化物(ITO)粒子である場合、1種以上の金属元素として、インジウム(In)および/または錫(Sn)を選べる。
紫外線赤外線遮蔽膜20は、厚さ方向に見たとき、赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度が分布を有する。
紫外線赤外線遮蔽膜20の深さ方向の赤外線遮蔽粒子20Pに含まれる1種以上の金属元素の濃度分布は、X線光電子分光法(XPS)により測定できる。
(Distribution of infrared shielding particles and ultraviolet shielding agents)
As shown in FIG. 3, in the glass laminate 1 of the present embodiment, the ultraviolet and infrared shielding film 20 has a distribution in the number of infrared shielding particles 20P when viewed in the thickness direction.
One or more kinds of metal elements are arbitrarily selected from the infrared shielding particles 20P, and the concentration of the selected one or more kinds of metal elements contained in all the infrared shielding particles 20P present in the ultraviolet and infrared shielding film 20 is set to 100 atomic %. Also, the thickness of the ultraviolet and infrared shielding film 20 is set to 100%.
For example, when the infrared shielding particles 20P are indium tin oxide (ITO) particles, indium (In) and/or tin (Sn) can be selected as the one or more metal elements.
When viewed in the thickness direction, the ultraviolet and infrared shielding film 20 has a distribution of concentrations of the selected one or more metal elements contained in the infrared shielding particles 20P.
The concentration distribution of one or more metal elements contained in the infrared shielding particles 20P in the depth direction of the ultraviolet and infrared shielding film 20 can be measured by X-ray photoelectron spectroscopy (XPS).

本実施形態のガラス積層体1では、平面視にて、紫外線赤外線遮蔽膜20の、ガラス板10の上端辺から5cm以内に位置する上端部の少なくとも一部の領域において、
紫外線赤外線遮蔽膜20を膜表面20Sから深さ方向に見たとき、
膜表面20Sと膜表面20Sから50%の深さとの間に存在する赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度が55atomic%以上であり、
膜表面20Sと膜表面20Sから10%の深さとの間に存在する赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度が12~20atomic%である。
In the glass laminate 1 of the present embodiment, in a plan view, in at least a part of an upper end portion of the ultraviolet and infrared ray shielding film 20 located within 5 cm from the upper end side of the glass plate 10,
When the ultraviolet and infrared shielding film 20 is viewed in the depth direction from the film surface 20S,
The concentration of one or more selected metal elements contained in the infrared shielding particles 20P present between the film surface 20S and a depth of 50% from the film surface 20S is 55 atomic % or more;
The concentration of the one or more selected metal elements contained in the infrared shielding particles 20P present between the film surface 20S and a depth of 10% from the film surface 20S is 12 to 20 atomic %.

膜表面20Sと膜表面20Sから50%の深さとの間に存在する赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度は、好ましくは58atomic%以上、より好ましくは60atomic%以上である。上限値は、好ましくは80atomic%、より好ましくは75atomic%である。
膜表面20Sと膜表面20Sから10%の深さとの間に存在する赤外線遮蔽粒子20Pに含まれる選択された1種以上の金属元素の濃度は、好ましくは15~20atomic%、より好ましくは16~18atomic%である。
本明細書において、特に明記しない限り、2種以上の金属元素の濃度は、2種以上の金属元素の合計濃度である。
The concentration of the one or more selected metal elements contained in the infrared shielding particles 20P present between the film surface 20S and a depth of 50% from the film surface 20S is preferably 58 atomic% or more, more preferably 60 atomic% or more. The upper limit is preferably 80 atomic%, more preferably 75 atomic%.
The concentration of the one or more selected metal elements contained in the infrared shielding particles 20P present between the film surface 20S and a depth of 10% from the film surface 20S is preferably 15 to 20 atomic %, more preferably 16 to 18 atomic %.
In this specification, unless otherwise specified, the concentration of two or more metal elements refers to the total concentration of the two or more metal elements.

図中、符号0.1tは膜表面20Sから10%の深さ、符号0.5tは膜表面20Sから50%の深さを示す。符号20Tは膜表面20Sと膜表面20Sから50%の深さとの間の範囲(図示上半分)、符号20Bは膜表面20Sから50%の深さとガラス板10の表面10Sとの間の範囲(図示下半分)を示す。 In the figure, the symbol 0.1t indicates a depth of 10% from the film surface 20S, and the symbol 0.5t indicates a depth of 50% from the film surface 20S. The symbol 20T indicates the range between the film surface 20S and a depth of 50% from the film surface 20S (upper half of the figure), and the symbol 20B indicates the range between a depth of 50% from the film surface 20S and the surface 10S of the glass plate 10 (lower half of the figure).

本実施形態のガラス積層体1では、平面視にて、少なくとも、紫外線赤外線遮蔽膜20の、ガラス板10の上端辺から5cm以内に位置する上端部の少なくとも一部の領域において、厚さ方向に見たとき、図3に示すように、赤外線遮蔽粒子20Pが、膜表面20S側に偏って分布している。
なお、図3における粒子分布はイメージ図である。粒子形状および粒子サイズは任意であり、均一でも不均一でもよい。粒子の個数分布は、図示するものに制限されない。
In the glass laminate 1 of the present embodiment, in a plan view, at least in a part of an upper end portion of the ultraviolet and infrared shielding film 20 that is located within 5 cm from the upper edge of the glass plate 10, the infrared shielding particles 20P are distributed biased toward the film surface 20S side when viewed in the thickness direction, as shown in FIG. 3 .
The particle distribution in Fig. 3 is merely an image. The particle shape and size may be arbitrary and may be uniform or non-uniform. The particle number distribution is not limited to that shown in the figure.

図4は、厚さ方向に見て、赤外線遮蔽粒子20Pが略均一に分布した比較用のガラス積層体101(左図)と赤外線遮蔽粒子20Pが膜表面20S側に偏って分布した本実施形態のガラス積層体1(右図)との対比を示す部分拡大模式断面図である。図中、白太矢印の太さは紫外線強度を模式的に示し、太い方が紫外線強度が高いことを示す。 Figure 4 is a partially enlarged schematic cross-sectional view showing a comparison between a comparative glass laminate 101 (left figure) in which the infrared shielding particles 20P are distributed approximately uniformly in the thickness direction, and a glass laminate 1 of this embodiment (right figure) in which the infrared shielding particles 20P are distributed unevenly toward the film surface 20S side. In the figure, the thickness of the white thick arrows shows the UV intensity, with the thicker arrows showing higher UV intensity.

紫外線UVを含む太陽光が、ガラス板10の外面からガラス積層体101、1に入射する。ガラス板10に入射する時点の紫外線強度を「高強度」とする。ガラス板10に入射した紫外線UVはガラス板10を通る間に強度が低下し、紫外線赤外線遮蔽膜20に入射する時点の紫外線強度は「中強度」となる。膜表面20Sから50%の深さとガラス板10の表面10Sとの間の範囲20B(図示下半分)における紫外線強度は「中強度」となる。紫外線UVは、紫外線赤外線遮蔽膜20を通る間に、紫外線赤外線遮蔽膜20に含まれる紫外線遮蔽剤によって遮蔽(具体的には吸収または反射)される。膜表面20Sと膜表面20Sから50%の深さとの間の範囲20Tにおける紫外線強度は「低強度」となる。ここで言う、「高強度」、「中強度」、「低強度」は、相対的な強度の関係を表す。 Sunlight containing ultraviolet rays UV enters the glass laminate 101, 1 from the outer surface of the glass plate 10. The ultraviolet ray intensity at the time of entering the glass plate 10 is "high intensity". The ultraviolet ray UV that entered the glass plate 10 decreases in intensity while passing through the glass plate 10, and the ultraviolet ray intensity at the time of entering the ultraviolet and infrared ray shielding film 20 is "medium intensity". The ultraviolet ray intensity in the range 20B (lower half of the figure) between the 50% depth from the film surface 20S and the surface 10S of the glass plate 10 is "medium intensity". The ultraviolet ray UV is shielded (specifically absorbed or reflected) by the ultraviolet ray shielding agent contained in the ultraviolet and infrared ray shielding film 20 while passing through the ultraviolet and infrared ray shielding film 20. The ultraviolet ray intensity in the range 20T between the film surface 20S and the 50% depth from the film surface 20S is "low intensity". Here, "high intensity", "medium intensity", and "low intensity" represent the relative intensity relationship.

赤外線遮蔽粒子20Pが略均一に分布した比較用のガラス積層体101では、膜表面20Sから50%の深さとガラス板10の表面10Sとの間の範囲20B(図示下半分)に、略半数の赤外線遮蔽粒子20Pが存在する。この略半数の赤外線遮蔽粒子20Pが中強度の紫外線UVの照射を受ける。
赤外線遮蔽粒子20Pが膜表面20S側に偏って分布した本実施形態のガラス積層体1では、膜表面20Sから50%の深さとガラス板10の表面10Sとの間の範囲20B(図示下半分)に存在する赤外線遮蔽粒子20Pの数が相対的に少なく、中強度の紫外線UVの照射を受ける赤外線遮蔽粒子20Pの数が相対的に少ない。
In the comparative glass laminate 101 in which the infrared shielding particles 20P are distributed approximately uniformly, approximately half of the infrared shielding particles 20P are present in a range 20B (the lower half in the figure) between a depth of 50% from the film surface 20S and the surface 10S of the glass plate 10. Approximately half of the infrared shielding particles 20P are irradiated with medium-intensity ultraviolet rays UV.
In the glass laminate 1 of this embodiment, in which the infrared shielding particles 20P are distributed unevenly toward the film surface 20S, the number of infrared shielding particles 20P present in the range 20B (the lower half of the illustration) between a depth of 50% from the film surface 20S and the surface 10S of the glass plate 10 is relatively small, and the number of infrared shielding particles 20P exposed to medium-intensity ultraviolet rays UV is relatively small.

比較的強い強度(中強度から高強度)の紫外線照射を長時間受けた赤外線遮蔽粒子20Pは劣化する恐れがあり、劣化した赤外線遮蔽粒子20Pの数が多くなると、紫外線赤外線遮蔽膜20の可視光線透過率が低下する恐れがある。
赤外線遮蔽粒子20Pが膜表面20S側に偏って分布した本実施形態のガラス積層体1では、比較的強い強度(中強度から高強度)の紫外線UVの照射を受ける赤外線遮蔽粒子20Pの数が相対的に少ないため、紫外線照射による赤外線遮蔽粒子20Pの劣化とこれによる紫外線赤外線遮蔽膜20の可視光線透過率の低下を効果的に抑制できる。本実施形態によれば、耐候性・耐光性が向上され、使用時の可視光線透過率の低下が抑制されたガラス積層体1を提供できる。
Infrared shielding particles 20P that have been exposed to relatively strong (medium to high) ultraviolet light for a long period of time may deteriorate, and if the number of deteriorated infrared shielding particles 20P increases, the visible light transmittance of the ultraviolet/infrared shielding film 20 may decrease.
In the glass laminate 1 of the present embodiment in which the infrared shielding particles 20P are distributed unevenly toward the film surface 20S side, the number of the infrared shielding particles 20P exposed to relatively strong (medium to high) intensity ultraviolet rays UV is relatively small, which effectively suppresses deterioration of the infrared shielding particles 20P due to ultraviolet radiation and the resulting decrease in the visible light transmittance of the ultraviolet/infrared shielding film 20. According to the present embodiment, it is possible to provide a glass laminate 1 in which the weather resistance and light resistance are improved and the decrease in visible light transmittance during use is suppressed.

自動車等の車両用のサイドガラスの用途など、ガラス積層体が立てて使用されるものである場合、上辺およびその近傍部分に対して太陽光が相対的に多く照射する。
図1に示す模式平面図においては、符号UPで示す領域がガラス板10の上辺11から5cm以内に位置する上端部である。
平面視にて、ガラス板10の上辺11から5cm以内に位置する上端部UPの少なくとも一部の領域において、厚さ方向に上記のように赤外線遮蔽粒子20Pが分布することで、赤外線遮蔽粒子20Pの劣化およびこれによる紫外線赤外線遮蔽膜20の可視光線透過率の低下を効果的に抑制できる。
平面視にて、上端部UPにおいて、赤外線遮蔽粒子20Pの厚さ方向の濃度分布が上記規定を充足する領域の面積は大きい方が好ましい。
平面視にて、上端部UPの略全域において、赤外線遮蔽粒子20Pの厚さ方向の濃度分布が上記規定を充足することが好ましい。
When the glass laminate is used upright, such as in the application of side glass for vehicles such as automobiles, a relatively large amount of sunlight is irradiated onto the upper side and the area adjacent thereto.
In the schematic plan view shown in FIG. 1, the area indicated by the symbol UP is the upper end portion located within 5 cm from the upper edge 11 of the glass plate 10.
In a plan view, in at least a portion of the upper end portion UP located within 5 cm from the upper edge 11 of the glass plate 10, the infrared shielding particles 20P are distributed in the thickness direction as described above, thereby effectively suppressing deterioration of the infrared shielding particles 20P and the resulting decrease in the visible light transmittance of the ultraviolet and infrared shielding film 20.
In plan view, at the upper end UP, it is preferable that the area of the region where the concentration distribution in the thickness direction of the infrared shielding particles 20P satisfies the above-mentioned regulation is large.
In plan view, it is preferable that the concentration distribution of the infrared shielding particles 20P in the thickness direction satisfies the above-mentioned regulation over substantially the entire area of the upper end portion UP.

紫外線赤外線遮蔽膜20中、紫外線遮蔽剤は、厚さ方向に見て、略均一に分布していることが好ましい。紫外線遮蔽剤は、厚さ方向に見て、ガラス板10側に偏って分布していてもよい。
膜表面20Sから50%の深さとガラス板10の表面10Sとの間の範囲20B(図示下半分)に充分な量の紫外線遮蔽剤が存在していれば、この範囲に存在する赤外線遮蔽粒子20Pの劣化を効果的に抑制できる。紫外線遮蔽剤が、厚さ方向に見て、ガラス板10側に偏って分布している場合、この作用効果がより効果的に得られる。
In the ultraviolet and infrared shielding film 20, the ultraviolet shielding agent is preferably distributed approximately uniformly in the thickness direction. The ultraviolet shielding agent may be distributed biased toward the glass plate 10 in the thickness direction.
If a sufficient amount of the ultraviolet shielding agent is present in the range 20B (lower half in the figure) between a 50% depth from the film surface 20S and the surface 10S of the glass plate 10, deterioration of the infrared shielding particles 20P present in this range can be effectively suppressed. This effect can be obtained more effectively when the ultraviolet shielding agent is distributed biased toward the glass plate 10 side in the thickness direction.

[ガラス積層体の製造方法]
本発明のガラス積層体の製造方法は、
硬化性シランと紫外線遮蔽剤と赤外線遮蔽粒子とを含む液状組成物を用意する工程(S1)と、
ガラス板の温度をT[℃]とし、液状組成物の温度をT[℃]としたとき、T>Tとなるよう、ガラス板および/または液状組成物の温度を調整する工程(S2)と、 ガラス板の表面上に、ガラス板より低い温度の液状組成物を塗工し塗工膜を形成して、塗工膜付きガラス板を得る工程(S3)と、
塗工膜側が下側になるように、塗工膜付きガラス板を略水平に配置する工程(S4)と、
塗工膜付きガラス板を加熱し、塗工膜を硬化する工程(S5)とを有する。
本明細書において、「略水平」とは、地面に対して完全な水平方向±10°の範囲を意味する。
[Method of manufacturing glass laminate]
The method for producing a glass laminate of the present invention comprises the steps of:
A step (S1) of preparing a liquid composition containing a curable silane, an ultraviolet ray shielding agent, and infrared ray shielding particles;
a step (S2) of adjusting the temperature of the glass plate and/or the liquid composition so that T S > T L , where T S is the temperature of the glass plate [°C] and T L is the temperature of the liquid composition [°C]; and a step (S3) of applying the liquid composition, which has a temperature lower than that of the glass plate, onto the surface of the glass plate to form a coating film, thereby obtaining a glass plate with a coating film.
A step (S4) of disposing the glass sheet with the coating film substantially horizontally so that the coating film side faces downward;
and a step (S5) of heating the glass sheet with the coating film to harden the coating film.
In this specification, "substantially horizontal" means within a range of ±10° in the completely horizontal direction with respect to the ground.

図面を参照して、各工程について、説明する。図5A~図5Cは、図3に対応した部分模式断面図である。
(工程(S1))
工程(S1)では、硬化性シランと紫外線遮蔽剤と赤外線遮蔽粒子20Pとを含む液状組成物(LC)を用意する。液状組成物(LC)は必要に応じて、樹脂、表面調整剤、キレート剤、硬化触媒、酸および溶剤等の上記以外の1種以上の任意成分を含むことができる。
Each step will be described with reference to the drawings. Figures 5A to 5C are partial schematic cross-sectional views corresponding to Figure 3.
(Step (S1))
In step (S1), a liquid composition (LC) containing a curable silane, an ultraviolet shielding agent, and infrared shielding particles 20 P is prepared. The liquid composition (LC) may contain one or more optional components other than those described above, such as a resin, a surface conditioner, a chelating agent, a curing catalyst, an acid, and a solvent, as necessary.

(工程(S2))
工程(S2)では、ガラス板10の温度をT[℃]とし、液状組成物(LC)の温度をT[℃]としたとき、T>Tとなるよう、ガラス板10および/または液状組成物(LC)の温度を調整する。好ましくはT≧T+5、より好ましくはT≧T+10である。
従来の方法では、ガラス板10と液状組成物(LC)の温度の調整は特に行っておらず、いずれも環境温度であり、略同一である。
ガラス板10の温度Tおよび液状組成物(LC)の温度Tは上記規定を充足すれば、特に制限されない。ガラス板10の温度Tおよび液状組成物(LC)の温度Tは、例えば10~30℃の範囲内、好ましくは15~25℃の範囲内で、上記規定を充足するように、それぞれの温度を設定できる。ガラス板10の温度Tおよび液状組成物(LC)の温度Tは、恒温槽等を用いて調整できる。
(Step (S2))
In step (S2), when the temperature of the glass plate 10 is T S [° C.] and the temperature of the liquid composition (LC) is T L [° C.], the temperatures of the glass plate 10 and/or the liquid composition (LC) are adjusted so that T S >T L. Preferably, T S ≧T L +5, more preferably T S ≧T L +10.
In the conventional method, the temperatures of the glass plate 10 and the liquid composition (LC) are not particularly adjusted, and both are at the environmental temperature, which is approximately the same.
The temperature T S of the glass plate 10 and the temperature T L of the liquid composition (LC) are not particularly limited as long as they satisfy the above-mentioned requirements. The temperature T S of the glass plate 10 and the temperature T L of the liquid composition (LC) can be set, for example, within a range of 10 to 30° C., preferably within a range of 15 to 25° C., so as to satisfy the above-mentioned requirements. The temperature T S of the glass plate 10 and the temperature T L of the liquid composition (LC) can be adjusted using a thermostatic bath or the like.

(工程(S3))
工程(S3)では、図5Aに示すように、ガラス板10の表面10S上に、ガラス板10より低い温度の液状組成物(LC)を塗工し塗工膜20Cを形成して、塗工膜付きガラス板1Cを得る。
車両等の用途では、ガラス板10は曲面を有する形状に加工されており、その内面側(通常凹面側)に、塗工膜20Cが形成される。
図中、符号0.1tcは塗工膜20Cの膜表面20CSから10%の深さ、符号0.5tcは塗工膜20Cの膜表面20CSから50%の深さを示す。符号20CTは膜表面20CSと膜表面20CSから50%の深さとの間の範囲、符号20CBは膜表面20CSから50%の深さとガラス板10の表面10Sとの間の範囲(図示下半分)を示す。
塗工方法としては特に制限されず、フローコート法、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法およびダイコート法等が挙げられる。
工程(S3)の環境温度は特に制限されず、通常の室温、例えば10~30℃でよい。
(Step (S3))
In step (S3), as shown in FIG. 5A, a liquid composition (LC) at a temperature lower than that of the glass plate 10 is applied onto the surface 10S of the glass plate 10 to form a coating film 20C, thereby obtaining a glass plate 1C with a coating film.
In applications such as vehicles, the glass plate 10 is processed into a shape having a curved surface, and the coating film 20C is formed on the inner surface side (usually the concave surface side).
In the figure, the symbol 0.1tc indicates a 10% depth from the film surface 20CS of the coating film 20C, the symbol 0.5tc indicates a 50% depth from the film surface 20CS of the coating film 20C, the symbol 20CT indicates a range between the film surface 20CS and a 50% depth from the film surface 20CS, and the symbol 20CB indicates a range between a 50% depth from the film surface 20CS and the surface 10S of the glass plate 10 (the lower half of the figure).
The coating method is not particularly limited, and examples thereof include flow coating, dip coating, spin coating, spray coating, flexographic printing, screen printing, gravure printing, roll coating, meniscus coating, and die coating.
The environmental temperature in step (S3) is not particularly limited, and may be normal room temperature, for example, 10 to 30°C.

(工程(S4))
工程(S4)では、図5Bに示すように、塗工膜20C側が下側になるように、塗工膜付きガラス板1Cを略水平に配置(平置きとも言う。)する。例えば、吸着チャック等の保持部材を用いてガラス板10を保持し、塗工膜20Cの膜表面20CSが他の部材に接触しないように、塗工膜付きガラス板1Cを略水平に配置する。
工程(S4)の環境温度は特に制限されず、通常の室温、例えば10~30℃でよい。
(Step (S4))
In step (S4), as shown in Fig. 5B, the glass plate 1C with the coating film is arranged substantially horizontally (also referred to as laid flat) with the coating film 20C side facing downward. For example, the glass plate 10 is held using a holding member such as a suction chuck, and the glass plate 1C with the coating film is arranged substantially horizontally so that the film surface 20CS of the coating film 20C does not come into contact with other members.
The environmental temperature in step (S4) is not particularly limited, and may be normal room temperature, for example, 10 to 30°C.

この工程の開始時点では、図5Bに示すように、塗工膜20C中において、赤外線遮蔽粒子20Pは略均一な濃度で分布している。紫外線遮蔽剤も、略均一な濃度で分布している。塗工膜20C側を下側にした状態で平置きすると、塗工膜20C中において、赤外線遮蔽粒子20Pは重力と塗工膜中の対流によって全体的に沈降する。赤外線遮蔽粒子20Pの沈降を好適化することで、図5Cに示すように、赤外線遮蔽粒子20Pを膜表面20CS側に偏らせることができる。 At the start of this process, as shown in FIG. 5B, the infrared shielding particles 20P are distributed in a substantially uniform concentration in the coating film 20C. The ultraviolet shielding agent is also distributed in a substantially uniform concentration. When the coating film 20C is laid flat with the coating film 20C side facing down, the infrared shielding particles 20P settle overall in the coating film 20C due to gravity and convection in the coating film. By optimizing the settling of the infrared shielding particles 20P, the infrared shielding particles 20P can be biased toward the film surface 20CS as shown in FIG. 5C.

一般的に流体中の粒子の沈降速度は、ストークスの式(下式)で表される。

Figure 0007484786000001
上記式中の各符号は、以下のパラメータを示す。
:沈降速度[cm/s]、
:粒子径[cm]、
ρ:粒子の密度[g/cm]、
ρ:流体の密度[g/cm]、
g:重力加速度[cm/s]、
η:流体の粘度[g/(cm・s)]。 In general, the settling velocity of particles in a fluid is expressed by Stokes' law (below).
Figure 0007484786000001
The symbols in the above formula represent the following parameters.
v s : Sedimentation velocity [cm / s],
D p : particle diameter [cm],
ρ p : particle density [g/cm 3 ],
ρ f : density of the fluid [g/cm 3 ],
g: gravitational acceleration [cm/s 2 ]
η: Viscosity of fluid [g/(cm s)].

液状組成物(LC)は、組成が同じ条件であれば、液温が高いほど粘度は低下し、赤外線遮蔽粒子20Pの沈降速度が速くなる傾向がある。しかしながら、液温が高くなりすぎると、液の安定性が低下する恐れがある。
工程(S2)において、ガラス板10の温度T[℃]を、液状組成物(LC)の温度T[℃]よりも高く調整しておくことで、塗工膜20Cにおいてガラス板10に近い部分(この部分は、使用時に赤外線遮蔽粒子20Pの劣化が起こりやすい部分である。)の温度を相対的に高め、この部分の粘度を効果的に下げ、この部分の赤外線遮蔽粒子20Pの沈降速度を効果的に高められる。加えて、塗工膜20C内の温度勾配により高温側から低温側に対流が起こるため、赤外線遮蔽粒子20Pが塗工膜20Cの表面側に移動しやすくなる。塗工膜20Cの膜表面20CS側に移動した赤外線遮蔽粒子20Pは比重が比較的重いため、ガラス板10との界面側に浮き上がってきにくい。これら作用効果が相俟って、塗工時点の液状組成物(LC)の温度が高くなくても、図5Cに示すように、赤外線遮蔽粒子20Pを膜表面20CS側に偏在させることができる。
Under the same compositional conditions, the higher the liquid temperature of the liquid composition (LC), the lower the viscosity and the faster the settling rate of the infrared shielding particles 20P. However, if the liquid temperature becomes too high, there is a risk that the stability of the liquid will decrease.
In step (S2), by adjusting the temperature T S [°C] of the glass plate 10 to be higher than the temperature T L [°C] of the liquid composition (LC), the temperature of the portion of the coating film 20C close to the glass plate 10 (this portion is a portion where the infrared shielding particles 20P are likely to deteriorate during use) is relatively increased, the viscosity of this portion is effectively reduced, and the settling speed of the infrared shielding particles 20P in this portion is effectively increased. In addition, since convection occurs from the high temperature side to the low temperature side due to the temperature gradient in the coating film 20C, the infrared shielding particles 20P are more likely to move to the surface side of the coating film 20C. The infrared shielding particles 20P that have moved to the film surface 20CS side of the coating film 20C have a relatively high specific gravity, so they are less likely to float up to the interface side with the glass plate 10. Due to the combination of these effects, even if the temperature of the liquid composition (LC) at the time of coating is not high, the infrared shielding particles 20P can be unevenly distributed on the film surface 20CS side as shown in FIG. 5C.

工程(S4)において、塗工膜20Cのガラス板10との界面近傍部分における、平均一次粒子径の赤外線遮蔽粒子20Pの沈降深さは特に制限されず、好ましくは0.1~0.4μm、より好ましくは0.1~0.3μm、特に好ましくは0.1~0.2μmである。
工程(S4)において、塗工膜20Cのガラス板10との界面近傍部分における、平均一次粒子径の赤外線遮蔽粒子20Pの沈降速度は特に制限されず、好ましくは1~50nm/s、より好ましくは1~20nm/s、特に好ましくは5~10nm/sである。
沈降深さおよび沈降速度は、上記ストークスの式に基づいて、算出できる。
In step (S4), the sedimentation depth of the infrared shielding particles 20P having an average primary particle diameter in the portion of the coating film 20C in the vicinity of the interface with the glass plate 10 is not particularly limited, and is preferably 0.1 to 0.4 μm, more preferably 0.1 to 0.3 μm, and particularly preferably 0.1 to 0.2 μm.
In step (S4), the settling velocity of the infrared shielding particles 20P having an average primary particle diameter in the portion of the coating film 20C in the vicinity of the interface with the glass plate 10 is not particularly limited and is preferably 1 to 50 nm/s, more preferably 1 to 20 nm/s, and particularly preferably 5 to 10 nm/s.
The settling depth and settling velocity can be calculated based on the Stokes equation above.

例えば、赤外線遮蔽粒子20Pの密度、赤外線遮蔽粒子20Pの平均一次粒子径、液状組成物(LC)中の赤外線遮蔽粒子20Pの濃度、液状組成物(LC)の塗工前の粘度、ガラス板10と液状組成物(LC)との温度関係、および平置き時間等を調整することによって、塗工膜20Cのガラス板10との界面近傍部分における、平均一次粒子径の赤外線遮蔽粒子20Pの沈降深さと沈降速度を上記範囲に調整できる。
本明細書において、特に明記しない限り、「塗工膜のガラス板との界面近傍部分」とは、ガラス板との界面とガラス板との界面から20%の深さとの範囲である。
For example, by adjusting the density of the infrared shielding particles 20P, the average primary particle diameter of the infrared shielding particles 20P, the concentration of the infrared shielding particles 20P in the liquid composition (LC), the viscosity of the liquid composition (LC) before coating, the temperature relationship between the glass plate 10 and the liquid composition (LC), and the flat laying time, the settling depth and settling velocity of the infrared shielding particles 20P having the average primary particle diameter in the portion of the coating film 20C near the interface with the glass plate 10 can be adjusted to within the above range.
In this specification, unless otherwise specified, the "portion of the coating film in the vicinity of the interface with the glass sheet" refers to the range from the interface with the glass sheet to a depth of 20% from the interface with the glass sheet.

赤外線遮蔽粒子20Pの密度は特に制限されない。密度が大きい程、沈降速度が速くなる傾向がある。沈降速度の好適化の観点から、好ましくは5g/cm以上、より好ましくは5~10g/cmである。
赤外線遮蔽粒子20Pの平均一次粒子径は特に制限されない。平均一次粒子径が大きい程、沈降速度が速くなる傾向がある。ただし、平均一次粒子径が過大では、紫外線赤外線遮蔽膜20にヘイズが生じる恐れがある。沈降速度の好適化および紫外線赤外線遮蔽膜20の透明性の観点から、好ましくは10~150nm、より好ましくは10~100nm、特に好ましくは50~100nmである。
赤外線遮蔽粒子20Pは、充分な密度とサイズを有することで、塗工膜20C中で良好に沈降でき、透明性が良好な紫外線赤外線遮蔽膜20が得られる。
本明細書において、「赤外線遮蔽粒子の平均一次粒子径」は、後記[実施例]の項に記載の方法にて測定するものとする。
The density of the infrared shielding particles 20P is not particularly limited. The higher the density, the faster the settling speed tends to be. From the viewpoint of optimizing the settling speed, the density is preferably 5 g/ cm3 or more, more preferably 5 to 10 g/ cm3 .
The average primary particle size of the infrared shielding particles 20P is not particularly limited. The larger the average primary particle size, the faster the sedimentation rate tends to be. However, if the average primary particle size is too large, haze may occur in the ultraviolet and infrared shielding film 20. From the viewpoint of optimizing the sedimentation rate and the transparency of the ultraviolet and infrared shielding film 20, the average primary particle size is preferably 10 to 150 nm, more preferably 10 to 100 nm, and particularly preferably 50 to 100 nm.
The infrared shielding particles 20P have sufficient density and size, so that they can settle well in the coating film 20C, and an ultraviolet and infrared shielding film 20 having good transparency can be obtained.
In this specification, the "average primary particle size of the infrared shielding particles" is measured by the method described in the section [Examples] below.

塗工膜20C側が下側になるように、塗工膜付きガラス板1Cを略水平に配置する時間(平置き時間)は特に制限されない。長い程、赤外線遮蔽粒子20Pの沈降深さを大きくできる。沈降深さの好適化および生産性の観点から、好ましくは10~60秒間、より好ましくは10~50秒間、特に好ましくは20~40秒間である。 There is no particular limit to the time (flat lay time) for which the glass plate 1C with the coating film is placed substantially horizontally with the coating film 20C side facing downward. The longer the time, the greater the settling depth of the infrared shielding particles 20P can be. From the viewpoint of optimizing the settling depth and productivity, the time is preferably 10 to 60 seconds, more preferably 10 to 50 seconds, and particularly preferably 20 to 40 seconds.

紫外線遮蔽剤の密度は特に制限されず、好ましくは2.5g/cm以下である。紫外線遮蔽剤の密度が赤外線遮蔽粒子20Pの密度より小さく、好ましくは2.5g/cm以下である場合、紫外線遮蔽剤の沈降を効果的に抑制でき、紫外線遮蔽剤については塗工膜20C中に略均一な濃度で分布した状態を維持できる。
紫外線遮蔽剤は、密度が充分に小さければ、少なくとも一部が赤外線遮蔽粒子20Pの沈降によって浮上し、ガラス板10側に移行する場合がある。この場合、紫外線遮蔽剤については、ガラス板10側に偏って分布させることができる。
紫外線遮蔽剤については、塗工膜20C中に略均一な濃度で分布した状態、または、ガラス板10側に偏って分布した状態にすることで、得られるガラス積層体1において、ガラス板10に近い部分で紫外線を効果的に遮蔽し、紫外線照射による赤外線遮蔽粒子20Pの劣化を効果的に抑制できる。
The density of the ultraviolet shielding agent is not particularly limited, and is preferably 2.5 g/cm 3 or less. When the density of the ultraviolet shielding agent is smaller than the density of the infrared shielding particles 20P, and is preferably 2.5 g/cm 3 or less, the sedimentation of the ultraviolet shielding agent can be effectively suppressed, and the ultraviolet shielding agent can be maintained in a state of being distributed at a substantially uniform concentration in the coating film 20C.
If the density of the ultraviolet shielding agent is sufficiently low, at least a part of the ultraviolet shielding agent may float due to the settling of the infrared shielding particles 20P and migrate to the glass plate 10. In this case, the ultraviolet shielding agent can be distributed unevenly toward the glass plate 10.
By distributing the ultraviolet ray blocking agent in a substantially uniform concentration in the coating film 20C or distributing the agent biased toward the glass plate 10, the obtained glass laminate 1 can effectively block ultraviolet rays in the portion close to the glass plate 10 and effectively suppress deterioration of the infrared ray blocking particles 20P due to ultraviolet ray exposure.

(乾燥工程)
工程(S4)と工程(S5)との間に、必要に応じて、硬化反応が進まない条件で、塗工膜20Cを乾燥する乾燥工程を実施してもよい。乾燥方法として特に制限されず、40~60℃程度の加熱乾燥、減圧乾燥および40~60℃程度の減圧加熱乾燥が挙げられる。
(Drying process)
Between steps (S4) and (S5), a drying step may be performed as necessary to dry the coating film 20C under conditions in which the curing reaction does not proceed. The drying method is not particularly limited, and examples thereof include heat drying at about 40 to 60°C, drying under reduced pressure, and heat drying under reduced pressure at about 40 to 60°C.

(工程(S5))
工程(S5)では、塗工膜付きガラス板1Cを加熱し、塗工膜20Cを硬化する。加熱は、硬化性シランが硬化してシリカとなる温度条件で行う。工程(S5)(加熱硬化工程)は、本焼成のみの1段階または仮焼成と本焼成の2段階で実施できる。
本焼成温度は特に制限されない。ガラス板10が強化ガラスである場合、好ましくは80~230℃、より好ましくは100~230℃、特に好ましくは150~230℃、最も好ましくは180~210℃である。ガラス板10が合わせガラスである場合、好ましくは80~110℃、より好ましくは90~110℃である。加熱時間は、液状組成物(LC)の組成および加熱温度等に応じて適宜設計できる。
(Step (S5))
In step (S5), the glass sheet 1C with the coating film is heated to cure the coating film 20C. The heating is performed under temperature conditions where the curable silane cures to silica. Step (S5) (heat curing step) can be performed in one step of baking only or in two steps of pre-baking and baking.
The firing temperature is not particularly limited. When the glass plate 10 is tempered glass, the firing temperature is preferably 80 to 230° C., more preferably 100 to 230° C., particularly preferably 150 to 230° C., and most preferably 180 to 210° C. When the glass plate 10 is laminated glass, the firing temperature is preferably 80 to 110° C., more preferably 90 to 110° C. The heating time can be appropriately designed depending on the composition of the liquid composition (LC), the heating temperature, and the like.

乾燥工程および工程(S5)における塗工膜付きガラス板1Cの配置の向きは、特に制限されない。
乾燥工程および工程(S5)では、工程(S4)と同様、塗工膜20C側が下側になるように、塗工膜付きガラス板1Cを略水平に配置してもよい。この場合、これらの工程でも赤外線遮蔽粒子20Pが若干沈降する可能性があるが、工程開始後の早い段階で塗工膜20Cが固体またはそれに近い状態になるため、沈降深さは短く、無視できる程度と考えてよい。
乾燥工程および工程(S5)では、塗工膜20C側が上側になるように、塗工膜付きガラス板1Cを略水平に配置してもよい。
以上のようにして、図3に示したようなガラス積層体1が得られる。
The orientation of the coated glass sheet 1C in the drying step and step (S5) is not particularly limited.
In the drying step and step (S5), the glass plate 1C with the coating film may be arranged substantially horizontally so that the coating film 20C is on the bottom side, as in step (S4). In this case, the infrared shielding particles 20P may settle slightly in these steps as well, but since the coating film 20C becomes solid or nearly so at an early stage after the start of the steps, the settling depth is short and can be considered to be negligible.
In the drying step and step (S5), the glass sheet 1C with the coating film may be arranged substantially horizontally so that the coating film 20C side faces upward.
In this manner, the glass laminate 1 as shown in FIG. 3 is obtained.

以上説明したように、本実施形態によれば、紫外線および赤外線を良好に遮蔽でき、耐候性・耐光性が向上され、使用時の可視光線透過率の低下を抑制できるガラス積層体1を提供できる。 As described above, this embodiment can provide a glass laminate 1 that can effectively block ultraviolet and infrared rays, has improved weather resistance and light resistance, and can suppress a decrease in visible light transmittance during use.

以下に、実施例に基づいて本発明について説明するが、本発明は、これらに限定されるものではない。例1、2が実施例、例11~13が比較例である。 The present invention will be described below based on examples, but the present invention is not limited to these. Examples 1 and 2 are examples, and Examples 11 to 13 are comparative examples.

[評価項目と評価方法]
評価項目と評価方法は、以下の通りである。紫外線赤外線遮蔽膜およびガラス積層体の評価は、ガラス積層体の、ガラス板の上端辺から5cm以内に位置する上端部について、実施した。
[Evaluation items and evaluation methods]
The evaluation items and evaluation methods are as follows: The ultraviolet and infrared shielding film and the glass laminate were evaluated for the upper end portion of the glass laminate located within 5 cm from the upper end side of the glass plate.

(液状組成物(LC)の粘度)
粘度計(東機産業社製「RE85L」)を用いて、液状組成物(LC)の粘度を測定した。25℃または15℃での粘度を測定した。
(Viscosity of Liquid Composition (LC))
The viscosity of the liquid composition (LC) was measured using a viscometer ("RE85L" manufactured by Toki Sangyo Co., Ltd.) at 25°C or 15°C.

(紫外線赤外線遮蔽膜の膜厚)
触針式表面形状測定器(ULVAC社製「Dektak150」)を用いて、紫外線赤外線遮蔽膜の膜厚D[μm]を測定した。
(Thickness of ultraviolet and infrared shielding film)
The thickness D [μm] of the ultraviolet and infrared shielding film was measured using a stylus surface profiler (Dektak150 manufactured by ULVAC).

(赤外線遮蔽粒子の平均一次粒子径)
走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ社製「S-4800」)を用いて、ガラス積層体の断面観察を行った。無作為に選んだ5箇所の断面SEM像(倍率20万倍)を得た。5箇所の断面SEM像で観察された全赤外線遮蔽粒子の一次粒子径の平均値を平均一次粒子径として求めた。
(Average primary particle size of infrared shielding particles)
A scanning electron microscope (SEM) ("S-4800" manufactured by Hitachi High-Technologies Corporation) was used to observe the cross section of the glass laminate. Cross-sectional SEM images (magnification: 200,000 times) were obtained at five randomly selected locations. The average value of the primary particle diameters of all the infrared shielding particles observed in the cross-sectional SEM images at the five locations was determined as the average primary particle diameter.

(紫外線赤外線遮蔽膜のXPS分析)
XPS(ULVAC社製「PHIQuanteraSXM」)を用いて、赤外線遮蔽粒子に含まれる任意に選択された1種の金属元素(例えば、ITOの場合はIn)について、紫外線赤外線遮蔽膜中の膜表面からの深さ方向の元素分析を行い、XPSスペクトルを得た。スペクトルの面積比率から、深さ方向に見てある範囲内の選択された1種の金属元素の濃度[atomic%]を求めた。紫外線赤外線遮蔽膜を膜表面から深さ方向に見たとき、膜表面と膜表面から50%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度と、膜表面と膜表面から10%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度とを求めた。
(XPS analysis of ultraviolet and infrared shielding film)
Using XPS (ULVAC's "PHIQuantera SXM"), elemental analysis was performed in the depth direction from the film surface of the ultraviolet and infrared shielding film for one arbitrarily selected metal element (for example, In in the case of ITO) contained in the infrared shielding particles, and an XPS spectrum was obtained. From the area ratio of the spectrum, the concentration [atomic%] of the selected metal element within a certain range viewed in the depth direction was obtained. When the ultraviolet and infrared shielding film was viewed in the depth direction from the film surface, the concentration of the selected metal element contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface, and the concentration of the selected metal element contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface were obtained.

(ガラス積層体の可視光線透過率)
分光光度計(日立製作所社製「U-4100」)を用いて、ガラス積層体の300~2600nmの波長域の透過スペクトルを測定し、JIS R3212(1998年)に準拠して、耐候性・耐光性試験を実施する前の初期状態の可視光線透過率(Tv[%])を算出した。
(Visible Light Transmittance of Glass Laminate)
The transmission spectrum of the glass laminate in the wavelength range of 300 to 2600 nm was measured using a spectrophotometer ("U-4100" manufactured by Hitachi, Ltd.), and the visible light transmittance (Tv [%]) in the initial state before carrying out the weather resistance and light resistance test was calculated in accordance with JIS R3212 (1998).

(ガラス積層体の耐候性・耐光性)
照射光の波長域300~400nm、照射照度150W/m、ブラックパネル温度83℃、相対湿度50%の条件に設定したスーパーキセノンウェザーメーター(スガ試験機社製「SX75」)に、ガラス積層体を設置し、500時間試験を行った。この試験後に、試験前と同じ上記方法にて、透過スペクトルを測定し、可視光線透過率(Tv[%])を求めた。試験前のTv[%]に対する試験後のTv[%]の変化量(ΔTv)[%]を求めた。ΔTvの低下量が小さい程、耐候性・耐光性が良好である。
(Weather resistance and light resistance of glass laminates)
The glass laminate was placed in a super xenon weather meter (SX75, manufactured by Suga Test Instruments Co., Ltd.) set under the following conditions: wavelength of irradiation light in the range of 300 to 400 nm, irradiation illuminance of 150 W/m 2 , black panel temperature of 83°C, and relative humidity of 50%, and a test was performed for 500 hours. After this test, the transmission spectrum was measured and the visible light transmittance (Tv [%]) was calculated using the same method as before the test. The change (ΔTv) [%] in Tv [%] after the test relative to Tv [%] before the test was calculated. The smaller the decrease in ΔTv, the better the weather resistance and light resistance.

(紫外線赤外線遮蔽膜の比重)
ガラス積層体から任意面積S[cm]の紫外線赤外線遮蔽膜を剃刀で削りとり、ガラス積層体の質量変化分[g]を、紫外線赤外線遮蔽膜の質量W[g]とした。ガラス積層体の質量が紫外線赤外線遮蔽膜の質量と比較して極めて大きく、差分が有意ではないと判断される場合は、削りとった紫外線赤外線遮蔽膜の質量を直接測定してもよい。比重d[g/cm]は、以下の式から求めた。
d=W÷(S×D)[g/cm
(Specific gravity of ultraviolet and infrared shielding film)
An arbitrary area S [ cm2 ] of the ultraviolet and infrared shielding film was scraped off from the glass laminate with a razor, and the change in mass [g] of the glass laminate was recorded as the mass W [g] of the ultraviolet and infrared shielding film. If the mass of the glass laminate is much larger than the mass of the ultraviolet and infrared shielding film and the difference is judged to be insignificant, the mass of the scraped off ultraviolet and infrared shielding film may be measured directly. The specific gravity d [g/ cm3 ] was calculated from the following formula:
d = W / (S x D) [g/ cm3 ]

(赤外線遮蔽粒子の含有量[mg/cm])
XPS(ULVAC社製「PHIQuanteraSXM」)を用いて、紫外線赤外線遮蔽膜中の膜表面からの深さ方向の全元素分析を行い、XPSスペクトルを得た。スペクトルのピークの面積比率から、深さ方向に見てある範囲内の各元素の質量濃度[質量%]を求めた。質量濃度[質量%]の深さ方向の分布の平均値を、紫外線赤外線遮蔽膜全体における各元素の質量濃度[質量%]とした。次に、赤外線遮蔽粒子に含まれる各元素(例えば、ITOの場合はInとSnとO)の質量濃度[質量%]の和から、紫外線赤外線遮蔽膜中に含まれる赤外線遮蔽粒子の質量濃度[質量%]を求めた。
赤外線遮蔽粒子を除いた紫外線赤外線遮蔽膜中に、赤外線遮蔽粒子に含まれる元素と同じ元素X(例えば、ITOの場合はO)が含まれる場合、赤外線遮蔽粒子全体で電気的に中性となるように元素Xの質量濃度を求めた。この時、赤外線遮蔽粒子に含まれる各元素の酸化数は、一般的に知られている値を用いた。例えば、ITOの場合は、Inが3+、Snが4+、Oが2-として、Oの質量濃度[質量%]を求めた。このようにして求めた、紫外線赤外線遮蔽膜に含まれる赤外線遮蔽粒子の各元素の質量濃度[質量%]と、紫外線赤外線遮蔽膜の膜厚および比重から、紫外線赤外線遮蔽膜1cm当たりに含まれる赤外線遮蔽粒子の含有量[mg/cm]を求めた。
(Infrared shielding particle content [mg/cm 2 ])
Using XPS (ULVAC's "PHIQuantera SXM"), a total element analysis was performed in the ultraviolet and infrared shielding film in the depth direction from the film surface to obtain an XPS spectrum. From the area ratio of the spectrum peak, the mass concentration [mass%] of each element within a certain range in the depth direction was obtained. The average value of the distribution of the mass concentration [mass%] in the depth direction was taken as the mass concentration [mass%] of each element in the entire ultraviolet and infrared shielding film. Next, the mass concentration [mass%] of the infrared shielding particles contained in the ultraviolet and infrared shielding film was obtained from the sum of the mass concentrations [mass%] of each element contained in the infrared shielding particles (for example, In, Sn, and O in the case of ITO).
When the ultraviolet and infrared shielding film excluding the infrared shielding particles contains the same element X (e.g., O in the case of ITO) as the element contained in the infrared shielding particles, the mass concentration of the element X was determined so that the infrared shielding particles as a whole were electrically neutral. At this time, a commonly known value was used as the oxidation number of each element contained in the infrared shielding particles. For example, in the case of ITO, In was 3+, Sn was 4+, and O was 2-, and the mass concentration [mass %] of O was determined. From the mass concentration [mass %] of each element of the infrared shielding particles contained in the ultraviolet and infrared shielding film thus determined, and the thickness and specific gravity of the ultraviolet and infrared shielding film, the content [mg/cm 2 ] of the infrared shielding particles contained per 1 cm 2 of the ultraviolet and infrared shielding film was determined.

(紫外線赤外線遮蔽膜の吸光度)
分光光度計(日立製作所製「U-4100」)を用いて、ガラス積層体およびガラス板の800~1500nmの波長域の透過スペクトルを測定し、ガラス積層体とガラス板の吸光度の差分から、紫外線赤外線遮蔽膜の波長800~1500nmにおける吸光度および吸光度の単純平均を求めた。
(Absorbance of ultraviolet and infrared shielding film)
Using a spectrophotometer (Hitachi, Ltd., "U-4100"), the transmission spectra of the glass laminate and the glass plate in the wavelength region of 800 to 1500 nm were measured, and the absorbance and simple average of the absorbance of the ultraviolet and infrared shielding film in the wavelength region of 800 to 1500 nm were calculated from the difference between the absorbance of the glass laminate and the glass plate.

[材料]
各例で用いた材料の略号は、以下の通りである。
<ガラス板>
(G1)縦670mm×横910mm×厚さ3.1mmの平面視矩形状のガラス板(AGC社製「高熱線吸収グリーンガラス」)が湾曲した湾曲ガラス板(内面(凹面)の縦方向の曲率半径=5200mm、横方向の曲率半径=300000mm)。
[material]
The abbreviations for the materials used in each example are as follows.
<Glass plate>
(G1) A curved glass plate (vertical radius of curvature of the inner surface (concave surface) = 5,200 mm, horizontal radius of curvature = 300,000 mm) made from a rectangular glass plate ("High heat ray absorbing green glass" manufactured by AGC) measuring 670 mm in height × 910 mm in width × 3.1 mm in thickness in a plan view (vertical radius of curvature of the inner surface (concave surface) = 5,200 mm, horizontal radius of curvature = 300,000 mm).

TEOS:テトラエトキシシラン、
KBM-403:3-グリシドキシプロピルトリメトキシシラン、信越化学工業社製「KBM-403」、
EX-614B:エポキシ樹脂、ナガセケムテックス社製「EX-614B」、
ソルスパース41000:ポリエーテルリン酸エステル系ポリマー、日本ルーブリゾール社製「ソルスパース41000」、
TINUVIN360:チバ・スペシャリティ・ケミカルズ社製「TINUVIN360」、
BYK307:表面調整剤、ビッグケミー・ジャパン社製「BYK307」、
AP-1:エタノール85.5質量%、メタノール1.1質量%および2-プロパノール13.4質量%の混合溶媒。
TEOS: tetraethoxysilane,
KBM-403: 3-glycidoxypropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. "KBM-403",
EX-614B: Epoxy resin, Nagase Chemtex Corporation "EX-614B",
Solsperse 41000: polyether phosphate ester polymer, Solsperse 41000 manufactured by Lubrizol Japan,
TINUVIN360: "TINUVIN360" manufactured by Ciba Specialty Chemicals,
BYK307: Surface conditioner, BYK307 manufactured by BYK-Chemie Japan Co., Ltd.
AP-1: a mixed solvent of 85.5% by mass of ethanol, 1.1% by mass of methanol, and 13.4% by mass of 2-propanol.

[製造例1](液状組成物(LC1)の調製)
ビーカーに、2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製)の49.2g、3-グリシドキシプロピルトリメトキシシラン(KBM-403)の123.2g、硬化触媒として塩化ベンジルトリエチルアンモニウム(BTEAC)(純正化学社製)の0.8g、および酢酸ブチル(純正化学社製)の100gを仕込んだ。これらを撹拌しながら60℃に昇温し、溶解させ、120℃まで加熱し4時間反応させることにより、固形分濃度63質量%のシリル化紫外線吸収剤溶液を得た。
丸底フラスコに、上記シリル化紫外線吸収剤溶液の12.78g、混合溶媒(AP-1)の49.82g、テトラエトキシシラン(TEOS)の11.43g、3-グリシドキシプロピルトリメトキシシラン(KBM-403)の2.81g、エポキシ樹脂(EX-614B)の1.96g、純水の15.60g、表面調整剤(BYK307)の0.06g、および酸として濃度63質量%の硝酸水溶液の0.10g仕込み、50℃で2時間撹拌した。その後、20質量%CWO(登録商標)分散液(住友金属鉱山社製、溶媒は水)の5.44gを加え、固形分濃度14.5質量%の液状組成物(LC1)を得た。
主な配合組成と得られた液状組成物の固形分濃度を、表1に示す。
[Production Example 1] (Preparation of Liquid Composition (LC1))
A beaker was charged with 49.2 g of 2,2',4,4'-tetrahydroxybenzophenone (manufactured by BASF), 123.2 g of 3-glycidoxypropyltrimethoxysilane (KBM-403), 0.8 g of benzyltriethylammonium chloride (BTEAC) (manufactured by Junsei Chemical Co., Ltd.) as a curing catalyst, and 100 g of butyl acetate (manufactured by Junsei Chemical Co., Ltd.). These were heated to 60°C with stirring to dissolve, and then heated to 120°C and reacted for 4 hours to obtain a silylated ultraviolet absorber solution with a solid content concentration of 63% by mass.
In a round-bottom flask, 12.78 g of the above silylated ultraviolet absorber solution, 49.82 g of mixed solvent (AP-1), 11.43 g of tetraethoxysilane (TEOS), 2.81 g of 3-glycidoxypropyltrimethoxysilane (KBM-403), 1.96 g of epoxy resin (EX-614B), 15.60 g of pure water, 0.06 g of surface conditioner (BYK307), and 0.10 g of nitric acid aqueous solution having a concentration of 63% by mass as acid were charged and stirred for 2 hours at 50 ° C. Then, 5.44 g of 20% by mass CWO (registered trademark) dispersion (manufactured by Sumitomo Metal Mining Co., Ltd., solvent is water) was added to obtain a liquid composition (LC1) having a solid content concentration of 14.5% by mass.
The main components and the solids concentration of the resulting liquid composition are shown in Table 1.

[製造例2、3](液状組成物(LC2)、(LC3)の調製)
表1に示す配合組成に変更した以外は製造例1と同様にして、液状組成物(LC2)、(LC3)を得た。主な配合組成と得られた液状組成物の固形分濃度を、表1に示す。
製造例2~4で用いた20質量%ITO分散液は、三菱マテリアル社製(溶媒は混合溶媒(AP-1))である。
[Production Examples 2 and 3] (Preparation of Liquid Compositions (LC2) and (LC3))
Liquid compositions (LC2) and (LC3) were obtained in the same manner as in Production Example 1, except that the blending composition was changed to that shown in Table 1. The main blending composition and the solid content concentration of the obtained liquid composition are shown in Table 1.
The 20% by mass ITO dispersion used in Production Examples 2 to 4 was manufactured by Mitsubishi Materials Corporation (solvent was mixed solvent (AP-1)).

[製造例4](液状組成物(LC4)の調製)
シリル化紫外線遮蔽剤溶液を調製せず、20質量%ITO分散液以外のすべての成分を混合し、50℃で2時間反応させた後、20質量%ITO分散液を添加し、混合して、液状組成物(LC4)を得た。主な配合組成と得られた液状組成物の固形分濃度を、表1に示す。
[Production Example 4] (Preparation of Liquid Composition (LC4))
A silylated ultraviolet screening agent solution was not prepared, and all the components except for the 20% by mass ITO dispersion were mixed and reacted at 50° C. for 2 hours, after which the 20% by mass ITO dispersion was added and mixed to obtain a liquid composition (LC4). The main blending composition and the solid content concentration of the obtained liquid composition are shown in Table 1.

[例1]
(工程(S1))(液状組成物(LC1)の用意)
製造例1で得られた液状組成物(LC1)を用意した。
[Example 1]
(Step (S1)) (Preparation of Liquid Composition (LC1))
The liquid composition (LC1) obtained in Production Example 1 was prepared.

(工程(S2))
恒温槽を用いて、ガラス板(G1)の温度Tを25℃、液状組成物(LC1)の温度Tを15℃に調整した。
(Step (S2))
Using a thermostatic bath, the temperature T S of the glass plate (G1) was adjusted to 25°C, and the temperature T L of the liquid composition (LC1) was adjusted to 15°C.

(工程(S3))
ガラス板(G1)を垂直に立て、ガラス板(G1)の内面(凹面)上に、ガラス板(G1)の上辺から数mm~数十mmをあけた位置で、ガラス板(G1)の上辺に沿うように、工程(S2)の調整温度の液状組成物(LC1)を流しかけた。このようにして、塗工膜付きガラス板を得た。
(Step (S3))
The glass plate (G1) was placed vertically, and the liquid composition (LC1) at the adjusted temperature in step (S2) was poured onto the inner surface (concave surface) of the glass plate (G1) at a position spaced from the upper edge of the glass plate (G1) by several mm to several tens of mm, along the upper edge of the glass plate (G1). In this manner, a glass plate with a coating film was obtained.

(工程(S4))
塗工膜側が下側になるように、20秒間、塗工膜付きガラス板を水平に配置(平置き)した。この工程では、吸着チャックを用いてガラス板10を保持し、塗工膜の表面が他の部材に接触しないように、塗工膜付きガラス板を水平に配置した。
(Step (S4))
The glass plate with the coating film was placed horizontally (laid flat) for 20 seconds with the coating film side facing downward. In this step, the glass plate 10 was held using a suction chuck, and the glass plate with the coating film was placed horizontally so that the surface of the coating film would not come into contact with other members.

(工程(S5))
塗工膜付きガラス板を200℃で20分間加熱した(本焼成)。本焼成では、塗工膜側が上側になるように、塗工膜付きガラス板を水平に配置(平置き)した。このようにして、塗工膜を硬化し、ガラス積層体(GL1)を得た。
(Step (S5))
The glass plate with the coating film was heated at 200° C. for 20 minutes (main baking). In the main baking, the glass plate with the coating film was placed horizontally (laid flat) so that the coating film side was on the upper side. In this way, the coating film was cured to obtain a glass laminate (GL1).

主な製造条件と評価結果を、表2および表3に示す。表2および表3において、記載のない条件は共通条件とした。
塗工膜中のガラス板との界面近傍部分における平均一次粒子径の赤外線遮蔽粒子の沈降速度および沈降深さは、ストークスの式に基づいて、算出した。計算において、塗工膜中のガラス板との界面近傍部分の温度は、工程(S2)で調整したガラス板の温度を用い、液状組成物の粘度は、工程(S2)で調整したガラス板の温度における液状組成物の粘度を用いた。
The main production conditions and the evaluation results are shown in Tables 2 and 3. In Tables 2 and 3, conditions not described were common conditions.
The settling velocity and settling depth of the infrared shielding particles having an average primary particle size in the vicinity of the interface between the coating film and the glass plate were calculated based on Stokes' equation. In the calculation, the temperature of the coating film in the vicinity of the interface between the coating film and the glass plate was determined using the temperature of the glass plate adjusted in step (S2), and the viscosity of the liquid composition was determined using the viscosity of the liquid composition at the temperature of the glass plate adjusted in step (S2).

[例2、例11~13]
表2に示すように条件を変更した以外は例1と同様にして、ガラス積層体(GL2)、(GL11)~(GL13)を得た。主な製造条件と評価結果を、表2および表3に示す。
[Example 2, Examples 11 to 13]
Glass laminates (GL2), (GL11) to (GL13) were obtained in the same manner as in Example 1, except that the conditions were changed as shown in Table 2. The main production conditions and evaluation results are shown in Tables 2 and 3.

Figure 0007484786000002
Figure 0007484786000002

Figure 0007484786000003
Figure 0007484786000003

Figure 0007484786000004
Figure 0007484786000004

[結果のまとめ]
例1、2では、ガラス板の表面上に、ガラス板より低い温度の液状組成物を塗工し塗工膜を形成して、塗工膜付きガラス板を得、塗工膜側が下側になるように、塗工膜付きガラス板を水平に配置した後、塗工膜付きガラス板を加熱し、塗工膜を硬化して、ガラス積層体を製造した。
これらの例では、平面視にて、紫外線赤外線遮蔽膜の、ガラス板の上端辺から5cm以内に位置する上端部において、膜表面と膜表面から50%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が55atomic%以上であり、膜表面と膜表面から10%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が12~20atomic%である、ガラス積層体が得られた。
これらの例で得られたガラス積層体は、耐候性・耐光性試験において、試験前に対する試験後の可視光線透過率の低下量が小さく、良好であった。
[Summary of results]
In Examples 1 and 2, a liquid composition having a temperature lower than that of the glass plate was applied onto the surface of the glass plate to form a coating film, thereby obtaining a glass plate with a coating film. The glass plate with the coating film was then horizontally arranged with the coating film side facing downward, and the glass plate with the coating film was then heated to harden the coating film, thereby producing a glass laminate.
In these examples, a glass laminate was obtained in which, in a plan view, at the upper end of the ultraviolet and infrared shielding film located within 5 cm from the upper edge of the glass plate, the concentration of a selected type of metal element contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface was 55 atomic % or more, and the concentration of a selected type of metal element contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface was 12 to 20 atomic %.
In the weather resistance and light resistance test, the glass laminates obtained in these examples showed a small decrease in visible light transmittance after the test compared to before the test, which was favorable.

特に例1で得られたガラス積層体は、膜表面と膜表面から50%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が60atomic%以上、膜表面と膜表面から10%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が15atomic%以上、であり、例2で得られたガラス積層体より耐候性・耐光性に優れていた。 In particular, the glass laminate obtained in Example 1 had a concentration of 60 atomic% or more of the selected metal element contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface, and a concentration of 15 atomic% or more of the selected metal element contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface, and was superior in weather resistance and light resistance to the glass laminate obtained in Example 2.

例11では、ガラス板の温度と液状組成物の温度を同一とした。
例12では、液状組成物の粘度が高く、塗工膜中のガラス板との界面近傍部分における平均一次粒子径の赤外線遮蔽粒子の沈降速度および沈降深さが過小であった。
例13では、塗工膜側が上側になるように、塗工膜付きガラス板を水平に配置した後、塗工膜付きガラス板を加熱し、塗工膜を硬化した。
In Example 11, the temperature of the glass plate and the temperature of the liquid composition were made the same.
In Example 12, the viscosity of the liquid composition was high, and the settling velocity and settling depth of the infrared shielding particles having an average primary particle size in the portion of the coating film near the interface with the glass plate were too small.
In Example 13, the glass plate with the coating film was horizontally arranged with the coating film side facing upward, and then the glass plate with the coating film was heated to cure the coating film.

例11~13で得られたガラス積層体は、平面視にて、紫外線赤外線遮蔽膜の、ガラス板の上端辺から5cm以内に位置する上端部において、膜表面と膜表面から10%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が12atomic%未満であった。
例12、13で得られたガラス積層体は、平面視にて、紫外線赤外線遮蔽膜の、ガラス板の上端辺から5cm以内に位置する上端部において、膜表面と膜表面から50%の深さとの間に存在する赤外線遮蔽粒子に含まれる選択された1種の金属元素の濃度が55atomic%未満であった。
例11では、沈降速度は好ましい範囲内であり、赤外線遮蔽粒子を全体的に塗工膜の表面側50%の範囲に偏在させられた。しかしながら、ガラス板と液状組成物の温度が同一であったため、塗工膜中で温度差による対流が生じず、塗工膜の表面側10%の範囲に沈降する赤外線遮蔽粒子の量が少なかったと考えられる。
これらの例で得られたガラス積層体は、耐候性・耐光性試験において、試験前に対する試験後の可視光線透過率の低下量が大きく、不良であった。
In the glass laminates obtained in Examples 11 to 13, in a plan view, at an upper end portion of the ultraviolet and infrared shielding film located within 5 cm from the upper end edge of the glass plate, the concentration of a selected type of metal element contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface was less than 12 atomic %.
In the glass laminates obtained in Examples 12 and 13, in a plan view, at an upper end portion of the ultraviolet/infrared shielding film located within 5 cm from the upper end edge of the glass plate, the concentration of a selected type of metal element contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface was less than 55 atomic %.
In Example 11, the settling rate was within a preferred range, and the infrared shielding particles were distributed unevenly over the entire surface 50% of the coating film. However, because the glass plate and the liquid composition had the same temperature, no convection due to the temperature difference occurred in the coating film, and the amount of infrared shielding particles that settled over the surface 10% of the coating film was small.
In the weather resistance and light resistance test, the glass laminates obtained in these examples showed a large decrease in visible light transmittance after the test compared to before the test, and were therefore unsatisfactory.

代表的に、例1、2、13で得られたガラス積層体の紫外線赤外線遮蔽膜のXPSスペクトルを図6A~図6Cに示す。
図6Cに示すように、例13で得られたガラス積層体の紫外線赤外線遮蔽膜のXPSスペクトルでは、赤外線遮蔽粒子が全体的に均一に分布しているのに対し、図6Aおよび図6Bに示すように、例1、2で得られたガラス積層体の紫外線赤外線遮蔽膜のXPSスペクトルでは、赤外線遮蔽粒子が膜表面側に偏って分布していることが分かった。
Representative XPS spectra of the ultraviolet and infrared shielding films of the glass laminates obtained in Examples 1, 2 and 13 are shown in FIGS. 6A to 6C.
As shown in Fig. 6C , the XPS spectrum of the ultraviolet and infrared shielding film of the glass laminate obtained in Example 13 showed that the infrared shielding particles were distributed uniformly overall, whereas as shown in Figs. 6A and 6B , the XPS spectra of the ultraviolet and infrared shielding films of the glass laminates obtained in Examples 1 and 2 showed that the infrared shielding particles were distributed unevenly toward the film surface side.

代表的に、例1、2で得られたガラス積層体の断面SEM写真の例を図7A、図8Aに示す。符号20で示す膜が、紫外線赤外線遮蔽膜である。得られた断面SEM像に対してトリミング処理を行って、紫外線赤外線遮蔽膜の部分のみを残し、さらに、明度で二値化処理を起こって、赤外線遮蔽粒子を「黒」、その他の部分を「白」で表すように処理した画像を図7B、図8Bに示す。
なお、図7A、図7B、図8A、図8Bは、平面視にて、ガラス積層体の下辺側に近い厚膜部分の断面写真または断面画像であり、参考写真または参考画像である。参考写真または参考画像ではあるが、これらの図には、赤外線遮蔽粒子が膜表面側に偏っている様子が示されている。
Representative examples of cross-sectional SEM photographs of the glass laminates obtained in Examples 1 and 2 are shown in Figures 7A and 8A. The film indicated by reference numeral 20 is the ultraviolet and infrared shielding film. The obtained cross-sectional SEM images were subjected to a trimming process to leave only the ultraviolet and infrared shielding film portion, and further subjected to a binarization process by brightness to show the infrared shielding particles as "black" and the other portions as "white", and the images are shown in Figures 7B and 8B.
7A, 7B, 8A, and 8B are cross-sectional photographs or cross-sectional images of a thick film portion near the bottom side of a glass laminate in a plan view, and are reference photographs or images. Although they are reference photographs or images, these figures show that the infrared shielding particles are biased toward the film surface side.

本発明は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更できる。 The present invention is not limited to the above-described embodiments and examples, and the design can be modified as appropriate without departing from the spirit of the present invention.

1:ガラス積層体、1C:塗工膜付きガラス板、10:ガラス板、10S:表面、11:上辺、12:下辺、13:前方側辺、14:後方側辺、20:紫外線赤外線遮蔽膜、20C:塗工膜、20P:赤外線遮蔽粒子、20S:膜表面、UP:上端部。 1: Glass laminate, 1C: Glass plate with coating film, 10: Glass plate, 10S: Surface, 11: Top edge, 12: Bottom edge, 13: Front edge, 14: Rear edge, 20: UV/IR shielding film, 20C: Coating film, 20P: Infrared shielding particles, 20S: Film surface, UP: Top end.

Claims (12)

ガラス板の表面上に、シリカと、紫外線遮蔽剤と、金属化合物を含む赤外線遮蔽粒子とを含む紫外線赤外線遮蔽膜が形成されたガラス積層体であって、
平面視にて、前記紫外線赤外線遮蔽膜の、前記ガラス板の上端辺から5cm以内に位置する上端部の少なくとも一部の領域において、
前記紫外線赤外線遮蔽膜中に存在するすべての前記赤外線遮蔽粒子に含まれる任意に選択された1種以上の金属元素の濃度を100atomic%とし、前記紫外線赤外線遮蔽膜の厚さを100%とし、前記紫外線赤外線遮蔽膜を膜表面から深さ方向に見たとき、
前記膜表面と前記膜表面から50%の深さとの間に存在する前記赤外線遮蔽粒子に含まれる前記1種以上の金属元素の濃度が55atomic%以上であり、
前記膜表面と前記膜表面から10%の深さとの間に存在する前記赤外線遮蔽粒子に含まれる前記1種以上の金属元素の濃度が12~20atomic%である、ガラス積層体。
A glass laminate comprising an ultraviolet and infrared shielding film formed on a surface of a glass plate, the ultraviolet and infrared shielding film including silica, an ultraviolet shielding agent, and infrared shielding particles including a metal compound,
In a plan view, in at least a part of an upper end portion of the ultraviolet and infrared ray shielding film located within 5 cm from the upper end edge of the glass plate,
When the concentration of one or more arbitrarily selected metal elements contained in all of the infrared shielding particles present in the ultraviolet and infrared shielding film is taken as 100 atomic %, the thickness of the ultraviolet and infrared shielding film is taken as 100%, and the ultraviolet and infrared shielding film is viewed in the depth direction from the film surface,
the concentration of the one or more metal elements contained in the infrared shielding particles present between the film surface and a depth of 50% from the film surface is 55 atomic % or more;
a concentration of the one or more metal elements contained in the infrared shielding particles present between the film surface and a depth of 10% from the film surface is 12 to 20 atomic %.
前記赤外線遮蔽粒子は、密度が5g/cm以上である、請求項1に記載のガラス積層体。 The glass laminate according to claim 1 , wherein the infrared shielding particles have a density of 5 g/cm 3 or more. 前記赤外線遮蔽粒子は、密度が5~10g/cmである、請求項2に記載のガラス積層体。 The glass laminate according to claim 2, wherein the infrared shielding particles have a density of 5 to 10 g/ cm3 . 前記赤外線遮蔽粒子は、平均一次粒子径が10~150nmである、請求項1~3のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 3, wherein the infrared shielding particles have an average primary particle size of 10 to 150 nm. 前記赤外線遮蔽粒子は、インジウム錫酸化物、アンチモンドープ酸化錫、セシウムドープ酸化タングステン、フッ素ドープ酸化錫、六ホウ化ランタン、および五酸化バナジウムからなる群より選ばれる1種以上の金属化合物を含む金属化合物粒子である、請求項1~4のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 4, wherein the infrared shielding particles are metal compound particles containing one or more metal compounds selected from the group consisting of indium tin oxide, antimony-doped tin oxide, cesium-doped tungsten oxide, fluorine-doped tin oxide, lanthanum hexaboride, and vanadium pentoxide. 前記赤外線遮蔽粒子は、セシウムドープ酸化タングステンおよび六ホウ化ランタンからなる群より選ばれる1種以上の金属化合物を含む金属化合物粒子である、請求項5に記載のガラス積層体。 The glass laminate according to claim 5, wherein the infrared shielding particles are metal compound particles containing one or more metal compounds selected from the group consisting of cesium-doped tungsten oxide and lanthanum hexaboride. 前記紫外線遮蔽剤は、密度が2.5g/cm以下である、請求項1~6のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 6, wherein the ultraviolet ray shielding agent has a density of 2.5 g/ cm3 or less. 前記紫外線遮蔽剤は、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾジチオール系紫外線吸収剤、アゾメチン系紫外線吸収剤、インドール系紫外線吸収剤、およびトリアジン系紫外線吸収剤からなる群より選ばれる1種以上の紫外線吸収剤である、請求項1~7のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 7, wherein the ultraviolet shielding agent is one or more ultraviolet absorbers selected from the group consisting of benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzodithiol-based ultraviolet absorbers, azomethine-based ultraviolet absorbers, indole-based ultraviolet absorbers, and triazine-based ultraviolet absorbers. 硬化性シランと前記紫外線遮蔽剤と前記赤外線遮蔽粒子とを含む液状組成物を用意する工程(S1)と、
前記ガラス板の温度をT[℃]とし、前記液状組成物の温度をT[℃]としたとき、T>Tとなるよう、前記ガラス板および/または前記液状組成物の温度を調整する工程(S2)と、
前記ガラス板の表面上に、前記ガラス板より低い温度の前記液状組成物を塗工し塗工膜を形成して、塗工膜付きガラス板を得る工程(S3)と、
前記塗工膜側が下側になるように、前記塗工膜付きガラス板を略水平に配置する工程(S4)と、
前記塗工膜付きガラス板を加熱し、前記塗工膜を硬化する工程(S5)とを有する、請求項1~8のいずれか1項に記載のガラス積層体の製造方法。
A step (S1) of preparing a liquid composition containing a curable silane, the ultraviolet ray shielding agent, and the infrared ray shielding particles;
a step (S2) of adjusting the temperature of the glass plate and/or the liquid composition so that T S >T L , where T S is the temperature of the glass plate [°C] and T L is the temperature of the liquid composition [°C];
A step (S3) of applying the liquid composition having a temperature lower than that of the glass plate onto a surface of the glass plate to form a coating film, thereby obtaining a glass plate with a coating film;
A step (S4) of disposing the glass sheet with the coating film substantially horizontally so that the coating film side faces downward;
The method for producing a glass laminate according to any one of claims 1 to 8, further comprising a step (S5) of heating the glass sheet with the coating film to harden the coating film.
工程(S2)において、T≧T+5となるよう、前記ガラス板および/または前記液状組成物の温度を調整する、請求項9に記載のガラス積層体の製造方法。 The method for producing a glass laminate according to claim 9, wherein in step (S2), a temperature of the glass plate and/or the liquid composition is adjusted so that T S ≧T L +5. 工程(S4)において、前記塗工膜の少なくとも前記ガラス板との界面近傍部分における平均一次粒子径の前記赤外線遮蔽粒子の沈降深さが0.1~0.4μmである、請求項9または10に記載のガラス積層体の製造方法。 The method for producing a glass laminate according to claim 9 or 10, wherein in step (S4), the sedimentation depth of the infrared shielding particles having an average primary particle diameter in at least a portion of the coating film near the interface with the glass sheet is 0.1 to 0.4 μm. 工程(S4)において、前記塗工膜の少なくとも前記ガラス板との界面近傍部分における平均一次粒子径の前記赤外線遮蔽粒子の沈降速度が1~50nm/sである、請求項9~11のいずれか1項に記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 9 to 11, wherein in step (S4), the settling velocity of the infrared shielding particles having an average primary particle size in at least a portion of the coating film near the interface with the glass sheet is 1 to 50 nm/s.
JP2021054796A 2021-03-29 2021-03-29 Glass laminate and method for producing same Active JP7484786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021054796A JP7484786B2 (en) 2021-03-29 2021-03-29 Glass laminate and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021054796A JP7484786B2 (en) 2021-03-29 2021-03-29 Glass laminate and method for producing same

Publications (2)

Publication Number Publication Date
JP2022152138A JP2022152138A (en) 2022-10-12
JP7484786B2 true JP7484786B2 (en) 2024-05-16

Family

ID=83556114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021054796A Active JP7484786B2 (en) 2021-03-29 2021-03-29 Glass laminate and method for producing same

Country Status (1)

Country Link
JP (1) JP7484786B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291175A (en) 2007-05-28 2008-12-04 Jgc Catalysts & Chemicals Ltd Coating material for forming transparent coating film and substrate with transparent film
WO2013047513A1 (en) 2011-09-27 2013-04-04 宇部日東化成 株式会社 Laminated structure and laminate
WO2015170647A1 (en) 2014-05-08 2015-11-12 旭硝子株式会社 Glass article
JP2019064913A (en) 2014-02-28 2019-04-25 Agc株式会社 Glass article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291175A (en) 2007-05-28 2008-12-04 Jgc Catalysts & Chemicals Ltd Coating material for forming transparent coating film and substrate with transparent film
WO2013047513A1 (en) 2011-09-27 2013-04-04 宇部日東化成 株式会社 Laminated structure and laminate
JP2019064913A (en) 2014-02-28 2019-04-25 Agc株式会社 Glass article
WO2015170647A1 (en) 2014-05-08 2015-11-12 旭硝子株式会社 Glass article

Also Published As

Publication number Publication date
JP2022152138A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP6625727B2 (en) Windshield
US10400130B2 (en) Anti-fogging coated transparent article
JP6713832B2 (en) Windshield
DE112012001546B4 (en) GLASS PLATE WITH A LOW REFLECTION FILM
JP6794322B2 (en) Windshield and its manufacturing method
EP3564030A1 (en) Glass plate production method and automotive glass plate
JP7153455B2 (en) glass laminate
KR101727906B1 (en) Glazing sheet using vehicle
JP6886245B2 (en) Laminated glass
WO2004070436A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
CN104662111A (en) Liquid composition and glass article
US20230057817A1 (en) Transparent laminate
US10576808B2 (en) Glass article
JP6909660B2 (en) Windshield
JP7484786B2 (en) Glass laminate and method for producing same
WO2017065114A1 (en) Laminated glass
JP4481676B2 (en) Anti-fog spectacle lens and method for manufacturing the same
WO2017154510A1 (en) Windshield
JP7080726B2 (en) Glass laminate
JP7449994B2 (en) windshield
JP7376239B2 (en) Hydrophilic members, lenses using the same, in-vehicle cameras, resin films, and windows
EP3543006A1 (en) Antifogging laminate and method for attaching antifogging sheet
WO2022210247A1 (en) Glass laminate and method for manufacturing same
WO2017183700A1 (en) Windshield
JP2020093966A (en) Manufacturing method of windshield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230807

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150