JP7484107B2 - Graft copolymer, thermoplastic resin composition and molded article thereof - Google Patents

Graft copolymer, thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
JP7484107B2
JP7484107B2 JP2019162150A JP2019162150A JP7484107B2 JP 7484107 B2 JP7484107 B2 JP 7484107B2 JP 2019162150 A JP2019162150 A JP 2019162150A JP 2019162150 A JP2019162150 A JP 2019162150A JP 7484107 B2 JP7484107 B2 JP 7484107B2
Authority
JP
Japan
Prior art keywords
copolymer
mass
graft
crosslinking agent
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019162150A
Other languages
Japanese (ja)
Other versions
JP2021038362A (en
Inventor
幸作 垰
吉孝 内藤
崇 岩永
裕貴 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
Techno UMG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno UMG Co Ltd filed Critical Techno UMG Co Ltd
Priority to JP2019162150A priority Critical patent/JP7484107B2/en
Publication of JP2021038362A publication Critical patent/JP2021038362A/en
Application granted granted Critical
Publication of JP7484107B2 publication Critical patent/JP7484107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物を与えるグラフト共重合体と、このグラフト共重合体を含む熱可塑性樹脂組成物とその成形品に関する。 The present invention relates to a graft copolymer that provides a thermoplastic resin composition that is excellent in molded appearance and impact resistance as well as in flowability, and to a thermoplastic resin composition containing this graft copolymer and a molded article thereof.

樹脂材料の耐衝撃性を向上させることは、樹脂材料の用途を拡大させるだけでなく成形品の薄肉化や大型化への対応を可能にするなど、工業的な有用性が非常に高い。樹脂材料の耐衝撃性向上については、これまでに様々な手法が提案されてきた。このうち、ゴム質重合体と硬質樹脂材料とを組み合わせることによって、硬質樹脂材料の特性を保持しつつ耐衝撃性を高める手法は既に工業化されている。このような材料としては、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂が挙げられる。 Improving the impact resistance of resin materials is extremely useful industrially, not only expanding the applications of resin materials but also enabling the creation of thinner and larger molded products. Various methods have been proposed to improve the impact resistance of resin materials. Of these, a method of combining a rubber polymer with a hard resin material to increase impact resistance while retaining the properties of the hard resin material has already been commercialized. One such material is acrylonitrile-butadiene-styrene (ABS) resin.

しかし、ABS樹脂は耐衝撃性と成形外観に優れるものの、ゴム成分であるポリブダジエンの耐候性が低いため、塗装やフィルム等の加飾を施すことなく使用することが困難であった。 However, although ABS resin has excellent impact resistance and molded appearance, the polybutadiene rubber component has poor weather resistance, making it difficult to use without applying decoration such as paint or film.

そのようなABS樹脂の課題を解決するため、ゴム成分としてアクリルゴムを使用したアクリロニトリル-スチレン-アクリル酸エステル(ASA)樹脂が開発され、工業化されている。 To solve these problems with ABS resin, acrylonitrile-styrene-acrylic acid ester (ASA) resin, which uses acrylic rubber as the rubber component, has been developed and commercialized.

例えば、特許文献1には硬質樹脂材料としてアクリロニトリル-スチレン(AS)樹脂を用い、そこにASA樹脂を添加する方法が開示されている。
しかしながら、ASA樹脂は、硬質樹脂成分であるアクリロニトリル-スチレン(AS)樹脂と、アクリルゴム間の屈折率差が大きいため、低射出速度での成形時の成形外観が悪い。また、高射出速度での成形時にはさらに成形外観が悪化するといった問題があった。
For example, Patent Document 1 discloses a method in which an acrylonitrile-styrene (AS) resin is used as a hard resin material and an ASA resin is added thereto.
However, ASA resin has a problem that the appearance of the molded product is poor when molded at a low injection speed because of the large difference in refractive index between the acrylic rubber and the acrylonitrile-styrene (AS) resin, which is the hard resin component, and the appearance of the molded product is further deteriorated when molded at a high injection speed.

特許文献2や特許文献3には、ポリブタジエン粒子の外側をアクリルゴムで覆った構造のポリブタジエン/アクリルゴム複合体をAS樹脂に添加する方法が開示されている。
この方法であれば、ポリブタジエンを複合することでゴム成分とAS樹脂の屈折率差が小さくなり、成形外観が良好となる。しかし、ポリブタジエンを複合するため耐候性が低下するといった問題がある。
Patent Documents 2 and 3 disclose a method of adding a polybutadiene/acrylic rubber composite having a structure in which the outside of polybutadiene particles is covered with acrylic rubber to an AS resin.
This method reduces the difference in refractive index between the rubber component and the AS resin by compounding polybutadiene, resulting in a good molded appearance, but the compounding of polybutadiene causes a problem of reduced weather resistance.

特許文献4には、アクリル酸ブチルとスチレンを共重合することで、アクリルゴムの屈折率を上げる方法が開示されている。
しかし、特許文献4に記載された方法では、耐衝撃性が著しく低下してしまう。また、低射出速度で成形時の外観は良好となるが、高射出速度で成形時に外観が悪化する、すなわち外観の射出速度依存性の大きいものであった。
Patent Document 4 discloses a method for increasing the refractive index of acrylic rubber by copolymerizing butyl acrylate and styrene.
However, the method described in Patent Document 4 significantly reduces impact resistance. In addition, the appearance during molding is good at a low injection speed, but the appearance deteriorates at a high injection speed, that is, the appearance is highly injection speed dependent.

ところで、ASA樹脂などのグラフト重合体において、アクリルゴムなどのゴム粒子の架橋密度が成形品の諸物性に大きく影響を与える。一般的に架橋密度が高い方が、成形品の成形外観が良好となる傾向にある。架橋密度を高くする方法としては、アクリルゴムを製造する際に、分子内に2つ以上の(メタ)アクリロイル基、ビニル基、アリル基等の官能基を有する多官能化合物とアクリル酸エステルを共重合し、多官能化合物の添加量を増加させる方法が一般的である。
しかしながら、アクリルゴムの架橋密度が高い領域では、耐衝撃性が低下する傾向にある。
即ち、成形品の耐衝撃性と成形外観はトレードオフの関係にあり、ゴム粒子の架橋密度の調整では、成形品の耐衝撃性と成形外観を両立することは困難であった。
In the graft polymer such as ASA resin, the crosslink density of rubber particles such as acrylic rubber has a large effect on the physical properties of the molded product. In general, the higher the crosslink density, the better the molded appearance of the molded product tends to be. In order to increase the crosslink density, a method is generally used in which, when producing acrylic rubber, a multifunctional compound having two or more functional groups such as (meth)acryloyl groups, vinyl groups, allyl groups, etc. in the molecule is copolymerized with an acrylic acid ester to increase the amount of the multifunctional compound added.
However, in a region where the crosslink density of the acrylic rubber is high, the impact resistance tends to decrease.
In other words, there is a trade-off between the impact resistance and the appearance of a molded article, and it has been difficult to achieve both the impact resistance and the appearance of a molded article by adjusting the crosslink density of rubber particles.

特開2017-71660号公報JP 2017-71660 A 特開2007-204763号公報JP 2007-204763 A 特開2009-242595号公報JP 2009-242595 A 特開2017-88774号公報JP 2017-88774 A

本発明は、成形品の耐衝撃性と成形外観を両立することができるグラフト共重合体と、このグラフト共重合体を用いて流動性、耐衝撃性、成形外観、更には成形外観の射出速度依存性に優れる成形品が得られる熱可塑性樹脂組成物を提供することを目的とする。 The present invention aims to provide a graft copolymer that can achieve both impact resistance and molded appearance of a molded article, and a thermoplastic resin composition that uses this graft copolymer to obtain a molded article that is excellent in flowability, impact resistance, molded appearance, and even the injection speed dependency of the molded appearance.

本発明者は、上記課題を解決すべく検討を重ねた結果、内部が低架橋密度で外側が高架橋密度のゴム粒子、具体的には、グラフト共重合体のゴム粒子として、(メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)をコア部とし、(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)をシェル部とし、コア部の共重合体(A)の膨潤度が7~15倍、コア-シェル型粒子(C)の膨潤度が5~12倍で、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より大きいものを用いることにより、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物を得ることができることを見出した。 The inventors of the present invention have conducted extensive research to solve the above problems, and as a result, have found that a thermoplastic resin composition having excellent molded appearance, impact resistance, and flowability can be obtained by using rubber particles having a low crosslink density inside and a high crosslink density outside, specifically, rubber particles of a graft copolymer, in which the core part is copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms, and the shell part is copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (Ba), in which the swelling degree of the copolymer (A) in the core part is 7 to 15 times that of the core-shell type particle (C), and the swelling degree of the core-shell type particle (C) is 5 to 12 times that of the core-shell type particle (C).

即ち、本発明は以下を要旨とする。 That is, the gist of the present invention is as follows:

[1] (メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)の存在下に、ビニル系単量体混合物(m3)を重合して得られるグラフト共重合体(D)であって、該共重合体(A)の膨潤度が7~15倍であり、該コア-シェル型粒子(C)の膨潤度が5~12倍であり、該共重合体(A)の膨潤度が該コア-シェル型粒子(C)の膨潤度より大きいことを特徴とする、グラフト共重合体(D)。 [1] A graft copolymer (D) obtained by polymerizing a vinyl monomer mixture (m3) in the presence of a core-shell type particle (C) having a core portion made of a copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms, and a shell portion made of a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (Ba), the graft copolymer (D) being characterized in that the swelling degree of the copolymer (A) is 7 to 15 times, the swelling degree of the core-shell type particle (C) is 5 to 12 times, and the swelling degree of the copolymer (A) is greater than the swelling degree of the core-shell type particle (C).

[2] [1]において、前記疎水性物質(Ab)が、1-オクタノールに対する濃度〔c1〕と水に対する濃度〔c2〕の比〔c1/c2〕で表される分配係数〔P〕の対数〔logP〕値が6以上の疎水性物質である、グラフト共重合体(D)。 [2] In [1], the hydrophobic substance (Ab) is a hydrophobic substance having a logarithm [logP] value of the partition coefficient [P] expressed as the ratio [c1/c2] of the concentration [c1] in 1-octanol to the concentration [c2] in water of 6 or more. [2] In the graft copolymer (D),

[3] [1]又は[2]において、前記コア-シェル型粒子(C)100質量%中の前記共重合体(A)の含有量が60~96質量%で、前記共重合体(B)の含有量が4~40質量%である、グラフト共重合体(D)。 [3] In the graft copolymer (D) of [1] or [2], the content of the copolymer (A) is 60 to 96 mass% and the content of the copolymer (B) is 4 to 40 mass% in 100 mass% of the core-shell type particles (C).

[4] [1]ないし[3]のいずれかにおいて、前記共重合体(A)が、(メタ)アクリル酸エステル(Aa)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、グラフト共重合体(D)。 [4] In any one of [1] to [3], the copolymer (A) is a graft copolymer (D) containing a (meth)acrylic acid ester (Aa) unit and a unit derived from a crosslinking agent and/or a unit derived from a graft crosslinking agent.

[5] [4]において、前記共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸エステル(Aa)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.05~0.3質量%である、グラフト共重合体(D)。 [5] In [4], the graft copolymer (D) has a ratio of units derived from a crosslinking agent and/or a graft crosslinking agent in the copolymer (A) of 0.05 to 0.3 mass% in a total of 100 mass% of (meth)acrylic acid ester (Aa) units and units derived from a crosslinking agent and/or units derived from a graft crosslinking agent.

[6] [4]又は[5]において、前記ビニル系単量体混合物(m1)が、前記疎水性物質(Ab)を、前記(メタ)アクリル酸エステル(Aa)と前記架橋剤および/又はグラフト交叉剤の合計100質量部に対して0.1~10質量部含有する、グラフト共重合体(D)。 [6] In [4] or [5], the vinyl monomer mixture (m1) contains 0.1 to 10 parts by mass of the hydrophobic substance (Ab) per 100 parts by mass of the (meth)acrylic acid ester (Aa) and the crosslinking agent and/or graft crosslinking agent in the graft copolymer (D).

[7] [1]ないし[6]のいずれかにおいて、前記共重合体(B)が、(メタ)アクリル酸エステル(Ba)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、グラフト共重合体(D)。 [7] In any one of [1] to [6], the copolymer (B) is a graft copolymer (D) containing a (meth)acrylic acid ester (Ba) unit and a unit derived from a crosslinking agent and/or a unit derived from a graft crosslinking agent.

[8] [7]において、前記共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸エステル(Ba)単位と、架橋剤に由来する単位との合計100質量%中、0.03~0.3質量%である、グラフト共重合体(D)。 [8] In [7], the graft copolymer (D) has a ratio of units derived from a crosslinking agent and/or a graft crosslinking agent in the copolymer (B) of 0.03 to 0.3 mass% in a total of 100 mass% of (meth)acrylic acid ester (Ba) units and units derived from a crosslinking agent.

[9] [1]ないし[8]のいずれかにおいて、前記共重合体(A)の体積平均粒子径が50~800nmで、前記コア-シェル型粒子(C)の体積平均粒子径が60~820nmである、グラフト共重合体(D)。 [9] In any one of [1] to [8], the graft copolymer (D) has a volume average particle diameter of 50 to 800 nm and the core-shell type particles (C) have a volume average particle diameter of 60 to 820 nm.

[10] [1]ないし[9]のいずれかにおいて、前記ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、該ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率が40~90質量%で、シアン化ビニル系単量体の含有率が10~60質量%である、グラフト共重合体(D)。 [10] In any one of [1] to [9], the vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the content of the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) is 40 to 90 mass %, and the content of the vinyl cyanide monomer is 10 to 60 mass %. Graft copolymer (D).

[11] [1]ないし[10]のいずれかにおいて、前記コア-シェル型粒子(C)と前記ビニル系単量体混合物(m3)との合計100質量%に対する該コア-シェル型粒子(C)の割合が50~80質量%で、該ビニル系単量体混合物(m3)の割合が20~50質量%で、グラフト率が25~100%である、グラフト共重合体(D)。 [11] In any one of [1] to [10], the ratio of the core-shell type particles (C) to the total of the core-shell type particles (C) and the vinyl monomer mixture (m3) is 50 to 80 mass%, the ratio of the vinyl monomer mixture (m3) is 20 to 50 mass%, and the graft ratio is 25 to 100%.

[12] [1]ないし[11]のいずれかに記載のグラフト共重合体(D)を含む熱可塑性樹脂組成物。 [12] A thermoplastic resin composition containing the graft copolymer (D) described in any one of [1] to [11].

[13] [12]において、前記グラフト共重合体(D)と、ビニル系単量体混合物(m4)を重合して得られる共重合体(E)とを含む、熱可塑性樹脂組成物。 [13] In [12], a thermoplastic resin composition comprising the graft copolymer (D) and a copolymer (E) obtained by polymerizing a vinyl monomer mixture (m4).

[14] [13]において、前記ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、前記ビニル系単量体混合物(m4)が該ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造の芳香族ビニル系単量体と、該ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造のシアン化ビニル系単量体を含む、熱可塑性樹脂組成物。 [14] In the thermoplastic resin composition of [13], the vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the vinyl monomer mixture (m4) contains an aromatic vinyl monomer having the same structure as the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) and a vinyl cyanide monomer having the same structure as the vinyl cyanide monomer contained in the vinyl monomer mixture (m3).

[15] [13]又は[14]において、前記グラフト共重合体(D)と前記共重合体(E)との合計100質量%中に該グラフト共重合体(D)を10~50質量%、該共重合体(E)を50~90質量%含む、熱可塑性樹脂組成物。 [15] In the thermoplastic resin composition of [13] or [14], the graft copolymer (D) is present in an amount of 10 to 50% by mass, and the copolymer (E) is present in an amount of 50 to 90% by mass, with the total amount of the graft copolymer (D) and the copolymer (E) being 100% by mass.

[16] [12]ないし[15]のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。 [16] A molded article obtained by molding a thermoplastic resin composition according to any one of [12] to [15].

本発明によれば、成形外観と耐衝撃性に優れ、流動性、更には成形外観の射出速度依存性にも優れる熱可塑性樹脂組成物およびその成形品が提供される。 The present invention provides a thermoplastic resin composition and molded products thereof that are excellent in molded appearance and impact resistance, and also in fluidity and the injection speed dependency of molded appearance.

以下に本発明の実施の形態を詳細に説明する。
なお、本発明において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の一方又は双方を意味するものであり、「(メタ)アクリレート」についても同様である。
また、「単位」とは、重合体中に含まれる、重合前の化合物(単量体、即ちモノマー)に由来する構造部分を意味し、例えば、「(メタ)アクリル酸エステル(Aa)単位」とは「(メタ)アクリル酸エステル(Aa)に由来してコア-シェル型粒子(C)のコア部である共重合体(A)中に含まれる構造部分」を意味する。重合体の各単量体単位の含有割合は、当該重合体の製造に用いた単量体混合物中の該単量体の含有割合に該当する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the preferred embodiments.
In the present invention, "(meth)acrylic acid" means one or both of "acrylic acid" and "methacrylic acid", and the same applies to "(meth)acrylate".
Further, the term "unit" refers to a structural portion contained in a polymer and derived from a compound (monomer) before polymerization, for example, "(meth)acrylic acid ester (Aa) unit" refers to "a structural portion derived from (meth)acrylic acid ester (Aa) and contained in copolymer (A) which is the core portion of core-shell type particle (C)." The content ratio of each monomer unit in a polymer corresponds to the content ratio of the monomer in the monomer mixture used in the production of the polymer.

[グラフト共重合体(D)]
本発明のグラフト共重合体(D)は、(メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)であって、共重合体(A)の膨潤度が7~15倍で、コア-シェル型粒子(C)の膨潤度が5~12倍で、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より大きいコア-シェル型粒子(C)(以下、「本発明のコア-シェル型粒子(C)」と称す場合がある。)の存在下に、ビニル系単量体混合物(m3)を重合して得られるものである。
[Graft Copolymer (D)]
The graft copolymer (D) of the present invention is a core-shell type particle (C) having a core portion made of a copolymer (A) obtained by polymerizing a vinyl-based monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms, and a shell portion made of a copolymer (B) obtained by polymerizing a vinyl-based monomer mixture (m2) containing a (meth)acrylic acid ester (Ba), and is obtained by polymerizing a vinyl-based monomer mixture (m3) in the presence of a core-shell type particle (C) (hereinafter sometimes referred to as "the core-shell type particle (C) of the present invention") in which the swelling degree of the copolymer (A) is 7 to 15 times, the swelling degree of the core-shell type particle (C) is 5 to 12 times, and the swelling degree of the copolymer (A) is greater than that of the core-shell type particle (C).

<メカニズム>
本発明のグラフト共重合体(D)は、ゴム粒子として特定のコア-シェル型粒子(C)を用いることを特徴とするものであり、特にコア-シェル型粒子(C)のコア部を構成する共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より大きいことで、成形品の耐衝撃性と成形外観を両立することができる。
すなわち、ゴム粒子内部に架橋密度の分布ができることで、熱可塑性樹脂組成物に外力が加わった際に、ゴム粒子内で架橋密度の低い、コア部である共重合体(A)に応力が集中し、共重合体(A)の変形により衝撃を吸収する。このとき、コア部の共重合体(A)よりもコア-シェル型粒子(C)の方が膨潤度が小さい、すなわちシェル部である共重合体(B)が共重合体(A)より架橋密度が高いため、シェル部に応力が集中しにくく、このシェル部はコア-シェル型粒子(C)の大変形抑制に寄与する。コア-シェル型粒子(C)の大変形抑制は、成形外観向上に重要である。
コア-シェル型粒子(C)の方が共重合体(A)よりも膨潤度が低い、すなわちシェル部である共重合体(B)の方がコア部である共重合体(A)よりも架橋密度が小さいと、応力がシェル部に集中するため、コア-シェル型粒子の大変形を抑制できない。
したがって、耐衝撃性と成形外観の両立には、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より大きいことが重要である。
<Mechanism>
The graft copolymer (D) of the present invention is characterized in that it uses specific core-shell type particles (C) as rubber particles. In particular, the degree of swelling of the copolymer (A) constituting the core of the core-shell type particles (C) is greater than the degree of swelling of the core-shell type particles (C), so that the impact resistance and the appearance of the molded article can be compatible.
That is, by forming a distribution of crosslink density inside the rubber particle, when an external force is applied to the thermoplastic resin composition, stress is concentrated on the copolymer (A) which is the core part and has a low crosslink density in the rubber particle, and the deformation of the copolymer (A) absorbs the impact. At this time, the swelling degree of the core-shell type particle (C) is smaller than that of the copolymer (A) which is the core part, that is, the crosslink density of the copolymer (B) which is the shell part is higher than that of the copolymer (A), so that stress is less likely to be concentrated on the shell part, and this shell part contributes to suppression of large deformation of the core-shell type particle (C). Suppression of large deformation of the core-shell type particle (C) is important for improving the appearance of the molded product.
If the core-shell particle (C) has a lower swelling degree than the copolymer (A), that is, if the shell portion of the copolymer (B) has a lower crosslink density than the core portion of the copolymer (A), stress is concentrated in the shell portion, making it impossible to suppress large deformation of the core-shell particle.
Therefore, in order to achieve both impact resistance and good molded appearance, it is important that the degree of swelling of the copolymer (A) is greater than the degree of swelling of the core-shell particles (C).

<コア-シェル型粒子(C)>
本発明のコア-シェル型粒子(C)は、(メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)がコア部を構成し、(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)がシェル部を構成する。
<Core-shell type particles (C)>
In the core-shell type particle (C) of the present invention, a copolymer (A) obtained by polymerizing a vinyl-based monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms constitutes a core portion, and a copolymer (B) obtained by polymerizing a vinyl-based monomer mixture (m2) containing a (meth)acrylic acid ester (Ba) constitutes a shell portion.

(共重合体(A))
共重合体(A)は、(メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる。
(Copolymer (A))
The copolymer (A) is obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms.

(メタ)アクリル酸エステル(Aa)としては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステルが好ましい。中でも、得られる熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが特に好ましい。(メタ)アクリル酸エステル(Aa)は、1種でまたは2種以上を組み合わせて使用できる。 As the (meth)acrylic acid ester (Aa), a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 12 carbon atoms is preferred. Among these, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are particularly preferred because the resulting thermoplastic resin composition has excellent impact resistance. The (meth)acrylic acid ester (Aa) can be used alone or in combination of two or more kinds.

共重合体(A)は、(メタ)アクリル酸エステル(Aa)以外に、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体であることが好ましく、共重合体(A)がグラフト交叉剤および/又は架橋剤に由来する単位を含むことでは、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性をより一層改善する効果が奏される。 The copolymer (A) is preferably a copolymer having, in addition to the (meth)acrylic acid ester (Aa), either or both of units derived from a crosslinking agent and units derived from a graft crosslinking agent. When the copolymer (A) contains units derived from a graft crosslinking agent and/or a crosslinking agent, the molded appearance and impact resistance of the resulting thermoplastic resin composition are further improved.

グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 Graft crosslinking agents include allyl compounds, specifically allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, etc. These may be used alone or in combination of two or more.

架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 The crosslinking agent may be a dimethacrylate compound, specific examples of which include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, and 1,4-butylene glycol dimethacrylate. These may be used alone or in combination of two or more.

架橋剤および/又はグラフト交叉剤を用いる場合、共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合は、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性が優れることから、(メタ)アクリル酸エステル(Aa)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.05~0.3質量%が好ましく、0.08~0.24質量%がより好ましい。 When a crosslinking agent and/or a graft crosslinking agent is used, the proportion of units derived from the crosslinking agent and/or the graft crosslinking agent in the copolymer (A) is preferably 0.05 to 0.3 mass%, more preferably 0.08 to 0.24 mass%, based on 100 mass% of the total of the (meth)acrylic acid ester (Aa) units and the units derived from the crosslinking agent and/or the units derived from the graft crosslinking agent, since the resulting thermoplastic resin composition has excellent molded appearance and impact resistance.

なお、共重合体(A)は、本発明の目的を損なわない範囲で、(メタ)アクリル酸エステル(Aa)単位、必要に応じて用いられる架橋剤および/又はグラフト交叉剤に由来する単位以外のその他の単量体単位を含んでいてもよい。共重合体(A)に含まれていてもよいその他の単量体単位としては、後述のビニル系単量体混合物(m3)に含まれる(メタ)アクリル酸エステル(Aa)以外のビニル系単量体単位の1種又は2種以上が挙げられるが、本発明の効果を有効に得る上で、これらのその他のビニル系単量体単位の含有量は、共重合体(A)100質量%中20質量%以下、特に10質量%以下であることが好ましい。 The copolymer (A) may contain other monomer units other than the (meth)acrylic acid ester (Aa) units and the units derived from the crosslinking agent and/or graft crosslinking agent used as necessary, within the scope of the present invention. Examples of other monomer units that may be contained in the copolymer (A) include one or more vinyl monomer units other than the (meth)acrylic acid ester (Aa) contained in the vinyl monomer mixture (m3) described below. In order to effectively obtain the effects of the present invention, it is preferable that the content of these other vinyl monomer units is 20% by mass or less, particularly 10% by mass or less, based on 100% by mass of the copolymer (A).

共重合体(A)の製造方法としては、(メタ)アクリル酸エステル(Aa)及び特定の疎水性物質(Ab)と、必要に応じて架橋剤および/又はグラフト交叉剤とを含むビニル系単量体混合物(m1)を乳化重合、またはミニエマルション重合させる方法が好ましく、得られる熱可塑性樹脂組成物の物性が優れることからミニエマルション重合させる方法が特に好ましい。 The method for producing the copolymer (A) is preferably a method of emulsion polymerization or mini-emulsion polymerization of a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a specific hydrophobic substance (Ab), and optionally a crosslinking agent and/or a graft crosslinking agent, and the mini-emulsion polymerization method is particularly preferred because the resulting thermoplastic resin composition has excellent physical properties.

共重合体(A)を製造するミニエマルション重合は、これに限定されるものではないが、例えば、(メタ)アクリル酸エステル(Aa)と、架橋剤および/又はグラフト交叉剤と、特定の疎水性物質(Ab)と、開始剤とを混合し、得られた混合物に水と、乳化剤とを加え、せん断力を付与してプレエマルション(ミニエマルション)を作製する工程、並びにこの混合物を重合開始温度まで加熱して重合させる工程を含むことができる。 The mini-emulsion polymerization for producing the copolymer (A) can include, but is not limited to, for example, a process of mixing a (meth)acrylic acid ester (Aa), a crosslinking agent and/or a graft crosslinking agent, a specific hydrophobic substance (Ab), and an initiator, adding water and an emulsifier to the resulting mixture, and applying shear force to prepare a pre-emulsion (mini-emulsion), as well as a process of heating the mixture to a polymerization initiation temperature to polymerize it.

ミニエマルション化の工程では、例えば、超音波照射による剪断工程を実施することにより、前記剪断力によりモノマーが引きちぎられ、乳化剤に覆われたモノマー微小油滴が形成される。その後、開始剤の重合開始温度まで加熱することにより、モノマー微小油滴をそのまま重合し、高分子微粒子が得られる。ミニエマルションを形成させるための剪断力を加える方法は公知の任意の方法を用いることができ、ミニエマルションを形成できる高剪断装置としては、これらに限定されるものではないが、例えば、高圧ポンプおよび相互作用チャンバーからなる乳化装置、超音波エネルギーや高周波によりミニエマルションを形成させる装置等がある。高圧ポンプおよび相互作用チャンバーからなる乳化装置としては、例えば、SPX Corporation APV社製「圧力式ホモジナイザー」、(株)パウレック製「マイクロフルイダイザー」等が挙げられ、超音波エネルギーや高周波によりミニエマルションを形成させる装置としては、例えば、Fisher Scient製「ソニックディスメンブレーター」や(株)日本精機製作所製「ULTRASONIC HOMOGENIZER」等が挙げられるがこれらに限定されるものではない。 In the mini-emulsion process, for example, a shearing process is carried out by ultrasonic irradiation, whereby the monomer is torn off by the shearing force, and monomer micro-oil droplets covered with emulsifier are formed. The monomer micro-oil droplets are then polymerized as they are by heating to the polymerization initiation temperature of the initiator, and polymer microparticles are obtained. Any known method can be used to apply shear force to form a mini-emulsion, and examples of high shear devices capable of forming a mini-emulsion include, but are not limited to, an emulsification device consisting of a high-pressure pump and an interaction chamber, and a device that forms a mini-emulsion using ultrasonic energy or high frequency. Examples of emulsification devices consisting of a high-pressure pump and an interaction chamber include the "Pressure Homogenizer" manufactured by SPX Corporation APV and the "Microfluidizer" manufactured by Powrex Corporation, and examples of devices that form mini-emulsions using ultrasonic energy or high frequency include the "Sonic Dismembrator" manufactured by Fisher Scientific and the "ULTRASONIC HOMOGENIZER" manufactured by Nippon Seiki Seisakusho Co., Ltd., but are not limited to these.

なお、ミニエマルション化の際の水溶媒の使用量は、作業性、安定性、製造性等の観点から、重合後の反応系の固形分濃度が5~50質量%程度となるように、水以外の混合物100質量部に対して100~500質量部程度とすることが好ましい。 From the viewpoints of workability, stability, manufacturability, etc., the amount of water solvent used during mini-emulsion is preferably about 100 to 500 parts by mass per 100 parts by mass of the mixture other than water, so that the solids concentration of the reaction system after polymerization is about 5 to 50% by mass.

本発明では、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)が必須成分である。この特定の疎水性炭化水素基を有する疎水性物質(Ab)を用いることで、ミニエマルションの製造安定性を向上させることができる。また、疎水性物質(Ab)を用いることで、共重合体(A)の粒子径制御を容易に行うことができるようになり、耐衝撃性に優位に働く粒子径を選択することで得られる熱可塑性樹脂組成物の耐衝撃性を高めることができる。 In the present invention, a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group, and a cycloalkyl group having 12 or more carbon atoms is an essential component. By using the hydrophobic substance (Ab) having this specific hydrophobic hydrocarbon group, the production stability of the mini-emulsion can be improved. In addition, by using the hydrophobic substance (Ab), it becomes possible to easily control the particle size of the copolymer (A), and by selecting a particle size that has an advantageous effect on impact resistance, the impact resistance of the resulting thermoplastic resin composition can be improved.

本発明で用いる疎水性物質(Ab)の疎水性の程度は、1-オクタノールに対する濃度〔c1〕と水に対する濃度〔c2〕の比〔c1/c2〕で表される分配係数〔P〕の対数〔logP〕値で表すことができ、本発明で用いる疎水性物質(Ab)の分配係数〔P〕の対数〔logP〕値は6.0以上であることが好ましい。 The degree of hydrophobicity of the hydrophobic substance (Ab) used in the present invention can be expressed by the logarithm [logP] value of the partition coefficient [P], which is expressed as the ratio [c1/c2] of the concentration [c1] in 1-octanol to the concentration [c2] in water, and it is preferable that the logarithm [logP] value of the partition coefficient [P] of the hydrophobic substance (Ab) used in the present invention is 6.0 or more.

分配係数〔P〕の対数〔logP〕値が6以上ある疎水性物質としては、重合不可能な疎水性化合物として、例えば炭素数12以上の炭化水素類、炭素数12以上のアルコール類、疎水性モノマーとして、例えば、炭素数14~30のアルコールのビニルエステル、炭素数14~30のアルコールのビニルエーテル、炭素数15~30(好ましくは炭素数15~22)のカルボン酸ビニルエステル、炭素数20~40のp-アルキルスチレン、疎水性の連鎖移動剤等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of hydrophobic substances having a logarithm [logP] value of the partition coefficient [P] of 6 or more include non-polymerizable hydrophobic compounds such as hydrocarbons having 12 or more carbon atoms and alcohols having 12 or more carbon atoms, and hydrophobic monomers such as vinyl esters of alcohols having 14 to 30 carbon atoms, vinyl ethers of alcohols having 14 to 30 carbon atoms, vinyl esters of carboxylic acids having 15 to 30 carbon atoms (preferably 15 to 22 carbon atoms), p-alkylstyrenes having 20 to 40 carbon atoms, and hydrophobic chain transfer agents. These may be used alone or in combination of two or more.

本発明で用いる疎水性物質(Ab)としては、具体的には、テトラデカン(logP:6.3)、ペンタデカン(logP:7.7)、ヘキサデカン(logP:8.3)、ヘプタデカン(logP:8.8)、オクタデカン(logP:9.3)、イコサン(logP:10.4)、流動パラフィン(logP>6.0)、流動イソパラフィン(logP>6.0)、パラフィンワックス(logP>6.0)、ポリエチレンワックス(logP>6.0)、オリーブ油(logP>6.0)、セチルアルコール(logP:6.7)、ステアリルアルコール(logP:8.2)、アクリル酸ステアリル(logP:7.7)、メタクリル酸ステアリル(logP:9.6)等が挙げられる。 Specific examples of the hydrophobic substance (Ab) used in the present invention include tetradecane (log P: 6.3), pentadecane (log P: 7.7), hexadecane (log P: 8.3), heptadecane (log P: 8.8), octadecane (log P: 9.3), icosane (log P: 10.4), liquid paraffin (log P > 6.0), liquid isoparaffin (log P > 6.0), paraffin wax (log P > 6.0), polyethylene wax (log P > 6.0), olive oil (log P > 6.0), cetyl alcohol (log P: 6.7), stearyl alcohol (log P: 8.2), stearyl acrylate (log P: 7.7), stearyl methacrylate (log P: 9.6), etc.

これらの疎水性物質(Ab)を用いることにより、オストワルド熟成による粒径の不均一性の増大を抑制し、単分散な共重合体(A)を合成することが可能となり、この共重合体(A)を含むコア-シェル型粒子(C)を用いて熱可塑性樹脂組成物の耐衝撃性の改善に有効なグラフト共重合体(D)を得ることができる。 By using these hydrophobic substances (Ab), it is possible to suppress the increase in particle size non-uniformity caused by Ostwald ripening and synthesize a monodisperse copolymer (A). Using core-shell type particles (C) containing this copolymer (A), it is possible to obtain a graft copolymer (D) that is effective in improving the impact resistance of a thermoplastic resin composition.

疎水性物質(Ab)は、(メタ)アクリル酸エステル(Aa)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対し、好ましくは0.1~10質量部、より好ましくは0.5~3質量部用いることが、共重合体(A)の粒子径制御の点で好ましい。 From the viewpoint of particle size control of the copolymer (A), it is preferable to use 0.1 to 10 parts by mass, and more preferably 0.5 to 3 parts by mass, of the hydrophobic substance (Ab) per 100 parts by mass of the (meth)acrylic acid ester (Aa) and the crosslinking agent and/or graft crosslinking agent combined.

共重合体(A)を製造する際に用いる乳化剤としては、オレイン酸、パルミチン酸、ステアリン酸、ロジン酸のアルカリ金属塩、アルケニルコハク酸のアルカリ金属塩等で例示されるカルボン酸系の乳化剤、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどの中から選ばれるアニオン系乳化剤等、公知の乳化剤を単独または2種以上を組み合わせて使用することができる。 The emulsifier used in producing the copolymer (A) may be a carboxylic acid-based emulsifier, such as an alkali metal salt of oleic acid, palmitic acid, stearic acid, or rosin acid, or an alkali metal salt of alkenyl succinic acid, or an anionic emulsifier selected from alkyl sulfates, sodium alkylbenzene sulfonates, sodium alkyl sulfosuccinates, sodium polyoxyethylene nonylphenyl ether sulfates, or the like. Known emulsifiers may be used alone or in combination of two or more.

乳化剤の添加量としては、(メタ)アクリル酸エステル(Aa)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対し、0.01~3.0質量部が好ましく、さらに好ましくは0.05~1.5質量部であることが、共重合体(A)の粒子径制御の点で好ましい。 The amount of emulsifier added is preferably 0.01 to 3.0 parts by mass, and more preferably 0.05 to 1.5 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester (Aa) and the crosslinking agent and/or graft crosslinking agent in terms of particle size control of the copolymer (A).

共重合体(A)の製造に用いられる開始剤はラジカル重合するためのラジカル重合開始剤であり、その種類に特に制限はないが、例えば、アゾ重合開始剤、光重合開始剤、無機過酸化物、有機過酸化物、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらのうち、加熱により重合を開始できるアゾ重合開始剤、無機過酸化物、有機過酸化物、レドックス系開始剤が好ましい。これらは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The initiator used in the production of copolymer (A) is a radical polymerization initiator for radical polymerization. There are no particular limitations on the type, but examples include azo polymerization initiators, photopolymerization initiators, inorganic peroxides, organic peroxides, and redox initiators that combine organic peroxides with transition metals and reducing agents. Of these, azo polymerization initiators, inorganic peroxides, organic peroxides, and redox initiators that can initiate polymerization by heating are preferred. These may be used alone or in combination of two or more.

アゾ重合開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]フォルムアミド、4,4’-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル1,1’-アゾビス(1-シクヘキサンカルボキシレート)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2,4,4-トリメチルペンタン)等が挙げられる。 Examples of azo polymerization initiators include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl)azo]formamide, 4,4'-azobis(4-cyanovaleric acid), dimethyl 2,2'-azobis( 2-methylpropionate), dimethyl 1,1'-azobis(1-cyclohexanecarboxylate), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis(N-butyl-2-methylpropionamide), 2,2'-azobis(N-cyclohexyl-2-methylpropionamide), 2,2'-azobis[2-(2-imidazolin-2-yl)propane], 2,2'-azobis(2,4,4-trimethylpentane), etc.

無機過酸化物としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素等が挙げられる。 Examples of inorganic peroxides include potassium persulfate, sodium persulfate, ammonium persulfate, and hydrogen peroxide.

有機過酸化物としては、例えばペルオキシエステル化合物が挙げられ、その具体例としては、α,α’-ビス(ネオデカノイルペルオキシ)ジイソプロピルベンゼン、クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルペルオキシネオデカノエート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルペルオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシイソブチレート、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシマレイックアシッド、t-ブチルペルオキシ3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルペルオキシ)ヘキサン、t-ブチルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルペルオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルペルオキシ)ヘキサン、t-ブチルペルオキシアセテート、t-ブチルペルオキシ-m-トルオイルベンゾエート、t-ブチルペルオキシベンゾエート、ビス(t-ブチルペルオキシ)イソフタレート、1,1-ビス(t-ヘキシルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロドデカン、2,2-ビス(t-ブチルペルオキシ)ブタン、n-ブチル4,4-ビス(t-ブチルペルオキシ)バレレート、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、α,α’-ビス(t-ブチルペルオキシド)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、t-ブチルクミルペルオキシド、ジ-t-ブチルペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、ジラウロイルペルオキシド、ジイソノナノイルペルオキシド、t-ブチルヒドロペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、ジメチルビス(t-ブチルペルオキシ)-3-ヘキシン、ビス(t-ブチルペルオキシイソプロピル)ベンゼン、ビス(t-ブチルペルオキシ)トリメチルシクロヘキサン、ブチル-ビス(t-ブチルペルオキシ)バレラート、2-エチルヘキサンペルオキシ酸t-ブチル、ジベンゾイルペルオキシド、パラメンタンハイドロペルオキシドおよびt-ブチルペルオキシベンゾエート等が挙げられる。 Examples of organic peroxides include peroxyester compounds, and specific examples thereof include α,α'-bis(neodecanoylperoxy)diisopropylbenzene, cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane, 1-cyclohexyl-1-methylethyl peroxy-2-ethylhexanoate, ester, t-hexylperoxy 2-hexylhexanoate, t-butylperoxy 2-hexylhexanoate, t-butylperoxy isobutyrate, t-hexylperoxy isopropyl monocarbonate, t-butylperoxy maleic acid, t-butylperoxy 3,5,5-trimethylhexanoate, t-butylperoxy laurate, 2,5-dimethyl-2,5-bis(m-toluoylperoxy)hexane, t-butylperoxy isopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis(benzoylperoxy)hexane, t-butylperoxy acetate, t-butylperoxy-m-toluoylbenzoate benzoate, t-butylperoxybenzoate, bis(t-butylperoxy)isophthalate, 1,1-bis(t-hexylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)cyclododecane, 2,2-bis(t-butylperoxy)butane, n-butyl 4,4-bis(t-butylperoxy)valerate, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, α,α'-bis(t-butylperoxy)diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl Examples of such peroxy compounds include 2,5-bis(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, dilauroyl peroxide, diisononanoyl peroxide, t-butyl hydroperoxide, benzoyl peroxide, lauroyl peroxide, dimethylbis(t-butylperoxy)-3-hexyne, bis(t-butylperoxyisopropyl)benzene, bis(t-butylperoxy)trimethylcyclohexane, butyl-bis(t-butylperoxy)valerate, 2-ethylhexaneperoxy acid t-butyl, dibenzoyl peroxide, paramenthane hydroperoxide, and t-butyl peroxybenzoate.

レドックス系開始剤としては、有機過酸化物と硫酸第一鉄、キレート剤および還元剤を組み合わせたものが好ましい。例えば、クメンヒドロペルオキシド、硫酸第一鉄、ピロリン酸ナトリウム、およびデキストロースからなるものや、t-ブチルヒドロペルオキシド、ナトリウムホルムアルデヒトスルホキシレート(ロンガリット)、硫酸第一鉄、およびエチレンジアミン四酢酸二ナトリウムを組み合わせたもの等が挙げられる。 Redox initiators that are preferred are those that combine an organic peroxide with ferrous sulfate, a chelating agent, and a reducing agent. Examples include those that consist of cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose, and those that combine t-butyl hydroperoxide, sodium formaldehyde sulfoxylate (Rongalit), ferrous sulfate, and disodium ethylenediaminetetraacetate.

開始剤としては、これらのうち、特に有機過酸化物が好ましい。 Of these, organic peroxides are particularly preferred as initiators.

開始剤の添加量としては、(メタ)アクリル酸エステル(Aa)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対して通常5質量部以下、好ましくは3質量部以下、例えば0.001~3質量部である。 The amount of initiator added is usually 5 parts by mass or less, preferably 3 parts by mass or less, for example 0.001 to 3 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester (Aa) and the crosslinking agent and/or graft crosslinking agent combined.

上記のプレエマルションを調製する工程は通常常温(10~50℃程度)で行われ、ミニエマルション重合の工程は40~100℃で30~600分程度行われる。 The process for preparing the above pre-emulsion is usually carried out at room temperature (approximately 10 to 50°C), and the mini-emulsion polymerization process is carried out at 40 to 100°C for approximately 30 to 600 minutes.

水性分散体に分散している共重合体(A)の平均粒子径は、得られる成形品の物性が優れることから、50~800nmが好ましく、100~600nmがより好ましく、250~450nmがさらに好ましい。
共重合体(A)の平均粒子径を制御する方法として、特に制限されないが、乳化剤の種類または使用量を調整する方法が挙げられる。
なお、ここで共重合体(A)の平均粒子径及び後述のコア-シェル型粒子(C)の平均粒子径とは、後述の実施例の項に記載される方法で測定される体積平均粒子径である。
The average particle size of the copolymer (A) dispersed in the aqueous dispersion is preferably from 50 to 800 nm, more preferably from 100 to 600 nm, and even more preferably from 250 to 450 nm, in order to provide excellent physical properties for the resulting molded article.
The method for controlling the average particle size of the copolymer (A) is not particularly limited, but includes a method of adjusting the type or amount of an emulsifier used.
The average particle size of the copolymer (A) and the average particle size of the core-shell type particles (C) described below are volume average particle sizes measured by the method described in the Examples section below.

本発明において、共重合体(A)の膨潤度は、得られる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、7~15倍であり、好ましくは7.5~12倍である。
共重合体(A)の膨潤度が7倍を下回ると得られる熱可塑性樹脂組成物の耐衝撃性が劣るものとなり、15倍を超えると成形外観に劣るものとなる。
共重合体(A)の膨潤度は共重合体(A)を製造する際の架橋剤および/又はグラフト交叉剤の使用量により調整することができ、架橋剤および/又はグラフト交叉剤の使用量を多くすることで架橋密度を上げて膨潤度を小さく、架橋剤および/又はグラフト交叉剤の使用量を少なくすることで架橋密度を下げて膨潤度を大きくすることができる。
なお、共重合体(A)の膨潤度及び後述のコア-シェル型粒子(C)の膨潤度は、後述の実施例の項に記載される方法で測定される。
In the present invention, the swelling degree of the copolymer (A) is from 7 to 15 times, preferably from 7.5 to 12 times, in order that the impact resistance and molded appearance of the resulting thermoplastic resin composition are excellent.
If the swelling degree of the copolymer (A) is less than 7 times, the impact resistance of the resulting thermoplastic resin composition will be poor, whereas if it exceeds 15 times, the appearance of the molded product will be poor.
The swelling degree of copolymer (A) can be adjusted by the amount of crosslinking agent and/or graft crosslinking agent used in producing copolymer (A). By increasing the amount of crosslinking agent and/or graft crosslinking agent used, the crosslink density can be increased and the swelling degree can be decreased, whereas by decreasing the amount of crosslinking agent and/or graft crosslinking agent used, the crosslink density can be decreased and the swelling degree can be increased.
The swelling degree of the copolymer (A) and the swelling degree of the core-shell type particles (C) described later are measured by the method described in the Examples section below.

(共重合体(B))
共重合体(B)は(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体である。共重合体(B)は、(メタ)アクリル酸エステル(Aa)と前述の疎水性物質(Ab)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部を被包する外殻としてのシェル部を構成するものである。従って、例えば共重合体(A)の存在下にビニル系単量体混合物(m2)を重合することで、コア部が共重合体(A)で、シェル部が共重合体(B)である本発明のコア-シェル型粒子(C)を得ることができる。
(Copolymer (B))
The copolymer (B) is a copolymer obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (Ba). The copolymer (B) constitutes a shell portion as an outer shell encapsulating a core portion made of the copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and the above-mentioned hydrophobic substance (Ab). Therefore, for example, by polymerizing the vinyl monomer mixture (m2) in the presence of the copolymer (A), the core-shell type particle (C) of the present invention in which the core portion is the copolymer (A) and the shell portion is the copolymer (B) can be obtained.

ビニル系単量体混合物(m2)に含まれる(メタ)アクリル酸エステル(Ba)としては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステルが好ましい。中でも、得られる熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが特に好ましい。(メタ)アクリル酸エステル(Ba)は、1種でまたは2種以上を組み合わせて使用できる。 As the (meth)acrylic acid ester (Ba) contained in the vinyl monomer mixture (m2), a (meth)acrylic acid alkyl ester having an alkyl group with 1 to 12 carbon atoms is preferred. Among these, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are particularly preferred because the resulting thermoplastic resin composition has excellent impact resistance. The (meth)acrylic acid ester (Ba) can be used alone or in combination of two or more.

共重合体(B)は、(メタ)アクリル酸エステル(Ba)以外に、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体であることが好ましく、共重合体(B)がグラフト交叉剤および/又は架橋剤に由来する単位を含むことでは、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性をより一層改善する効果が奏される。 The copolymer (B) is preferably a copolymer having, in addition to the (meth)acrylic acid ester (Ba), either or both of units derived from a crosslinking agent and units derived from a graft crosslinking agent. When the copolymer (B) contains units derived from a graft crosslinking agent and/or a crosslinking agent, the molded appearance and impact resistance of the resulting thermoplastic resin composition are further improved.

グラフト交叉剤、架橋剤としては、共重合体(A)に用いるグラフト交叉剤、架橋剤として例示したものを用いることができる。 As the graft crosslinking agent and crosslinking agent, those exemplified as the graft crosslinking agent and crosslinking agent used in copolymer (A) can be used.

架橋剤および/又はグラフト交叉剤を用いる場合、共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合は、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性が優れることから、(メタ)アクリル酸エステル(Ba)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.03~0.3質量%が好ましく、0.05~0.25質量%がより好ましい。 When a crosslinking agent and/or a graft crosslinking agent is used, the ratio of units derived from the crosslinking agent and/or the graft crosslinking agent in the copolymer (B) is preferably 0.03 to 0.3 mass%, more preferably 0.05 to 0.25 mass%, based on 100 mass% of the total of the (meth)acrylic acid ester (Ba) units and the units derived from the crosslinking agent and/or the units derived from the graft crosslinking agent, since the resulting thermoplastic resin composition has excellent molded appearance and impact resistance.

なお、共重合体(B)は、本発明の目的を損なわない範囲で、(メタ)アクリル酸エステル(Ba)単位、必要に応じて用いられる架橋剤および/又はグラフト交叉剤に由来する単位以外のその他の単量体単位を含んでいてもよい。共重合体(B)に含まれていてもよいその他の単量体単位としては、後述のビニル系単量体混合物(m3)に含まれる(メタ)アクリル酸エステル(Ba)以外のビニル系単量体単位の1種又は2種以上が挙げられるが、本発明の効果を有効に得る上で、これらのその他のビニル系単量体単位の含有量は、共重合体(B)100質量%中20質量%以下、特に10質量%以下であることが好ましい。 The copolymer (B) may contain other monomer units other than the (meth)acrylic acid ester (Ba) units and the units derived from the crosslinking agent and/or graft crosslinking agent used as necessary, within the scope of the present invention. Examples of other monomer units that may be contained in the copolymer (B) include one or more vinyl monomer units other than the (meth)acrylic acid ester (Ba) contained in the vinyl monomer mixture (m3) described below. In order to effectively obtain the effects of the present invention, it is preferable that the content of these other vinyl monomer units is 20% by mass or less, particularly 10% by mass or less, based on 100% by mass of the copolymer (B).

(コア-シェル型粒子(C))
コア-シェル型粒子(C)の製造方法としては特に制限されないが、共重合体(A)をミニエマルション重合で製造した場合、ビニル系単量体混合物(m2)を用いて乳化重合で製造することが好ましい。
(Core-shell type particles (C))
The method for producing the core-shell type particles (C) is not particularly limited. When the copolymer (A) is produced by mini-emulsion polymerization, it is preferable to produce the core-shell type particles (C) by emulsion polymerization using a vinyl monomer mixture (m2).

乳化重合の方法としては、共重合体(A)のエマルションの存在下に、ビニル系単量体混合物(m2)を一括で、または連続的、または断続的に添加してラジカル重合する方法が挙げられる。また、共重合体(B)の重合の際には、共重合体(B)の分子量調節やグラフト率を制御する目的で連鎖移動剤を使用したり、ラテックスの粘度やpHを調節する目的で公知の無機電解質等を使用したりしてもよい。また、乳化重合においては、各種の乳化剤やラジカル開始剤を必要に応じて使用することができる。 As a method of emulsion polymerization, a method of radical polymerization in which a vinyl monomer mixture (m2) is added all at once, continuously, or intermittently in the presence of an emulsion of copolymer (A) can be mentioned. In addition, when polymerizing copolymer (B), a chain transfer agent may be used for the purpose of adjusting the molecular weight or graft ratio of copolymer (B), or a known inorganic electrolyte may be used for the purpose of adjusting the viscosity or pH of the latex. In addition, various emulsifiers and radical initiators can be used in emulsion polymerization as necessary.

乳化剤、ラジカル開始剤の種類や添加量については特に制限されない。また、乳化剤、ラジカル開始剤としては、共重合体(A)の説明において先に例示した乳化剤、ラジカル開始剤が挙げられる。 There are no particular limitations on the type or amount of emulsifier and radical initiator. Examples of emulsifiers and radical initiators include the emulsifiers and radical initiators exemplified above in the description of copolymer (A).

得られる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れることから、コア-シェル型粒子(C)100質量%中の共重合体(B)の割合は4~40質量%が好ましく、10~30質量%がより好ましい。
また、得られる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れることから、コア-シェル型粒子(C)100質量%中の共重合体(A)は60~96質量%が好ましく、50~95質量%が好ましく、70~90質量%がより好ましい。
In order to obtain a thermoplastic resin composition having excellent impact resistance and molded appearance, the proportion of the copolymer (B) in 100% by mass of the core-shell type particles (C) is preferably from 4 to 40% by mass, and more preferably from 10 to 30% by mass.
In addition, since the obtained thermoplastic resin composition has excellent impact resistance and molded appearance, the content of the copolymer (A) in 100% by mass of the core-shell type particles (C) is preferably 60 to 96% by mass, more preferably 50 to 95% by mass, and more preferably 70 to 90% by mass.

水性分散体に分散しているコア-シェル型粒子(C)の平均粒子径は、得られる成形品の物性が優れることから、60~820nmが好ましく、110~620nmがより好ましく、260~470nmがさらに好ましい。
コア-シェル型粒子(C)の平均粒子径を制御する方法として、特に制限されないが、主として共重合体(A)製造時の乳化剤の種類または使用量を調整する方法が挙げられる。
The average particle size of the core-shell particles (C) dispersed in the aqueous dispersion is preferably from 60 to 820 nm, more preferably from 110 to 620 nm, and even more preferably from 260 to 470 nm, in order to provide excellent physical properties for the resulting molded article.
The method for controlling the average particle size of the core-shell particles (C) is not particularly limited, but mainly includes a method of adjusting the type or amount of an emulsifier used during the production of the copolymer (A).

コア-シェル型粒子(C)の膨潤度は、得られる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、5~12倍であり、好ましくは5.5~11倍である。コア-シェル型粒子(C)の膨潤度が5倍を下回ると得られる熱可塑性樹脂組成物の耐衝撃性に劣り、12倍を超えると成形外観に劣るものとなる。 The swelling degree of the core-shell type particles (C) is 5 to 12 times, and preferably 5.5 to 11 times, because the thermoplastic resin composition obtained has excellent impact resistance and molded appearance. If the swelling degree of the core-shell type particles (C) is less than 5 times, the thermoplastic resin composition obtained has poor impact resistance, and if it exceeds 12 times, the molded appearance is poor.

また、本発明においては、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より大きいことを特徴とし、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度よりも大きいことで成形品の耐衝撃性と成形外観を両立することができる。
前述の通り、膨潤度は架橋剤および/又はグラフト交叉剤の使用量により調整することができる。従って、本発明では、共重合体(A)を製造する際の架橋剤および/又はグラフト交叉剤の使用量よりも、共重合体(B)を製造する際の架橋剤および/又はグラフト交叉剤の使用量を多くして共重合体(B)の架橋密度を共重合体(A)の架橋密度よりも上げることで、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度よりも大きいコア-シェル型粒子(C)とすることができる。
In addition, the present invention is characterized in that the swelling degree of the copolymer (A) is greater than that of the core-shell type particles (C), and by having the swelling degree of the copolymer (A) greater than that of the core-shell type particles (C), both impact resistance and molded appearance of the molded article can be achieved.
As described above, the swelling degree can be adjusted by the amount of the crosslinking agent and/or the graft crosslinking agent used. Therefore, in the present invention, the amount of the crosslinking agent and/or the graft crosslinking agent used in producing the copolymer (B) is made larger than the amount of the crosslinking agent and/or the graft crosslinking agent used in producing the copolymer (A) to increase the crosslink density of the copolymer (B) to be higher than the crosslink density of the copolymer (A), thereby making it possible to obtain the core-shell type particles (C) in which the swelling degree of the copolymer (A) is larger than the swelling degree of the core-shell type particles (C).

共重合体(A)の膨潤度とコア-シェル型粒子(C)の膨潤度との差には特に制限はないが、両者の膨潤度の差は0.9以上であることが好ましく、特に1~3程度であることが好ましい。この差が小さ過ぎると、本発明のように共重合体(A)とコア-シェル型粒子(C)とで膨潤度を調整することによる効果を十分に得ることができず、この差を過度に大きくすることは得られる熱可塑性樹脂組成物の耐衝撃性を低下させる。 There is no particular restriction on the difference between the swelling degree of the copolymer (A) and the swelling degree of the core-shell type particles (C), but the difference between the swelling degrees of the two is preferably 0.9 or more, and particularly preferably about 1 to 3. If this difference is too small, the effect of adjusting the swelling degree between the copolymer (A) and the core-shell type particles (C) as in the present invention cannot be fully obtained, and making this difference too large reduces the impact resistance of the resulting thermoplastic resin composition.

<グラフト共重合体(D)>
グラフト共重合体(D)は、本発明のコア-シェル型粒子(C)の存在下に、ビニル系単量体混合物(m3)をグラフト重合して得られる。
<Graft Copolymer (D)>
The graft copolymer (D) can be obtained by graft polymerizing a vinyl monomer mixture (m3) in the presence of the core-shell particles (C) of the present invention.

ビニル系単量体混合物(m3)は、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の物性が優れることから、芳香族ビニル系単量体とシアン化ビニル系単量体を含むことが好ましい。 The vinyl monomer mixture (m3) preferably contains an aromatic vinyl monomer and a vinyl cyanide monomer, since the thermoplastic resin composition obtained by blending the resulting graft copolymer (D) has excellent physical properties.

ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレンなどが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて使用することができる。芳香族ビニル系単量体の構造に特に制限は無いが、後述のビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体と同じ構造であることが、熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of aromatic vinyl monomers contained in the vinyl monomer mixture (m3) include styrene, α-methylstyrene, o-, m- or p-methylstyrene, vinylxylene, p-t-butylstyrene, ethylstyrene, etc., which may be used alone or in combination of two or more. There are no particular restrictions on the structure of the aromatic vinyl monomer, but it is preferable that the aromatic vinyl monomer has the same structure as the aromatic vinyl monomer contained in the vinyl monomer mixture (m4) described below in terms of the impact resistance and molded appearance of the thermoplastic resin composition and its molded article.

ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率は40~90質量%であることが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、60~80質量%であることがより好ましい。 The content of aromatic vinyl monomers in the vinyl monomer mixture (m3) is preferably 40 to 90% by mass from the viewpoints of the impact resistance and molded appearance of the thermoplastic resin composition containing the resulting graft copolymer (D) and its molded article, and is more preferably 60 to 80% by mass.

ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられ、これらのうちの1種以上を使用できる。シアン化ビニル系単量体の構造に特に制限は無いが、後述のビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) include acrylonitrile and methacrylonitrile, and one or more of these can be used. There are no particular restrictions on the structure of the vinyl cyanide monomer, but it is preferable that the structure be the same as that of the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) described below in terms of the impact resistance and molded appearance of the resulting thermoplastic resin composition and its molded article.

ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体の含有率は10~60質量%であることが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、20~40質量%であることがより好ましい。 The content of the vinyl cyanide monomer in the vinyl monomer mixture (m3) is preferably 10 to 60% by mass from the viewpoints of the impact resistance and molded appearance of the thermoplastic resin composition containing the resulting graft copolymer (D) and its molded article, and is more preferably 20 to 40% by mass.

ビニル系単量体混合物(m3)は、上記の芳香族ビニル系単量体およびシアン化ビニル系単量体と、これらと共重合可能な他のビニル系単量体を含んでいてもよい。
ビニル系単量体混合物(m3)中の共重合可能な他のビニル系単量体の含有量としては20質量%以下、特に10質量%以下が好ましい。
The vinyl monomer mixture (m3) may contain the above-mentioned aromatic vinyl monomer and vinyl cyanide monomer, as well as other vinyl monomers copolymerizable therewith.
The content of other copolymerizable vinyl monomers in the vinyl monomer mixture (m3) is preferably 20% by mass or less, particularly preferably 10% by mass or less.

他のビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸フェニル等のメタクリル酸エステルや、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-tert-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキルマレイミド、N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等のN-アリールマレイミド、N-アラルキルマレイミド等のマレイミド系化合物や、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等のアクリル酸エステル等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 Other vinyl monomers include, for example, methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, and phenyl methacrylate, as well as N-methylmaleimide, N-ethylmaleimide, and the like. Examples of the maleimide-based compounds include N-cycloalkylmaleimides such as N-n-propylmaleimide, N-i-propylmaleimide, N-n-butylmaleimide, N-i-butylmaleimide, N-tert-butylmaleimide, and N-cyclohexylmaleimide; N-arylmaleimides such as N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, and N-chlorophenylmaleimide; and acrylic esters such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. These may be used alone or in combination of two or more.

グラフト共重合体(D)は、コア-シェル型粒子(C)にビニル系単量体混合物(m3)がグラフト重合している。
得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れ、特に成形外観の射出速度依存性を小さくできることから、グラフト共重合体(D)の製造に用いるコア-シェル型粒子(C)及びビニル系単量体混合物(m3)は、グラフト共重合体(D)100質量%中、コア-シェル型粒子(C)が50~80質量%、ビニル系単量体混合物(m3)が20~50質量%であることが好ましい。
The graft copolymer (D) is formed by graft polymerizing a vinyl monomer mixture (m3) onto the core-shell type particles (C).
The thermoplastic resin composition containing the obtained graft copolymer (D) has excellent impact resistance and molded appearance, and in particular, the injection speed dependency of the molded appearance can be reduced. Therefore, the core-shell type particles (C) and the vinyl monomer mixture (m3) used in the production of the graft copolymer (D) preferably contain 50 to 80 mass% of the core-shell type particles (C) and 20 to 50 mass% of the vinyl monomer mixture (m3) in 100 mass% of the graft copolymer (D).

また、グラフト共重合体(D)は、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、グラフト率が25~100%であることが好ましい。グラフト共重合体(D)のグラフト率は、後述の実施例の項に記載の方法で測定される。 The graft copolymer (D) preferably has a graft ratio of 25 to 100%, since the thermoplastic resin composition containing the graft copolymer (D) has excellent impact resistance and molded appearance. The graft ratio of the graft copolymer (D) is measured by the method described in the Examples section below.

グラフト共重合体(D)は、塊状重合法、溶液重合法、塊状懸濁重合法、懸濁重合法、乳化重合法、ミニエマルション重合法等の公知の方法により製造されるが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性が良好なことから乳化重合法が好ましい。 The graft copolymer (D) is produced by known methods such as bulk polymerization, solution polymerization, bulk suspension polymerization, suspension polymerization, emulsion polymerization, and mini-emulsion polymerization. The emulsion polymerization method is preferred because the thermoplastic resin composition containing the resulting graft copolymer (D) has good impact resistance.

乳化グラフト重合の方法としては、コア-シェル型粒子(C)のエマルションの存在下に、ビニル系単量体混合物(m3)を一括で、または連続的、または断続的に添加してラジカル重合する方法が挙げられる。また、グラフト重合の際には、グラフト共重合体(D)の分子量の調節やグラフト率を制御する目的で連鎖移動剤を使用したり、ラテックスの粘度やpHを調節する目的で公知の無機電解質等を使用したりしてもよい。また、乳化グラフト重合においては、各種の乳化剤やラジカル開始剤を必要に応じて使用することができる。
乳化剤、ラジカル開始剤の種類や添加量については特に制限されない。また、乳化剤、ラジカル開始剤としては、共重合体(A)の説明において先に例示した乳化剤、ラジカル開始剤が挙げられる。
The emulsion graft polymerization method may include a method in which the vinyl monomer mixture (m3) is added all at once, continuously, or intermittently in the presence of an emulsion of the core-shell type particles (C) to carry out radical polymerization. In addition, during the graft polymerization, a chain transfer agent may be used for the purpose of adjusting the molecular weight of the graft copolymer (D) or controlling the graft rate, or a known inorganic electrolyte may be used for the purpose of adjusting the viscosity or pH of the latex. In addition, in the emulsion graft polymerization, various emulsifiers and radical initiators may be used as necessary.
The type and amount of the emulsifier and radical initiator are not particularly limited. Examples of the emulsifier and radical initiator include the emulsifiers and radical initiators exemplified above in the description of the copolymer (A).

グラフト共重合体(D)の水性分散体から、グラフト共重合体(D)を回収する方法としては、(i)凝固剤を溶解させた熱水中にグラフト共重合体(D)の水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法)、(ii)加熱雰囲気中にグラフト共重合体(D)の水性分散体を噴霧することにより、半直接的にグラフト共重合体(D)を回収する方法(スプレードライ法)等が挙げられる。 Methods for recovering graft copolymer (D) from its aqueous dispersion include (i) a method in which the aqueous dispersion of graft copolymer (D) is poured into hot water in which a coagulant has been dissolved, and the graft copolymer (D) is recovered by coagulating into a slurry state (wet method), and (ii) a method in which the aqueous dispersion of graft copolymer (D) is sprayed into a heated atmosphere to recover graft copolymer (D) semi-directly (spray dry method).

凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等が挙げられる。凝固剤は、重合で用いた乳化剤に対応させて選定される。すなわち、脂肪酸石鹸、ロジン酸石鹸等のカルボン酸石鹸のみを用いた場合、どのような凝固剤を用いてもよい。ドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、金属塩を用いる必要がある。 Examples of coagulants include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid, and metal salts such as calcium chloride, calcium acetate, and aluminum sulfate. The coagulant is selected according to the emulsifier used in the polymerization. In other words, when only carboxylic acid soaps such as fatty acid soaps and rosin acid soaps are used, any coagulant may be used. When an emulsifier that exhibits stable emulsifying power even in the acidic range, such as sodium dodecylbenzenesulfonate, is included, a metal salt must be used.

スラリー状態のグラフト共重合体(D)から乾燥状態のグラフト共重合体(D)を得る方法としては、(i)洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、該スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する方法、(ii)圧搾脱水機、押出機等で脱水と乾燥とを同時に実施する方法等が挙げられる。乾燥後により、グラフト共重合体(D)は、粉体または粒子状で得られる。また、圧搾脱水機または押出機から排出されたグラフト共重合体(D)を直接、熱可塑性樹脂組成物を製造する押出機または成形機に送ることもできる。 Methods for obtaining a dry graft copolymer (D) from a slurry of graft copolymer (D) include (i) a method in which the emulsifier residue remaining in the slurry is dissolved in water by washing, and then the slurry is dehydrated in a centrifugal dehydrator or press dehydrator and further dried in an air flow dryer or the like, and (ii) a method in which dehydration and drying are simultaneously performed in a squeeze dehydrator, extruder, or the like. After drying, the graft copolymer (D) is obtained in the form of powder or particles. The graft copolymer (D) discharged from the squeeze dehydrator or extruder can also be sent directly to an extruder or molding machine for producing a thermoplastic resin composition.

[共重合体(E)]
共重合体(E)は、ビニル系単量体混合物(m4)を重合して得られる。
[Copolymer (E)]
The copolymer (E) is obtained by polymerizing a vinyl monomer mixture (m4).

ビニル系単量体混合物(m4)は、共重合体(E)を配合して得られる熱可塑性樹脂組成物の物性が優れることから、前述のビニル系単量体混合物(m3)と同様の組成であることが好ましく、芳香族ビニル系単量体とシアン化ビニル系単量体を含むことが好ましい。 The vinyl monomer mixture (m4) preferably has the same composition as the vinyl monomer mixture (m3) described above, since the thermoplastic resin composition obtained by blending the copolymer (E) has excellent physical properties, and preferably contains an aromatic vinyl monomer and a vinyl cyanide monomer.

ビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレンなどが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて使用することができる。芳香族ビニル系単量体の構造に特に制限は無いが、前述のビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of aromatic vinyl monomers contained in the vinyl monomer mixture (m4) include styrene, α-methylstyrene, o-, m- or p-methylstyrene, vinylxylene, p-t-butylstyrene, ethylstyrene, etc., which may be used alone or in combination of two or more. There are no particular restrictions on the structure of the aromatic vinyl monomer, but it is preferable that the aromatic vinyl monomer has the same structure as the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) described above in terms of the impact resistance and molded appearance of the resulting thermoplastic resin composition and its molded article.

ビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体の含有率は40~90質量%であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、60~80質量%であることがより好ましい。 From the viewpoints of the impact resistance and molded appearance of the resulting thermoplastic resin composition and its molded article, the content of aromatic vinyl monomer contained in the vinyl monomer mixture (m4) is preferably 40 to 90 mass%, and more preferably 60 to 80 mass%.

ビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられ、これらのうちの1種以上を使用できる。シアン化ビニル系単量体の構造に特に制限は無いが、前述のビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) include acrylonitrile and methacrylonitrile, and one or more of these can be used. There are no particular restrictions on the structure of the vinyl cyanide monomer, but it is preferable that the structure is the same as that of the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) described above in terms of the impact resistance and molded appearance of the resulting thermoplastic resin composition and its molded article.

ビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体の含有率は10~60質量%であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、20~40質量%であることがより好ましい。 From the viewpoints of the impact resistance and molded appearance of the resulting thermoplastic resin composition and its molded article, the content of the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) is preferably 10 to 60 mass%, and more preferably 20 to 40 mass%.

ビニル系単量体混合物(m4)は、上記の芳香族ビニル系単量体およびシアン化ビニル系単量体と、これらと共重合可能な他のビニル系単量体を含んでいてもよい。
ビニル系単量体混合物(m4)中の共重合可能な他のビニル系単量体の含有量としては20質量%以下、特に10質量%以下が好ましい。
他のビニル系単量体としては、ビニル系単量体混合物(m3)が含んでいてもよい他のビニル系単量体として例示したものが挙げられ、これらの他のビニル系単量体は、1種を単独でまたは2種以上を組み合わせて使用することができる。
The vinyl monomer mixture (m4) may contain the above-mentioned aromatic vinyl monomer and vinyl cyanide monomer, as well as other vinyl monomers copolymerizable therewith.
The content of other copolymerizable vinyl monomers in the vinyl monomer mixture (m4) is preferably 20% by mass or less, particularly preferably 10% by mass or less.
Examples of the other vinyl-based monomer include those exemplified as the other vinyl-based monomers that may be contained in the vinyl-based monomer mixture (m3), and these other vinyl-based monomers may be used alone or in combination of two or more.

共重合体(E)の質量平均分子量に特に制限は無いが、10,000から300,000の範囲であることが好ましく、特に50,000から200,000の範囲であることが好ましい。共重合体(E)の質量平均分子量が上記範囲内であれば、得られる熱可塑性樹脂組成物の流動性、耐衝撃性が優れるものとなる。
なお、共重合体(E)の質量平均分子量は、後述の実施例の項に記載の方法で測定される。
The mass average molecular weight of the copolymer (E) is not particularly limited, but is preferably in the range of 10,000 to 300,000, and particularly preferably in the range of 50,000 to 200,000. When the mass average molecular weight of the copolymer (E) is within the above range, the resulting thermoplastic resin composition has excellent fluidity and impact resistance.
The mass average molecular weight of the copolymer (E) is measured by the method described later in the Examples section.

共重合体(E)の製造方法としては特に制限されず、乳化重合、懸濁重合、塊状重合、溶液重合などの公知の方法が挙げられる。得られる熱可塑性樹脂組成物の耐熱性の点からは、懸濁重合、塊状重合が好ましい The method for producing the copolymer (E) is not particularly limited, and includes known methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and solution polymerization. From the viewpoint of the heat resistance of the resulting thermoplastic resin composition, suspension polymerization and bulk polymerization are preferred.

共重合体(E)の製造時に用いる重合開始剤に特に制限はないが、例えば有機過酸化物類が挙げられる。 There are no particular limitations on the polymerization initiator used in producing copolymer (E), but examples include organic peroxides.

共重合体(E)の製造時に、共重合体(E)の分子量を調整するため、連鎖移動剤を用いることができる。連鎖移動剤に特に制限はないが、メルカプタン類、α-メチルスチレンダイマー、テルペン類等が挙げられる。 When producing copolymer (E), a chain transfer agent can be used to adjust the molecular weight of copolymer (E). There are no particular limitations on the chain transfer agent, but examples include mercaptans, α-methylstyrene dimer, terpenes, etc.

[熱可塑性樹脂組成物]
本発明の熱可塑性樹脂組成物は、前述の本発明のグラフト共重合体(D)を含むものであり、好ましくは、本発明のグラフト共重合体(D)と上述の共重合体(E)とを含む。
[Thermoplastic resin composition]
The thermoplastic resin composition of the present invention contains the above-mentioned graft copolymer (D) of the present invention, and preferably contains the graft copolymer (D) of the present invention and the above-mentioned copolymer (E).

本発明の熱可塑性樹脂組成物における本発明のグラフト重合体(D)の含有率は、グラフト共重合体(D)と共重合体(E)の合計を100質量%とした場合に、10~50質量%であることが好ましく、共重合体(E)の含有率は50~90質量%であることが好ましい。グラフト重合体(D)および共重合体(E)の含有率が上記範囲であると、熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観が優れたものとなる。 The content of the graft polymer (D) of the present invention in the thermoplastic resin composition of the present invention is preferably 10 to 50 mass%, and the content of the copolymer (E) is preferably 50 to 90 mass%, assuming that the total of the graft copolymer (D) and the copolymer (E) is 100 mass%. When the contents of the graft polymer (D) and the copolymer (E) are within the above ranges, the thermoplastic resin composition and its molded article have excellent impact resistance and molded appearance.

本発明の熱可塑性樹脂組成物は、必要に応じて、他の熱可塑性樹脂を含有してもよい。他の熱可塑性樹脂としては特に制限はなく、例えば、ポリカーボネート樹脂、ポリブチレンテレフタレート(PBT樹脂)、ポリエチレンテレフタレート(PET樹脂)、ポリ塩化ビニル、ポリスチレン、ポリアセタール樹脂、変性ポリフェニレンエーテル(変性PPE樹脂)、エチレン-酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂およびポリアミド樹脂(ナイロン)等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 The thermoplastic resin composition of the present invention may contain other thermoplastic resins as necessary. There are no particular limitations on the other thermoplastic resins, and examples thereof include polycarbonate resin, polybutylene terephthalate (PBT resin), polyethylene terephthalate (PET resin), polyvinyl chloride, polystyrene, polyacetal resin, modified polyphenylene ether (modified PPE resin), ethylene-vinyl acetate copolymer, polyarylate, liquid crystal polyester resin, polyethylene resin, polypropylene resin, fluororesin, and polyamide resin (nylon). These may be used alone or in combination of two or more.

本発明の熱可塑性樹脂組成物には、熱可塑性樹脂組成物及びその成形品の物性を損なわない範囲において、熱可塑性樹脂組成物の製造時(混合時)、成形時に、慣用の他の添加剤、例えば滑材、顔料、染料、充填剤(カーボンブラック、シリカ、酸化チタン等)、耐熱剤、酸化劣化防止剤、耐候剤、離型剤、可塑剤、帯電防止剤等を配合することができる。 The thermoplastic resin composition of the present invention may contain other commonly used additives, such as lubricants, pigments, dyes, fillers (carbon black, silica, titanium oxide, etc.), heat resistance agents, antioxidants for oxidation degradation, weather resistance agents, release agents, plasticizers, antistatic agents, etc., during production (mixing) and molding of the thermoplastic resin composition, to the extent that the physical properties of the thermoplastic resin composition and the molded product thereof are not impaired.

本発明の熱可塑性樹脂組成物は、公知の装置を使用した公知の方法で製造できる。例えば、一般的な方法として溶融混合法があり、この方法で使用する装置としては、押出機、バンバリーミキサー、ローラー、ニーダー等が挙げられる。混合には回分式、連続式のいずれを採用してもよい。また、各成分の混合順序などにも特に制限はなく、全ての成分が均一に混合されればよい。 The thermoplastic resin composition of the present invention can be produced by a known method using known equipment. For example, a common method is a melt mixing method, and examples of equipment used in this method include an extruder, a Banbury mixer, a roller, and a kneader. Either a batch method or a continuous method may be used for mixing. There are also no particular limitations on the order in which the components are mixed, as long as all the components are mixed uniformly.

[成形品]
本発明の成形品は、本発明の熱可塑性樹脂組成物が成形されたものである。成形方法としては、例えば、射出成形法、射出圧縮成形機法、押出法、ブロー成形法、真空成形法、圧空成形法、カレンダー成形法およびインフレーション成形法等が挙げられる。これらのなかでも、量産性に優れ、高い寸法精度の成形品を得ることができるため、射出成形法、射出圧縮成形法が好ましい。
[Molding]
The molded article of the present invention is a product obtained by molding the thermoplastic resin composition of the present invention. Examples of the molding method include injection molding, injection compression molding, extrusion, blow molding, vacuum molding, pressure molding, calendar molding, and inflation molding. Among these, injection molding and injection compression molding are preferred because they are excellent in mass productivity and can produce molded articles with high dimensional accuracy.

[用途]
本発明の熱可塑性樹脂組成物及びその成形品の用途については特に制限はないが、本発明の熱可塑性樹脂組成物及びその成形品は、耐衝撃性に優れ、成形外観、流動性にも優れることから、OA・家電分野、車両・船舶分野、家具・建材などの住宅関連分野、サニタリー分野、雑貨、文具・玩具・スポーツ用品分野などの幅広い分野に有用である。
[Application]
There are no particular limitations on the applications of the thermoplastic resin composition of the present invention and molded articles thereof, but the thermoplastic resin composition of the present invention and molded articles thereof are excellent in impact resistance, molded appearance, and flowability, and are therefore useful in a wide range of fields, including office equipment and home appliances, vehicles and ships, housing-related fields such as furniture and building materials, sanitary products, miscellaneous goods, stationery, toys, and sporting goods.

以下に、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
なお、以下において、「部」は「質量部」、「%」は「質量%」を意味する。
The present invention will be described in more detail below with reference to examples and comparative examples. However, the present invention is not limited to the following examples in any way as long as the gist of the present invention is not exceeded.
In the following description, "parts" means "parts by mass" and "%" means "% by mass".

以下の実施例および比較例における各種測定および評価方法は以下の通りである。 The various measurement and evaluation methods used in the following examples and comparative examples are as follows:

<共重合体(A)およびコア-シェル型粒子(C)の体積平均粒子径>
マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒としてイオン交換水を用いて、水性分散体に分散している共重合体(A)又はコア-シェル型粒子(C)の体積平均粒子径を測定した。
<Volume Average Particle Diameter of Copolymer (A) and Core-Shell Particles (C)>
The volume average particle size of the copolymer (A) or the core-shell type particles (C) dispersed in the aqueous dispersion was measured using a Microtrac (Nanotrac 150 manufactured by Nikkiso Co., Ltd.) and ion-exchanged water as a measurement solvent.

<共重合体(A)およびコア-シェル型粒子(C)の膨潤度>
共重合体(A)又はコア-シェル型粒子(C)の水性分散体を80℃で24時間乾燥させ、その後80℃で24時間真空乾燥させることで、フィルム状の共重合体(A)又はコア-シェル型粒子(C)の乾燥物を作成した。得られた乾燥物の重量をW1とする。この乾燥物1gを80mLのアセトンに浸漬後、そのアセトンを65~70℃で3時間還流した。次いで、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpmで30分間遠心分離して、沈殿成分(アセトン不溶成分)を分取した。アセトン不溶成分の重量をW2とする。その後、アセトン不溶成分を常温で24時間真空乾燥した。真空乾燥後のアセトン不溶成分の重量をW3とする。共重合体(A)、コア-シェル型粒子(C)の膨潤度は、下記式(1)で算出される。
膨潤度(%)=(W2/W3)×100 …(1)
膨潤度は架橋密度の目安となり、一般に膨潤度が高いほど架橋密度が低く、膨潤度が低いほど架橋密度が高いことが知られている。
<Swelling Degree of Copolymer (A) and Core-Shell Particles (C)>
The aqueous dispersion of the copolymer (A) or the core-shell type particle (C) was dried at 80° C. for 24 hours, and then vacuum-dried at 80° C. for 24 hours to prepare a film-like dried product of the copolymer (A) or the core-shell type particle (C). The weight of the obtained dried product was designated as W1. 1 g of this dried product was immersed in 80 mL of acetone, and the acetone was refluxed at 65 to 70° C. for 3 hours. Next, the obtained acetone suspension solution was centrifuged at 14,000 rpm for 30 minutes using a centrifuge (Hitachi Koki Co., Ltd. "CR21E") to separate the precipitated component (acetone insoluble component). The weight of the acetone insoluble component was designated as W2. Then, the acetone insoluble component was vacuum-dried at room temperature for 24 hours. The weight of the acetone insoluble component after vacuum drying was designated as W3. The swelling degree of the copolymer (A) and the core-shell type particle (C) was calculated by the following formula (1).
Swelling degree (%) = (W2 / W3) × 100 ... (1)
The degree of swelling serves as a measure of crosslink density, and it is generally known that the higher the degree of swelling, the lower the crosslink density, and vice versa.

<グラフト共重合体(D)のグラフト率>
グラフト共重合体(D)1gを80mLのアセトンに添加し、65~70℃にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Y(g))を測定し、下記式(2)によりグラフト率を算出した。なお、式(2)におけるYは、グラフト共重合体(D)のアセトン不溶成分の質量(g)、XはYを求める際に使用したグラフト共重合体(D)の全質量(g)、ゴム分率はグラフト共重合体(D)の製造に用いたコア-シェル型粒子(C)の水性分散体における固形分濃度である。
グラフト率(質量%)={(Y-X×ゴム分率)/X×ゴム分率}
×100 …(2)
<Graft ratio of graft copolymer (D)>
1 g of the graft copolymer (D) was added to 80 mL of acetone, and the mixture was heated to reflux at 65 to 70° C. for 3 hours. The resulting acetone suspension was centrifuged at 14,000 rpm for 30 minutes using a centrifuge (Hitachi Koki Co., Ltd., “CR21E”) to separate the precipitate (acetone insoluble component) and the acetone solution (acetone soluble component). The precipitate (acetone insoluble component) was then dried to measure its mass (Y(g)), and the graft ratio was calculated using the following formula (2). In the formula (2), Y is the mass (g) of the acetone insoluble component of the graft copolymer (D), X is the total mass (g) of the graft copolymer (D) used to determine Y, and the rubber fraction is the solids concentration in the aqueous dispersion of the core-shell type particles (C) used to produce the graft copolymer (D).
Graft ratio (mass%)={(Y−X×rubber fraction)/X×rubber fraction}
× 100 ... (2)

<共重合体(E)の質量平均分子量>
共重合体(E)の質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、テトラヒドロフラン(THF)に溶解して測定したものを標準ポリスチレン(PS)換算で求めた。
<Weight average molecular weight of copolymer (E)>
The mass average molecular weight of the copolymer (E) was determined by dissolving the copolymer in tetrahydrofuran (THF) and measuring the molecular weight by gel permeation chromatography (GPC), and converting the molecular weight into that of standard polystyrene (PS).

[製造例1:コア-シェル型粒子(C-1)の製造]
<共重合体(A-1)の製造>
まず、以下の配合で共重合体(A-1)を製造した。
[Production Example 1: Production of Core-Shell Particles (C-1)]
<Production of Copolymer (A-1)>
First, a copolymer (A-1) was produced according to the following composition.

〔配合〕
アクリル酸n-ブチル(BA) 40部
メタクリル酸アリル 0.16部
流動パラフィン(LP) 0.5部
アルケニルコハク酸ジカリウム(ASK) 0.24部
ジラウロイルペルオキシド 0.24部
イオン交換水 140部
[Composition]
n-Butyl acrylate (BA) 40 parts Allyl methacrylate 0.16 parts Liquid paraffin (LP) 0.5 parts Dipotassium alkenyl succinate (ASK) 0.24 parts Dilauroyl peroxide 0.24 parts Ion-exchanged water 140 parts

試薬注入容器、冷却管、ジャケット加熱機および攪拌装置を備えた反応器に、アクリル酸n-ブチル、流動パラフィン、メタクリル酸アリル、ジラウロイルペルオキシド、イオン交換水、アルケニルコハク酸ジカリウムを仕込み、常温下で(株)日本精機製作所製ULTRASONIC HOMOGENIZER US-600を用いて振幅35μmで20分間超音波処理を行うことでプレエマルションを得た。得られたラテックスの体積平均粒子径は350nmであった。
プレエマルションを60℃に加熱し、ラジカル重合を開始した。重合により、液温は78℃まで上昇した。30分間75℃で維持し、重合を完結させ、水性分散体に分散している共重合体(A-1)を得た。
A reactor equipped with a reagent injection vessel, a cooling tube, a jacket heater, and a stirrer was charged with n-butyl acrylate, liquid paraffin, allyl methacrylate, dilauroyl peroxide, ion-exchanged water, and dipotassium alkenylsuccinate, and a pre-emulsion was obtained by ultrasonic treatment at room temperature for 20 minutes at an amplitude of 35 μm using an ULTRASONIC HOMOGENIZER US-600 manufactured by Nippon Seiki Seisakusho Co., Ltd. The volume average particle size of the obtained latex was 350 nm.
The pre-emulsion was heated to 60° C. to initiate radical polymerization. Due to the polymerization, the liquid temperature rose to 78° C. The temperature was maintained at 75° C. for 30 minutes to complete the polymerization, thereby obtaining a copolymer (A-1) dispersed in an aqueous dispersion.

<コア-シェル型粒子(C-1)の製造>
共重合体(A-1)を製造後、反応器の内温を75℃に保ったまま、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部、ロンガリット0.2部、およびイオン交換水5部からなる水溶液を添加し、ついで、アルケニルコハク酸ジカリウム0.06部を添加した。その後、アクリル酸n-ブチル10部、メタクリル酸アリル0.25部、およびt-ブチルヒドロペルオキシド0.02部からなる混合液を0.26部/分のレートで滴下し、共重合体(B-1)の重合を行って、コア-シェル型粒子(C-1)の水性分散体を得た。
<Production of Core-Shell Particles (C-1)>
After producing the copolymer (A-1), an aqueous solution consisting of 0.0001 parts of ferrous sulfate, 0.0003 parts of disodium ethylenediaminetetraacetate, 0.2 parts of Rongalit, and 5 parts of ion-exchanged water was added while maintaining the internal temperature of the reactor at 75° C., and then 0.06 parts of dipotassium alkenylsuccinate was added. Thereafter, a mixed solution consisting of 10 parts of n-butyl acrylate, 0.25 parts of allyl methacrylate, and 0.02 parts of t-butyl hydroperoxide was added dropwise at a rate of 0.26 parts/min to polymerize the copolymer (B-1), thereby obtaining an aqueous dispersion of core-shell type particles (C-1).

[製造例2~20,23:コア-シェル型粒子(C-2)~(C-20),(C-23)の製造]
共重合体(A-1)を製造する際のアクリル酸n-ブチル、メタクリル酸アリル、アルケニルコハク酸ジカリウム、ジラウロイルペルオキシド、流動パラフィンの量と、共重合体(B)を製造する際のアクリル酸n-ブチル、アルケニルコハク酸ジカリウム、メタクリル酸アリル、t-ブチルヒドロペルオキシドの量を表1,2に示す通り変更したこと以外は、コア-シェル型粒子(C-1)と同様にして、水性分散体に分散しているコア-シェル型粒子(C-2)~(C-20),(C-23)を得た。
[Production Examples 2 to 20, 23: Production of Core-Shell Particles (C-2) to (C-20), and (C-23)]
Core-shell particles (C-2) to (C-20) and (C-23) dispersed in an aqueous dispersion were obtained in the same manner as for the core-shell particles (C-1), except that the amounts of n-butyl acrylate, allyl methacrylate, dipotassium alkenyl succinate, dilauroyl peroxide and liquid paraffin used in producing copolymer (A-1) and the amounts of n-butyl acrylate, dipotassium alkenyl succinate, allyl methacrylate and t-butyl hydroperoxide used in producing copolymer (B) were changed as shown in Tables 1 and 2.

[製造例21,22:ゴム粒子(C-21),(C-22)の製造]
共重合体(A-1)を製造する際のアクリル酸n-ブチル、メタクリル酸アリル、アルケニルコハク酸ジカリウム、ジラウロイルペルオキシドの量を表2に示す通り変更し、共重合体(A-1)の製造と同様にして、共重合体(A-21),(A-22)のみからなる非コア-シェル型のゴム粒子(C-21),(C-22)の水性分散体を得た。
[Production Examples 21 and 22: Production of Rubber Particles (C-21) and (C-22)]
The amounts of n-butyl acrylate, allyl methacrylate, dipotassium alkenylsuccinate, and dilauroyl peroxide used in producing copolymer (A-1) were changed as shown in Table 2, and aqueous dispersions of non-core-shell type rubber particles (C-21) and (C-22) consisting only of copolymers (A-21) and (A-22) were obtained in the same manner as in the production of copolymer (A-1).

製造例1~23で得られた水性分散体に分散している共重合体(A-1)~(A-23)の体積平均粒子径及び膨潤度と、水性分散体に分散しているコア-シェル型粒子又はゴム粒子(C-1)~(C-23)の体積平均粒子径及び膨潤度を、表1,2に示す。 The volume average particle size and swelling degree of the copolymers (A-1) to (A-23) dispersed in the aqueous dispersions obtained in Production Examples 1 to 23, and the volume average particle size and swelling degree of the core-shell type particles or rubber particles (C-1) to (C-23) dispersed in the aqueous dispersions are shown in Tables 1 and 2.

Figure 0007484107000001
Figure 0007484107000001

Figure 0007484107000002
Figure 0007484107000002

[実施例I-1:グラフト共重合体(D-1)の製造]
コア-シェル型粒子(C-1)を製造後、反応器の内温を75℃に保ったまま、コア-シェル型粒子(C-1)50部(固形分として)に対して、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.3部、およびイオン交換水5部からなる水溶液を添加し、次いで、アルケニルコハク酸ジカリウム0.1部を添加した。その後、アクリロニトリル14部、スチレン36部、およびt-ブチルヒドロペルオキシド0.17部からなる混合液を1時間40分にわたって滴下し、グラフト重合させた。
[Example I-1: Production of Graft Copolymer (D-1)]
After producing the core-shell particles (C-1), an aqueous solution consisting of 0.001 part of ferrous sulfate, 0.003 part of disodium salt of ethylenediaminetetraacetic acid, 0.3 part of Rongalit, and 5 parts of ion-exchanged water was added to 50 parts of the core-shell particles (C-1) (as solid content) while maintaining the internal temperature of the reactor at 75° C., and then 0.1 part of dipotassium alkenylsuccinate was added. Thereafter, a mixed liquid consisting of 14 parts of acrylonitrile, 36 parts of styrene, and 0.17 parts of t-butyl hydroperoxide was added dropwise over 1 hour and 40 minutes to carry out graft polymerization.

滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、アルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。次いで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(D-1)を得た。 After the dropwise addition was completed, the internal temperature was kept at 75°C for 10 minutes and then cooled. When the internal temperature reached 60°C, an aqueous solution of 0.2 parts of dipotassium alkenyl succinate dissolved in 5 parts of ion-exchanged water was added. The aqueous dispersion of the reaction product was then coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain graft copolymer (D-1).

[実施例I-2~14、比較例I-1~9:グラフト共重合体(D-2)~(D-23)の製造]
用いたコア-シェル型粒子又はゴム粒子(C)の種類を表3,4に示す通り変更したこと以外は、グラフト共重合体(D-1)と同様にして、グラフト共重合体(D-2)~(D-23)を得た。
[Examples I-2 to I-14 and Comparative Examples I-1 to I-9: Production of Graft Copolymers (D-2) to (D-23)]
Graft copolymers (D-2) to (D-23) were obtained in the same manner as for graft copolymer (D-1), except that the type of core-shell particles or rubber particles (C) used was changed as shown in Tables 3 and 4.

実施例I-1~14および比較例I-1~9で得られたグラフト共重合体(D-1)~(D-23)のグラフト率を表3,4に示す。 The graft ratios of the graft copolymers (D-1) to (D-23) obtained in Examples I-1 to I-14 and Comparative Examples I-1 to I-9 are shown in Tables 3 and 4.

Figure 0007484107000003
Figure 0007484107000003

Figure 0007484107000004
Figure 0007484107000004

[共重合体(E-1)の製造]
耐圧反応容器にイオン交換水150部と、ビニル系単量体混合物(m4)としてアクリロニトリル34部、スチレン66部の混合物と、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.45部、カルシウムハイドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応を行った。その後、90℃まで昇温し、60分間保持することで反応を完結させた。内容物を遠心脱水機で洗浄、脱水を繰り返し、乾燥させて質量平均分子量95,000の共重合体(E-1)を得た。
[Production of copolymer (E-1)]
In a pressure-resistant reaction vessel, 150 parts of ion-exchanged water, a mixture of 34 parts of acrylonitrile and 66 parts of styrene as a vinyl monomer mixture (m4), 0.2 parts of 2,2'-azobis(isobutyronitrile), 0.45 parts of n-octyl mercaptan, 0.47 parts of calcium hydroxyapatite, and 0.003 parts of potassium alkenyl succinate were charged, and the internal temperature was raised to 75°C and reacted for 3 hours. Thereafter, the temperature was raised to 90°C and maintained for 60 minutes to complete the reaction. The contents were washed and dehydrated repeatedly with a centrifugal dehydrator, and dried to obtain a copolymer (E-1) having a mass average molecular weight of 95,000.

[実施例II-1~14、比較例II-1~9:熱可塑性樹脂組成物の製造と評価]
表5,6に示す組成(質量部)で各成分を混合し、さらにそこにカーボンブラック0.8部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製「PCM30」)を用いて240℃で溶融混練し、ペレット状の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物についてメルトボリュームレートを以下の方法により評価した。また、得られた熱可塑性樹脂組成物を射出成形した成形品について、成形外観、耐衝撃性を以下の方法により評価した。
評価結果を表5,6に示す。
[Examples II-1 to 14 and Comparative Examples II-1 to 9: Production and Evaluation of Thermoplastic Resin Compositions]
The components were mixed in the compositions (parts by mass) shown in Tables 5 and 6, and 0.8 parts of carbon black was further mixed therein. The mixture was melt-kneaded at 240°C using a 30 mmφ vacuum vented twin-screw extruder (Ikegai Corporation's "PCM30") to obtain a pellet-shaped thermoplastic resin composition. The melt volume rate of the obtained thermoplastic resin composition was evaluated by the following method. The molded product obtained by injection molding the obtained thermoplastic resin composition was evaluated for mold appearance and impact resistance by the following methods.
The evaluation results are shown in Tables 5 and 6.

[各評価方法]
<メルトボリュームレート(MVR)の測定>
ISO 1133:1997に準拠し、220℃における熱可塑性樹脂組成物のMVRを、98N(10kg)の荷重で測定した。なお、MVRは熱可塑性樹脂組成物の流動性の目安となり、数値が高いほど流動性に優れることを意味する。
[Each evaluation method]
<Melt Volume Rate (MVR) Measurement>
The MVR of the thermoplastic resin composition at 220° C. was measured under a load of 98 N (10 kg) in accordance with ISO 1133:1997. The MVR is an indicator of the fluidity of the thermoplastic resin composition, with a higher value indicating better fluidity.

<射出成形1>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃の条件で、縦80mm、横10mm、厚さ4mmの成形品を成形し、シャルピー衝撃試験用成形品(成形品(Ma1))として用いた。
<Injection molding 1>
The pellets of the thermoplastic resin composition obtained by melt kneading were molded into a molded article having a length of 80 mm, a width of 10 mm and a thickness of 4 mm using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") under conditions of a cylinder temperature of 200 to 270°C and a mold temperature of 60°C, and the molded article was used as a molded article for a Charpy impact test (molded article (Ma1)).

<射出成形2>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃、射出率7g/秒の条件で、縦100mm、横100mm、厚さ3mmの成形品を成形し、外観評価用成形品(成形品(Ma2))として用いた。
<Injection molding 2>
The pellets of the thermoplastic resin composition obtained by melt kneading were molded into a molded article having a length of 100 mm, a width of 100 mm and a thickness of 3 mm using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") under conditions of a cylinder temperature of 200 to 270°C, a mold temperature of 60°C and an injection rate of 7 g/sec. This was used as a molded article for appearance evaluation (molded article (Ma2)).

<射出成形3>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃、射出率128g/秒の条件で、縦100mm、横100mm、厚さ3mmの成形品を成形し、外観評価用成形品(成形品(Ma3))として用いた。
<Injection molding 3>
The pellets of the thermoplastic resin composition obtained by melt kneading were molded into a molded article having a length of 100 mm, a width of 100 mm and a thickness of 3 mm using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") under conditions of a cylinder temperature of 200 to 270°C, a mold temperature of 60°C and an injection rate of 128 g/sec. This was used as a molded article for appearance evaluation (molded article (Ma3)).

<外観評価(1)>
成形品(Ma2)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(ma)」とする。Lが低いほど黒色となり、外観が良好である。
<Appearance Evaluation (1)>
The lightness L * of the molded product (Ma2) was measured by the SCE method using a spectrophotometer (Konica Minolta Optips Co., Ltd. "CM-3500d"). The L * thus measured is called "L * (ma)". The lower the L * , the blacker the color and the better the appearance.

<外観評価(2)>
成形品(Ma3)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(mb)」とする。Lが低いほど黒色となり、外観が良好である。
射出速度が速い条件で成形した際に、樹脂中のゴム成分が配向することで、白化やブロンズ現象が生じ、Lが大きくなる。そのため、射出速度が速い条件での成形外観が重要となる。
<Appearance Evaluation (2)>
The lightness L * of the molded product (Ma3) was measured by the SCE method using a spectrophotometer (Konica Minolta Optips Co., Ltd. "CM-3500d"). The L * thus measured is referred to as "L * (mb)". The lower the L * , the blacker the color and the better the appearance.
When molding is performed under conditions of high injection speed, the rubber components in the resin become oriented, causing whitening and bronzing, and increasing L * . Therefore, the appearance of the molded product under conditions of high injection speed is important.

<外観評価(3)(外観の射出速度依存性評価)>
ΔL=(L(mb)-L(ma))の式よりΔLを算出した。ΔLが小さいほど、外観の射出速度依存性が小さい。一般に、車輛部品等の成形品においては、部品箇所により射出速度が異なる。そのため、射出速度依存性の大きい樹脂では、成形時に部品表面に色むらが生じる、といった外観不良が起こる。
<Appearance Evaluation (3) (Evaluation of Dependence of Appearance on Injection Speed)>
ΔL * was calculated from formula 2 : ΔL * = (L * (mb) - L * (ma)). The smaller ΔL * is, the less injection speed dependency of the appearance. Generally, in molded products such as vehicle parts, the injection speed differs depending on the part location. Therefore, with a resin that is highly injection speed dependent, color unevenness occurs on the surface of the part during molding, resulting in poor appearance.

<耐衝撃性の評価:シャルピー衝撃試験>
成形品(Ma1)について、ISO 179-1:2013年度版に準拠し、試験温度23℃もしくは-20℃の条件で成形品(タイプB1、ノッチ有:形状A シングルノッチ)のシャルピー衝撃強度(打撃方向:エッジワイズ)を測定した。シャルピー衝撃強度が高いほど、耐衝撃性に優れることを意味する。
<Impact resistance evaluation: Charpy impact test>
The Charpy impact strength (impact direction: edgewise) of the molded article (Ma1) was measured at a test temperature of 23° C. or −20° C. (Type B1, notched: Shape A single notch) in accordance with ISO 179-1:2013 edition. The higher the Charpy impact strength, the better the impact resistance.

Figure 0007484107000005
Figure 0007484107000005

Figure 0007484107000006
Figure 0007484107000006

表5の実施例II-1~14に示すように、各実施例によれば、耐衝撃性や流動性、外観に優れる熱可塑性樹脂組成物および成形品が得られた。 As shown in Examples II-1 to 14 in Table 5, each example produced a thermoplastic resin composition and molded product with excellent impact resistance, fluidity, and appearance.

一方、比較例II-1では共重合体(A)及びコア-シェル型粒子(C)の膨潤度が低く、また、比較例II-2ではコア-シェル型粒子(C)の膨潤度が低いため耐衝撃性が低く、流動性も低位であった。また、比較例II-3では、共重合体(A)の膨潤度がコア-シェル型粒子(C)の膨潤度より低いため、成形外観に劣った。比較例II-4ではコア-シェル型粒子(C)の膨潤度が、比較例II-5では共重合体(A)とコア-シェル型粒子(C)の膨潤度が、比較例II-6では共重合体(A)の膨潤度が高いため、成形外観に劣った。
比較例II-7ではゴム部がコア-シェル型粒子でないため成形外観に劣る。この比較例II-7に対して、成形外観を改良しようと膨潤度を低くすると、比較例II-8のように耐衝撃性が悪くなる。
比較例II-9では、ビニル系単量体混合物(m1)が疎水性物質(Ab)を含まないため、共重合体(A)の粒子径制御が困難であり、得られたグラフト共重合体(D-23)を用いると、耐衝撃性が劣るものとなった。
On the other hand, in Comparative Example II-1, the swelling degree of the copolymer (A) and the core-shell type particles (C) was low, and in Comparative Example II-2, the swelling degree of the core-shell type particles (C) was low, so that the impact resistance was low and the fluidity was also low. In Comparative Example II-3, the swelling degree of the copolymer (A) was lower than that of the core-shell type particles (C), so that the molded appearance was poor. In Comparative Example II-4, the swelling degree of the core-shell type particles (C), in Comparative Example II-5, the swelling degrees of the copolymer (A) and the core-shell type particles (C), and in Comparative Example II-6, the swelling degree of the copolymer (A) were high, so that the molded appearance was poor.
In Comparative Example II-7, the rubber portion is not a core-shell type particle, and therefore the molded appearance is poor. When the swelling degree is reduced in an attempt to improve the molded appearance of Comparative Example II-7, the impact resistance is deteriorated as in Comparative Example II-8.
In Comparative Example II-9, since the vinyl monomer mixture (m1) did not contain the hydrophobic substance (Ab), it was difficult to control the particle size of the copolymer (A), and the obtained graft copolymer (D-23) had poor impact resistance.

Claims (14)

(メタ)アクリル酸エステル(Aa)と、炭素数12以上のアルキル基、アルケニル基およびシクロアルキル基から選ばれる炭化水素基を有する疎水性物質(Ab)とを含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、(メタ)アクリル酸エステル(Ba)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)の存在下に、ビニル系単量体混合物(m3)を重合して得られるグラフト共重合体(D)であって、
該共重合体(A)の膨潤度が7~15倍であり、該コア-シェル型粒子(C)の膨潤度が5~12倍であり、該共重合体(A)の膨潤度が該コア-シェル型粒子(C)の膨潤度より大きいグラフト共重合体(D)であって、
前記疎水性物質(Ab)が、1-オクタノールに対する濃度〔c1〕と水に対する濃度〔c2〕の比〔c1/c2〕で表される分配係数〔P〕の対数〔logP〕値が6以上の疎水性物質であり、
前記疎水性物質(Ab)が、流動パラフィン、流動イソパラフィン及びパラフィンワックスの1種又は2種以上であり、
前記ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、該ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率が40~90質量%で、シアン化ビニル系単量体の含有率が10~60質量%であるグラフト共重合体(D)。
A graft copolymer (D) obtained by polymerizing a vinyl monomer mixture (m3) in the presence of core-shell type particles (C) having a core portion made of a copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid ester (Aa) and a hydrophobic substance (Ab) having a hydrocarbon group selected from an alkyl group, an alkenyl group and a cycloalkyl group having 12 or more carbon atoms, and a shell portion made of a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (Ba),
a graft copolymer (D) in which the swelling degree of the copolymer (A) is 7 to 15 times, the swelling degree of the core-shell type particles (C) is 5 to 12 times, and the swelling degree of the copolymer (A) is greater than the swelling degree of the core-shell type particles (C);
the hydrophobic substance (Ab) is a hydrophobic substance having a logarithm [log P] value of a partition coefficient [P] represented by the ratio [c1/c2] of a concentration [c1] in 1-octanol to a concentration [c2] in water of 6 or more;
The hydrophobic substance (Ab) is one or more of liquid paraffin, liquid isoparaffin, and paraffin wax ;
The vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the content of the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) is 40 to 90 mass %, and the content of the vinyl cyanide monomer is 10 to 60 mass %.
請求項1において、前記コア-シェル型粒子(C)100質量%中の前記共重合体(A)の含有量が60~96質量%で、前記共重合体(B)の含有量が4~40質量%である、グラフト共重合体(D)。 The graft copolymer (D) according to claim 1 , wherein the content of the copolymer (A) is 60 to 96 mass% and the content of the copolymer (B) is 4 to 40 mass% in 100 mass% of the core-shell type particles (C). 請求項1又は2において、前記共重合体(A)が、(メタ)アクリル酸エステル(Aa)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、グラフト共重合体(D)。 The graft copolymer (D) according to claim 1 or 2 , wherein the copolymer (A) contains a (meth)acrylic acid ester (Aa) unit and a unit derived from a crosslinking agent and/or a unit derived from a graft crosslinking agent. 請求項において、前記共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸エステル(Aa)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.05~0.3質量%である、グラフト共重合体(D)。 The graft copolymer (D) according to claim 3 , wherein the ratio of the units derived from the crosslinking agent and/or the graft crosslinking agent in the copolymer (A) is 0.05 to 0.3 mass% in a total of 100 mass% of the (meth)acrylic acid ester (Aa) units and the units derived from the crosslinking agent and/or the units derived from the graft crosslinking agent. 請求項又はにおいて、前記ビニル系単量体混合物(m1)が、前記疎水性物質(Ab)を、前記(メタ)アクリル酸エステル(Aa)と前記架橋剤および/又はグラフト交叉剤の合計100質量部に対して0.1~10質量部含有する、グラフト共重合体(D)。 The graft copolymer (D) according to claim 3 or 4 , wherein the vinyl-based monomer mixture (m1) contains the hydrophobic substance (Ab) in an amount of 0.1 to 10 parts by mass per 100 parts by mass of the (meth)acrylic acid ester (Aa) and the crosslinking agent and/or the graft crosslinking agent in total. 請求項1ないしのいずれか1項において、前記共重合体(B)が、(メタ)アクリル酸エステル(Ba)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、グラフト共重合体(D)。 The graft copolymer (D) according to any one of claims 1 to 5 , wherein the copolymer (B) contains a (meth)acrylic acid ester (Ba) unit and a unit derived from a crosslinking agent and/or a unit derived from a graft crosslinking agent. 請求項において、前記共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸エステル(Ba)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.03~0.3質量%である、グラフト共重合体(D)。 The graft copolymer (D) according to claim 6 , wherein the ratio of the units derived from the crosslinking agent and/or the graft crosslinking agent in the copolymer (B) is 0.03 to 0.3 mass% in a total of 100 mass% of the (meth)acrylic acid ester (Ba) units and the units derived from the crosslinking agent and/or the units derived from the graft crosslinking agent. 請求項1ないしのいずれか1項において、前記共重合体(A)の体積平均粒子径が50~800nmで、前記コア-シェル型粒子(C)の体積平均粒子径が60~820nmである、グラフト共重合体(D)。 The graft copolymer (D) according to any one of claims 1 to 7 , wherein the volume average particle diameter of the copolymer (A) is 50 to 800 nm, and the volume average particle diameter of the core-shell particles (C) is 60 to 820 nm. 請求項1ないしのいずれか1項において、前記コア-シェル型粒子(C)と前記ビニル系単量体混合物(m3)との合計100質量%に対する該コア-シェル型粒子(C)の割合が50~80質量%で、該ビニル系単量体混合物(m3)の割合が20~50質量%で、グラフト率が25~100%である、グラフト共重合体(D)。 The graft copolymer (D) according to any one of claims 1 to 8 , wherein a ratio of the core-shell particles (C) to a total of 100% by mass of the core-shell particles (C) and the vinyl-based monomer mixture (m3) is 50 to 80% by mass, a ratio of the vinyl-based monomer mixture (m3) is 20 to 50% by mass, and a graft ratio is 25 to 100%. 請求項1ないしのいずれか1項に記載のグラフト共重合体(D)を含む熱可塑性樹脂組成物。 A thermoplastic resin composition comprising the graft copolymer (D) according to any one of claims 1 to 9 . 請求項10において、前記グラフト共重合体(D)と、ビニル系単量体混合物(m4)を重合して得られる共重合体(E)とを含む、熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 10 , comprising the graft copolymer (D) and a copolymer (E) obtained by polymerizing a vinyl monomer mixture (m4). 請求項11において、前記ビニル系単量体混合物(m4)が前記ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造の芳香族ビニル系単量体と、前記ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造のシアン化ビニル系単量体を含む、熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 11 , wherein the vinyl-based monomer mixture (m4) contains an aromatic vinyl-based monomer having the same structure as the aromatic vinyl-based monomer contained in the vinyl-based monomer mixture (m3), and a cyanide vinyl-based monomer having the same structure as the cyanide vinyl-based monomer contained in the vinyl-based monomer mixture (m3). 請求項11又は12において、前記グラフト共重合体(D)と前記共重合体(E)との合計100質量%中に該グラフト共重合体(D)を10~50質量%、該共重合体(E)を50~90質量%含む、熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 11 or 12 , comprising 10 to 50 mass% of the graft copolymer (D) and 50 to 90 mass% of the copolymer (E) in a total of 100 mass% of the graft copolymer (D) and the copolymer (E). 請求項10ないし13のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形品。 A molded article obtained by molding the thermoplastic resin composition according to any one of claims 10 to 13 .
JP2019162150A 2019-09-05 2019-09-05 Graft copolymer, thermoplastic resin composition and molded article thereof Active JP7484107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019162150A JP7484107B2 (en) 2019-09-05 2019-09-05 Graft copolymer, thermoplastic resin composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019162150A JP7484107B2 (en) 2019-09-05 2019-09-05 Graft copolymer, thermoplastic resin composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP2021038362A JP2021038362A (en) 2021-03-11
JP7484107B2 true JP7484107B2 (en) 2024-05-16

Family

ID=74848240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162150A Active JP7484107B2 (en) 2019-09-05 2019-09-05 Graft copolymer, thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP7484107B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515280A (en) 2002-01-25 2005-05-26 エルジー ケミカル エルティーディー. Acrylic strength modifier produced by multistage polymerization and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515280A (en) 2002-01-25 2005-05-26 エルジー ケミカル エルティーディー. Acrylic strength modifier produced by multistage polymerization and method for producing the same

Also Published As

Publication number Publication date
JP2021038362A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7062931B2 (en) Graft copolymer, thermoplastic resin composition and articles thereof
JP7310140B2 (en) Rubber polymer, graft copolymer and thermoplastic resin composition
WO2017126545A1 (en) Rubbery polymers, graft copolymers, and thermoplastic resin compositions
US11608402B2 (en) Graft copolymer, thermoplastic resin composition, and molded article produced by molding the same
JP7484107B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP6988967B1 (en) Thermoplastic resin composition and its molded product
JP2019073669A (en) Powder material containing cellulose nanofiber, thermoplastic resin composition containing the powder material, and molded article of the same
JP7066228B2 (en) Thermoplastic resin composition
JP7225542B2 (en) Thermoplastic resin composition and molded article thereof
JP7257108B2 (en) Graft polymer and thermoplastic resin composition
JP7404701B2 (en) Graft copolymers, thermoplastic resin compositions and molded products thereof
JP7251106B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP7192407B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP6988966B1 (en) Thermoplastic resin composition and its molded product
JP7228079B1 (en) Thermoplastic resin composition and molded article thereof
JP2019163411A (en) Thermoplastic resin composition and molding thereof
JP2019151697A (en) Polymer, graft polymer, and thermoplastic resin composition
JP6953867B2 (en) Composite rubber polymer, graft copolymer and thermoplastic resin composition
WO2019009203A1 (en) Polymer, graft polymer, and thermoplastic resin composition
JP2019147866A (en) Thermoplastic resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150