JP7480579B2 - Nonaqueous electrolyte storage element and method for producing same - Google Patents

Nonaqueous electrolyte storage element and method for producing same Download PDF

Info

Publication number
JP7480579B2
JP7480579B2 JP2020082276A JP2020082276A JP7480579B2 JP 7480579 B2 JP7480579 B2 JP 7480579B2 JP 2020082276 A JP2020082276 A JP 2020082276A JP 2020082276 A JP2020082276 A JP 2020082276A JP 7480579 B2 JP7480579 B2 JP 7480579B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
sulfur
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020082276A
Other languages
Japanese (ja)
Other versions
JP2021177463A (en
Inventor
要 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2020082276A priority Critical patent/JP7480579B2/en
Publication of JP2021177463A publication Critical patent/JP2021177463A/en
Application granted granted Critical
Publication of JP7480579B2 publication Critical patent/JP7480579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質蓄電素子及びその製造方法に関する。 The present invention relates to a non-aqueous electrolyte storage element and a method for manufacturing the same.

リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries, such as lithium ion secondary batteries, are widely used in electronic devices such as personal computers and communication terminals, as well as automobiles, due to their high energy density. The non-aqueous electrolyte secondary batteries generally have a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and are configured to charge and discharge by transferring ions between the two electrodes. In addition to non-aqueous electrolyte secondary batteries, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements.

非水電解質蓄電素子として、Li-S電池等、正極活物質に硫黄が用いられた非水電解質蓄電素子が知られている。特許文献1には、フルオロエチレンカーボネート等のフッ素原子を有する溶媒が用いられたLi-S電池が記載されている。 As a non-aqueous electrolyte storage element, a Li-S battery or the like is known, which uses sulfur as the positive electrode active material. Patent Document 1 describes a Li-S battery that uses a solvent containing fluorine atoms, such as fluoroethylene carbonate.

特表2013-508927号公報JP 2013-508927 A

硫黄は、理論容量が大きく、正極活物質に硫黄が用いられた非水電解質蓄電素子は、高エネルギー密度を有する蓄電素子として期待されている。しかし、正極活物質に硫黄が用いられた非水電解質蓄電素子は、充放電サイクルにおける容量維持率が低いという不都合を有する。 Sulfur has a large theoretical capacity, and nonaqueous electrolyte storage elements that use sulfur as the positive electrode active material are expected to have high energy density. However, nonaqueous electrolyte storage elements that use sulfur as the positive electrode active material have the disadvantage of low capacity retention during charge/discharge cycles.

本発明は、以上のような事情に基づいてなされたものであり、その目的は、正極活物質として硫黄を含む正極を備える非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することである。 The present invention was made based on the above circumstances, and its purpose is to provide a nonaqueous electrolyte storage element having a positive electrode containing sulfur as a positive electrode active material, which has a high capacity retention rate during charge/discharge cycles, and a method for manufacturing such a nonaqueous electrolyte storage element.

本発明の一態様は、正極活物質を含む正極と、フッ素化溶媒及び添加剤を含む非水電解質とを備え、上記正極活物質が、硫黄を含み、上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である非水電解質蓄電素子である。 One aspect of the present invention is a non-aqueous electrolyte storage element that includes a positive electrode containing a positive electrode active material and a non-aqueous electrolyte containing a fluorinated solvent and an additive, in which the positive electrode active material contains sulfur, and the additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound.

本発明の他の一態様は、正極活物質を含む正極を準備することと、フッ素化溶媒及び添加剤を含む非水電解質を準備することとを備え、上記正極活物質が、硫黄を含み、上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である非水電解質蓄電素子の製造方法である。 Another aspect of the present invention is a method for producing a nonaqueous electrolyte storage element, comprising preparing a positive electrode containing a positive electrode active material, and preparing a nonaqueous electrolyte containing a fluorinated solvent and an additive, the positive electrode active material containing sulfur, and the additive being at least one of a sulfur-containing cyclic compound and a boron-containing compound.

本発明の一態様によれば、正極活物質として硫黄を含む正極を備える非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a nonaqueous electrolyte storage element having a positive electrode containing sulfur as a positive electrode active material, which has a high capacity retention rate during charge/discharge cycles, and a method for manufacturing such a nonaqueous electrolyte storage element.

図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。FIG. 1 is an external perspective view showing a nonaqueous electrolyte electricity storage element according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic diagram showing an electricity storage device formed by assembling a plurality of nonaqueous electrolyte electricity storage elements according to one embodiment of the present invention.

初めに、本明細書によって開示される非水電解質蓄電素子及び非水電解質蓄電素子の製造方法の概要について説明する。 First, we will provide an overview of the nonaqueous electrolyte storage element and the method for manufacturing the nonaqueous electrolyte storage element disclosed in this specification.

本発明の一態様に係る非水電解質蓄電素子は、正極活物質を含む正極と、フッ素化溶媒及び添加剤を含む非水電解質とを備え、上記正極活物質が、硫黄を含み、上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である非水電解質蓄電素子である。 A nonaqueous electrolyte storage element according to one aspect of the present invention is a nonaqueous electrolyte storage element that includes a positive electrode containing a positive electrode active material and a nonaqueous electrolyte containing a fluorinated solvent and an additive, in which the positive electrode active material contains sulfur, and the additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound.

本発明の一態様に係る非水電解質蓄電素子は、正極活物質として硫黄を含む正極を備える非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い。この理由は定かではないが、以下の理由が推測される。正極活物質として硫黄を含む正極を備える非水電解質蓄電素子においては、初期充放電時に生じる正極中の硫黄と非水電解質との副反応により、正極表面に被膜が形成される。本発明の一態様に係る非水電解質蓄電素子においては、非水電解質に特定の添加剤とフッ素化溶媒とが含まれていることにより、正極表面に形成される被膜が良好なものとなり、充放電サイクルにおける容量維持率が高まると推測される。 The nonaqueous electrolyte storage element according to one embodiment of the present invention is a nonaqueous electrolyte storage element having a positive electrode containing sulfur as a positive electrode active material, and has a high capacity retention rate during charge and discharge cycles. The reason for this is unclear, but the following reason is presumed. In a nonaqueous electrolyte storage element having a positive electrode containing sulfur as a positive electrode active material, a coating is formed on the positive electrode surface due to a side reaction between the sulfur in the positive electrode and the nonaqueous electrolyte that occurs during initial charge and discharge. In the nonaqueous electrolyte storage element according to one embodiment of the present invention, the nonaqueous electrolyte contains a specific additive and a fluorinated solvent, which is presumed to improve the coating formed on the positive electrode surface, thereby increasing the capacity retention rate during charge and discharge cycles.

上記添加剤が上記ホウ素を含む化合物であり、上記ホウ素を含む化合物が塩であることが好ましい。 It is preferable that the additive is a compound containing boron, and that the compound containing boron is a salt.

上記添加剤がこのような化合物である場合、本発明の一態様に係る非水電解質蓄電素子は、充放電サイクルにおける容量維持率が高いことに加え、初期の放電容量が大きいものとなる。 When the additive is such a compound, the nonaqueous electrolyte storage element according to one embodiment of the present invention has a high capacity retention rate during charge/discharge cycles and a large initial discharge capacity.

上記添加剤が上記硫黄を含む環状化合物であり、上記硫黄を含む環状化合物がスルトン類であることが好ましい。 It is preferable that the additive is a cyclic compound containing sulfur, and that the cyclic compound containing sulfur is a sultone.

上記添加剤がこのような化合物である場合、本発明の一態様に係る非水電解質蓄電素子の充放電サイクルにおける容量維持率がより高まる。 When the additive is such a compound, the capacity retention rate during charge-discharge cycles of the nonaqueous electrolyte storage element according to one embodiment of the present invention is improved.

本発明の一態様に係る非水電解質蓄電素子の製造方法は、正極活物質を含む正極を準備することと、フッ素化溶媒及び添加剤を含む非水電解質を準備することとを備え、上記正極活物質が、硫黄を含み、上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である非水電解質蓄電素子の製造方法である。 A method for producing a nonaqueous electrolyte storage element according to one aspect of the present invention includes preparing a positive electrode containing a positive electrode active material, and preparing a nonaqueous electrolyte containing a fluorinated solvent and an additive, in which the positive electrode active material contains sulfur, and the additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound.

当該製造方法によれば、正極活物質として硫黄を含む正極を備える非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子を製造することができる。 This manufacturing method makes it possible to manufacture a nonaqueous electrolyte storage element that has a positive electrode containing sulfur as the positive electrode active material and has a high capacity retention rate during charge/discharge cycles.

以下、本発明の一実施形態に係る非水電解質蓄電素子及び非水電解質蓄電素子の製造方法等について、順に説明する。 The following describes the nonaqueous electrolyte storage element according to one embodiment of the present invention and the method for manufacturing the nonaqueous electrolyte storage element.

<非水電解質蓄電素子>
本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を有する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は容器に収納され、この容器内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記容器としては、二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。
<Non-aqueous electrolyte electricity storage element>
The nonaqueous electrolyte storage element according to one embodiment of the present invention has a positive electrode, a negative electrode, and a nonaqueous electrolyte. Hereinafter, a nonaqueous electrolyte secondary battery (hereinafter, simply referred to as a "secondary battery") will be described as an example of a nonaqueous electrolyte storage element. The positive electrode and the negative electrode are usually stacked or wound alternately with a separator interposed therebetween to form an electrode body. This electrode body is housed in a container, and the container is filled with a nonaqueous electrolyte. The nonaqueous electrolyte is interposed between the positive electrode and the negative electrode. In addition, as the container, a known metal container, a resin container, or the like that is usually used as a container for a secondary battery can be used.

(正極)
正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。
(Positive electrode)
The positive electrode has a positive electrode substrate and a positive electrode active material layer disposed on the positive electrode substrate directly or via an intermediate layer.

正極基材は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。 The positive electrode substrate has electrical conductivity. Having "electrical conductivity" means that the volume resistivity measured in accordance with JIS-H-0505 (1975) is 10 7 Ω·cm or less, and "non-electrically conductive" means that the volume resistivity is more than 10 7 Ω·cm. As the material of the positive electrode substrate, metals such as aluminum, titanium, tantalum, stainless steel, etc. or alloys thereof are used. Among these, aluminum and aluminum alloys are preferred in terms of the balance between potential resistance, high electrical conductivity, and cost. In addition, examples of the formation form of the positive electrode substrate include foil, vapor deposition film, etc., and foil is preferred in terms of cost. In other words, aluminum foil is preferred as the positive electrode substrate. In addition, examples of aluminum or aluminum alloys include A1085P, A3003P, etc., as specified in JIS-H-4000 (2014).

正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。正極基材及び後述する負極基材の「平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。 The average thickness of the positive electrode substrate is preferably 3 μm to 50 μm, more preferably 5 μm to 40 μm, even more preferably 8 μm to 30 μm, and particularly preferably 10 μm to 25 μm. By setting the average thickness of the positive electrode substrate within the above range, the strength of the positive electrode substrate can be increased while increasing the energy density per volume of the secondary battery. The "average thickness" of the positive electrode substrate and the negative electrode substrate described below refers to the value obtained by dividing the punched mass when a substrate of a given area is punched out by the true density and punched area of the substrate.

中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。 The intermediate layer is a coating layer on the surface of the positive electrode substrate, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer. The composition of the intermediate layer is not particularly limited, and it can be formed, for example, from a composition containing a resin binder and conductive particles.

正極活物質層は、正極活物質を含むいわゆる正極合剤から形成される。また、正極活物質層を形成する正極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer is formed from a so-called positive electrode mixture that contains a positive electrode active material. In addition, the positive electrode mixture that forms the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary.

正極活物質層は、正極活物質として、硫黄を含む。すなわち、正極は、正極活物質として、硫黄を含む。この正極活物質としての硫黄は、硫黄単体であってもよく、硫黄化合物であってもよい。上記硫黄化合物としては、硫化リチウム等の金属硫化物、有機ジスルフィド化合物、カーボンスルフィド化合物等の有機硫黄化合物などを挙げることができる。硫黄は理論容量が高く、また、低コストであるなどといった利点がある。 The positive electrode active material layer contains sulfur as a positive electrode active material. That is, the positive electrode contains sulfur as a positive electrode active material. The sulfur as the positive electrode active material may be elemental sulfur or a sulfur compound. Examples of the sulfur compound include metal sulfides such as lithium sulfide, organic disulfide compounds, and organic sulfur compounds such as carbon sulfide compounds. Sulfur has the advantages of a high theoretical capacity and low cost.

硫黄は、導電剤(硫黄よりも導電性の高い材料)等との複合体の形態であってもよい。この複合体は、担体としての導電剤等に硫黄が担持された形態のものを挙げることができ、具体的には、硫黄と多孔質カーボンとの複合体(硫黄-多孔質カーボン複合体:SPC)等を挙げることができる。このSPCにおける硫黄の含有量(SPCの質量に対する硫黄原子の質量比)の下限は、50質量%が好ましく、60質量%がより好ましい。一方、この含有量の上限は、90質量%が好ましく、80質量%がより好ましい。SPCにおける硫黄の含有量を上記範囲とすることで、大きい電気容量と良好な導電性との両立を図ることなどができる。 The sulfur may be in the form of a complex with a conductive agent (a material having a higher conductivity than sulfur). Examples of such complexes include those in which sulfur is supported on a conductive agent or the like as a carrier, and specifically, examples include a complex of sulfur and porous carbon (sulfur-porous carbon composite: SPC). The lower limit of the sulfur content in this SPC (the mass ratio of sulfur atoms to the mass of SPC) is preferably 50 mass%, more preferably 60 mass%. Meanwhile, the upper limit of this content is preferably 90 mass%, more preferably 80 mass%. By setting the sulfur content in the SPC to the above range, it is possible to achieve both a large electric capacity and good conductivity.

正極活物質層中の硫黄の含有量(正極活物質層の質量に対する硫黄原子の質量比)の下限としては、40質量%が好ましく、50質量%がより好ましい。一方、この含有量の上限としては、90質量%が好ましく、70質量%がより好ましい。SPCを用いる場合、正極活物質層中のSPCの含有量の下限としては、60質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。一方、この含有量の上限としては、95質量%が好ましく、90質量%がより好ましい。硫黄又はSPCの含有量を上記範囲とすることで、大きい電気容量と良好な導電性との両立を図り、エネルギー密度を高めることなどができる。 The lower limit of the sulfur content in the positive electrode active material layer (mass ratio of sulfur atoms to the mass of the positive electrode active material layer) is preferably 40 mass%, more preferably 50 mass%. On the other hand, the upper limit of this content is preferably 90 mass%, more preferably 70 mass%. When SPC is used, the lower limit of the SPC content in the positive electrode active material layer is preferably 60 mass%, more preferably 70 mass%, and even more preferably 80 mass%. On the other hand, the upper limit of this content is preferably 95 mass%, more preferably 90 mass%. By setting the sulfur or SPC content within the above range, it is possible to achieve both large electrical capacity and good conductivity, and to increase the energy density, etc.

正極活物質としては、硫黄以外の他の正極活物質が含有されていてもよい。但し、全正極活物質中の硫黄(硫黄原子)の含有率の下限としては、30質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましい。全正極活物質中のSPCの含有率の下限としては、80質量%が好ましく、90質量%がより好ましく、99質量%がさらに好ましい。 The positive electrode active material may contain other positive electrode active materials besides sulfur. However, the lower limit of the sulfur (sulfur atom) content in the entire positive electrode active material is preferably 30 mass%, more preferably 50 mass%, and even more preferably 70 mass%. The lower limit of the SPC content in the entire positive electrode active material is preferably 80 mass%, more preferably 90 mass%, and even more preferably 99 mass%.

導電剤としては、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料;金属;導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛やカーボンブラックが挙げられる。カーボンブラックの種類としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。これらの中でも、導電性及び塗工性の観点より、炭素質材料が好ましい。なかでも、アセチレンブラックやケッチェンブラックが好ましい。導電剤の形状としては、粉状、シート状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a material having electrical conductivity. Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics. Examples of carbonaceous materials include graphite and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Among these, carbonaceous materials are preferred from the viewpoint of electrical conductivity and coatability. Of these, acetylene black and ketjen black are preferred. The conductive agent may be in the form of a powder, a sheet, or a fiber.

正極活物質層における導電剤(SPC中の導電剤を除く)の含有量は、1質量%以上40質量%以下が好ましく、3質量%以上30質量%以下がより好ましく、5質量%以上20質量%以下がさらに好ましく、10質量%以上がよりさらに好ましい場合もある。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。 The content of the conductive agent (excluding the conductive agent in the SPC) in the positive electrode active material layer is preferably 1% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 30% by mass or less, even more preferably 5% by mass or more and 20% by mass or less, and in some cases even more preferably 10% by mass or more. By setting the content of the conductive agent in the above range, the energy density of the secondary battery can be increased.

バインダーとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。 Examples of binders include thermoplastic resins such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, and polyimide; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), and fluororubber; and polysaccharide polymers.

正極活物質層におけるバインダーの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダーの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 The binder content in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the binder content within the above range, the active material can be stably maintained.

増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。正極活物質層における増粘剤の含有量としては、0.5質量%以上10質量%以下が好ましく、2質量%以上5質量%以下がより好ましい。 Examples of thickeners include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. In addition, if the thickener has a functional group that reacts with lithium, it is preferable to deactivate this functional group in advance by methylation or the like. The content of the thickener in the positive electrode active material layer is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 2% by mass or more and 5% by mass or less.

フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The filler is not particularly limited. Examples of the filler include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicates, hydroxides such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, substances derived from mineral resources such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or man-made products thereof.

正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、Si、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer may contain typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, typical metallic elements such as Li, Na, Mg, Al, Si, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba, and transition metallic elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, and W as components other than the positive electrode active material, conductive agent, binder, thickener, and filler.

(負極)
上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。上記中間層は正極の中間層と同様の構成とすることができる。
(Negative electrode)
The negative electrode has a negative electrode substrate and a negative electrode active material layer disposed on the negative electrode substrate directly or via an intermediate layer. The intermediate layer may have the same structure as the intermediate layer of the positive electrode.

負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。 The negative electrode substrate can have the same structure as the positive electrode substrate, but the material used is a metal such as copper, nickel, stainless steel, or nickel-plated steel, or an alloy thereof, with copper or a copper alloy being preferred. In other words, copper foil is preferred as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.

負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、二次電池の体積当たり及び質量当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode substrate is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, even more preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode substrate within the above range, it is possible to increase the strength of the negative electrode substrate while increasing the energy density per volume and per mass of the secondary battery.

負極活物質層は、一般的に負極活物質を含むいわゆる負極合剤から形成される。また、負極活物質層を形成する負極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。導電剤、バインダー、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。負極活物質層は、実質的に金属Li等の負極活物質のみからなる層であってもよい。 The negative electrode active material layer is generally formed from a so-called negative electrode mixture that contains a negative electrode active material. The negative electrode mixture that forms the negative electrode active material layer also contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary. The optional components such as the conductive agent, binder, thickener, and filler can be the same as those in the positive electrode active material layer. The negative electrode active material layer may be a layer that is substantially composed of only a negative electrode active material such as metallic Li.

負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer may contain typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, typical metallic elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W as components other than the negative electrode active material, conductive agent, binder, thickener, and filler.

負極活物質としては、公知の負極活物質の中から適宜選択できる。例えばリチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、リチウム、ナトリウム等のアルカリ金属;リチウム合金、ナトリウム合金、リチウム複合酸化物等のアルカリ金属を含む化合物;Si、Ge、Sn等のアルカリ金属以外の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等のアルカリ金属以外の金属の酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの中でも、アルカリ金属又はアルカリ金属を含む化合物が好ましく、リチウム(金属リチウム)又はリチウムを含む化合物が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。なお、アルカリ金属を含まない負極活物質を用いる場合、正極活物質が、硫黄に加え、アルカリ金属を含む化合物を含むことが好ましい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. For example, as the negative electrode active material for a lithium ion secondary battery, a material capable of absorbing and releasing lithium ions is usually used. Examples of the negative electrode active material include alkali metals such as lithium and sodium; compounds containing alkali metals such as lithium alloys, sodium alloys, and lithium composite oxides; metals or semimetals other than alkali metals such as Si, Ge, and Sn; oxides or semimetals of metals other than alkali metals such as Si oxide, Ti oxide, and Sn oxide; titanium-containing oxides such as Li 4 Ti 5 O 12 , LiTiO 2, and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitic carbon (easily graphitizable carbon or non-graphitizable carbon). Among these, compounds containing alkali metals or alkali metals are preferred, and compounds containing lithium (metallic lithium) or lithium are preferred. In the negative electrode active material layer, one of these materials may be used alone, or two or more may be mixed and used. When a negative electrode active material that does not contain an alkali metal is used, the positive electrode active material preferably contains a compound that contains an alkali metal in addition to sulfur.

「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 "Graphite" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging and discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferred from the viewpoint of obtaining a material with stable physical properties.

「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。 "Non-graphitic carbon" refers to a carbon material in which the average lattice spacing (d002) of the ( 002 ) plane, as determined by X-ray diffraction before charging and discharging or in a discharged state, is 0.34 nm or more and 0.42 nm or less. Examples of non-graphitic carbon include carbon that is difficult to graphitize and carbon that is easy to graphitize. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.

ここで、炭素材料の「放電状態」とは、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the "discharged state" of the carbon material refers to a state in which the open circuit voltage is 0.7 V or more in a single-electrode battery using a negative electrode containing a carbon material as the negative electrode active material as the working electrode and metallic Li as the counter electrode. Since the potential of the metallic Li counter electrode in the open circuit state is approximately equal to the redox potential of Li, the open circuit voltage in the single-electrode battery is approximately equal to the potential of the negative electrode containing the carbon material relative to the redox potential of Li. In other words, an open circuit voltage of 0.7 V or more in the single-electrode battery means that sufficient lithium ions that can be absorbed and released during charging and discharging have been released from the carbon material, which is the negative electrode active material.

「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 The term "non-graphitizable carbon" refers to a carbon material having the above d 002 of 0.36 nm or more and 0.42 nm or less.

「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 The term "graphitizable carbon" refers to a carbon material having the above d002 of 0.34 nm or more and less than 0.36 nm.

負極活物質の形態が粒子(粉体)の場合、負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が例えば炭素材料である場合、その平均粒径は1μm以上100μm以下が好ましい場合がある。負極活物質が、金属、半金属、金属酸化物、半金属酸化物、チタン含有酸化物、ポリリン酸化合物等である場合、その平均粒径は、1nm以上1μm以下が好ましい場合がある。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。また、負極活物質がアルカリ金属又はアルカリ金属を含む化合物の場合、その形態は箔状又は板状であってもよい。 When the negative electrode active material is in the form of particles (powder), the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is, for example, a carbon material, the average particle size may be preferably 1 μm or more and 100 μm or less. When the negative electrode active material is a metal, a semi-metal, a metal oxide, a semi-metal oxide, a titanium-containing oxide, a polyphosphate compound, or the like, the average particle size may be preferably 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to the above lower limit or more, the negative electrode active material can be easily manufactured or handled. By setting the average particle size of the negative electrode active material to the above upper limit or less, the electronic conductivity of the active material layer is improved. In order to obtain powder with a predetermined particle size, a pulverizer, a classifier, or the like is used. In addition, when the negative electrode active material is an alkali metal or a compound containing an alkali metal, the form may be a foil or a plate.

負極活物質層における負極活物質の含有量は、例えば負極活物質層が負極合剤から形成されている場合、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。負極活物質がアルカリ金属又はアルカリ金属を含む化合物である場合、負極活物質層における負極活物質の含有量は99質量%以上であってもよく、100質量%であってもよい。 When the negative electrode active material layer is formed from a negative electrode mixture, the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, and more preferably 90% by mass or more and 98% by mass or less. By setting the content of the negative electrode active material in the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer. When the negative electrode active material is an alkali metal or a compound containing an alkali metal, the content of the negative electrode active material in the negative electrode active material layer may be 99% by mass or more, or may be 100% by mass.

(セパレータ)
セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダーとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の材質としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの材質の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
(Separator)
The separator can be appropriately selected from known separators. For example, a separator consisting of only a substrate layer, a separator in which a heat-resistant layer containing heat-resistant particles and a binder is formed on one or both surfaces of the substrate layer, etc. can be used as the separator. Examples of the material of the substrate layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these materials, a porous resin film is preferable from the viewpoint of strength, and a nonwoven fabric is preferable from the viewpoint of liquid retention of non-aqueous electrolyte. As the material of the substrate layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidation decomposition resistance. A material obtained by combining these resins may be used as the substrate layer of the separator.

耐熱層に含まれる耐熱粒子は、大気下で室温から500℃に加熱したときの質量減少が5%以下であるものが好ましく、大気下で室温から800℃に加熱したときの質量減少が5%以下であるものがさらに好ましい。加熱したときの質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、チタン酸バリウム、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、二次電池の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500°C in the atmosphere, and more preferably have a mass loss of 5% or less when heated from room temperature to 800°C in the atmosphere. Examples of materials that have a mass loss of a predetermined amount or less when heated include inorganic compounds. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, barium titanate, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; hydroxides such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride and barium fluoride; covalent crystals such as silicon and diamond; mineral resource-derived substances such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof. As the inorganic compound, these substances may be used alone or in the form of a complex, or two or more of them may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicates are preferred from the viewpoint of the safety of the secondary battery.

セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and 20% by volume or more from the viewpoint of discharge performance. Here, "porosity" refers to a volume-based value measured using a mercury porosimeter.

セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 As the separator, a polymer gel composed of a polymer and a non-aqueous electrolyte may be used. Examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, etc. Using a polymer gel has the effect of suppressing leakage. As the separator, a polymer gel may be used in combination with the porous resin film or nonwoven fabric as described above.

(非水電解質)
非水電解質は、フッ素化溶媒及び添加剤を含む。上記添加剤は、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である。非水電解質は、通常、上記フッ素化溶媒を含む非水溶媒と、この非水溶媒に溶解されている電解質塩及び上記添加剤とを含む非水電解液である。上記添加剤が塩である場合、上記添加剤とは別にさらに電解質塩が含有されていてもよく、含有されていなくてもよい。
(Non-aqueous electrolyte)
The non-aqueous electrolyte contains a fluorinated solvent and an additive. The additive is at least one of a cyclic compound containing sulfur and a compound containing boron. The non-aqueous electrolyte is usually a non-aqueous electrolytic solution containing a non-aqueous solvent containing the fluorinated solvent, an electrolyte salt dissolved in the non-aqueous solvent, and the additive. When the additive is a salt, an electrolyte salt may or may not be contained in addition to the additive.

フッ素化溶媒とは、フッ素原子を有する溶媒である。フッ素化溶媒は、炭化水素基を有する非水溶媒における上記炭化水素基中の水素原子の一部又は全部がフッ素原子に置換されたものであってよい。フッ素化溶媒を用いることで、非水電解質の耐酸化性が高まることなどにより、非水電解質蓄電素子の充放電サイクルにおける容量維持率が高まり、放電容量も大きくなる。フッ素化溶媒としては、フッ素化カーボネート、フッ素化カルボン酸エステル、フッ素化リン酸エステル、フッ素化エーテル等が挙げられる。フッ素化溶媒は、1種又は2種以上を用いることができる。 A fluorinated solvent is a solvent having fluorine atoms. The fluorinated solvent may be a non-aqueous solvent having a hydrocarbon group in which some or all of the hydrogen atoms in the hydrocarbon group are replaced with fluorine atoms. By using a fluorinated solvent, the oxidation resistance of the non-aqueous electrolyte is improved, and the capacity retention rate in the charge/discharge cycle of the non-aqueous electrolyte storage element is increased, and the discharge capacity is also increased. Examples of the fluorinated solvent include fluorinated carbonates, fluorinated carboxylates, fluorinated phosphates, and fluorinated ethers. One or more types of fluorinated solvents can be used.

フッ素化溶媒の中でも、フッ素化カーボネートが好ましく、フッ素化環状カーボネートとフッ素化鎖状カーボネートとを併用することがより好ましい。フッ素化環状カーボネートを用いることで、電解質塩の解離を促進して非水電解質のイオン伝導度を向上させることができる。フッ素化鎖状カーボネートを用いることで、非水電解質の粘度を低く抑えることができる。フッ素化環状カーボネートとフッ素化鎖状カーボネートとを併用する場合、フッ素化環状カーボネートとフッ素化鎖状カーボネートとの体積比率(フッ素化環状カーボネート:フッ素化鎖状カーボネート)としては、例えば、5:95から80:20の範囲が好ましく、20:80から70:30の範囲がより好ましく、40:60から60:40の範囲がさらに好ましく、45:55から55:45がよりさらに好ましいこともある。 Among fluorinated solvents, fluorinated carbonates are preferred, and it is more preferred to use a combination of fluorinated cyclic carbonates and fluorinated chain carbonates. By using a fluorinated cyclic carbonate, it is possible to promote dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte. By using a fluorinated chain carbonate, it is possible to keep the viscosity of the non-aqueous electrolyte low. When a fluorinated cyclic carbonate and a fluorinated chain carbonate are used in combination, the volume ratio of the fluorinated cyclic carbonate to the fluorinated chain carbonate (fluorinated cyclic carbonate:fluorinated chain carbonate) is, for example, preferably in the range of 5:95 to 80:20, more preferably in the range of 20:80 to 70:30, even more preferably in the range of 40:60 to 60:40, and even more preferably in the range of 45:55 to 55:45.

フッ素化溶媒に占めるフッ素化カーボネートの含有割合の下限としては、50体積%が好ましく、70体積%がより好ましく、90体積%又は99体積%がさらに好ましい。フッ素化溶媒に占めるフッ素化カーボネートの含有割合の上限は100体積%であってよい。 The lower limit of the content of the fluorinated carbonate in the fluorinated solvent is preferably 50% by volume, more preferably 70% by volume, and even more preferably 90% by volume or 99% by volume. The upper limit of the content of the fluorinated carbonate in the fluorinated solvent may be 100% by volume.

フッ素化環状カーボネートとしては、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート等のフッ素化エチレンカーボネート、フッ素化プロピレンカーボネート、フッ素化ブチレンカーボネート等を挙げることができる。これらの中でも、フッ素化エチレンカーボネートが好ましく、FECがより好ましい。FECは耐酸化性が高く、二次電池の充放電時に生じうる副反応(非水溶媒等の酸化分解等)の抑制効果が高い。 Examples of fluorinated cyclic carbonates include fluorinated ethylene carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate, fluorinated propylene carbonate, and fluorinated butylene carbonate. Among these, fluorinated ethylene carbonate is preferred, and FEC is more preferred. FEC has high oxidation resistance and is highly effective in suppressing side reactions (such as oxidative decomposition of non-aqueous solvents) that may occur during charging and discharging of secondary batteries.

フッ素化鎖状カーボネートとしては、2,2,2-トリフルオロエチルメチルカーボネート、ビス(2,2,2トリフルオロエチル)カーボネート等が挙げられる。 Examples of fluorinated chain carbonates include 2,2,2-trifluoroethyl methyl carbonate and bis(2,2,2 trifluoroethyl) carbonate.

フッ素化カルボン酸エステルとしては、3,3,3-トリフルオロプロピオン酸メチル、酢酸-2,2,2-トリフルオロエチル等が挙げられる。 Examples of fluorinated carboxylates include methyl 3,3,3-trifluoropropionate and 2,2,2-trifluoroethyl acetate.

フッ素化リン酸エステルとしては、リン酸トリス(2,2-ジフルオロエチル)、リン酸トリス(2,2,2-トリフルオロエチル)等が挙げられる。 Fluorinated phosphate esters include tris(2,2-difluoroethyl) phosphate and tris(2,2,2-trifluoroethyl) phosphate.

フッ素化エーテルとしては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、メチルヘプタフルオロプロピルエーテル、メチルノナフルオロブチルエーテル等が挙げられる。 Fluorinated ethers include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl heptafluoropropyl ether, methyl nonafluorobutyl ether, etc.

非水溶媒には、フッ素化溶媒以外の非水溶媒が含有されていてもよい。このような非水溶媒としては、フッ素化溶媒以外のカーボネート、カルボン酸エステル、リン酸エステル、エーテル等が挙げられる。 The non-aqueous solvent may contain a non-aqueous solvent other than a fluorinated solvent. Examples of such non-aqueous solvents include carbonates, carboxylates, phosphates, ethers, and the like other than fluorinated solvents.

全非水溶媒に対するフッ素化溶媒の含有割合の下限としては、50体積%が好ましく、70体積%がより好ましく、90体積%がさらに好ましく、99体積%がさらに好ましい。全非水溶媒に対するフッ素化溶媒の含有割合は100体積%であることが特に好ましい。非水溶媒を実質的にフッ素化溶媒のみから構成することで、非水電解質の耐酸化性をより高めることなどができる。 The lower limit of the content of the fluorinated solvent relative to the total nonaqueous solvent is preferably 50% by volume, more preferably 70% by volume, even more preferably 90% by volume, and even more preferably 99% by volume. It is particularly preferable that the content of the fluorinated solvent relative to the total nonaqueous solvent is 100% by volume. By making the nonaqueous solvent essentially consist of only the fluorinated solvent, it is possible to further increase the oxidation resistance of the nonaqueous electrolyte.

電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。 The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of the electrolyte salt include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, etc. Among these, lithium salts are preferred.

リチウム塩としては、LiPF、LiPO、LiClO等の無機リチウム塩、リチウムイミド塩等の有機リチウム塩を挙げることができる。リチウム塩は、1種又は2種以上を用いることができる。 Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 and LiClO 4 , and organic lithium salts such as lithium imide salts. One or more kinds of lithium salts can be used.

リチウム塩としては、有機リチウム塩が好ましく、リチウムイミド塩がより好ましい。リチウムイミド塩とは、窒素原子に2つのカルボニル基が結合された構造を有するリチウムイミド塩のみならず、窒素原子に2つのスルホニル基が結合された構造を有するものや、窒素原子に2つのホスホニル基が結合された構造を有するものも含む意味である。 As the lithium salt, an organic lithium salt is preferred, and a lithium imide salt is more preferred. The lithium imide salt includes not only lithium imide salts having a structure in which two carbonyl groups are bonded to a nitrogen atom, but also those having a structure in which two sulfonyl groups are bonded to a nitrogen atom and those having a structure in which two phosphonyl groups are bonded to a nitrogen atom.

リチウムイミド塩としては、
LiN(SOF)(リチウムビス(フルオロスルホニル)イミド:LiFSI)、LiN(SOCF(リチウムビス(トリフルオロメタンスルホニル)イミド:LiTFSI)、LiN(SO(リチウムビス(ペンタフルオロエタンスルホニル)イミド:LiBETI)、LiN(SO(リチウムビス(ノナフルオロブタンスルホニル)イミド)、CF-SO-N-SO-N-SOCFLi、FSO-N-SO-CLi、CF-SO-N-SO-CF-SO-N-SO-CFLi、CF-SO-N-SO-CF-SOLi、CF-SO-N-SO-CF-SO-C(-SOCFLi等のリチウムスルホニルイミド塩;
LiN(POF(リチウムビス(ジフルオロホスホニル)イミド:LiDFPI)等のリチウムホスホニルイミド塩等を挙げることができる。
The lithium imide salt is
LiN(SO 2 F) 2 (lithium bis(fluorosulfonyl)imide: LiFSI), LiN(SO 2 CF 3 ) 2 (lithium bis(trifluoromethanesulfonyl)imide: LiTFSI), LiN(SO 2 C 2 F 5 ) 2 (lithium bis(pentafluoroethanesulfonyl)imide: LiBETI), LiN(SO 2 C 4 F 9 ) 2 (lithium bis(nonafluorobutanesulfonyl)imide), CF 3 -SO 2 -N-SO 2 -N-SO 2 CF 3 Li 2 , FSO 2 -N-SO 2 -C 4 F 9 Li, CF 3 -SO 2 -N-SO 2 -CF 2 -SO 2 -N-SO 2 -CF 3 Li 2 , CF Lithium sulfonylimide salts such as 3 -SO 2 -N-SO 2 -CF 2 -SO 3 Li 2 , CF 3 -SO 2 -N-SO 2 -CF 2 -SO 2 -C(-SO 2 CF 3 ) 2 Li 2 ;
Examples of the lithium phosphonylimide salt include lithium bis (difluorophosphonyl)imide (LiDFPI) and the like .

リチウムイミド塩は、フッ素原子を有することが好ましく、具体的には例えばフルオロスルホニル基、ジフルオロホスホニル基、フルオロアルキル基等を有することが好ましい。リチウムイミド塩の中でも、リチウムスルホニルイミド塩が好ましく、LiTFSI及びLiFSIがより好ましく、LiTFSIがさらに好ましい。 The lithium imide salt preferably has a fluorine atom, specifically, for example, a fluorosulfonyl group, a difluorophosphonyl group, a fluoroalkyl group, or the like. Among the lithium imide salts, lithium sulfonylimide salts are preferred, LiTFSI and LiFSI are more preferred, and LiTFSI is even more preferred.

非水電解質における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下が好ましく、0.3mol/dm以上2.0mol/dm以下がより好ましく、0.5mol/dm以上1.7mol/dm以下がさらに好ましく、0.7mol/dm以上1.5mol/dm以下が特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解質のイオン伝導度を高めることができる。 The content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, more preferably 0.3 mol/dm 3 or more and 2.0 mol/dm 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the non-aqueous electrolyte can be increased.

添加剤は、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である。このような添加剤が用いられていることで、非水電解質蓄電素子の充放電サイクルにおける容量維持率が高まる。 The additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound. The use of such an additive increases the capacity retention rate of the nonaqueous electrolyte storage element during charge-discharge cycles.

硫黄を含む環状化合物は、環構造中に硫黄を含む化合物が好ましい。硫黄を含む環状化合物としては、環状スルホン酸エステル、環状スルホン、環状スルホキシド、環状サルファイト、環状サルフェート、環状スルフィド等が挙げられる。これらの硫黄を含む環状化合物が有する1又は複数の水素原子は、ハロゲンやその他の置換基で置換されていてもよい。 The sulfur-containing cyclic compound is preferably a compound containing sulfur in the ring structure. Examples of the sulfur-containing cyclic compound include cyclic sulfonate esters, cyclic sulfones, cyclic sulfoxides, cyclic sulfites, cyclic sulfates, and cyclic sulfides. One or more hydrogen atoms of these sulfur-containing cyclic compounds may be substituted with halogens or other substituents.

これらの硫黄を含む環状化合物の中でも、環状スルホン酸エステルが好ましい。環状スルホン酸エステルが用いられている場合、非水電解質蓄電素子の充放電サイクルにおける容量維持率がより高まる傾向にある。硫黄を含む環状化合物は、硫黄及び酸素を含むことが好ましく、硫黄、酸素、炭素及び水素から構成されていることがより好ましい。また、硫黄を含む環状化合物は、塩ではない分子性化合物であることが好ましい。 Among these sulfur-containing cyclic compounds, cyclic sulfonate esters are preferred. When cyclic sulfonate esters are used, the capacity retention rate during charge/discharge cycles of the nonaqueous electrolyte storage element tends to be higher. The sulfur-containing cyclic compound preferably contains sulfur and oxygen, and more preferably is composed of sulfur, oxygen, carbon, and hydrogen. In addition, the sulfur-containing cyclic compound is preferably a molecular compound that is not a salt.

環状スルホン酸エステルは、2つの炭素原子がそれぞれスルホニルオキシ基(-S(=O)O-)に結合している構造を含む環構造を有する化合物をいう。環状スルホン酸エステルの中でも、スルトン類が好ましい。スルトン類が用いられている場合、非水電解質蓄電素子の充放電サイクルにおける容量維持率がより高まる。 A cyclic sulfonate ester refers to a compound having a ring structure containing a structure in which two carbon atoms are each bonded to a sulfonyloxy group (-S(=O) 2 O-). Among the cyclic sulfonate esters, sultones are preferred. When sultones are used, the capacity retention rate of the nonaqueous electrolyte storage element during the charge-discharge cycle is further increased.

スルトン類とは、ヒドロキシスルホン酸の環状スルホン酸エステルをいう。すなわち、スルトン類は、環構造中に存在するスルホニルオキシ基(-S(=O)O-)の数が1である環状スルホン酸エステルをいう。スルトン類としては、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1-メチル-1,3-プロペンスルトン、2-メチル-1,3-プロペンスルトン、3-メチル-1,3-プロペンスルトン等が挙げられ、1,3-プロパンスルトン及び1,3-プロペンスルトンが好ましく、1,3-プロペンスルトンがより好ましい。 The term "sultones" refers to cyclic sulfonate esters of hydroxysulfonic acid. That is, sultones refer to cyclic sulfonate esters in which the number of sulfonyloxy groups (-S(=O) 2 O-) present in the ring structure is one. Examples of sultones include 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1-methyl-1,3-propene sultone, 2-methyl-1,3-propene sultone, and 3-methyl-1,3-propene sultone. Of these, 1,3-propane sultone and 1,3-propene sultone are preferred, and 1,3-propene sultone is more preferred.

その他の環状スルホン酸エステルとしては、メチレン-メタンジスルホン酸エステル、エチレン-メタンジスルホン酸エステル等が挙げられる。 Other cyclic sulfonate esters include methylene-methane disulfonate ester, ethylene-methane disulfonate ester, etc.

環状スルホンとは、2つの炭素原子がそれぞれスルホニル基(-S(=O)-)に結合している構造を含む環構造を有する化合物をいう。環状スルホンとしては、スルホラン、3-メチルスルホラン、3-スルホレン、1,1-ジオキソチオフェン、3-メチル-2,5-ジヒドロチオフェン-1,1-ジオキシド、3-スルホレン-3-カルボン酸メチル等が挙げられる。 A cyclic sulfone refers to a compound having a ring structure containing a structure in which two carbon atoms are each bonded to a sulfonyl group (-S(=O) 2 -). Examples of cyclic sulfones include sulfolane, 3-methylsulfolane, 3-sulfolene, 1,1-dioxothiophene, 3-methyl-2,5-dihydrothiophene-1,1-dioxide, and methyl 3-sulfolene-3-carboxylate.

環状スルホキシドとは、2つの炭素原子がそれぞれスルフィニル基(-S(=O)-)に結合している構造を含む環構造を有する化合物をいう。環状スルホキシドとしては、テトラメチレンスルホキシド等が挙げられる。 A cyclic sulfoxide is a compound that has a ring structure containing two carbon atoms each bonded to a sulfinyl group (-S(=O)-). Examples of cyclic sulfoxides include tetramethylene sulfoxide.

環状サルファイトとは、2つの炭素原子がそれぞれオキシスルフィニルオキシ基(-O-S(=O)-O-)に結合している構造を含む環構造を有する化合物をいう。環状サルファイトとしては、エチレンサルファイト、1,2-プロピレングリコールサルファイト、トリメチレンサルファイト、1,3-ブチレングリコールサルファイト等が挙げられる。 Cyclic sulfite refers to a compound having a ring structure in which two carbon atoms are each bonded to an oxysulfinyloxy group (-O-S(=O)-O-). Examples of cyclic sulfite include ethylene sulfite, 1,2-propylene glycol sulfite, trimethylene sulfite, and 1,3-butylene glycol sulfite.

環状サルフェートとは、2つの炭素原子がそれぞれオキシスルホニルオキシ基(-O-S(=O)-O-)に結合している構造を含む環構造を有する化合物をいう。環状サルフェートとしては、エチレンサルフェート、1,3-プロピレンサルフェート、2,3-プロピレンサルフェート、4,5-ペンテンサルフェート、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン等が挙げられる。 A cyclic sulfate is a compound having a ring structure containing a structure in which two carbon atoms are each bonded to an oxysulfonyloxy group (-O-S(=O) 2 -O-). Examples of cyclic sulfates include ethylene sulfate, 1,3-propylene sulfate, 2,3-propylene sulfate, 4,5-pentene sulfate, 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, and the like.

環状スルフィドとは、2つの炭素原子がそれぞれ2価の硫黄(-S-)に結合している構造を含む環構造を有する化合物をいう。環状スルフィドとしては、テトラヒドロチオフェン、チオフェン、チアン、1,3-ジチアン、5,6-ジヒドロ-1,4-ジチイン-2,3-ジカルボン酸無水物、3,4-チオフェンジカルボン酸無水物等が挙げられる。 A cyclic sulfide is a compound having a ring structure in which two carbon atoms are each bonded to a divalent sulfur (-S-). Examples of cyclic sulfides include tetrahydrothiophene, thiophene, thiane, 1,3-dithiane, 5,6-dihydro-1,4-dithiine-2,3-dicarboxylic anhydride, and 3,4-thiophenedicarboxylic anhydride.

また、硫黄を含む環状化合物が有する環構造の環員数は、3以上8以下が好ましく、4以上6以下がより好ましい。 The number of ring members in the ring structure of the sulfur-containing cyclic compound is preferably 3 to 8, more preferably 4 to 6.

ホウ素を含む化合物としては、塩及び分子性化合物が挙げられるが、塩であることが好ましい。ホウ素を含む塩を用いることで、非水電解質蓄電素子の充放電サイクルにおける容量維持率が高まることに加え、初期の放電容量が大きくなる。 Compounds containing boron include salts and molecular compounds, with salts being preferred. By using a salt containing boron, the capacity retention rate during the charge-discharge cycle of the nonaqueous electrolyte storage element is increased, and the initial discharge capacity is also increased.

ホウ素を含む塩においては、通常、アニオンにホウ素が含まれる。また、ホウ素を含む塩は、アルカリ金属塩であることが好ましく、リチウム塩であることがより好ましい。 In salts containing boron, the anion usually contains boron. In addition, the salt containing boron is preferably an alkali metal salt, and more preferably a lithium salt.

ホウ素を含む塩としては、テトラフルオロホウ酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸リチウム、ジシアノ(オキサラト)ホウ酸リチウム、テトラシアノホウ酸リチウム、シアノフルオロ(オキサラト)ホウ酸リチウム、トリフルオロメチルシアノ(スクシナト)ホウ酸リチウム、テトラキス(トリフルオロアセテート)ホウ酸リチウム、トリフルオロトリフルオロメチルホウ酸リチウム、四ホウ酸リチウム、ホウ酸三リチウム、メタホウ酸リチウム、テトラヒドロキシホウ酸リチウム、テトラフルオロホウ酸カリウム、テトラフルオロホウ酸ナトリウム等が挙げられる。 Examples of salts containing boron include lithium tetrafluoroborate, lithium difluoro(oxalato)borate, lithium bis(oxalato)borate, lithium dicyano(oxalato)borate, lithium tetracyanoborate, lithium cyanofluoro(oxalato)borate, lithium trifluoromethylcyano(succinato)borate, lithium tetrakis(trifluoroacetate)borate, lithium trifluorotrifluoromethylborate, lithium tetraborate, lithium trilithium borate, lithium metaborate, lithium tetrahydroxyborate, potassium tetrafluoroborate, sodium tetrafluoroborate, etc.

塩以外の、ホウ素を含む分子性化合物としては、ホウ酸エステル、ボロン酸、ボロン酸エステル、ジボロン酸、ジボロン酸エステル等が挙げられる。具体例としては、ホウ酸トリメチル、ホウ酸トリス(2-シアノエチル)、ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(2,2,2-トリフルオロエチル)、2,4,6-トリメトキシボロキシン、(3-メチル-2,4-ペンタンジオナト)(オキサラト)ボレート、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン、ビス[(ピナコラト)ボリル]メタン、1,4-ベンゼンジボロン酸ビス(ピナコール)、2-エチル-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等が挙げられる。 Molecular compounds containing boron other than salts include borate esters, boronic acids, boronate esters, diboronic acids, diboronic esters, etc. Specific examples include trimethyl borate, tris(2-cyanoethyl) borate, tris(trimethylsilyl) borate, tris(2,2,2-trifluoroethyl) borate, 2,4,6-trimethoxyboroxine, (3-methyl-2,4-pentanedionato)(oxalato)borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, bis[(pinacolato)boryl]methane, 1,4-benzenediboronic acid bis(pinacol), 2-ethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, etc.

ホウ素を含む化合物としては、配位子としてオキサラト基を有する化合物(錯体)であることも好ましい。このような化合物としては、上述した化合物の中の、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸リチウム、ジシアノ(オキサラト)ホウ酸リチウム、(3-メチル-2,4-ペンタンジオナト)(オキサラト)ボレート等が挙げられる。 The boron-containing compound is preferably a compound (complex) having an oxalato group as a ligand. Examples of such compounds include lithium difluoro(oxalato)borate, lithium bis(oxalato)borate, lithium dicyano(oxalato)borate, (3-methyl-2,4-pentanedionato)(oxalato)borate, and the like, among the compounds mentioned above.

上記添加剤(硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方)の含有量としては、非水電解質全体の質量に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上5質量%以下がより好ましく、0.3質量%以上3質量%以下がさらに好ましく、0.5質量%以上2質量%以下が特に好ましい。添加剤の含有量を上記の範囲とすることで、非水電解質蓄電素子の充放電サイクルにおける容量維持率をより高めたり、初期の放電容量をより大きくさせたりすることができる。 The content of the additive (at least one of a sulfur-containing cyclic compound and a boron-containing compound) is preferably 0.01% by mass to 10% by mass, more preferably 0.1% by mass to 5% by mass, even more preferably 0.3% by mass to 3% by mass, and particularly preferably 0.5% by mass to 2% by mass. By setting the content of the additive within the above range, it is possible to further increase the capacity retention rate during the charge/discharge cycle of the nonaqueous electrolyte storage element and to further increase the initial discharge capacity.

非水電解質は、上記添加剤以外のその他の添加剤を含んでもよい。その他添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸ジメチル、硫酸ジメチル、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain other additives in addition to the additives listed above. Examples of other additives include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; partial halides of the above aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, and p-cyclohexylfluorobenzene; halogenated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, and cyclohexanedicarboxylic anhydride; dimethyl sulfite, dimethyl sulfate, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, diphenyl sulfide, thioanisole, diphenyl disulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl phosphate, and tetrakistrimethylsilyl titanate. These additives may be used alone or in combination of two or more.

非水電解質に含まれる上記その他の添加剤の含有量は、非水電解質全体の質量に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.2質量%以上5質量%以下がさらに好ましく、0.3質量%以上3質量%以下が特に好ましい。上記その他の添加剤の含有量を上記の範囲とすることで、非水電解質蓄電素子の高温保存後の容量維持性能又は充放電サイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the other additives contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 7% by mass or less, even more preferably 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less, based on the total mass of the non-aqueous electrolyte. By setting the content of the other additives within the above range, it is possible to improve the capacity retention performance or charge/discharge cycle performance after high-temperature storage of the non-aqueous electrolyte storage element, and to further improve safety.

非水電解質としては、非水電解液と固体電解質とを併用してもよい。固体電解質としては、リチウムイオン伝導性を有し、60℃以下において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。 As the non-aqueous electrolyte, a non-aqueous electrolyte solution and a solid electrolyte may be used in combination. The solid electrolyte may be selected from any material that has lithium ion conductivity and is solid at 60°C or less. Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, oxynitride solid electrolytes, and polymer solid electrolytes.

本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、ラミネートフィルム型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。 The shape of the nonaqueous electrolyte storage element of this embodiment is not particularly limited, and examples include cylindrical batteries, laminated film batteries, square batteries, flat batteries, coin batteries, button batteries, etc.

図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、ケース内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。 Figure 1 shows a nonaqueous electrolyte storage element 1 as an example of a square battery. Note that this figure is a see-through view of the inside of the case. An electrode body 2 having a positive electrode and a negative electrode wound with a separator sandwiched between them is housed in a square container 3. The positive electrode is electrically connected to a positive electrode terminal 4 via a positive electrode lead 41. The negative electrode is electrically connected to a negative electrode terminal 5 via a negative electrode lead 51.

<非水電解質蓄電装置の構成>
本実施形態の非水電解質蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の非水電解質蓄電素子1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
<Configuration of Nonaqueous Electrolyte Electricity Storage Device>
The nonaqueous electrolyte storage element of the present embodiment can be mounted as an electricity storage unit (battery module) constituted by assembling a plurality of nonaqueous electrolyte storage elements 1 in automobile power sources such as electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), etc., power sources for electronic devices such as personal computers and communication terminals, or power storage power sources, etc. In this case, it is sufficient that the technology according to one embodiment of the present invention is applied to at least one nonaqueous electrolyte storage element included in the electricity storage unit.

図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバー(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバー(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 Figure 2 shows an example of an energy storage device 30 in which an energy storage unit 20, which is an assembly of two or more electrically connected nonaqueous electrolyte energy storage elements 1, is further assembled. The energy storage device 30 may include a bus bar (not shown) that electrically connects two or more nonaqueous electrolyte energy storage elements 1, a bus bar (not shown) that electrically connects two or more energy storage units 20, and the like. The energy storage unit 20 or the energy storage device 30 may include a status monitoring device (not shown) that monitors the status of one or more nonaqueous electrolyte energy storage elements.

<非水電解質蓄電素子の製造方法>
本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、正極活物質を含む正極を準備することと、フッ素化溶媒及び添加剤を含む非水電解質を準備することとを備え、上記正極活物質が、硫黄を含み、上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方である。
<Method of Manufacturing Nonaqueous Electrolyte Storage Element>
A method for producing a nonaqueous electrolyte storage element according to one embodiment of the present invention includes preparing a positive electrode containing a positive electrode active material, and preparing a nonaqueous electrolyte containing a fluorinated solvent and an additive, wherein the positive electrode active material contains sulfur, and the additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound.

正極活物質を含む正極を準備することは、正極活物質を含む正極を作製することであってよい。正極の作製は、例えば正極基材に直接又は中間層を介して、正極合剤ペーストを塗布し、乾燥させることにより行うことができる。上記正極合剤ペーストには、硫黄を含む正極活物質、及び任意成分である導電剤、バインダー等、正極合剤を構成する各成分が含まれる。正極合剤ペーストには、分散媒がさらに含まれていてよい。準備される正極の具体例及び好適例は、上述した本発明の一実施形態に係る非水電解質蓄電素子に備えられる正極と同様である。 Preparing a positive electrode containing a positive electrode active material may mean fabricating a positive electrode containing a positive electrode active material. The positive electrode can be fabricated, for example, by applying a positive electrode mixture paste to a positive electrode substrate directly or via an intermediate layer, and drying the paste. The positive electrode mixture paste contains each component constituting the positive electrode mixture, such as a positive electrode active material containing sulfur, and optional components such as a conductive agent and a binder. The positive electrode mixture paste may further contain a dispersion medium. Specific examples and preferred examples of the prepared positive electrode are the same as the positive electrode provided in the nonaqueous electrolyte storage element according to one embodiment of the present invention described above.

フッ素化溶媒及び添加剤を含む非水電解質を準備することは、フッ素化溶媒及び添加剤を含む非水電解質を調製することであってよい。非水電解質の調製は、例えばフッ素化溶媒、添加剤及び電解質塩等のその他の成分を混合することにより行うことができる。準備される非水電解質の具体例及び好適例は、上述した本発明の一実施形態に係る非水電解質蓄電素子に備えられる非水電解質と同様である。 Preparing a nonaqueous electrolyte containing a fluorinated solvent and an additive may be preparing a nonaqueous electrolyte containing a fluorinated solvent and an additive. The preparation of the nonaqueous electrolyte can be performed, for example, by mixing a fluorinated solvent, an additive, and other components such as an electrolyte salt. Specific examples and preferred examples of the nonaqueous electrolyte to be prepared are the same as the nonaqueous electrolyte provided in the nonaqueous electrolyte storage element according to one embodiment of the present invention described above.

当該非水電解質蓄電素子の製造方法は、上述した正極を準備すること及び非水電解質を準備することの他、負極を準備すること、正極及び負極をセパレータを介して積層又は巻回することにより交互に重畳された電極体を形成すること、正極及び負極(電極体)を容器に収容すること、並びに上記容器に上記非水電解質を注入することを備えていてよい。注入後、注入口を封止することにより非水電解質蓄電素子を得ることができる。 The method for manufacturing the nonaqueous electrolyte storage element may include, in addition to preparing the positive electrode and the nonaqueous electrolyte described above, preparing a negative electrode, forming an electrode body in which the positive electrode and the negative electrode are alternately stacked by stacking or rolling them with a separator interposed therebetween, housing the positive electrode and the negative electrode (electrode body) in a container, and injecting the nonaqueous electrolyte into the container. After injection, the injection port is sealed to obtain a nonaqueous electrolyte storage element.

<その他の実施形態>
本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other embodiments>
The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention. For example, the configuration of one embodiment may be added to the configuration of another embodiment, and a part of the configuration of one embodiment may be replaced with the configuration of another embodiment or a well-known technique. Furthermore, a part of the configuration of one embodiment may be deleted. Also, a well-known technique may be added to the configuration of one embodiment.

上記実施形態では、非水電解質蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、非水電解質蓄電素子の種類、形状、寸法、容量等は任意である。本発明の非水電解質蓄電素子は、種々の非水電解質二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, the nonaqueous electrolyte storage element is used as a chargeable and dischargeable nonaqueous electrolyte secondary battery (e.g., a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the nonaqueous electrolyte storage element are arbitrary. The nonaqueous electrolyte storage element of the present invention can also be applied to various nonaqueous electrolyte secondary batteries, electric double layer capacitors, lithium ion capacitors, and other capacitors.

以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.

以下に、実施例及び比較例で使用した各添加剤を示す。
添加剤A:ビス(オキサラト)ホウ酸リチウム(LiBOB)
添加剤B:ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)
添加剤C:テトラフルオロホウ酸リチウム(LiBF
添加剤D:(3-メチル-2,4-ペンタンジオナト)(オキサラト)ボレート(MOAB)
添加剤E:1,3-プロペンスルトン(PRS)
添加剤F:メチレンメタンジスルホン酸エステル(MMDS)
添加剤a:ビニレンカーボネート(VC)
添加剤b:ジフルオロリン酸リチウム(LiDFP)
添加剤c:リン酸トリス(2,2,2-トリフルオロエチル)(TFEP)
The additives used in the examples and comparative examples are shown below.
Additive A: Lithium bis(oxalato)borate (LiBOB)
Additive B: Lithium difluoro(oxalato)borate (LiDFOB)
Additive C: Lithium tetrafluoroborate (LiBF 4 )
Additive D: (3-methyl-2,4-pentanedionato)(oxalato)borate (MOAB)
Additive E: 1,3-propene sultone (PRS)
Additive F: Methylenemethane disulfonic acid ester (MMDS)
Additive a: vinylene carbonate (VC)
Additive b: Lithium difluorophosphate (LiDFP)
Additive c: Tris(2,2,2-trifluoroethyl)phosphate (TFEP)

Figure 0007480579000001
Figure 0007480579000001

[実施例1]
(非水電解質の調製)
フルオロエチレンカーボネート(FEC)と2,2,2-トリフルオロエチルメチルカーボネート(TFEMC)との混合溶媒(体積比50:50)にリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を1.0mol/dmの濃度で溶解させた。この溶液に添加剤として1質量%の濃度で添加剤A(ビス(オキサラト)ホウ酸リチウム(LiBOB))を添加し、非水電解質を調製した。
[Example 1]
(Preparation of non-aqueous electrolyte)
Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was dissolved in a mixed solvent (volume ratio 50:50) of fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethyl methyl carbonate (TFEMC) at a concentration of 1.0 mol/ dm3 . Additive A (lithium bis(oxalato)borate (LiBOB)) was added to this solution at a concentration of 1 mass % to prepare a nonaqueous electrolyte.

(正極の作製)
硫黄と、多孔質カーボン(CNovel(クノーベル))(東洋炭素株式会社製)とを質量比72:28で混合した。この混合物を、密封式の電気炉に入れた。1時間のアルゴンフローを行った後、昇温速度5℃/分で150℃まで昇温し、5時間保持した後、硫黄が固化する温度である80℃まで放冷し、その後、再び5℃/分で300℃まで昇温し、2時間保持する熱処理を行い、硫黄-多孔質カーボン複合体(SPC)を作製した。なお、本実施例の多孔質カーボンには、平均細孔径5nm、細孔体積1.7mLg-1、比表面積1500m-1のものを用いた。
(Preparation of Positive Electrode)
Sulfur and porous carbon (CNovel) (manufactured by Toyo Tanso Co., Ltd.) were mixed in a mass ratio of 72:28. This mixture was placed in a sealed electric furnace. After argon flow for 1 hour, the temperature was increased to 150°C at a rate of 5°C/min, and held for 5 hours, and then allowed to cool to 80°C, the temperature at which sulfur solidifies. Thereafter, the temperature was increased again to 300°C at a rate of 5°C/min, and held for 2 hours for heat treatment to produce a sulfur-porous carbon composite (SPC). The porous carbon used in this example had an average pore diameter of 5 nm, a pore volume of 1.7 mLg -1 , and a specific surface area of 1500 m 2 g -1 .

水を分散媒とし、上記で得られた硫黄-多孔質カーボン複合体(SPC)、導電剤としてのアセチレンブラック、増粘剤としてのCMC、及びバインダーとしてのSBRを80:10:3.6:6.4の質量比で含有する正極合剤ペーストをアルミニウム製の正極基材に塗布し、乾燥して正極を作製した。 A positive electrode mixture paste containing the sulfur-porous carbon composite (SPC) obtained above, acetylene black as a conductive agent, CMC as a thickener, and SBR as a binder in a mass ratio of 80:10:3.6:6.4, with water as a dispersion medium, was applied to an aluminum positive electrode substrate and dried to produce a positive electrode.

(二次電池の作製)
負極として、シート状の金属リチウムを用意した。セパレータとして、ポリエチレン製微多孔膜を用意した。上記正極、負極、セパレータ及び非水電解質を用いて、実施例1の非水電解質蓄電素子としての二次電池を得た。
(Preparation of secondary battery)
A sheet of metallic lithium was prepared as the negative electrode. A polyethylene microporous film was prepared as the separator. The positive electrode, negative electrode, separator, and non-aqueous electrolyte were used to obtain a secondary battery as the non-aqueous electrolyte storage element of Example 1.

[実施例2から6及び比較例1から4]
添加剤Aに替えて表1に記載の各添加剤を添加した又は添加剤を添加しなかったこと以外は、実施例1と同様にして、実施例2から6及び比較例1から4の各二次電池を得た。なお、表1中、「-」は添加剤を添加していないことを示す。
[Examples 2 to 6 and Comparative Examples 1 to 4]
Each of the secondary batteries of Examples 2 to 6 and Comparative Examples 1 to 4 was obtained in the same manner as in Example 1, except that each additive listed in Table 1 was added instead of Additive A, or no additive was added. In Table 1, "-" indicates that no additive was added.

[評価]
(充放電サイクル試験)
得られた各二次電池について、25℃で1Vまで0.1Cの定電流放電を行った。放電後に25℃で3Vまで0.2Cの定電流充電を行った。これら放電及び充電の工程を1サイクルとして、このサイクルを80サイクル繰り返した。なお、放電後及び充電後には25℃にて10分間の休止を設けた。放電、充電及び休止ともに25℃の恒温槽内でおこなった。
1サイクル目の放電電気量、80サイクル目の放電電気量、及び容量維持率として1サイクル目の放電電気量に対する80サイクル目の放電電気量の比を表1に示す。
[evaluation]
(Charge-discharge cycle test)
Each secondary battery obtained was discharged at a constant current of 0.1 C to 1 V at 25° C. After discharge, it was charged at a constant current of 0.2 C to 3 V at 25° C. These discharge and charge steps constitute one cycle, and this cycle was repeated 80 times. After discharge and charge, a 10-minute pause was provided at 25° C. Discharge, charge, and pause were all performed in a thermostatic chamber at 25° C.
Table 1 shows the discharged electric quantity in the first cycle, the discharged electric quantity in the 80th cycle, and the ratio of the discharged electric quantity in the 80th cycle to the discharged electric quantity in the first cycle as the capacity maintenance rate.

Figure 0007480579000002
Figure 0007480579000002

表1に示されるように、実施例1から6の各二次電池においては、特定の添加剤を非水電解質に添加することにより、添加剤を添加していない比較例1の二次電池に比べて容量維持率が高まっていることがわかる。一方、比較例2から4の各二次電池においては、添加剤を添加していない比較例1の二次電池に比べて容量維持率が逆に低下している。添加剤として硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方を用いた場合にのみ容量維持率が高まっていることがわかる。 As shown in Table 1, in the secondary batteries of Examples 1 to 6, the addition of a specific additive to the non-aqueous electrolyte increases the capacity retention rate compared to the secondary battery of Comparative Example 1 to which no additive was added. On the other hand, in the secondary batteries of Comparative Examples 2 to 4, the capacity retention rate is conversely decreased compared to the secondary battery of Comparative Example 1 to which no additive was added. It can be seen that the capacity retention rate is increased only when at least one of a cyclic compound containing sulfur and a compound containing boron is used as an additive.

実施例の中でも、添加剤としてホウ素を含む塩である添加剤AからCを用いた実施例1から3の各二次電池は、1サイクル目の放電電気量も大きかった。また、添加剤としてスルトン類である添加剤Eを用いた実施例5の二次電池は、特に容量維持率が高かった。 Among the examples, the secondary batteries of Examples 1 to 3, which used additives A to C, which were salts containing boron, as additives, also had a large discharge quantity of electricity in the first cycle. In addition, the secondary battery of Example 5, which used additive E, which was a sultone, as an additive, had a particularly high capacity retention rate.

本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質蓄電素子などに適用できる。 The present invention can be applied to nonaqueous electrolyte storage elements used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.

1 非水電解質蓄電素子
2 電極体
3 容器
4 正極端子
41 正極リード
5 負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
Reference Signs List 1 Non-aqueous electrolyte storage element 2 Electrode body 3 Container 4 Positive electrode terminal 41 Positive electrode lead 5 Negative electrode terminal 51 Negative electrode lead 20 Storage unit 30 Storage device

Claims (6)

正極活物質を含む正極と、
フッ素化溶媒及び添加剤を含む非水電解質と
を備え、
上記正極活物質が、硫黄を含み、
上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方であり、
上記正極活物質中の上記硫黄の含有率が50質量%以上である、非水電解質蓄電素子。
a positive electrode including a positive electrode active material;
a non-aqueous electrolyte containing a fluorinated solvent and an additive;
The positive electrode active material contains sulfur,
The additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound,
The positive electrode active material has a sulfur content of 50 mass % or more .
正極活物質を含む正極活物質層を有する正極と、
フッ素化溶媒及び添加剤を含む非水電解質と
を備え、
上記正極活物質が、硫黄を含み、
上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方であり、
上記正極活物質層中の上記硫黄の含有量が40質量%以上90質量%以下である、非水電解質蓄電素子。
a positive electrode having a positive electrode active material layer containing a positive electrode active material;
a non-aqueous electrolyte containing a fluorinated solvent and an additive;
The positive electrode active material contains sulfur,
The additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound,
the positive electrode active material layer has a sulfur content of 40% by mass or more and 90% by mass or less;
正極活物質を含む正極と、
フッ素化溶媒及び添加剤を含む非水電解質と
を備え、
上記正極活物質が、硫黄を含み、
上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方であり、
上記正極活物質に含まれる上記硫黄が多孔質カーボンとの複合体として存在している、非水電解質蓄電素子。
a positive electrode including a positive electrode active material;
a non-aqueous electrolyte containing a fluorinated solvent and an additive;
The positive electrode active material contains sulfur,
The additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound,
The nonaqueous electrolyte electricity storage element , wherein the sulfur contained in the positive electrode active material is present as a complex with porous carbon .
上記添加剤が上記ホウ素を含む化合物であり、
上記ホウ素を含む化合物が塩である請求項1から請求項3のいずれか1項に記載の非水電解質蓄電素子。
the additive is the boron-containing compound,
4. The nonaqueous electrolyte storage element according to claim 1, wherein the compound containing boron is a salt.
上記添加剤が上記硫黄を含む環状化合物であり、
上記硫黄を含む環状化合物がスルトン類である請求項1から請求項3のいずれか1項に記載の非水電解質蓄電素子。
the additive is the sulfur-containing cyclic compound,
4. The nonaqueous electrolyte storage element according to claim 1, wherein the sulfur-containing cyclic compound is a sultone.
正極活物質を含む正極を準備することと、
フッ素化溶媒及び添加剤を含む非水電解質を準備することと
を備え、
上記正極活物質が、硫黄を含み、
上記添加剤が、硫黄を含む環状化合物及びホウ素を含む化合物の少なくとも一方であり、
上記正極活物質中の上記硫黄の含有率が50質量%以上である、非水電解質蓄電素子の製造方法。
Providing a positive electrode including a positive electrode active material;
providing a non-aqueous electrolyte comprising a fluorinated solvent and an additive;
The positive electrode active material contains sulfur,
The additive is at least one of a sulfur-containing cyclic compound and a boron-containing compound,
The method for producing a nonaqueous electrolyte storage element , wherein the positive electrode active material has a sulfur content of 50 mass % or more.
JP2020082276A 2020-05-07 2020-05-07 Nonaqueous electrolyte storage element and method for producing same Active JP7480579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082276A JP7480579B2 (en) 2020-05-07 2020-05-07 Nonaqueous electrolyte storage element and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082276A JP7480579B2 (en) 2020-05-07 2020-05-07 Nonaqueous electrolyte storage element and method for producing same

Publications (2)

Publication Number Publication Date
JP2021177463A JP2021177463A (en) 2021-11-11
JP7480579B2 true JP7480579B2 (en) 2024-05-10

Family

ID=78409620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082276A Active JP7480579B2 (en) 2020-05-07 2020-05-07 Nonaqueous electrolyte storage element and method for producing same

Country Status (1)

Country Link
JP (1) JP7480579B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196761A1 (en) 2021-03-19 2022-09-22 国立研究開発法人産業技術総合研究所 Nonaqueous secondary battery electrolyte, and nonaqueous secondary battery using this
JP2023076354A (en) * 2021-11-22 2023-06-01 学校法人 関西大学 Non-aqueous electrolyte storage element, device, and method for manufacturing non-aqueous electrolyte storage element
CN114976239A (en) * 2022-05-31 2022-08-30 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-safety lithium ion battery electrolyte suitable for full sea depth
WO2023243520A1 (en) * 2022-06-16 2023-12-21 株式会社Gsユアサ Non-aqueous electrolyte and non-aqueous electrolyte electric power storage element
WO2023245613A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Electrolyte and sodium ion secondary battery, battery pack, battery module and electric device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166636A1 (en) 2014-05-02 2015-11-05 ソニー株式会社 Electrolyte solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JP2016054151A (en) 2008-11-10 2016-04-14 エルジー・ケム・リミテッド Cathode active material showing improved characteristics at high voltage
WO2016152860A1 (en) 2015-03-24 2016-09-29 日本電気株式会社 Lithium ion secondary battery and method for manufacturing same
JP2018106975A (en) 2016-12-27 2018-07-05 株式会社豊田自動織機 Electrolyte solution and lithium ion secondary battery including the same
JP2020021677A (en) 2018-08-02 2020-02-06 Jsr株式会社 Power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054151A (en) 2008-11-10 2016-04-14 エルジー・ケム・リミテッド Cathode active material showing improved characteristics at high voltage
WO2015166636A1 (en) 2014-05-02 2015-11-05 ソニー株式会社 Electrolyte solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
WO2016152860A1 (en) 2015-03-24 2016-09-29 日本電気株式会社 Lithium ion secondary battery and method for manufacturing same
JP2018106975A (en) 2016-12-27 2018-07-05 株式会社豊田自動織機 Electrolyte solution and lithium ion secondary battery including the same
JP2020021677A (en) 2018-08-02 2020-02-06 Jsr株式会社 Power storage device

Also Published As

Publication number Publication date
JP2021177463A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP7480579B2 (en) Nonaqueous electrolyte storage element and method for producing same
WO2020090986A1 (en) Rechargeable battery with nonaqueous electrolyte
JP7005928B2 (en) Non-aqueous electrolyte power storage element and its manufacturing method
JP2020123465A (en) Anode and manufacturing method of anode
JP7501110B2 (en) Non-aqueous electrolyte storage element
JP7371396B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP7423894B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP2022011572A (en) Nonaqueous electrolyte power storage device, and manufacturing method thereof
WO2022230835A1 (en) Nonaqueous-electrolyte electricity storage element
WO2024075531A1 (en) Nonaqueous electrolyte power storage element
WO2022186151A1 (en) Non-aqueous electrolyte power storage element and method for manufacturing same
US20240222703A1 (en) Nonaqueous electrolyte energy storage device
WO2024147290A1 (en) Nonaqueous-electrolyte electricity storage element
JP7494535B2 (en) Nonaqueous electrolyte storage element and method for producing same
WO2022181516A1 (en) Nonaqueous electrolyte power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
US20230087788A1 (en) Nonaqueous electrolyte energy storage device, and method for manufacturing nonaqueous electrolyte energy storage device
WO2022163125A1 (en) Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element
WO2022249667A1 (en) Nonaqueous electrolyte power storage element and power storage device
US20240234708A1 (en) Nonaqueous electrolyte energy storage device and energy storage apparatus
JP2024047350A (en) Nonaqueous electrolyte, nonaqueous electrolyte storage element, and method for producing nonaqueous electrolyte storage element
JP2023088790A (en) Non-aqueous electrolyte power storage element
JP2023117881A (en) Non-aqueous electrolyte storage element
JP2023125893A (en) Nonaqueous electrolyte power storage element
JP2022109549A (en) Negative electrode for nonaqueous electrolyte power storage device, nonaqueous electrolyte power storage device, and production methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7480579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150