JP7404701B2 - Graft copolymers, thermoplastic resin compositions and molded products thereof - Google Patents

Graft copolymers, thermoplastic resin compositions and molded products thereof Download PDF

Info

Publication number
JP7404701B2
JP7404701B2 JP2019145540A JP2019145540A JP7404701B2 JP 7404701 B2 JP7404701 B2 JP 7404701B2 JP 2019145540 A JP2019145540 A JP 2019145540A JP 2019145540 A JP2019145540 A JP 2019145540A JP 7404701 B2 JP7404701 B2 JP 7404701B2
Authority
JP
Japan
Prior art keywords
copolymer
mass
vinyl monomer
meth
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019145540A
Other languages
Japanese (ja)
Other versions
JP2021024981A (en
Inventor
幸作 垰
吉孝 内藤
崇 岩永
裕貴 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
Techno UMG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno UMG Co Ltd filed Critical Techno UMG Co Ltd
Priority to JP2019145540A priority Critical patent/JP7404701B2/en
Publication of JP2021024981A publication Critical patent/JP2021024981A/en
Application granted granted Critical
Publication of JP7404701B2 publication Critical patent/JP7404701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物を与えるコア-シェル型粒子およびグラフト共重合体と、このグラフト共重合体を含む熱可塑性樹脂組成物とその成形品に関する。 The present invention provides core-shell particles and a graft copolymer that provide a thermoplastic resin composition with excellent molded appearance, impact resistance, and fluidity, and a thermoplastic resin composition containing this graft copolymer. Regarding the molded product.

樹脂材料の耐衝撃性を向上させることは、樹脂材料の用途を拡大させるだけでなく成形品の薄肉化や大型化への対応を可能にするなど、工業的な有用性が非常に高い。樹脂材料の耐衝撃性向上については、これまでに様々な手法が提案されてきた。このうち、ゴム質重合体と硬質樹脂材料とを組み合わせることによって、硬質樹脂材料の特性を保持しつつ耐衝撃性を高める手法は既に工業化されている。このような材料としては、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂が挙げられる。 Improving the impact resistance of resin materials is extremely useful industrially, as it not only expands the uses of resin materials but also allows molded products to be made thinner and larger. Various methods have been proposed to date to improve the impact resistance of resin materials. Among these, a method of increasing impact resistance while maintaining the properties of the hard resin material by combining a rubbery polymer and a hard resin material has already been industrialized. Such materials include acrylonitrile-butadiene-styrene (ABS) resin.

しかし、ABS樹脂は耐衝撃性と成形外観に優れるものの、ゴム成分であるポリブダジエンの耐候性が低いため、塗装やフィルム等の加飾を施すことなく使用することが困難であった。 However, although ABS resin has excellent impact resistance and molded appearance, it has been difficult to use it without applying decorations such as painting or film because the weather resistance of polybutadiene, which is a rubber component, is low.

そのようなABS樹脂の課題を解決するため、ゴム成分としてアクリルゴムを使用したアクリロニトリル-スチレン-アクリル酸エステル(ASA)樹脂が開発され、工業化されている。 In order to solve such problems with ABS resins, acrylonitrile-styrene-acrylic acid ester (ASA) resins using acrylic rubber as the rubber component have been developed and are being commercialized.

例えば、特許文献1には硬質樹脂材料としてアクリロニトリル-スチレン(AS)樹脂を用い、そこにASA樹脂を添加する方法が開示されている。
しかしながら、ASA樹脂は、硬質樹脂成分であるアクリロニトリル-スチレン(AS)樹脂と、アクリルゴム間の屈折率差が大きいため、低射出速度での成形時の成形外観が悪い。また、高射出速度での成形時にはさらに成形外観が悪化するといった問題があった。
For example, Patent Document 1 discloses a method in which an acrylonitrile-styrene (AS) resin is used as a hard resin material and an ASA resin is added thereto.
However, since the ASA resin has a large refractive index difference between the hard resin component acrylonitrile-styrene (AS) resin and the acrylic rubber, the molded appearance is poor when molded at a low injection speed. Furthermore, when molding is performed at a high injection speed, there is a problem in that the molded appearance further deteriorates.

特許文献2や特許文献3には、ポリブタジエン粒子の外側をアクリルゴムで覆った構造のポリブタジエン/アクリルゴム複合体をAS樹脂に添加する方法が開示されている。
この方法であれば、ポリブタジエンを複合することでゴム成分とAS樹脂の屈折率差が小さくなり、成形外観が良好となる。しかし、ポリブタジエンを複合するため耐候性が低下するといった問題がある。
Patent Document 2 and Patent Document 3 disclose a method in which a polybutadiene/acrylic rubber composite having a structure in which the outside of polybutadiene particles is covered with acrylic rubber is added to an AS resin.
With this method, by combining polybutadiene, the difference in refractive index between the rubber component and the AS resin becomes smaller, resulting in a better molded appearance. However, there is a problem that weather resistance decreases due to the combination of polybutadiene.

特許文献4には、アクリル酸ブチルとスチレンを共重合することで、アクリルゴムの屈折率を上げる方法が開示されている。
しかし、特許文献4に記載された方法では、耐衝撃性が著しく低下してしまう。また、低射出速度での成形時の成形外観は良好であるが、高射出速度での成形時の成形外観が悪いという問題があった。
Patent Document 4 discloses a method of increasing the refractive index of acrylic rubber by copolymerizing butyl acrylate and styrene.
However, in the method described in Patent Document 4, the impact resistance is significantly reduced. Further, although the molded appearance is good when molded at a low injection speed, there is a problem in that the molded appearance is poor when molded at a high injection speed.

特開2017-71660号公報JP2017-71660A 特開2007-204763号公報Japanese Patent Application Publication No. 2007-204763 特開2009-242595号公報Japanese Patent Application Publication No. 2009-242595 特開2017-88774号公報Japanese Patent Application Publication No. 2017-88774

本発明は、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物を与えるコア-シェル型粒子およびグラフト共重合体と、このグラフト共重合体を含む熱可塑性樹脂組成物およびその成形品を提供することを課題とする。 The present invention provides core-shell type particles and a graft copolymer that provide a thermoplastic resin composition that has excellent molded appearance, impact resistance, and fluidity, and a thermoplastic resin composition containing this graft copolymer. Our goal is to provide such molded products.

本発明者は、上記課題を解決すべく検討を重ねた結果、グラフト共重合体のゴム粒子として、(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)を用いることにより、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物を得ることができることを見出した。 As a result of repeated studies to solve the above problems, the present inventor polymerized a vinyl monomer mixture (m1) containing (meth)acrylic acid alkyl ester (a) as rubber particles of a graft copolymer. A copolymer obtained by polymerizing a core part made of a copolymer (A) obtained by It has been found that by using core-shell type particles (C) having a shell portion consisting of the coalescence (B), it is possible to obtain a thermoplastic resin composition that has excellent molded appearance, impact resistance, and fluidity. Ta.

即ち、本発明は以下を要旨とする。 That is, the gist of the present invention is as follows.

[1] (メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)。 [1] A core part made of a copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid alkyl ester (a), and an aromatic hydrocarbon group ( Core-shell type particles (C) having a shell portion made of a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing a meth)acrylic acid ester (b).

[2] コア-シェル型粒子(C)100質量%中の共重合体(A)の含有量が35~97質量%で、共重合体(B)の含有量が3~65質量%である[1]に記載の共重合体(A)。 [2] The content of copolymer (A) in 100% by mass of core-shell particles (C) is 35 to 97% by mass, and the content of copolymer (B) is 3 to 65% by mass. Copolymer (A) according to [1].

[3] 共重合体(A)が、(メタ)アクリル酸アルキルエステル(a)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、[1]又は[2]に記載のコア-シェル型粒子(C)。 [3] Copolymer (A) contains (meth)acrylic acid alkyl ester (a) units and units derived from a crosslinking agent and/or units derived from a grafting agent [1] or [2] The core-shell type particle (C) described in .

[4] 共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸アルキルエステル(a)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.01~3質量%である、[3]に記載のコア-シェル型粒子(C)。 [4] The proportion of units derived from the crosslinking agent and/or graft cross-linking agent in the copolymer (A) is the (meth)acrylic acid alkyl ester (a) unit and the unit derived from the cross-linking agent and/or graft cross-linking agent. The core-shell type particle (C) according to [3], which is 0.01 to 3% by mass out of 100% by mass in total with units derived from crossagents.

[5] 共重合体(B)が、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含む、[1]ないし[4]のいずれかに記載のコア-シェル型粒子(C)。 [5] The copolymer (B) contains a (meth)acrylic acid ester (b) unit having an aromatic hydrocarbon group, and a unit derived from a crosslinking agent and/or a unit derived from a graft crosslinking agent, [ The core-shell type particle (C) according to any one of [1] to [4].

[6] 共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位との合計100質量%中、0.01~3質量%である、[5]に記載のコア-シェル型粒子(C)。 [6] The proportion of units derived from the crosslinking agent and/or grafting agent in the copolymer (B) is the proportion of units derived from the (meth)acrylic acid ester (b) having an aromatic hydrocarbon group and the units derived from the crosslinking agent. The core-shell type particle (C) according to [5], which is 0.01 to 3% by mass out of 100% by mass in total with the units.

[7] 共重合体(A)の体積平均粒子径が50~800nmで、膨潤度が2~15倍であり、コア-シェル型粒子(C)の体積平均粒子径が60~820nmで、膨潤度が2~15倍である、[1]ないし[6]のいずれかに記載のコア-シェル型粒子(C)。 [7] The volume average particle diameter of the copolymer (A) is 50 to 800 nm, and the degree of swelling is 2 to 15 times, and the volume average particle diameter of the core-shell type particles (C) is 60 to 820 nm, and the degree of swelling is 2 to 15 times. The core-shell type particle (C) according to any one of [1] to [6], which has a particle size of 2 to 15 times.

[8] [1]ないし[7]のいずれかに記載のコア-シェル型粒子(C)に、ビニル系単量体混合物(m3)をグラフト重合してなるグラフト共重合体(D)。 [8] A graft copolymer (D) obtained by graft polymerizing a vinyl monomer mixture (m3) to the core-shell particles (C) according to any one of [1] to [7].

[9] ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率が40~90質量%で、シアン化ビニル系単量体の含有率が10~60質量%である、[8]に記載のグラフト共重合体(D)。 [9] The vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) The graft copolymer (D) according to [8], wherein the content of the vinyl cyanide monomer is 40 to 90% by mass, and the content of the vinyl cyanide monomer is 10 to 60% by mass.

[10] コア-シェル型粒子(C)とビニル系単量体混合物(m3)との合計100質量%に対するコア-シェル型粒子(C)の割合が50~80質量%で、ビニル系単量体混合物(m3)の割合が20~50質量%で、グラフト率が25~100%である、[8]又は[9]に記載のグラフト共重合体(D)。 [10] The proportion of the core-shell type particles (C) is 50 to 80% by mass with respect to the total of 100% by mass of the core-shell type particles (C) and the vinyl monomer mixture (m3), and the vinyl monomer mixture (m3) The graft copolymer (D) according to [8] or [9], wherein the proportion of the body mixture (m3) is 20 to 50% by mass and the grafting rate is 25 to 100%.

[11] [8]ないし[10]のいずれかに記載のグラフト共重合体(D)を含む熱可塑性樹脂組成物。 [11] A thermoplastic resin composition comprising the graft copolymer (D) according to any one of [8] to [10].

[12] グラフト共重合体(D)と、ビニル系単量体混合物(m4)の重合反応物である共重合体(E)とを含む、[11]に記載の熱可塑性樹脂組成物。 [12] The thermoplastic resin composition according to [11], comprising the graft copolymer (D) and the copolymer (E) which is a polymerization reaction product of the vinyl monomer mixture (m4).

[13] ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、ビニル系単量体混合物(m4)がビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造の芳香族ビニル系単量体と、ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造のシアン化ビニル系単量体を含む、[12]に記載の熱可塑性樹脂組成物。 [13] The vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the vinyl monomer mixture (m4) contains a vinyl monomer mixture (m3) An aromatic vinyl monomer with the same structure as the aromatic vinyl monomer contained in , and a vinyl cyanide monomer with the same structure as the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) The thermoplastic resin composition according to [12], which contains a monomer.

[14] グラフト共重合体(D)と共重合体(E)との合計100質量%中にグラフト共重合体(D)を10~50質量%、共重合体(E)を50~90質量%含む、[12]又は[13]に記載の熱可塑性樹脂組成物。 [14] 10 to 50% by mass of graft copolymer (D) and 50 to 90% by mass of copolymer (E) in a total of 100% by mass of graft copolymer (D) and copolymer (E). %, the thermoplastic resin composition according to [12] or [13].

[15] [11]ないし[14]のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。 [15] A molded article obtained by molding the thermoplastic resin composition according to any one of [11] to [14].

本発明によれば、成形外観と耐衝撃性に優れ、流動性にも優れる熱可塑性樹脂組成物およびその成形品が提供される。 According to the present invention, a thermoplastic resin composition having excellent molded appearance, impact resistance, and fluidity, and a molded article thereof are provided.

以下に本発明の実施の形態を詳細に説明する。
なお、本発明において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の一方又は双方を意味するものであり、「(メタ)アクリレート」についても同様である。
また、「単位」とは、重合体中に含まれる、重合前の化合物(単量体、即ちモノマー)に由来する構造部分を意味し、例えば、「(メタ)アクリル酸アルキルエステル(a)単位」とは「(メタ)アクリル酸アルキルエステル(a)に由来してコア-シェル型粒子(C)のコア部である共重合体(A)中に含まれる構造部分」を意味する。重合体の各単量体単位の含有割合は、当該重合体の製造に用いた単量体混合物中の該単量体の含有割合に該当する。
Embodiments of the present invention will be described in detail below.
In the present invention, "(meth)acrylic acid" means one or both of "acrylic acid" and "methacrylic acid," and the same applies to "(meth)acrylate."
In addition, the term "unit" refers to a structural part derived from a compound (monomer, monomer) before polymerization, which is contained in a polymer, and includes, for example, "(meth)acrylic acid alkyl ester (a) unit ” means “a structural portion derived from (meth)acrylic acid alkyl ester (a) and contained in the copolymer (A) that is the core portion of the core-shell type particle (C).” The content ratio of each monomer unit in the polymer corresponds to the content ratio of the monomer in the monomer mixture used for producing the polymer.

[コア-シェル型粒子(C)]
本発明のコア-シェル型粒子(C)は、(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するものである。
[Core-shell particles (C)]
The core-shell type particles (C) of the present invention have a core portion made of a copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid alkyl ester (a). and a shell portion made of a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (b) having an aromatic hydrocarbon group. be.

<メカニズム>
芳香族炭化水素基を有する(メタ)アクリル酸エステルがビニル系単量体混合物(m1)に含まれ、共重合体(A)を(メタ)アクリル酸アルキルエステルと芳香族炭化水素基を有する(メタ)アクリル酸エステルの共重合体とした場合、共重合体(A)の屈折率が大きくなる。すなわち、コア-シェル型粒子(C)の屈折率が上がり、後述のグラフト共重合体(D)のグラフト層および共重合体(E)とコア-シェル型粒子(C)間の屈折率差が小さくなるため、成形外観は向上する。しかし、共重合体(A)のガラス転移温度が高くなるなどの問題が生じ、低温耐衝撃性が低下してしまう。
<Mechanism>
A (meth)acrylic acid ester having an aromatic hydrocarbon group is contained in the vinyl monomer mixture (m1), and the copolymer (A) is a (meth)acrylic acid alkyl ester and a (meth)acrylic acid ester having an aromatic hydrocarbon group. When a copolymer of meth)acrylic acid ester is used, the refractive index of the copolymer (A) becomes large. That is, the refractive index of the core-shell type particles (C) increases, and the refractive index difference between the graft layer of the graft copolymer (D) and the copolymer (E), which will be described later, and the core-shell type particles (C) increases. Since it is smaller, the molded appearance is improved. However, problems such as an increase in the glass transition temperature of the copolymer (A) occur, resulting in a decrease in low-temperature impact resistance.

一方で、共重合体(A)を形成するビニル系単量体混合物(m1)が(メタ)アクリル酸アルキルエステルを主成分とし、シェル部を形成するビニル系単量体混合物(m2)の主成分を芳香族炭化水素基を有する(メタ)アクリル酸エステルとした場合、シェル部の屈折率が高く、コア部の屈折率が低いものとなり、コア-シェル型粒子(C)内部に屈折率の傾斜ができる。すなわち、グラフト共重合体(D)のグラフト層および共重合体(E)が最も屈折率が高く、次いでシェル部の屈折率が高く、コア部の屈折率が最も低い、といったように、グラフト共重合体(D)のグラフト層および共重合体(E)とコア-シェル型粒子(C)間、ならびにグラフト共重合体(D)のグラフト層および共重合体(E)とコア部の共重合体(A)間で徐々に屈折率が変化する構造となる。そのため、共重合体(E)に、このような本発明のコア-シェル型粒子(C)を用いたグラフト共重合体(D)をブレンドした際、コア-シェル型粒子(C)による光散乱を抑制することができ、成形外観を向上させることができる。仮に、コア部が芳香族炭化水素基を有する(メタ)アクリル酸エステル単位を主成分とし、シェル部が(メタ)アクリル酸アルキルエステル単位を主成分とした場合、グラフト共重合体(D)のグラフト層および共重合体(E)とコア-シェル型粒子(C)間、ならびにグラフト共重合体(D)のグラフト層および共重合体(E)と共重合体(A)のコア部間で徐々に屈折率が変化する構造とはならず、成形外観に劣るものとなる。 On the other hand, the vinyl monomer mixture (m1) forming the copolymer (A) is mainly composed of (meth)acrylic acid alkyl ester, and the vinyl monomer mixture (m2) forming the shell part is the main component. When the component is a (meth)acrylic acid ester having an aromatic hydrocarbon group, the refractive index of the shell part is high and the refractive index of the core part is low, and there is a refractive index inside the core-shell type particle (C). A slope is created. That is, the graft layer of the graft copolymer (D) and the copolymer (E) have the highest refractive index, the shell portion has the next highest refractive index, and the core portion has the lowest refractive index. Copolymerization between the graft layer of the polymer (D) and the copolymer (E) and the core-shell type particle (C), and the graft layer of the graft copolymer (D) and the copolymerization between the copolymer (E) and the core part A structure is formed in which the refractive index gradually changes between coalescence (A). Therefore, when the graft copolymer (D) using the core-shell type particles (C) of the present invention is blended with the copolymer (E), light scattering by the core-shell type particles (C) can be suppressed and the molded appearance can be improved. If the core part is mainly composed of (meth)acrylic acid ester units having an aromatic hydrocarbon group, and the shell part is mainly composed of (meth)acrylic acid alkyl ester units, the graft copolymer (D) Between the graft layer and the copolymer (E) and the core-shell particle (C), and between the graft layer of the graft copolymer (D) and the core part of the copolymer (E) and the copolymer (A). The structure does not have a gradual change in refractive index, and the molded appearance is poor.

本発明のコア-シェル型粒子(C)では、コア部である(メタ)アクリル酸アルキルエステル(a)単位を主成分とする共重合体(A)はガラス転移温度が低いため、コア部である共重合体(A)は低温耐衝撃性に寄与し、一方で、上記の通り、シェル部である共重合体(B)が成形外観向上に寄与する。
そのため、(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)がコア部で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)をシェル部とすることで、成形外観と耐衝撃性を両立できる。
In the core-shell type particles (C) of the present invention, since the copolymer (A) mainly composed of (meth)acrylic acid alkyl ester (a) units, which is the core part, has a low glass transition temperature, the core part A certain copolymer (A) contributes to low-temperature impact resistance, while, as described above, copolymer (B), which is a shell portion, contributes to improving the molded appearance.
Therefore, the copolymer (A) obtained by polymerizing the vinyl monomer mixture (m1) containing the (meth)acrylic acid alkyl ester (a) has an aromatic hydrocarbon group in the core part (meth). By using the copolymer (B) obtained by polymerizing the vinyl monomer mixture (m2) containing the acrylic acid ester (b) as the shell part, both molded appearance and impact resistance can be achieved.

ゴム粒子がコア-シェル型ではなく、ゴム粒子が(メタ)アクリル酸アルキルエステルと芳香族炭化水素基を有する(メタ)アクリル酸エステルの共重合体である場合、成形外観は向上するが、ゴム粒子のガラス転移温度が低いため、低温耐衝撃性が低下する。 If the rubber particles are not core-shell type but are made of a copolymer of an alkyl (meth)acrylic ester and an (meth)acrylic ester having an aromatic hydrocarbon group, the molded appearance will be improved, but the rubber Low temperature impact resistance is reduced due to the low glass transition temperature of the particles.

(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)をコア部とし、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)をシェル部とするコア-シェル型粒子(C)を用いたグラフト共重合体(D)、もしくはこのグラフト共重合体(D)を含む熱可塑性樹脂組成物においては、0℃~-150℃の低温領域に、ガラス転移温度が2点観測される。
これに対して、ゴム粒子がコア-シェル型ではなく、ゴム粒子が(メタ)アクリル酸アルキルエステルと、芳香族炭化水素基を有する(メタ)アクリル酸エステルの共重合体である場合、0℃~-150℃の低温領域に、ガラス転移温度は1点のみ観測される。
ここで、ガラス転移温度はDSCや動的粘弾性測定(例えば、周波数1Hzでの温度分散測定)により測定できる。
A copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid alkyl ester (a) is used as a core part, and (meth)acrylic acid has an aromatic hydrocarbon group. Graft copolymer (D) using core-shell type particles (C) whose shell portion is a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing an ester (b) In a thermoplastic resin composition containing this graft copolymer (D), two glass transition temperatures are observed in the low temperature region of 0°C to -150°C.
On the other hand, when the rubber particles are not core-shell type and are a copolymer of an alkyl (meth)acrylate ester and a (meth)acrylate ester having an aromatic hydrocarbon group, 0°C Only one glass transition temperature is observed in the low temperature region of ~-150°C.
Here, the glass transition temperature can be measured by DSC or dynamic viscoelasticity measurement (for example, temperature dispersion measurement at a frequency of 1 Hz).

<共重合体(A)>
共重合体(A)は、(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる。
<Copolymer (A)>
The copolymer (A) is obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid alkyl ester (a).

(メタ)アクリル酸アルキルエステル(a)としては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステルが好ましい。中でも、得られる熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが特に好ましい。(メタ)アクリル酸アルキルエステルは、1種でまたは2種以上を組み合わせて使用できる。 The (meth)acrylic acid alkyl ester (a) is preferably a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 12 carbon atoms. Among these, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are particularly preferred because the resulting thermoplastic resin composition has excellent impact resistance. (Meth)acrylic acid alkyl esters can be used alone or in combination of two or more.

共重合体(A)は、(メタ)アクリル酸アルキルエステル(a)以外に、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体であることが好ましく、共重合体(A)がグラフト交叉剤および/又は架橋剤に由来する単位を含むことでは、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性をより一層改善する効果が奏される。 The copolymer (A) may have, in addition to the (meth)acrylic acid alkyl ester (a), one or both of a unit derived from a crosslinking agent and a unit derived from a graft crosslinking agent. Preferably, when the copolymer (A) contains units derived from a grafting agent and/or a crosslinking agent, the effect of further improving the molded appearance and impact resistance of the resulting thermoplastic resin composition is achieved. .

グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 Examples of the graft cross-agent include allyl compounds, specifically allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like. These may be used alone or in combination of two or more.

架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 Examples of the crosslinking agent include dimethacrylate compounds, specific examples of which include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, and 1,4-butylene glycol dimethacrylate. These may be used alone or in combination of two or more.

架橋剤および/又はグラフト交叉剤を用いる場合、共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合は、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性が優れることから、(メタ)アクリル酸アルキルエステル(a)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.01~3質量%が好ましく、0.05~2質量%がより好ましい。 When a crosslinking agent and/or a grafting agent is used, the proportion of units derived from the crosslinking agent and/or grafting agent in the copolymer (A) depends on the molded appearance and impact resistance of the resulting thermoplastic resin composition. Because of the excellent Preferably, 0.05 to 2% by mass is more preferable.

なお、共重合体(A)は、本発明の目的を損なわない範囲で、(メタ)アクリル酸アルキルエステル(a)単位、必要に応じて用いられる架橋剤および/又はグラフト交叉剤に由来する単位以外のその他の単量体単位を含んでいてもよい。共重合体(A)に含まれていてもよいその他の単量体単位としては、後述のビニル系単量体混合物(m3)に含まれる(メタ)アクリル酸アルキルエステル(a)以外のビニル系単量体単位の1種又は2種以上が挙げられるが、本発明の効果を有効に得る上で、これらのその他のビニル系単量体単位の含有量は、共重合体(A)100質量%中20質量%以下、特に10質量%以下であることが好ましく、前述の理由から、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位は含まれていないことが好ましい。 The copolymer (A) may contain (meth)acrylic acid alkyl ester (a) units, units derived from a crosslinking agent and/or grafting agent used as necessary, to the extent that the object of the present invention is not impaired. It may also contain other monomer units. Other monomer units that may be included in the copolymer (A) include vinyl units other than the (meth)acrylic acid alkyl ester (a) contained in the vinyl monomer mixture (m3) described below. One or more types of monomer units may be mentioned, but in order to effectively obtain the effects of the present invention, the content of these other vinyl monomer units should be 100% by mass of the copolymer (A). %, preferably 20% by mass or less, particularly 10% by mass or less, and for the above-mentioned reasons, it is preferred that the (meth)acrylic acid ester (b) unit having an aromatic hydrocarbon group is not included.

共重合体(A)の製造方法としては特に制限されないが、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤とを含む混合物を乳化重合、またはミニエマルション重合させる方法が好ましく、得られる熱可塑性樹脂組成物の物性が優れることからミニエマルション重合させる方法が特に好ましい。 The method for producing the copolymer (A) is not particularly limited, but may include emulsion polymerization or miniemulsion polymerization of a mixture containing the (meth)acrylic acid alkyl ester (a) and a crosslinking agent and/or a grafting agent. is preferred, and miniemulsion polymerization is particularly preferred since the resulting thermoplastic resin composition has excellent physical properties.

共重合体(A)の乳化重合法による製造方法としては、水系溶媒にラジカル開始剤と、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤とを加えて、乳化剤の存在下で共重合させる方法が挙げられる。
ラジカル開始剤と、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤の添加方法は、一括、分割、連続のいずれでもよい。
The method for producing copolymer (A) by emulsion polymerization involves adding a radical initiator, (meth)acrylic acid alkyl ester (a), a crosslinking agent and/or a grafting agent to an aqueous solvent, and adding an emulsifier. Examples include a method of copolymerizing in the presence of.
The radical initiator, the (meth)acrylic acid alkyl ester (a), the crosslinking agent and/or the grafting agent may be added all at once, in portions, or continuously.

共重合体(A)を製造するミニエマルション重合は、これに限定されるものではないが、例えば、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤と、疎水性物質と、開始剤とを混合し、得られた混合物に水と、乳化剤とを加え、せん断力を付与してプレエマルション(ミニエマルション)を作製する工程、並びにこの混合物を重合開始温度まで加熱して重合させる工程を含むことができる。 Although the miniemulsion polymerization for producing the copolymer (A) is not limited to this, for example, (meth)acrylic acid alkyl ester (a), a crosslinking agent and/or a grafting agent, and a hydrophobic A step of mixing a substance and an initiator, adding water and an emulsifier to the resulting mixture, and applying shear force to create a pre-emulsion (mini-emulsion), and heating this mixture to a polymerization initiation temperature. The method may include a step of polymerizing the polymer.

ミニエマルション化の工程では、例えば、超音波照射による剪断工程を実施することにより、前記剪断力によりモノマーが引きちぎられ、乳化剤に覆われたモノマー微小油滴が形成される。その後、開始剤の重合開始温度まで加熱することにより、モノマー微小油滴をそのまま重合し、高分子微粒子が得られる。ミニエマルションを形成させるための剪断力を加える方法は公知の任意の方法を用いることができ、ミニエマルションを形成できる高剪断装置としては、これらに限定されるものではないが、例えば、高圧ポンプおよび相互作用チャンバーからなる乳化装置、超音波エネルギーや高周波によりミニエマルションを形成させる装置等がある。高圧ポンプおよび相互作用チャンバーからなる乳化装置としては、例えば、SPX Corporation APV社製「圧力式ホモジナイザー」、(株)パウレック製「マイクロフルイダイザー」等が挙げられ、超音波エネルギーや高周波によりミニエマルションを形成させる装置としては、例えば、Fisher Scient製「ソニックディスメンブレーター」や(株)日本精機製作所製「ULTRASONIC HOMOGENIZER」等が挙げられるがこれらに限定されるものではない。 In the mini-emulsion process, for example, by carrying out a shearing process using ultrasonic irradiation, the monomer is torn off by the shearing force, and minute oil droplets of the monomer covered with the emulsifier are formed. Thereafter, by heating to the polymerization initiation temperature of the initiator, the monomer minute oil droplets are directly polymerized to obtain polymer fine particles. Any known method can be used to apply shearing force to form a mini-emulsion, and high-shear devices that can form a mini-emulsion include, but are not limited to, for example, high-pressure pumps and There are emulsification devices consisting of an interaction chamber, devices that form mini-emulsions using ultrasonic energy or high frequency waves, and the like. Examples of emulsifying devices consisting of a high-pressure pump and an interaction chamber include the "Pressure Homogenizer" manufactured by SPX Corporation APV and the "Microfluidizer" manufactured by Powrec Co., Ltd., which can generate mini-emulsions using ultrasonic energy or high frequency. Examples of the forming device include, but are not limited to, "Sonic Dismembrator" manufactured by Fisher Scient and "ULTRASONIC HOMOGENIZER" manufactured by Nippon Seiki Seisakusho Co., Ltd., for example.

なお、ミニエマルション化の際の水溶媒の使用量は、作業性、安定性、製造性等の観点から、重合後の反応系の固形分濃度が5~50質量%程度となるように、水以外の混合物100質量部に対して100~500質量部程度とすることが好ましい。 In addition, from the viewpoint of workability, stability, manufacturability, etc., the amount of water solvent used during mini-emulsion formation is such that the solid content concentration of the reaction system after polymerization is about 5 to 50% by mass. The amount is preferably about 100 to 500 parts by mass per 100 parts by mass of the mixture other than the above.

ミニエマルション重合で共重合体(A)を製造する場合、疎水性物質を所定の割合で用いることが好ましい。プレエマルションを形成させる際に、疎水性物質を添加するとミニエマルション重合の製造安定性がより向上する傾向にあり、本発明に好適な共重合体(A)を製造することができる。 When producing the copolymer (A) by miniemulsion polymerization, it is preferable to use a hydrophobic substance in a predetermined ratio. When a hydrophobic substance is added when forming a pre-emulsion, the production stability of mini-emulsion polymerization tends to be further improved, and a copolymer (A) suitable for the present invention can be produced.

疎水性物質としては、例えば炭素数10以上の炭化水素類、炭素数10以上のアルコール、質量平均分子量(Mw)10000未満の疎水性ポリマー、疎水性モノマー、例えば、炭素数10~30のアルコールのビニルエステル、炭素数12~30のアルコールのビニルエーテル、炭素数12~30の(メタ)アクリル酸アルキル、炭素数10~30(好ましくは炭素数10~22)のカルボン酸ビニルエステル、p-アルキルスチレン、疎水性の連鎖移動剤、疎水性の過酸化物等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of hydrophobic substances include hydrocarbons having 10 or more carbon atoms, alcohols having 10 or more carbon atoms, hydrophobic polymers having a mass average molecular weight (Mw) of less than 10,000, and hydrophobic monomers such as alcohols having 10 to 30 carbon atoms. Vinyl ester, vinyl ether of alcohol having 12 to 30 carbon atoms, alkyl (meth)acrylate having 12 to 30 carbon atoms, vinyl ester of carboxylic acid having 10 to 30 carbon atoms (preferably 10 to 22 carbon atoms), p-alkylstyrene , hydrophobic chain transfer agents, hydrophobic peroxides, and the like. These may be used alone or in combination of two or more.

疎水性物質としては、より具体的には、ヘキサデカン、オクタデカン、イコサン、流動パラフィン、流動イソパラフィン、パラフィンワックス、ポリエチレンワックス、オリーブ油、セチルアルコール、アクリル酸ステアリル、アクリル酸ラウリル、アクリル酸ステアリル、メタクリル酸ラウリル、メタクリル酸ステアリル、500~10000の数平均分子量(Mn)を有するポリスチレン、ポリ(メタ)アクリル酸エステル等が挙げられる。 More specifically, the hydrophobic substances include hexadecane, octadecane, icosane, liquid paraffin, liquid isoparaffin, paraffin wax, polyethylene wax, olive oil, cetyl alcohol, stearyl acrylate, lauryl acrylate, stearyl acrylate, and lauryl methacrylate. , stearyl methacrylate, polystyrene having a number average molecular weight (Mn) of 500 to 10,000, poly(meth)acrylic ester, and the like.

疎水性物質は、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対し、好ましくは0.1~10質量部、より好ましくは1~3質量部用いることが、共重合体(A)の粒子径制御の点で好ましい。 The hydrophobic substance is preferably 0.1 to 10 parts by mass, more preferably 1 to 3 parts by mass, based on a total of 100 parts by mass of the (meth)acrylic acid alkyl ester (a) and the crosslinking agent and/or grafting agent. From the viewpoint of controlling the particle size of the copolymer (A), it is preferable to use 100% of the copolymer (A).

共重合体(A)を製造する際に用いる乳化剤としては、オレイン酸、パルミチン酸、ステアリン酸、ロジン酸のアルカリ金属塩、アルケニルコハク酸のアルカリ金属塩等で例示されるカルボン酸系の乳化剤、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどの中から選ばれるアニオン系乳化剤等、公知の乳化剤を単独または2種以上を組み合わせて使用することができる。 Examples of emulsifiers used in producing the copolymer (A) include carboxylic acid emulsifiers exemplified by oleic acid, palmitic acid, stearic acid, alkali metal salts of rosin acid, alkali metal salts of alkenylsuccinic acid, etc. Known emulsifiers such as anionic emulsifiers selected from alkyl sulfates, sodium alkylbenzenesulfonates, sodium alkylsulfosuccinates, sodium polyoxyethylene nonyl phenyl ether sulfates, etc. may be used alone or in combination of two or more. can.

乳化剤の添加量としては、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対し、0.01~3.0質量部が好ましく、さらに好ましくは0.05~1.5質量部であることが、共重合体(A)の粒子径制御の点で好ましい。 The amount of the emulsifier added is preferably 0.01 to 3.0 parts by mass, more preferably 0.01 to 3.0 parts by mass, based on a total of 100 parts by mass of the (meth)acrylic acid alkyl ester (a), the crosslinking agent and/or the grafting agent. The amount is preferably 0.05 to 1.5 parts by mass from the viewpoint of controlling the particle size of the copolymer (A).

共重合体(A)の製造に用いられる開始剤はラジカル重合するためのラジカル重合開始剤であり、その種類に特に制限はないが、例えば、アゾ重合開始剤、光重合開始剤、無機過酸化物、有機過酸化物、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらのうち、加熱により重合を開始できるアゾ重合開始剤、無機過酸化物、有機過酸化物、レドックス系開始剤が好ましい。これらは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The initiator used in the production of copolymer (A) is a radical polymerization initiator for radical polymerization, and there are no particular restrictions on its type, but examples include azo polymerization initiators, photopolymerization initiators, and inorganic peroxides. Examples thereof include organic peroxides, redox initiators that are a combination of organic peroxides, transition metals, and reducing agents. Among these, preferred are azo polymerization initiators, inorganic peroxides, organic peroxides, and redox initiators that can initiate polymerization by heating. These may be used alone or in combination of two or more.

アゾ重合開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]フォルムアミド、4,4’-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル1,1’-アゾビス(1-シクヘキサンカルボキシレート)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2,4,4-トリメチルペンタン)等が挙げられる。 Examples of the azo polymerization initiator include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'- Azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) azo]formamide, 4,4'-azobis(4-cyanovaleric acid), dimethyl 2,2'-azobis(2-methylpropionate), dimethyl 1,1'-azobis(1-cykhexanecarboxylate) ), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis(N-butyl-2-methylpropionamide), 2,2'-azobis( N-cyclohexyl-2-methylpropionamide), 2,2'-azobis[2-(2-imidazolin-2-yl)propane], 2,2'-azobis(2,4,4-trimethylpentane), etc. Can be mentioned.

無機過酸化物としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素等が挙げられる。 Examples of the inorganic peroxide include potassium persulfate, sodium persulfate, ammonium persulfate, and hydrogen peroxide.

有機過酸化物としては、例えばペルオキシエステル化合物が挙げられ、その具体例としては、α,α’-ビス(ネオデカノイルペルオキシ)ジイソプロピルベンゼン、クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルペルオキシネオデカノエート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルペルオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシイソブチレート、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシマレイックアシッド、t-ブチルペルオキシ3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルペルオキシ)ヘキサン、t-ブチルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルペルオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルペルオキシ)ヘキサン、t-ブチルペルオキシアセテート、t-ブチルペルオキシ-m-トルオイルベンゾエート、t-ブチルペルオキシベンゾエート、ビス(t-ブチルペルオキシ)イソフタレート、1,1-ビス(t-ヘキシルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロドデカン、2,2-ビス(t-ブチルペルオキシ)ブタン、n-ブチル4,4-ビス(t-ブチルペルオキシ)バレレート、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、α,α’-ビス(t-ブチルペルオキシド)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、t-ブチルクミルペルオキシド、ジ-t-ブチルペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、ジラウロイルペルオキシド、ジイソノナノイルペルオキシド、t-ブチルヒドロペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、ジメチルビス(t-ブチルペルオキシ)-3-ヘキシン、ビス(t-ブチルペルオキシイソプロピル)ベンゼン、ビス(t-ブチルペルオキシ)トリメチルシクロヘキサン、ブチル-ビス(t-ブチルペルオキシ)バレラート、2-エチルヘキサンペルオキシ酸t-ブチル、ジベンゾイルペルオキシド、パラメンタンハイドロペルオキシドおよびt-ブチルペルオキシベンゾエート等が挙げられる。 Examples of organic peroxides include peroxy ester compounds, specific examples of which include α,α'-bis(neodecanoylperoxy)diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3, 3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-Butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane, 1- Cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy 2-hexylhexanoate, t-butylperoxy 2-hexylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl Monocarbonate, t-butylperoxymaleic acid, t-butylperoxy 3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis(m-toluoylperoxy) ) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis(benzoylperoxy)hexane, t-butylperoxyacetate, t-Butylperoxy-m-toluoylbenzoate, t-butylperoxybenzoate, bis(t-butylperoxy)isophthalate, 1,1-bis(t-hexylperoxy)3,3,5-trimethylcyclohexane, 1,1 -bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane -butylperoxy)cyclododecane, 2,2-bis(t-butylperoxy)butane, n-butyl 4,4-bis(t-butylperoxy)valerate, 2,2-bis(4,4-di-t- butylperoxycyclohexyl)propane, α,α'-bis(t-butylperoxide)diisopropylbenzene, dicumylperoxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, t-butylcumylperoxide , di-t-butyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, dilauroyl peroxide, diisononanoyl peroxide, t-butyl hydroperoxide, benzoyl peroxide, lauroyl peroxide, dimethylbis(t-butylperoxy)-3- Hexyne, bis(t-butylperoxyisopropyl)benzene, bis(t-butylperoxy)trimethylcyclohexane, butyl-bis(t-butylperoxy)valerate, t-butyl 2-ethylhexane peroxyate, dibenzoylperoxide, paramenthane hydro Examples include peroxide and t-butyl peroxybenzoate.

レドックス系開始剤としては、有機過酸化物と硫酸第一鉄、キレート剤および還元剤を組み合わせたものが好ましい。例えば、クメンヒドロペルオキシド、硫酸第一鉄、ピロリン酸ナトリウム、およびデキストロースからなるものや、t-ブチルヒドロペルオキシド、ナトリウムホルムアルデヒトスルホキシレート(ロンガリット)、硫酸第一鉄、およびエチレンジアミン四酢酸二ナトリウムを組み合わせたもの等が挙げられる。 The redox initiator is preferably a combination of an organic peroxide, ferrous sulfate, a chelating agent, and a reducing agent. For example, a combination of cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose, or a combination of t-butyl hydroperoxide, sodium formaldehyde sulfoxylate (Rongalit), ferrous sulfate, and disodium ethylenediaminetetraacetate. Examples include things such as

開始剤としては、これらのうち、特に有機過酸化物が好ましい。 Among these, organic peroxides are particularly preferred as the initiator.

開始剤の添加量としては、(メタ)アクリル酸アルキルエステル(a)と、架橋剤および/又はグラフト交叉剤の合計100質量部に対して通常5質量部以下、好ましくは3質量部以下、例えば0.001~3質量部である。 The amount of the initiator added is usually 5 parts by mass or less, preferably 3 parts by mass or less, for example, 5 parts by mass or less, preferably 3 parts by mass or less, per 100 parts by mass of the (meth)acrylic acid alkyl ester (a), crosslinking agent and/or grafting agent. It is 0.001 to 3 parts by mass.

上記のプレエマルションを調製する工程は通常常温(10~50℃程度)で行われ、ミニエマルション重合の工程は40~100℃で30~600分程度行われる。 The step of preparing the above pre-emulsion is usually carried out at room temperature (about 10 to 50°C), and the mini-emulsion polymerization step is carried out at 40 to 100°C for about 30 to 600 minutes.

水性分散体に分散している共重合体(A)の平均粒子径は、得られる成形品の物性が優れることから、50~800nmが好ましく、100~600nmがより好ましく、250~450nmがさらに好ましい。
共重合体(A)の平均粒子径を制御する方法として、特に制限されないが、乳化剤の種類または使用量を調整する方法が挙げられる。
なお、ここで共重合体(A)の平均粒子径及び後述のコア-シェル型粒子(C)の平均粒子径とは、後述の実施例の項に記載される方法で測定される体積平均粒子径である。
The average particle diameter of the copolymer (A) dispersed in the aqueous dispersion is preferably 50 to 800 nm, more preferably 100 to 600 nm, even more preferably 250 to 450 nm, since the resulting molded product has excellent physical properties. .
Methods for controlling the average particle diameter of the copolymer (A) include, but are not particularly limited to, methods for adjusting the type or amount of emulsifier used.
Note that the average particle diameter of the copolymer (A) and the average particle diameter of the core-shell particles (C) described below refer to the volume average particle size measured by the method described in the Examples section below. It is the diameter.

また、共重合体(A)の膨潤度は、得られる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、2~15倍が好ましく、4~12倍であることがさらに好ましい。
なお、共重合体(A)の膨潤度は、後述の実施例の項に記載される方法で測定される。
Further, the degree of swelling of the copolymer (A) is preferably 2 to 15 times, more preferably 4 to 12 times, since the resulting thermoplastic resin composition has excellent impact resistance and molded appearance.
The degree of swelling of the copolymer (A) is measured by the method described in the Examples section below.

<共重合体(B)>
共重合体(B)は芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体である。共重合体(B)は、(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部を被包する外殻としてのシェル部を構成するものである。従って、例えば共重合体(A)の存在下にビニル系単量体混合物(m2)を重合することで、コア部が共重合体(A)で、シェル部が共重合体(B)であるコア-シェル型粒子(C)を得ることができる。
<Copolymer (B)>
The copolymer (B) is a copolymer obtained by polymerizing a vinyl monomer mixture (m2) containing a (meth)acrylic acid ester (b) having an aromatic hydrocarbon group. Copolymer (B) is an outer layer that encapsulates a core made of copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing (meth)acrylic acid alkyl ester (a). It constitutes a shell portion as a shell. Therefore, for example, by polymerizing the vinyl monomer mixture (m2) in the presence of the copolymer (A), the core part is the copolymer (A) and the shell part is the copolymer (B). Core-shell type particles (C) can be obtained.

ビニル系単量体混合物(m2)に含まれる、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)としては、芳香族炭化水素基を有する(メタ)アクリル酸エステルであればよく、例えば(メタ)アクリル酸アリールエステルや(メタ)アクリル酸アリーロキシエステル、アルキルエステル部分の置換基としてフェニル基等のアリール基やフェノキシ基等のアリーロキシ基、或いはベンジル基等のアリールアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられるが、何らこれらに限定されるものではない。芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)としては、得られる熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸2-フェノキシエチルが特に好ましい。芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)は、1種を単独でまたは2種以上を組み合わせて使用することができる。 The (meth)acrylic ester (b) having an aromatic hydrocarbon group contained in the vinyl monomer mixture (m2) may be any (meth)acrylic ester having an aromatic hydrocarbon group, For example, (meth)acrylic acid aryl esters, (meth)acrylic acid aryloxy esters, and aryl groups such as phenyl groups, aryloxy groups such as phenoxy groups, or arylalkyl groups such as benzyl groups as substituents on the alkyl ester moieties ( Examples include, but are not limited to, meth)acrylic acid alkyl esters. As the (meth)acrylic ester (b) having an aromatic hydrocarbon group, 2-phenoxyethyl acrylate is particularly preferred since the resulting thermoplastic resin composition has excellent impact resistance. The (meth)acrylic ester (b) having an aromatic hydrocarbon group can be used alone or in combination of two or more.

共重合体(B)は、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)以外に、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体であることが好ましく、共重合体(B)がグラフト交叉剤および/又は架橋剤に由来する単位を含むことでは、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性をより一層改善する効果が奏される。 The copolymer (B) is a copolymer having one or both of a unit derived from a crosslinking agent and a unit derived from a graft crosslinking agent, in addition to the (meth)acrylic ester (b) having an aromatic hydrocarbon group. A polymer is preferable, and when the copolymer (B) contains units derived from a grafting agent and/or a crosslinking agent, the molded appearance and impact resistance of the resulting thermoplastic resin composition can be further improved. The effect of

グラフト交叉剤、架橋剤としては、共重合体(A)に用いるグラフト交叉剤、架橋剤として例示したものを用いることができる。 As the graft cross-linking agent and cross-linking agent, those exemplified as the graft cross-linking agent and cross-linking agent used in the copolymer (A) can be used.

架橋剤および/又はグラフト交叉剤を用いる場合、共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合は、得られる熱可塑性樹脂組成物の成形外観と耐衝撃性が優れることから、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.01~3質量%が好ましく、0.05~2質量%がより好ましい。 When a crosslinking agent and/or a grafting agent is used, the proportion of units derived from the crosslinking agent and/or grafting agent in the copolymer (B) depends on the molded appearance and impact resistance of the resulting thermoplastic resin composition. Since the (meth)acrylic acid ester (b) unit having an aromatic hydrocarbon group and the units derived from the crosslinking agent and/or the units derived from the grafting agent are combined in 100% by mass, 0. 0.01 to 3% by weight is preferable, and 0.05 to 2% by weight is more preferable.

なお、共重合体(B)は、本発明の目的を損なわない範囲で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位、必要に応じて用いられる架橋剤および/又はグラフト交叉剤に由来する単位以外のその他の単量体単位を含んでいてもよい。共重合体(B)に含まれていてもよいその他の単量体単位としては、後述のビニル系単量体混合物(m3)に含まれる芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)以外のビニル系単量体単位の1種又は2種以上が挙げられるが、本発明の効果を有効に得る上で、これらのその他のビニル系単量体単位の含有量は、共重合体(B)100質量%中20質量%以下、特に10質量%以下であることが好ましく、前述の理由から、(メタ)アクリル酸アルキルエステル(a)単位は含まれていないことが好ましい。 The copolymer (B) may contain (meth)acrylic acid ester (b) units having an aromatic hydrocarbon group, a crosslinking agent and/or a grafting agent used as necessary, to the extent that the object of the present invention is not impaired. It may contain other monomer units other than the units derived from the cross-agent. Other monomer units that may be included in the copolymer (B) include (meth)acrylic acid esters (meth) having an aromatic hydrocarbon group contained in the vinyl monomer mixture (m3) described below. One or more types of vinyl monomer units other than b) may be used, but in order to effectively obtain the effects of the present invention, the content of these other vinyl monomer units should be set to a copolymer. It is preferably 20% by mass or less, particularly 10% by mass or less, based on 100% by mass of the combined (B), and for the reasons mentioned above, it is preferred that the (meth)acrylic acid alkyl ester (a) unit is not included.

<コア-シェル型粒子(C)>
コア-シェル型粒子(C)の製造方法としては特に制限されないが、共重合体(A)を乳化重合もしくはミニエマルション重合で製造した場合、ビニル系単量体混合物(m2)を用いて乳化重合で製造することが好ましい。
<Core-shell type particles (C)>
The method for producing the core-shell particles (C) is not particularly limited, but when the copolymer (A) is produced by emulsion polymerization or miniemulsion polymerization, emulsion polymerization using a vinyl monomer mixture (m2) is performed. Preferably, it is manufactured by

乳化重合の方法としては、共重合体(A)のエマルションの存在下に、ビニル系単量体混合物(m2)を一括で、または連続的、または断続的に添加してラジカル重合する方法が挙げられる。また、共重合体(B)の重合の際には、共重合体(B)の分子量調節やグラフト率を制御する目的で連鎖移動剤を使用したり、ラテックスの粘度やpHを調節する目的で公知の無機電解質等を使用したりしてもよい。また、乳化重合においては、各種の乳化剤やラジカル開始剤を必要に応じて使用することができる。 Examples of the emulsion polymerization method include a method of radical polymerization by adding the vinyl monomer mixture (m2) all at once, continuously, or intermittently in the presence of an emulsion of the copolymer (A). It will be done. In addition, during polymerization of copolymer (B), a chain transfer agent may be used to adjust the molecular weight or grafting rate of copolymer (B), or a chain transfer agent may be used to adjust the viscosity and pH of the latex. A known inorganic electrolyte or the like may be used. Moreover, in emulsion polymerization, various emulsifiers and radical initiators can be used as necessary.

乳化剤、ラジカル開始剤の種類や添加量については特に制限されない。また、乳化剤、ラジカル開始剤としては、共重合体(A)の説明において先に例示した乳化剤、ラジカル開始剤が挙げられる。 There are no particular restrictions on the type or amount of the emulsifier and radical initiator. Examples of the emulsifier and radical initiator include the emulsifier and radical initiator exemplified above in the description of the copolymer (A).

得られる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れることから、コア-シェル型粒子(C)100質量%中の共重合体(B)の割合は3~65質量%が好ましく、5~50質量%がより好ましく、10~30質量%がさらに好ましい。
また、得られる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れることから、コア-シェル型粒子(C)100質量%中の共重合体(A)は35~97質量%が好ましく、50~95質量%がより好ましく、70~90質量%がさらに好ましい。
Since the resulting thermoplastic resin composition has excellent impact resistance and molded appearance, the proportion of the copolymer (B) in 100% by mass of the core-shell particles (C) is preferably 3 to 65% by mass, and 5% by mass. ~50% by mass is more preferred, and 10~30% by mass is even more preferred.
In addition, since the resulting thermoplastic resin composition has excellent impact resistance and molded appearance, the copolymer (A) in 100% by mass of the core-shell particles (C) is preferably 35 to 97% by mass, and 50% by mass. It is more preferably 95% by mass, and even more preferably 70-90% by mass.

水性分散体に分散しているコア-シェル型粒子(C)の平均粒子径は、得られる成形品の物性が優れることから、60~820nmが好ましく、110~620nmがより好ましく、260~470nmがさらに好ましい。
コア-シェル型粒子(C)の平均粒子径を制御する方法として、特に制限されないが、主として共重合体(A)製造時の乳化剤の種類または使用量を調整する方法が挙げられる。
The average particle diameter of the core-shell particles (C) dispersed in the aqueous dispersion is preferably 60 to 820 nm, more preferably 110 to 620 nm, and 260 to 470 nm, since the resulting molded product has excellent physical properties. More preferred.
Methods for controlling the average particle diameter of the core-shell type particles (C) are not particularly limited, but mainly include a method of adjusting the type or amount of emulsifier used during production of the copolymer (A).

コア-シェル型粒子(C)の膨潤度は、得られる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、2~15倍が好ましく、4~12倍であることがさらに好ましい。
なお、コア-シェル型粒子(C)の膨潤度は、後述の実施例の項に記載される方法で測定される。
The swelling degree of the core-shell type particles (C) is preferably 2 to 15 times, more preferably 4 to 12 times, since the resulting thermoplastic resin composition has excellent impact resistance and molded appearance.
The degree of swelling of the core-shell particles (C) is measured by the method described in the Examples section below.

[グラフト共重合体(D)]
グラフト共重合体(D)は、コア-シェル型粒子(C)の存在下に、ビニル系単量体混合物(m3)をグラフト重合して得られる。
[Graft copolymer (D)]
The graft copolymer (D) is obtained by graft polymerizing the vinyl monomer mixture (m3) in the presence of the core-shell particles (C).

ビニル系単量体混合物(m3)は、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の物性が優れることから、芳香族ビニル系単量体とシアン化ビニル系単量体を含むことが好ましい。 The vinyl monomer mixture (m3) is composed of an aromatic vinyl monomer and a vinyl cyanide monomer because the resulting thermoplastic resin composition containing the graft copolymer (D) has excellent physical properties. It is preferable to include a polymer.

ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレンなどが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて使用することができる。芳香族ビニル系単量体の構造に特に制限は無いが、後述のビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体と同じ構造であることが、熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of aromatic vinyl monomers contained in the vinyl monomer mixture (m3) include styrene, α-methylstyrene, o-, m- or p-methylstyrene, vinylxylene, pt-butyl Examples include styrene and ethylstyrene, and these can be used alone or in combination of two or more. There is no particular restriction on the structure of the aromatic vinyl monomer, but it is important that the structure of the aromatic vinyl monomer is the same as that of the aromatic vinyl monomer contained in the vinyl monomer mixture (m4) described below. It is also preferable in terms of impact resistance and molded appearance of the molded product.

ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率は40~90質量%であることが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、60~80質量%であることがより好ましい。 The content of the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) is 40 to 90% by mass in the thermoplastic resin prepared by blending the resulting graft copolymer (D). It is preferable in terms of impact resistance and molded appearance of the composition and its molded products, and more preferably 60 to 80% by mass.

ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられ、これらのうちの1種以上を使用できる。シアン化ビニル系単量体の構造に特に制限は無いが、後述のビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) include acrylonitrile and methacrylonitrile, and one or more of these can be used. There is no particular restriction on the structure of the vinyl cyanide monomer, but it is important that the resulting thermoplastic resin has the same structure as the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) described below. It is preferable in terms of impact resistance and molded appearance of the composition and molded products thereof.

ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体の含有率は10~60質量%であることが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、20~40質量%であることがより好ましい。 The content of the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) is 10 to 60% by mass, and the thermoplastic resin is prepared by blending the resulting graft copolymer (D). It is preferable in terms of impact resistance and molded appearance of the composition and molded products thereof, and more preferably 20 to 40% by mass.

ビニル系単量体混合物(m3)は、上記の芳香族ビニル系単量体およびシアン化ビニル系単量体と、これらと共重合可能な他のビニル系単量体を含んでいてもよい。
ビニル系単量体混合物(m3)中の共重合可能な他のビニル系単量体の含有量としては20質量%以下、特に10質量%以下が好ましい。
他のビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸フェニル等のメタクリル酸エステルや、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-tert-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキルマレイミド、N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等のN-アリールマレイミド、N-アラルキルマレイミド等のマレイミド系化合物や、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等のアクリル酸エステル等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
The vinyl monomer mixture (m3) may contain the above-mentioned aromatic vinyl monomers and vinyl cyanide monomers, and other vinyl monomers copolymerizable with these.
The content of other copolymerizable vinyl monomers in the vinyl monomer mixture (m3) is preferably 20% by mass or less, particularly 10% by mass or less.
Examples of other vinyl monomers include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, Methacrylic acid esters such as amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, phenyl methacrylate, N-methylmaleimide, N-cycloalkyl such as N-ethylmaleimide, N-n-propylmaleimide, N-i-propylmaleimide, N-n-butylmaleimide, N-butylmaleimide, N-tert-butylmaleimide, N-cyclohexylmaleimide, etc. N-arylmaleimide such as maleimide, N-phenylmaleimide, N-alkyl substituted phenylmaleimide, N-chlorophenylmaleimide, maleimide-based compounds such as N-aralkylmaleimide, methyl acrylate, ethyl acrylate, propyl acrylate, acrylic acid Examples include acrylic esters such as butyl. These may be used alone or in combination of two or more.

グラフト共重合体(D)は、コア-シェル型粒子(C)にビニル系単量体混合物(m3)がグラフト重合している。
得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性や成形外観が優れ、特に成形外観の射出速度依存性を小さくできることから、グラフト共重合体(D)の製造に用いるコア-シェル型粒子(C)及びビニル系単量体混合物(m3)は、グラフト共重合体(D)100質量%中、コア-シェル型粒子(C)が50~80質量%、ビニル系単量体混合物(m3)が20~50質量%であることが好ましい。
In the graft copolymer (D), a vinyl monomer mixture (m3) is graft-polymerized onto core-shell particles (C).
The resulting thermoplastic resin composition blended with the graft copolymer (D) has excellent impact resistance and molded appearance, and in particular, the dependence of the molded appearance on injection speed can be reduced. The core-shell particles (C) and the vinyl monomer mixture (m3) used in the production contain 50 to 80% by mass of the core-shell particles (C) in 100% by mass of the graft copolymer (D), It is preferable that the vinyl monomer mixture (m3) is 20 to 50% by mass.

また、グラフト共重合体(D)は、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性、成形外観が優れることから、グラフト率が25~100%であることが好ましい。グラフト共重合体(D)のグラフト率は、後述の実施例の項に記載の方法で測定される。 In addition, the graft copolymer (D) has a graft ratio of 25 to 100% because the resulting thermoplastic resin composition blended with the graft copolymer (D) has excellent impact resistance and molded appearance. It is preferable that there be. The grafting rate of the graft copolymer (D) is measured by the method described in the Examples section below.

グラフト共重合体(D)は、塊状重合法、溶液重合法、塊状懸濁重合法、懸濁重合法、乳化重合法、ミニエマルション重合法等の公知の方法により製造されるが、得られるグラフト共重合体(D)を配合してなる熱可塑性樹脂組成物の耐衝撃性が良好なことから乳化重合法が好ましい。 The graft copolymer (D) is produced by a known method such as a bulk polymerization method, a solution polymerization method, a bulk suspension polymerization method, a suspension polymerization method, an emulsion polymerization method, or a miniemulsion polymerization method. Emulsion polymerization is preferred because the thermoplastic resin composition containing the copolymer (D) has good impact resistance.

乳化グラフト重合の方法としては、コア-シェル型粒子(C)のエマルションの存在下に、ビニル系単量体混合物(m3)を一括で、または連続的、または断続的に添加してラジカル重合する方法が挙げられる。また、グラフト重合の際には、グラフト共重合体(D)の分子量の調節やグラフト率を制御する目的で連鎖移動剤を使用したり、ラテックスの粘度やpHを調節する目的で公知の無機電解質等を使用したりしてもよい。また、乳化グラフト重合においては、各種の乳化剤やラジカル開始剤を必要に応じて使用することができる。
乳化剤、ラジカル開始剤の種類や添加量については特に制限されない。また、乳化剤、ラジカル開始剤としては、共重合体(A)の説明において先に例示した乳化剤、ラジカル開始剤が挙げられる。
As a method of emulsion graft polymerization, in the presence of an emulsion of core-shell type particles (C), a vinyl monomer mixture (m3) is added all at once, continuously, or intermittently, and radical polymerization is carried out. There are several methods. In addition, during graft polymerization, a chain transfer agent may be used to adjust the molecular weight of the graft copolymer (D) and the grafting rate, and a known inorganic electrolyte may be used to adjust the viscosity and pH of the latex. etc. may also be used. Moreover, in emulsion graft polymerization, various emulsifiers and radical initiators can be used as necessary.
There are no particular restrictions on the type or amount of the emulsifier and radical initiator. Examples of the emulsifier and radical initiator include the emulsifier and radical initiator exemplified above in the description of the copolymer (A).

グラフト共重合体(D)の水性分散体から、グラフト共重合体(D)を回収する方法としては、(i)凝固剤を溶解させた熱水中にグラフト共重合体(D)の水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法)、(ii)加熱雰囲気中にグラフト共重合体(D)の水性分散体を噴霧することにより、半直接的にグラフト共重合体(D)を回収する方法(スプレードライ法)等が挙げられる。 The method for recovering the graft copolymer (D) from the aqueous dispersion of the graft copolymer (D) includes (i) aqueous dispersion of the graft copolymer (D) in hot water in which a coagulant is dissolved; (ii) semi-directly by spraying an aqueous dispersion of graft copolymer (D) into a heated atmosphere; Examples include a method for recovering the graft copolymer (D) (spray drying method).

凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等が挙げられる。凝固剤は、重合で用いた乳化剤に対応させて選定される。すなわち、脂肪酸石鹸、ロジン酸石鹸等のカルボン酸石鹸のみを用いた場合、どのような凝固剤を用いてもよい。ドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、金属塩を用いる必要がある。 Examples of the coagulant include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid, and metal salts such as calcium chloride, calcium acetate, and aluminum sulfate. The coagulant is selected in accordance with the emulsifier used in polymerization. That is, when only carboxylic acid soap such as fatty acid soap or rosin acid soap is used, any coagulant may be used. When an emulsifier that exhibits stable emulsifying power even in an acidic region, such as sodium dodecylbenzenesulfonate, is included, it is necessary to use a metal salt.

スラリー状態のグラフト共重合体(D)から乾燥状態のグラフト共重合体(D)を得る方法としては、(i)洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、該スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する方法、(ii)圧搾脱水機、押出機等で脱水と乾燥とを同時に実施する方法等が挙げられる。乾燥後により、グラフト共重合体(D)は、粉体または粒子状で得られる。また、圧搾脱水機または押出機から排出されたグラフト共重合体(D)を直接、熱可塑性樹脂組成物を製造する押出機または成形機に送ることもできる。 The method for obtaining a dry graft copolymer (D) from a slurry graft copolymer (D) is as follows: (i) After eluting the emulsifier residue remaining in the slurry into water by washing, the slurry is Examples include a method of dehydrating with a centrifugal dehydrator or press dehydrator and further drying with a flash dryer, and (ii) a method of simultaneously performing dehydration and drying with a press dehydrator, extruder, etc. After drying, the graft copolymer (D) is obtained in the form of powder or particles. Alternatively, the graft copolymer (D) discharged from the compression dehydrator or extruder can be directly sent to an extruder or molding machine for producing a thermoplastic resin composition.

[共重合体(E)]
共重合体(E)は、ビニル系単量体混合物(m4)を重合して得られる。
[Copolymer (E)]
The copolymer (E) is obtained by polymerizing the vinyl monomer mixture (m4).

ビニル系単量体混合物(m4)は、共重合体(E)を配合して得られる熱可塑性樹脂組成物の物性が優れることから、前述のビニル系単量体混合物(m3)と同様の組成であることが好ましく、芳香族ビニル系単量体とシアン化ビニル系単量体を含むことが好ましい。 The vinyl monomer mixture (m4) has the same composition as the vinyl monomer mixture (m3) described above because the thermoplastic resin composition obtained by blending the copolymer (E) has excellent physical properties. It is preferable that it is, and it is preferable that an aromatic vinyl monomer and a cyanide vinyl monomer are included.

ビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレンなどが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて使用することができる。芳香族ビニル系単量体の構造に特に制限は無いが、前述のビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of the aromatic vinyl monomer contained in the vinyl monomer mixture (m4) include styrene, α-methylstyrene, o-, m- or p-methylstyrene, vinylxylene, pt-butyl Examples include styrene and ethylstyrene, and these can be used alone or in combination of two or more. There is no particular restriction on the structure of the aromatic vinyl monomer, but the obtained thermoplastic resin must have the same structure as the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) described above. It is preferable in terms of impact resistance and molded appearance of the composition and molded products thereof.

ビニル系単量体混合物(m4)に含まれる芳香族ビニル系単量体の含有率は40~90質量%であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、60~80質量%であることがより好ましい。 The content of the aromatic vinyl monomer contained in the vinyl monomer mixture (m4) should be 40 to 90% by mass to improve the impact resistance of the resulting thermoplastic resin composition and its molded products. It is preferable from the viewpoint of appearance, and more preferably 60 to 80% by mass.

ビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられ、これらのうちの1種以上を使用できる。シアン化ビニル系単量体の構造に特に制限は無いが、前述のビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましい。 Examples of the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) include acrylonitrile and methacrylonitrile, and one or more of these can be used. There is no particular restriction on the structure of the vinyl cyanide monomer, but the obtained thermoplastic resin must have the same structure as the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) described above. It is preferable in terms of impact resistance and molded appearance of the composition and molded products thereof.

ビニル系単量体混合物(m4)に含まれるシアン化ビニル系単量体の含有率は10~60質量%であることが、得られる熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観の点で好ましく、20~40質量%であることがより好ましい。 The content of the vinyl cyanide monomer contained in the vinyl monomer mixture (m4) should be 10 to 60% by mass to improve the impact resistance of the resulting thermoplastic resin composition and its molded products. It is preferable from the viewpoint of appearance, and more preferably 20 to 40% by mass.

ビニル系単量体混合物(m4)は、上記の芳香族ビニル系単量体およびシアン化ビニル系単量体と、これらと共重合可能な他のビニル系単量体を含んでいてもよい。
ビニル系単量体混合物(m4)中の共重合可能な他のビニル系単量体の含有量としては20質量%以下、特に10質量%以下が好ましい。
他のビニル系単量体としては、ビニル系単量体混合物(m3)が含んでいてもよい他のビニル系単量体として例示したものが挙げられ、これらの他のビニル系単量体は、1種を単独でまたは2種以上を組み合わせて使用することができる。
The vinyl monomer mixture (m4) may contain the above-mentioned aromatic vinyl monomers and vinyl cyanide monomers, and other vinyl monomers copolymerizable with these.
The content of other copolymerizable vinyl monomers in the vinyl monomer mixture (m4) is preferably 20% by mass or less, particularly 10% by mass or less.
Examples of other vinyl monomers include those exemplified as other vinyl monomers that may be included in the vinyl monomer mixture (m3), and these other vinyl monomers are , one type can be used alone or two or more types can be used in combination.

共重合体(E)の質量平均分子量に特に制限は無いが、10,000から300,000の範囲であることが好ましく、特に50,000から200,000の範囲であることが好ましい。共重合体(E)の質量平均分子量が上記範囲内であれば、得られる熱可塑性樹脂組成物の流動性、耐衝撃性が優れるものとなる。
なお、共重合体(E)の質量平均分子量は、後述の実施例の項に記載の方法で測定される。
There is no particular restriction on the weight average molecular weight of the copolymer (E), but it is preferably in the range of 10,000 to 300,000, particularly preferably in the range of 50,000 to 200,000. If the mass average molecular weight of the copolymer (E) is within the above range, the resulting thermoplastic resin composition will have excellent fluidity and impact resistance.
The weight average molecular weight of the copolymer (E) is measured by the method described in the Examples section below.

共重合体(E)の製造方法としては特に制限されず、乳化重合、懸濁重合、塊状重合、溶液重合などの公知の方法が挙げられる。得られる熱可塑性樹脂組成物の耐熱性の点からは、懸濁重合、塊状重合が好ましい The method for producing the copolymer (E) is not particularly limited, and includes known methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and solution polymerization. From the viewpoint of heat resistance of the resulting thermoplastic resin composition, suspension polymerization and bulk polymerization are preferred.

共重合体(E)の製造時に用いる重合開始剤に特に制限はないが、例えば有機過酸化物類が挙げられる。 There are no particular restrictions on the polymerization initiator used in producing the copolymer (E), and examples thereof include organic peroxides.

共重合体(E)の製造時に、共重合体(E)の分子量を調整するため、連鎖移動剤を用いることができる。連鎖移動剤に特に制限はないが、メルカプタン類、α-メチルスチレンダイマー、テルペン類等が挙げられる。 During the production of copolymer (E), a chain transfer agent can be used to adjust the molecular weight of copolymer (E). The chain transfer agent is not particularly limited, but examples include mercaptans, α-methylstyrene dimer, and terpenes.

[熱可塑性樹脂組成物]
本発明の熱可塑性樹脂組成物は、前述の本発明のグラフト共重合体(D)を含むものであり、好ましくは、本発明のグラフト共重合体(D)と上述の共重合体(E)とを含む。
[Thermoplastic resin composition]
The thermoplastic resin composition of the present invention contains the above-mentioned graft copolymer (D) of the present invention, and preferably contains the graft copolymer (D) of the present invention and the above-mentioned copolymer (E). including.

本発明の熱可塑性樹脂組成物における本発明のグラフト共重合体(D)の含有率は、グラフト共重合体(D)と共重合体(E)の合計を100質量%とした場合に、10~50質量%であることが好ましく、共重合体(E)の含有率は50~90質量%であることが好ましい。グラフト共重合体(D)および共重合体(E)の含有率が上記範囲であると、熱可塑性樹脂組成物及びその成形品の耐衝撃性、成形外観が優れたものとなる。 The content of the graft copolymer (D) of the present invention in the thermoplastic resin composition of the present invention is 10% by mass when the total of the graft copolymer (D) and copolymer (E) is 100% by mass. The content of the copolymer (E) is preferably 50 to 90% by mass. When the content of the graft copolymer (D) and copolymer (E) is within the above range, the thermoplastic resin composition and the molded product thereof will have excellent impact resistance and molded appearance.

本発明の熱可塑性樹脂組成物は、必要に応じて、他の熱可塑性樹脂を含有してもよい。他の熱可塑性樹脂としては特に制限はなく、例えば、ポリカーボネート樹脂、ポリブチレンテレフタレート(PBT樹脂)、ポリエチレンテレフタレート(PET樹脂)、ポリ塩化ビニル、ポリスチレン、ポリアセタール樹脂、変性ポリフェニレンエーテル(変性PPE樹脂)、エチレン-酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂およびポリアミド樹脂(ナイロン)等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。 The thermoplastic resin composition of the present invention may contain other thermoplastic resins as necessary. Other thermoplastic resins are not particularly limited, and include, for example, polycarbonate resin, polybutylene terephthalate (PBT resin), polyethylene terephthalate (PET resin), polyvinyl chloride, polystyrene, polyacetal resin, modified polyphenylene ether (modified PPE resin), Examples include ethylene-vinyl acetate copolymer, polyarylate, liquid crystal polyester resin, polyethylene resin, polypropylene resin, fluororesin, and polyamide resin (nylon). These may be used alone or in combination of two or more.

本発明の熱可塑性樹脂組成物には、熱可塑性樹脂組成物及びその成形品の物性を損なわない範囲において、熱可塑性樹脂組成物の製造時(混合時)、成形時に、慣用の他の添加剤、例えば滑材、顔料、染料、充填剤(カーボンブラック、シリカ、酸化チタン等)、耐熱剤、酸化劣化防止剤、耐候剤、離型剤、可塑剤、帯電防止剤等を配合することができる。 The thermoplastic resin composition of the present invention may contain other commonly used additives during the production (mixing) and molding of the thermoplastic resin composition, within the range that does not impair the physical properties of the thermoplastic resin composition and its molded products. For example, lubricants, pigments, dyes, fillers (carbon black, silica, titanium oxide, etc.), heat resistant agents, oxidative deterioration inhibitors, weathering agents, mold release agents, plasticizers, antistatic agents, etc. can be blended. .

本発明の熱可塑性樹脂組成物は、公知の装置を使用した公知の方法で製造できる。例えば、一般的な方法として溶融混合法があり、この方法で使用する装置としては、押出機、バンバリーミキサー、ローラー、ニーダー等が挙げられる。混合には回分式、連続式のいずれを採用してもよい。また、各成分の混合順序などにも特に制限はなく、全ての成分が均一に混合されればよい。 The thermoplastic resin composition of the present invention can be manufactured by a known method using a known apparatus. For example, a common method is a melt mixing method, and examples of equipment used in this method include an extruder, a Banbury mixer, a roller, a kneader, and the like. Mixing may be done either batchwise or continuously. Furthermore, there is no particular restriction on the mixing order of each component, as long as all the components are mixed uniformly.

[成形品]
本発明の成形品は、本発明の熱可塑性樹脂組成物が成形されたものである。成形方法としては、例えば、射出成形法、射出圧縮成形機法、押出法、ブロー成形法、真空成形法、圧空成形法、カレンダー成形法およびインフレーション成形法等が挙げられる。これらのなかでも、量産性に優れ、高い寸法精度の成形品を得ることができるため、射出成形法、射出圧縮成形法が好ましい。
[Molding]
The molded article of the present invention is obtained by molding the thermoplastic resin composition of the present invention. Examples of the molding method include injection molding, injection compression molding, extrusion, blow molding, vacuum molding, pressure molding, calendar molding, and inflation molding. Among these, the injection molding method and the injection compression molding method are preferable because they are excellent in mass production and can obtain molded products with high dimensional accuracy.

[用途]
本発明の熱可塑性樹脂組成物及びその成形品の用途については特に制限はないが、本発明の熱可塑性樹脂組成物及びその成形品は、耐衝撃性に優れ、成形外観、流動性にも優れることから、OA・家電分野、車両・船舶分野、家具・建材などの住宅関連分野、サニタリー分野、雑貨、文具・玩具・スポーツ用品分野などの幅広い分野に有用である。
[Application]
Although there are no particular limitations on the uses of the thermoplastic resin composition and molded articles thereof of the present invention, the thermoplastic resin composition of the present invention and molded articles thereof have excellent impact resistance, molded appearance, and fluidity. Therefore, it is useful in a wide range of fields such as OA and home appliances, vehicles and ships, housing-related fields such as furniture and building materials, sanitary goods, stationery, toys, and sporting goods.

以下に、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
なお、以下において、「部」は「質量部」、「%」は「質量%」を意味する。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples; however, the present invention is not limited to the following Examples unless it exceeds the gist thereof.
In the following, "part" means "part by mass" and "%" means "% by mass."

以下の実施例および比較例における各種測定および評価方法は以下の通りである。 Various measurement and evaluation methods in the following Examples and Comparative Examples are as follows.

<共重合体(A)およびコア-シェル型粒子(C)の体積平均粒子径>
マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒としてイオン交換水を用いて、水性分散体に分散している共重合体(A)又はコア-シェル型粒子(C)の体積平均粒子径を測定した。
<Volume average particle diameter of copolymer (A) and core-shell particles (C)>
The volume of the copolymer (A) or core-shell type particles (C) dispersed in the aqueous dispersion was measured using Microtrac (“Nanotrac 150” manufactured by Nikkiso Co., Ltd.) and ion-exchanged water as the measurement solvent. The average particle size was measured.

<共重合体(A)およびコア-シェル型粒子(C)の膨潤度>
共重合体(A)又はコア-シェル型粒子(C)の水性分散体を80℃で24時間乾燥させ、その後80℃で24時間真空乾燥させることで、フィルム状の共重合体(A)又はコア-シェル型粒子(C)の乾燥物を作成した。得られた乾燥物の重量をW1とする。この乾燥物1gを80mLのアセトンに浸漬後、そのアセトンを65~70℃で3時間還流した。次いで、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpmで30分間遠心分離して、沈殿成分(アセトン不溶成分)を分取した。アセトン不溶成分の重量をW2とする。その後、アセトン不溶成分を常温で24時間真空乾燥した。真空乾燥後のアセトン不溶成分の重量をW3とする。共重合体(A)、コア-シェル型粒子(C)の膨潤度は、下記式(1)で算出される。
膨潤度(%)=(W2/W3)×100 …(1)
<Swelling degree of copolymer (A) and core-shell particles (C)>
By drying the aqueous dispersion of copolymer (A) or core-shell particles (C) at 80°C for 24 hours, and then vacuum drying at 80°C for 24 hours, a film-like copolymer (A) or A dried core-shell type particle (C) was prepared. Let the weight of the obtained dry product be W1. After immersing 1 g of this dried product in 80 mL of acetone, the acetone was refluxed at 65 to 70° C. for 3 hours. Next, the obtained suspended acetone solution was centrifuged at 14,000 rpm for 30 minutes using a centrifuge (“CR21E” manufactured by Hitachi Koki Co., Ltd.) to separate precipitated components (acetone-insoluble components). Let W2 be the weight of the acetone-insoluble component. Thereafter, the acetone-insoluble components were vacuum dried at room temperature for 24 hours. The weight of the acetone-insoluble component after vacuum drying is defined as W3. The degree of swelling of the copolymer (A) and core-shell particles (C) is calculated using the following formula (1).
Swelling degree (%) = (W2/W3) x 100...(1)

<グラフト共重合体(D)のグラフト率>
グラフト共重合体(D)1gを80mLのアセトンに添加し、65~70℃にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Y(g))を測定し、下記式(2)によりグラフト率を算出した。なお、式(2)におけるYは、グラフト共重合体(D)のアセトン不溶成分の質量(g)、XはYを求める際に使用したグラフト共重合体(D)の全質量(g)、ゴム分率はグラフト共重合体(D)の製造に用いたコア-シェル型粒子(C)の水性分散体における固形分濃度である。
グラフト率(質量%)={(Y-X×ゴム分率)/X×ゴム分率}
×100 …(2)
<Graft rate of graft copolymer (D)>
1 g of graft copolymer (D) was added to 80 mL of acetone, heated under reflux at 65 to 70°C for 3 hours, and the resulting suspended acetone solution was placed in a centrifuge (“CR21E” manufactured by Hitachi Koki Co., Ltd.). The mixture was centrifuged at 14,000 rpm for 30 minutes to separate a precipitate component (acetone-insoluble component) and an acetone solution (acetone-soluble component). Then, the precipitated component (acetone-insoluble component) was dried, its mass (Y (g)) was measured, and the grafting rate was calculated using the following formula (2). In addition, Y in formula (2) is the mass (g) of the acetone-insoluble component of the graft copolymer (D), X is the total mass (g) of the graft copolymer (D) used when determining Y, The rubber fraction is the solid content concentration in the aqueous dispersion of core-shell particles (C) used for producing the graft copolymer (D).
Grafting ratio (mass%) = {(Y-X×rubber fraction)/X×rubber fraction}
×100...(2)

<共重合体(E)の質量平均分子量>
共重合体(E)の質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、テトラヒドロフラン(THF)に溶解して測定したものを標準ポリスチレン(PS)換算で求めた。
<Mass average molecular weight of copolymer (E)>
The mass average molecular weight of the copolymer (E) was measured by dissolving it in tetrahydrofuran (THF) using gel permeation chromatography (GPC) and was calculated in terms of standard polystyrene (PS).

[実施例I-1:コア-シェル型粒子(C-1)の製造]
<共重合体(A-1)の製造>
まず、以下の配合で共重合体(A-1)を製造した。
[Example I-1: Production of core-shell particles (C-1)]
<Production of copolymer (A-1)>
First, a copolymer (A-1) was produced using the following formulation.

〔配合〕
アクリル酸n-ブチル(BA) 48部
メタクリル酸アリル 0.19部
流動パラフィン(LP) 0.5部
アルケニルコハク酸ジカリウム(ASK) 0.29部
ジラウロイルペルオキシド 0.29部
イオン交換水 140部
[Composition]
n-Butyl acrylate (BA) 48 parts Allyl methacrylate 0.19 parts Liquid paraffin (LP) 0.5 parts Dipotassium alkenylsuccinate (ASK) 0.29 parts Dilauroyl peroxide 0.29 parts Ion-exchanged water 140 parts

試薬注入容器、冷却管、ジャケット加熱機および攪拌装置を備えた反応器に、アクリル酸n-ブチル、流動パラフィン、メタクリル酸アリル、ジラウロイルペルオキシド、イオン交換水、アルケニルコハク酸ジカリウムを仕込み、常温下で(株)日本精機製作所製ULTRASONIC HOMOGENIZER US-600を用いて振幅35μmで20分間超音波処理を行うことでプレエマルションを得た。得られたラテックスの体積平均粒子径は270nmであった。
プレエマルションを60℃に加熱し、ラジカル重合を開始した。重合により、液温は78℃まで上昇した。30分間75℃で維持し、重合を完結させ、水性分散体に分散している共重合体(A-1)を得た。
N-butyl acrylate, liquid paraffin, allyl methacrylate, dilauroyl peroxide, ion exchange water, and dipotassium alkenylsuccinate were charged into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater, and a stirring device, and the mixture was heated at room temperature. A pre-emulsion was obtained by performing ultrasonic treatment at an amplitude of 35 μm for 20 minutes using ULTRASONIC HOMOGENIZER US-600 manufactured by Nippon Seiki Seisakusho Co., Ltd. The volume average particle diameter of the obtained latex was 270 nm.
The pre-emulsion was heated to 60°C to initiate radical polymerization. Due to polymerization, the liquid temperature rose to 78°C. The temperature was maintained at 75° C. for 30 minutes to complete polymerization, and a copolymer (A-1) dispersed in an aqueous dispersion was obtained.

<コア-シェル型粒子(C-1)の製造>
共重合体(A-1)を製造後、反応器の内温を75℃に保ったまま、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部、ロンガリット0.2部、およびイオン交換水5部からなる水溶液を添加し、次いで、アルケニルコハク酸ジカリウム0.01部を添加した。その後、アクリル酸2-フェノキシエチル2部、メタクリル酸アリル0.01部、およびt-ブチルヒドロペルオキシド0.004部からなる混合液を0.26部/分のレートで滴下し、共重合体(B-1)の重合を行って、コア-シェル型粒子(C-1)の水性分散体を得た。
<Production of core-shell particles (C-1)>
After producing the copolymer (A-1), while maintaining the internal temperature of the reactor at 75°C, add 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt, and 0.2 part of Rongalite. , and 5 parts of ion-exchanged water were added, and then 0.01 part of dipotassium alkenylsuccinate was added. Thereafter, a mixed solution consisting of 2 parts of 2-phenoxyethyl acrylate, 0.01 part of allyl methacrylate, and 0.004 part of t-butyl hydroperoxide was added dropwise at a rate of 0.26 parts/min to form a copolymer ( B-1) was polymerized to obtain an aqueous dispersion of core-shell particles (C-1).

[実施例I-2~8、比較例I-4,5,7:コア-シェル型粒子(C-2)~(C-8),(C-12),(C-13),(C-15)の製造]
共重合体(A-1)を製造する際の(メタ)アクリル酸アルキルn-ブチル、メタクリル酸アリル等の単量体や、アルケニルコハク酸ジカリウム、ジラウロイルペルオキシドの種類や量と、共重合体(B)を共重合する際のアクリル酸2-フェノキシエチル等の単量体や、アルケニルコハク酸ジカリウム、メタクリル酸アリル、t-ブチルヒドロペルオキシドの種類や量を表1(表1A,1B)に示す通り変更したこと以外は、コア-シェル型粒子(C-1)と同様にして、水性分散体に分散しているコア-シェル型粒子(C-2)~(C-8),(C-12),(C-13),(C-15)を得た。
[Examples I-2 to 8, Comparative Examples I-4, 5, 7: Core-shell particles (C-2) to (C-8), (C-12), (C-13), (C -15) Manufacturing]
The type and amount of monomers such as alkyl n-butyl (meth)acrylate and allyl methacrylate, dipotassium alkenylsuccinate, and dilauroyl peroxide, and the copolymer (A-1) when producing the copolymer (A-1). The types and amounts of monomers such as 2-phenoxyethyl acrylate, dipotassium alkenylsuccinate, allyl methacrylate, and t-butyl hydroperoxide when copolymerizing (B) are shown in Table 1 (Tables 1A and 1B). Core-shell particles (C-2) to (C-8), (C -12), (C-13), and (C-15) were obtained.

[比較例I-1~3,6:ゴム粒子(C-9)~(C-11),(C-14)の製造]
共重合体(A-1)を製造する際の(メタ)アクリル酸アルキルn-ブチル、メタクリル酸アリル等の単量体や、アルケニルコハク酸ジカリウム、ジラウロイルペルオキシドの種類や量を表1Bに示す通り変更し、共重合体(A-1)の製造と同様にして、共重合体(A-9)~(A-11),(A-14)のみからなる非コア-シェル型のゴム粒子(C-9)~(C-11),(C-14)の水性分散体を得た。
[Comparative Examples I-1 to I-3, 6: Production of rubber particles (C-9) to (C-11), (C-14)]
Table 1B shows the types and amounts of monomers such as alkyl n-butyl (meth)acrylate and allyl methacrylate, dipotassium alkenylsuccinate, and dilauroyl peroxide when producing copolymer (A-1). In the same manner as in the production of copolymer (A-1), non-core-shell type rubber particles consisting only of copolymers (A-9) to (A-11) and (A-14) were produced. Aqueous dispersions of (C-9) to (C-11) and (C-14) were obtained.

実施例I-1~8および比較例I-1~7で得られた水性分散体に分散している共重合体(A-1)~(A-15)の体積平均粒子径及び膨潤度と、水性分散体に分散しているコア-シェル型粒子又はゴム粒子(C-1)~(C-15)の体積平均粒子径及び膨潤度を、表1(表1A,1B)に示す。 Volume average particle diameter and degree of swelling of copolymers (A-1) to (A-15) dispersed in the aqueous dispersions obtained in Examples I-1 to I-8 and Comparative Examples I-1 to 7 The volume average particle diameter and degree of swelling of the core-shell type particles or rubber particles (C-1) to (C-15) dispersed in the aqueous dispersion are shown in Table 1 (Tables 1A and 1B).

Figure 0007404701000001
Figure 0007404701000001

[実施例II-1:グラフト共重合体(D-1)の製造]
コア-シェル型粒子(C-1)を製造後、反応器の内温を75℃に保ったまま、コア-シェル型粒子(C-1)50部(固形分として)に対して、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.3部、およびイオン交換水5部からなる水溶液を添加し、次いで、アルケニルコハク酸ジカリウム0.1部を添加した。その後、アクリロニトリル14部、スチレン36部、およびt-ブチルヒドロペルオキシド0.17部からなる混合液を1時間40分にわたって滴下し、グラフト重合させた。
[Example II-1: Production of graft copolymer (D-1)]
After producing the core-shell particles (C-1), while maintaining the internal temperature of the reactor at 75°C, sulfuric acid was added to 50 parts (as solid content) of the core-shell particles (C-1). An aqueous solution consisting of 0.001 part of iron, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.3 part of Rongalite, and 5 parts of ion-exchanged water was added, and then 0.1 part of dipotassium alkenylsuccinate was added. . Thereafter, a mixed solution consisting of 14 parts of acrylonitrile, 36 parts of styrene, and 0.17 parts of t-butyl hydroperoxide was added dropwise over 1 hour and 40 minutes to effect graft polymerization.

滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、アルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。次いで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(D-1)を得た。 After the dropwise addition was completed, the internal temperature was maintained at 75°C for 10 minutes, and then cooled. When the internal temperature reached 60°C, an aqueous solution of 0.2 parts of dipotassium alkenylsuccinate dissolved in 5 parts of ion-exchanged water was added. did. Next, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and then dried to obtain a graft copolymer (D-1).

[実施例II-2~8、比較例II-1~7:グラフト共重合体(D-2)~(D-15)の製造]
用いたコア-シェル型粒子又はゴム粒子(C)の種類を表2に示す通り変更したこと以外は、グラフト共重合体(D-1)と同様にして、グラフト共重合体(D-2)~(D-15)を得た。
[Examples II-2 to 8, Comparative Examples II-1 to 7: Production of graft copolymers (D-2) to (D-15)]
Graft copolymer (D-2) was prepared in the same manner as graft copolymer (D-1) except that the type of core-shell particles or rubber particles (C) used was changed as shown in Table 2. ~(D-15) was obtained.

実施例II-1~8および比較例II-1~7で得られたグラフト共重合体(D-1)~(D-15)のグラフト率を表2に示す。 Table 2 shows the graft ratios of the graft copolymers (D-1) to (D-15) obtained in Examples II-1 to II-8 and Comparative Examples II-1 to II-7.

Figure 0007404701000002
Figure 0007404701000002

[共重合体(E-1)の製造]
耐圧反応容器にイオン交換水150部と、ビニル系単量体混合物(m4)としてアクリロニトリル34部、スチレン66部の混合物と、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.45部、カルシウムハイドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応を行った。その後、90℃まで昇温し、60分間保持することで反応を完結させた。内容物を遠心脱水機で洗浄、脱水を繰り返し、乾燥させて質量平均分子量95,000の共重合体(E-1)を得た。
[Production of copolymer (E-1)]
In a pressure-resistant reaction vessel, 150 parts of ion-exchanged water, a mixture of 34 parts of acrylonitrile and 66 parts of styrene as a vinyl monomer mixture (m4), and 0.2 parts of 2,2'-azobis(isobutyronitrile), n -0.45 parts of octyl mercaptan, 0.47 parts of calcium hydroxyapatite, and 0.003 parts of potassium alkenylsuccinate were charged, the internal temperature was raised to 75°C, and a reaction was carried out for 3 hours. Thereafter, the temperature was raised to 90°C and maintained for 60 minutes to complete the reaction. The contents were repeatedly washed and dehydrated using a centrifugal dehydrator and dried to obtain a copolymer (E-1) with a mass average molecular weight of 95,000.

[実施例III-1~8、比較例III-1~7:熱可塑性樹脂組成物の製造と評価]
表3に示す組成(質量部)で各成分を混合し、さらにそこにカーボンブラック0.8部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製「PCM30」)を用いて240℃で溶融混練し、ペレット状の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物についてメルトボリュームレートを以下の方法により評価した。また、得られた熱可塑性樹脂組成物を射出成形した成形品について、成形外観、耐衝撃性を以下の方法により評価した。
評価結果を表3に示す。
[Examples III-1 to 8, Comparative Examples III-1 to 7: Production and evaluation of thermoplastic resin composition]
Each component was mixed with the composition (parts by mass) shown in Table 3, 0.8 part of carbon black was further mixed therein, and 240 The mixture was melt-kneaded at ℃ to obtain a thermoplastic resin composition in the form of pellets. The melt volume rate of the obtained thermoplastic resin composition was evaluated by the following method. In addition, molded products obtained by injection molding the obtained thermoplastic resin composition were evaluated for molded appearance and impact resistance by the following methods.
The evaluation results are shown in Table 3.

[各評価方法]
<メルトボリュームレート(MVR)の測定>
ISO 1133:1997に準拠し、220℃における熱可塑性樹脂組成物のMVRを、98N(10kg)の荷重で測定した。なお、MVRは熱可塑性樹脂組成物の流動性の目安となり、数値が高いほど流動性に優れることを意味する。
[Each evaluation method]
<Measurement of melt volume rate (MVR)>
In accordance with ISO 1133:1997, the MVR of the thermoplastic resin composition at 220° C. was measured under a load of 98 N (10 kg). Note that MVR is a measure of fluidity of a thermoplastic resin composition, and a higher value means better fluidity.

<射出成形1>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃の条件で、縦80mm、横10mm、厚さ4mmの成形品を成形し、シャルピー衝撃試験用成形品(成形品(Ma1))として用いた。
<Injection molding 1>
Pellets of the thermoplastic resin composition obtained by melt-kneading are vertically molded using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") under conditions of a cylinder temperature of 200 to 270°C and a mold temperature of 60°C. A molded article of 80 mm, width 10 mm, and thickness 4 mm was molded and used as a molded article for Charpy impact test (molded article (Ma1)).

<射出成形2>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃、射出率7g/秒の条件で、縦100mm、横100mm、厚さ3mmの成形品を成形し、外観評価用成形品(成形品(Ma2))として用いた。
<Injection molding 2>
The pellets of the thermoplastic resin composition obtained by melt-kneading were molded using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") at a cylinder temperature of 200 to 270°C, a mold temperature of 60°C, and an injection rate of 7 g/ A molded product having a length of 100 mm, a width of 100 mm, and a thickness of 3 mm was molded under the conditions of 10 seconds, and was used as a molded product for appearance evaluation (molded product (Ma2)).

<射出成形3>
溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成型機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃、射出率128g/秒の条件で、縦100mm、横100mm、厚さ3mmの成形品を成形し、外観評価用成形品(成形品(Ma3))として用いた。
<Injection molding 3>
The pellets of the thermoplastic resin composition obtained by melt-kneading were molded using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., "IS55FP-1.5A") at a cylinder temperature of 200 to 270°C, a mold temperature of 60°C, and an injection rate of 128 g/ A molded product having a length of 100 mm, a width of 100 mm, and a thickness of 3 mm was molded under the conditions of 10 seconds, and was used as a molded product for appearance evaluation (molded product (Ma3)).

<外観評価(1)>
成形品(Ma2)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(ma)」とする。Lが低いほど黒色となり、外観が良好である。
<Appearance evaluation (1)>
The lightness L * of the molded product (Ma2) was measured using a spectrophotometer ("CM-3500d" manufactured by Konica Minolta Optics, Inc.) using the SCE method. Let L * thus measured be "L * (ma)". The lower the L * , the blacker the color and the better the appearance.

<外観評価(2)>
成形品(Ma3)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(mb)」とする。Lが低いほど黒色となり、外観が良好である。
射出速度が速い条件で成形した際に、樹脂中のゴム成分が配向することで、白化やブロンズ現象が生じ、Lが大きくなる。そのため、射出速度が速い条件での成形外観が重要となる。
<Appearance evaluation (2)>
The lightness L * of the molded product (Ma3) was measured using a spectrophotometer ("CM-3500d" manufactured by Konica Minolta Optics, Inc.) using the SCE method. Let L * thus measured be "L * (mb)". The lower the L * , the blacker the color and the better the appearance.
When molding is performed under conditions of high injection speed, the rubber components in the resin are oriented, causing whitening and bronzing, resulting in an increase in L * . Therefore, the molded appearance under conditions of high injection speed is important.

<外観評価(3)(外観の射出速度依存性評価)>
ΔL=(L(mb)-L(ma))の式よりΔLを算出した。ΔLが小さいほど、外観の射出速度依存性が小さい。一般に、車輛部品等の成形品においては、部品箇所により射出速度が異なる。そのため、射出速度依存性の大きい樹脂では、成形時に部品表面に色むらが生じる、といった外観不良が起こる。
<Appearance evaluation (3) (injection speed dependence evaluation of appearance)>
ΔL * was calculated from the formula ΔL * =(L * (mb)−L * (ma)) 2 . The smaller ΔL * is, the smaller the dependence of the appearance on the injection speed is. Generally, in molded products such as vehicle parts, the injection speed differs depending on the location of the part. Therefore, with resins that are highly dependent on injection speed, poor appearance occurs such as color unevenness on the surface of the part during molding.

<耐衝撃性の評価:シャルピー衝撃試験>
成形品(Ma1)について、ISO 179-1:2013年度版に準拠し、試験温度23℃もしくは-20℃の条件で成形品(タイプB1、ノッチ有:形状A シングルノッチ)のシャルピー衝撃強度(打撃方向:エッジワイズ)を測定した。シャルピー衝撃強度が高いほど、耐衝撃性に優れることを意味する。
<Impact resistance evaluation: Charpy impact test>
Regarding molded products (Ma1), the Charpy impact strength (impact direction: edgewise). The higher the Charpy impact strength, the better the impact resistance.

Figure 0007404701000003
Figure 0007404701000003

表3の実施例III-1~8に示すように、各実施例によれば、耐衝撃性や流動性、外観に優れる熱可塑性樹脂組成物および成形品が得られた。 As shown in Examples III-1 to III-8 in Table 3, according to each Example, thermoplastic resin compositions and molded articles with excellent impact resistance, fluidity, and appearance were obtained.

一方、比較例III-1は、ゴム粒子がコア-シェル型ではなく、(メタ)アクリル酸アルキルエステル単位が主成分であるため、成形外観に劣った。
比較例III-2、比較例III-3は、粒子がコア-シェル型ではなく、芳香族炭化水素基を有する(メタ)アクリル酸エステル単位を含むため、成形外観は良好であるが、低温耐衝撃性に劣った。
比較例III-4、比較例III-5は、シェル部が芳香族炭化水素基を有する(メタ)アクリル酸エステル単位ではないため、耐衝撃性と成形外観に劣った。
比較例III-6は、粒子がコア-シェル型ではなく、(メタ)アクリル酸アルキルエステルとスチレンの共重合体であるため、耐衝撃性と成形外観に劣った。
比較例III-7は、シェル部が(メタ)アクリル酸アルキルエステル単位よりなるため、成形外観に劣った。
On the other hand, in Comparative Example III-1, the rubber particles were not of the core-shell type and had a (meth)acrylic acid alkyl ester unit as the main component, so the molded appearance was poor.
In Comparative Examples III-2 and III-3, the particles are not core-shell type and contain (meth)acrylic acid ester units having an aromatic hydrocarbon group, so the molded appearance is good, but the low temperature resistance is poor. Poor impact resistance.
Comparative Examples III-4 and Comparative Examples III-5 had poor impact resistance and molded appearance because the shell portion was not a (meth)acrylic acid ester unit having an aromatic hydrocarbon group.
Comparative Example III-6 had poor impact resistance and molded appearance because the particles were not of the core-shell type but were a copolymer of alkyl (meth)acrylate and styrene.
Comparative Example III-7 had poor molded appearance because the shell portion was composed of (meth)acrylic acid alkyl ester units.

Claims (9)

(メタ)アクリル酸アルキルエステル(a)を含むビニル系単量体混合物(m1)を重合して得られる共重合体(A)よりなるコア部と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)を含むビニル系単量体混合物(m2)を重合して得られる共重合体(B)よりなるシェル部とを有するコア-シェル型粒子(C)であって、
(メタ)アクリル酸アルキルエステル(a)がアクリル酸n-ブチルであり、
共重合体(A)に含まれる(メタ)アクリル酸アルキルエステル(a)単位以外のビニル系単量体単位の含有量が共重合体(A)100質量%中20質量%以下であり、
共重合体(A)が、(メタ)アクリル酸アルキルエステル(a)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含み、
共重合体(A)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、(メタ)アクリル酸アルキルエステル(a)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.01~3質量%であり、
共重合体(B)が、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位を含み、
共重合体(B)中の架橋剤および/又はグラフト交叉剤に由来する単位の割合が、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位および/又はグラフト交叉剤に由来する単位との合計100質量%中、0.01~3質量%であるコア-シェル型粒子(C)に、ビニル系単量体混合物(m3)をグラフト重合してなるグラフト共重合体(D)であり、
ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、ビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体の含有率が40~90質量%で、シアン化ビニル系単量体の含有率が10~60質量%であるグラフト共重合体(D)
A core part made of a copolymer (A) obtained by polymerizing a vinyl monomer mixture (m1) containing a (meth)acrylic acid alkyl ester (a), and (meth)acrylic having an aromatic hydrocarbon group. A core-shell type particle (C) having a shell portion made of a copolymer (B) obtained by polymerizing a vinyl monomer mixture (m2) containing an acid ester (b),
(meth)acrylic acid alkyl ester (a) is n-butyl acrylate,
The content of vinyl monomer units other than the (meth)acrylic acid alkyl ester (a) units contained in the copolymer (A) is 20% by mass or less based on 100% by mass of the copolymer (A),
The copolymer (A) contains (meth)acrylic acid alkyl ester (a) units, units derived from a crosslinking agent and/or units derived from a grafting agent,
The proportion of units derived from the crosslinking agent and/or graft cross-agent in the copolymer (A) is the same as that of the (meth)acrylic acid alkyl ester (a) unit and the unit derived from the cross-linking agent and/or graft cross-agent. It is 0.01 to 3% by mass out of the total 100% by mass with the derived unit,
The copolymer (B) contains a (meth)acrylic acid ester (b) unit having an aromatic hydrocarbon group, a unit derived from a crosslinking agent and/or a unit derived from a grafting crosslinking agent,
The proportion of units derived from the crosslinking agent and/or grafting agent in the copolymer (B) is the (meth)acrylic acid ester (b) unit having an aromatic hydrocarbon group, the unit derived from the crosslinking agent, and A vinyl monomer mixture (m3) is graft-polymerized to core-shell particles (C) in an amount of 0.01 to 3% by mass out of a total of 100% by mass with units derived from a graft cross- agent. The graft copolymer (D) is
The vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the content of the aromatic vinyl monomer contained in the vinyl monomer mixture (m3) is 40 to 90% by mass, and the content of vinyl cyanide monomer is 10 to 60% by mass .
コア-シェル型粒子(C)100質量%中の共重合体(A)の含有量が35~97質量%で、共重合体(B)の含有量が3~65質量%である請求項1に記載のグラフト共重合体(D)Claim 1, wherein the content of the copolymer (A) in 100% by mass of the core-shell particles (C) is 35 to 97% by mass, and the content of the copolymer (B) is 3 to 65% by mass. The graft copolymer (D) described in . 共重合体(A)の体積平均粒子径が50~800nmで、膨潤度が2~15倍であり、コア-シェル型粒子(C)の体積平均粒子径が60~820nmで、膨潤度が2~15倍である、請求項1又は2に記載のグラフト共重合体(D)The copolymer (A) has a volume average particle size of 50 to 800 nm and a swelling degree of 2 to 15 times, and the core-shell particles (C) have a volume average particle size of 60 to 820 nm and a swelling degree of 2. The graft copolymer (D) according to claim 1 or 2, which is ~15 times. コア-シェル型粒子(C)とビニル系単量体混合物(m3)との合計100質量%に対するコア-シェル型粒子(C)の割合が50~80質量%で、ビニル系単量体混合物(m3)の割合が20~50質量%で、グラフト率が25~100%である、請求項1~3のいずれか1項に記載のグラフト共重合体(D)。 The ratio of the core-shell type particles (C) to the total 100 mass% of the core-shell type particles (C) and the vinyl monomer mixture (m3) is 50 to 80% by mass, and the vinyl monomer mixture (m3) The graft copolymer (D) according to any one of claims 1 to 3 , wherein the proportion of m3) is 20 to 50% by mass and the graft ratio is 25 to 100%. 請求項ないしのいずれか1項に記載のグラフト共重合体(D)を含む熱可塑性樹脂組成物。 A thermoplastic resin composition comprising the graft copolymer (D) according to any one of claims 1 to 4 . グラフト共重合体(D)と、ビニル系単量体混合物(m4)の重合反応物である共重合
体(E)とを含む、請求項に記載の熱可塑性樹脂組成物。
The thermoplastic resin composition according to claim 5 , comprising a graft copolymer (D) and a copolymer (E) which is a polymerization reaction product of a vinyl monomer mixture (m4).
ビニル系単量体混合物(m3)が芳香族ビニル系単量体とシアン化ビニル系単量体を含み、ビニル系単量体混合物(m4)がビニル系単量体混合物(m3)に含まれる芳香族ビニル系単量体と同じ構造の芳香族ビニル系単量体と、ビニル系単量体混合物(m3)に含まれるシアン化ビニル系単量体と同じ構造のシアン化ビニル系単量体を含む、請求項に記載の熱可塑性樹脂組成物。 The vinyl monomer mixture (m3) contains an aromatic vinyl monomer and a vinyl cyanide monomer, and the vinyl monomer mixture (m4) is contained in the vinyl monomer mixture (m3). An aromatic vinyl monomer with the same structure as the aromatic vinyl monomer and a vinyl cyanide monomer with the same structure as the vinyl cyanide monomer contained in the vinyl monomer mixture (m3) The thermoplastic resin composition according to claim 6 , comprising: グラフト共重合体(D)と共重合体(E)との合計100質量%中にグラフト共重合体(D)を10~50質量%、共重合体(E)を50~90質量%含む、請求項又はに記載の熱可塑性樹脂組成物。 Containing 10 to 50% by mass of the graft copolymer (D) and 50 to 90% by mass of the copolymer (E) in a total of 100% by mass of the graft copolymer (D) and the copolymer (E), The thermoplastic resin composition according to claim 6 or 7 . 請求項ないしのいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形品。 A molded article obtained by molding the thermoplastic resin composition according to any one of claims 5 to 8 .
JP2019145540A 2019-08-07 2019-08-07 Graft copolymers, thermoplastic resin compositions and molded products thereof Active JP7404701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145540A JP7404701B2 (en) 2019-08-07 2019-08-07 Graft copolymers, thermoplastic resin compositions and molded products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145540A JP7404701B2 (en) 2019-08-07 2019-08-07 Graft copolymers, thermoplastic resin compositions and molded products thereof

Publications (2)

Publication Number Publication Date
JP2021024981A JP2021024981A (en) 2021-02-22
JP7404701B2 true JP7404701B2 (en) 2023-12-26

Family

ID=74664401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145540A Active JP7404701B2 (en) 2019-08-07 2019-08-07 Graft copolymers, thermoplastic resin compositions and molded products thereof

Country Status (1)

Country Link
JP (1) JP7404701B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096374A1 (en) 2008-01-28 2009-08-06 Kaneka Corporation Alicyclic epoxy resin composition, cured product thereof, production method thereof, and rubbery polymer-containing resin composition
WO2014162369A1 (en) 2013-04-05 2014-10-09 株式会社カネカ Resin composition and film thereof
JP2014211513A (en) 2013-04-18 2014-11-13 日油株式会社 Optical laminate
JP2019099698A (en) 2017-12-04 2019-06-24 ユーエムジー・エービーエス株式会社 Graft copolymer, thermoplastic resin composition and molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096374A1 (en) 2008-01-28 2009-08-06 Kaneka Corporation Alicyclic epoxy resin composition, cured product thereof, production method thereof, and rubbery polymer-containing resin composition
WO2014162369A1 (en) 2013-04-05 2014-10-09 株式会社カネカ Resin composition and film thereof
JP2014211513A (en) 2013-04-18 2014-11-13 日油株式会社 Optical laminate
JP2019099698A (en) 2017-12-04 2019-06-24 ユーエムジー・エービーエス株式会社 Graft copolymer, thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JP2021024981A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP7062931B2 (en) Graft copolymer, thermoplastic resin composition and articles thereof
JP7310140B2 (en) Rubber polymer, graft copolymer and thermoplastic resin composition
CN111690093A (en) Rubbery polymer, graft copolymer and thermoplastic resin composition
US11319395B2 (en) Rubbery polymer, graft copolymer, and thermoplastic resin composition
US11608402B2 (en) Graft copolymer, thermoplastic resin composition, and molded article produced by molding the same
JP2019073669A (en) Powder material containing cellulose nanofiber, thermoplastic resin composition containing the powder material, and molded article of the same
JP7404701B2 (en) Graft copolymers, thermoplastic resin compositions and molded products thereof
JP6988967B1 (en) Thermoplastic resin composition and its molded product
JP7192407B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP7257108B2 (en) Graft polymer and thermoplastic resin composition
JP7079116B2 (en) Polymers, graft polymers and thermoplastic resin compositions
JP7484107B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP7251106B2 (en) Graft copolymer, thermoplastic resin composition and molded article thereof
JP6988966B1 (en) Thermoplastic resin composition and its molded product
JP2019014815A (en) Polymer, graft polymer and thermoplastic resin composition
WO2019009203A1 (en) Polymer, graft polymer, and thermoplastic resin composition
JP7011444B2 (en) Graft polymer and thermoplastic resin composition
JP6953867B2 (en) Composite rubber polymer, graft copolymer and thermoplastic resin composition
JP2019147866A (en) Thermoplastic resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7404701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150