JP7479794B2 - PC steel with excellent delayed fracture resistance and its manufacturing method - Google Patents

PC steel with excellent delayed fracture resistance and its manufacturing method Download PDF

Info

Publication number
JP7479794B2
JP7479794B2 JP2019077963A JP2019077963A JP7479794B2 JP 7479794 B2 JP7479794 B2 JP 7479794B2 JP 2019077963 A JP2019077963 A JP 2019077963A JP 2019077963 A JP2019077963 A JP 2019077963A JP 7479794 B2 JP7479794 B2 JP 7479794B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
steel material
strain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019077963A
Other languages
Japanese (ja)
Other versions
JP2020176286A (en
Inventor
慎也 萩原
健一 高井
謙介 岩永
司 岡村
典男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Sophia School Corp
Original Assignee
Neturen Co Ltd
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Sophia School Corp filed Critical Neturen Co Ltd
Priority to JP2019077963A priority Critical patent/JP7479794B2/en
Publication of JP2020176286A publication Critical patent/JP2020176286A/en
Application granted granted Critical
Publication of JP7479794B2 publication Critical patent/JP7479794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、耐遅れ破壊特性に優れたPC鋼材及びその製造方法に関する。 The present invention relates to PC steel with excellent delayed fracture resistance and a manufacturing method thereof.

PC鋼材は、コンクリートパイル、ポールおよび橋梁、建築等のプレストレストコンクリート(PC)に緊張を与える緊張材であり、PC鋼材としては、例えばPC鋼棒やPC鋼線、PC鋼より線などがある。
特に、PC鋼棒はコンクリートパイル、ポールおよび橋梁、建築等のプレストレストコンクリート(PC)構造物の補強用鋼材として広く使用されている。このようなPC鋼棒はJIS G 3109「PC鋼棒」およびJIS G 3137「細径異形PC鋼棒」にて引張強さ、耐力、伸び、リラクセーション値が規格化されている。
PC鋼棒はコンクリート製品にプレストレスト力を作用するために常に引張応力が作用しており、プレストレストコンクリート構造物中の高強度PC鋼棒は長期間の使用中に、コンクリートのひび割れ部等から水分が侵入し、局部的に腐食が発生し、鋼中に水素が侵入することにより遅れ破壊を引き起こすことがある。このために高強度化に伴い、耐遅れ破壊特性が要求される。
PC steel members are tension members that provide tension to prestressed concrete (PC) in concrete piles, poles, bridges, buildings, etc., and examples of PC steel members include PC steel bars, PC steel wires, and PC steel strands.
In particular, PC steel bars are widely used as reinforcing steel materials for concrete piles, poles, and prestressed concrete (PC) structures such as bridges, buildings, etc. The tensile strength, yield strength, elongation, and relaxation values of such PC steel bars are standardized in JIS G 3109 "PC steel bars" and JIS G 3137 "Small diameter deformed PC steel bars."
Tensile stress is always applied to PC steel bars in order to apply prestressing force to concrete products, and during long-term use, moisture may penetrate high-strength PC steel bars in prestressed concrete structures through cracks in the concrete, causing localized corrosion and hydrogen to penetrate into the steel, which may lead to delayed fracture. For this reason, delayed fracture resistance is required along with increased strength.

耐遅れ破壊特性に優れたPC鋼棒としては、例えば特許文献1及び2に、フェライトの平均面積率やフェライト粒のアスペクト比に着目した技術が記載されている。
また、特許文献3には、耐遅れ破壊特性に優れた高強度ボルトが記載されており、特許文献4及び5には、超高強度鋼や高強度ボルトの耐遅れ破壊特性を向上させるために、時効処理を行うことが記載されている。
As for PC steel bars having excellent delayed fracture resistance, for example, Patent Documents 1 and 2 describe technologies focusing on the average area ratio of ferrite and the aspect ratio of ferrite grains.
Furthermore, Patent Document 3 describes a high-strength bolt having excellent delayed fracture resistance, and Patent Documents 4 and 5 describe aging treatment in order to improve the delayed fracture resistance of ultra-high strength steel and high strength bolts.

特開2001-294980号公報JP 2001-294980 A 特開2003-129178号公報JP 2003-129178 A 特開2014-15664号公報JP 2014-15664 A 特開2007-239051号公報JP 2007-239051 A 特開2007-31734号公報JP 2007-31734 A

本発明はこのような事情の下、従来とは異なる手法により、耐遅れ破壊特性に優れたPC鋼材及びその製造方法を提供することを目的とする。 Under these circumstances, the present invention aims to provide a PC steel material with excellent delayed fracture resistance and a manufacturing method thereof, using a method different from conventional methods.

本発明者らは、以下の構成により上記課題が解決できることを見出した。 The inventors have discovered that the above problems can be solved by the following configuration:

<1>
質量%で、C:0.10~0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であり、
遅れ破壊試験において一定の引張荷重を100時間加えても破断しない最大の荷重を、遅れ破壊試験を行う前の引張強度で除した値を遅れ破壊強度比と定義した場合、この遅れ破壊強度比が0.90以上である、PC鋼材。
<2>
質量%で、C:0.10~0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であるPC鋼材に対して、下記条件を満たすひずみ時効処理を行う、耐遅れ破壊特性に優れたPC鋼材の製造方法。
付与する予ひずみ:塑性ひずみで0.2~0.6%
時効温度:200~300℃
時効時間:0.1~100時間
<1>
In mass%, it contains C: 0.10 to 0.60%, Si: 1.0% or more, the metal structure is tempered martensite, and the tensile strength is 1200 N/ mm2 or more,
PC steel having a delayed fracture strength ratio of 0.90 or more, where the delayed fracture strength ratio is defined as the maximum load at which a constant tensile load is applied for 100 hours in a delayed fracture test without causing fracture, divided by the tensile strength before the delayed fracture test.
<2>
A method for producing PC steel material with excellent resistance to delayed fracture, comprising the steps of: (a) subjecting PC steel material to strain aging treatment that satisfies the following conditions; the PC steel material contains, by mass%, 0.10 to 0.60% C and 1.0% or more Si, has a tempered martensite metal structure, and has a tensile strength of 1,200 N/ mm2 or more.
Pre-strain applied: Plastic strain of 0.2 to 0.6%
Aging temperature: 200-300°C
Aging time: 0.1 to 100 hours

本発明によれば、従来とは異なる手法により、耐遅れ破壊特性に優れたPC鋼材及びその製造方法を提供することができる。 The present invention provides PC steel with excellent delayed fracture resistance and a manufacturing method thereof, using a method different from conventional methods.

引張強度及び遅れ破壊試験における試験片を示す図。FIG. 2 shows test pieces for tensile strength and delayed fracture tests. 水素量測定試験片を示す図。FIG. 2 shows a test piece for measuring hydrogen amount.

[PC鋼材]
本発明のPC鋼材は、質量%で、C:0.10~0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であり、遅れ破壊試験において一定の引張荷重を100時間加えても破断しない最大の荷重を、遅れ破壊試験を行う前の引張強度で除した値を遅れ破壊強度比と定義した場合、この遅れ破壊強度比が0.90以上である。
[PC steel]
The PC steel material of the present invention contains, by mass%, 0.10 to 0.60% C and 1.0% or more Si, has a metal structure of tempered martensite, and has a tensile strength of 1200 N/ mm2 or more. When the delayed fracture strength ratio is defined as the maximum load at which a constant tensile load is applied for 100 hours in a delayed fracture test without causing fracture, divided by the tensile strength before the delayed fracture test, the delayed fracture strength ratio is 0.90 or more.

本発明のPC鋼材における化学成分について述べる。なお、各化学成分の組成の「%」は「質量%」である。 The chemical components of the PC steel material of the present invention will be described below. Note that the "%" in the composition of each chemical component is "mass %."

〔C(炭素)〕
本発明のPC鋼材は、Cを0.10~0.60%含有する。Cは、焼入れ性を向上させる元素で、PC鋼材の強度と時効の効果に影響を及ぼす元素である。本発明のPC鋼材は、所定の強度を得るためにCを0.25~0.45%含有することが好ましく、0.30~0.36%含有することがより好ましい。
[C (carbon)]
The PC steel material of the present invention contains 0.10 to 0.60% C. C is an element that improves hardenability and affects the strength and aging effect of the PC steel material. In order to obtain a predetermined strength, the PC steel material of the present invention preferably contains 0.25 to 0.45% C, and more preferably contains 0.30 to 0.36% C.

〔Si(ケイ素)〕
本発明のPC鋼材は、Siを1.0%以上含有する。Siを1.0%以上含有することで、転位の粒界への集積を抑制し、耐遅れ破壊特性を向上させることができると考えられる。耐遅れ破壊特性の観点から、本発明のPC鋼材におけるSiの含有率は、1.5%超であることが好ましく、1.6%以上であることがより好ましい。また、PC鋼材の素材の製造の観点から、本発明のPC鋼材におけるSiの含有率は2.5%以下であることが好ましく、品質を安定させるために、2.0%以下であることがより好ましい。
[Si (silicon)]
The PC steel material of the present invention contains 1.0% or more of Si. It is believed that the inclusion of 1.0% or more of Si can suppress the accumulation of dislocations at grain boundaries and improve delayed fracture resistance. From the viewpoint of delayed fracture resistance, the Si content of the PC steel material of the present invention is preferably more than 1.5%, and more preferably 1.6% or more. In addition, from the viewpoint of the production of PC steel material, the Si content of the PC steel material of the present invention is preferably 2.5% or less, and in order to stabilize the quality, it is more preferably 2.0% or less.

本発明のPC鋼材の化学成分は、上記したCとSi以外の残部はFe及び不可避的不純物(例えばCuなど)であってもよいし、更に別の元素を含んでいてもよい。
本発明のPC鋼材が含んでもよい元素としては、C及びSi以外の鉄鋼主要5元素であるMn、P、及びSが挙げられる。また、例えば、Ni、Cr、Ti、及びBなどを含んでもよい。
The chemical composition of the PC steel material of the present invention may be such that the balance other than the above-mentioned C and Si is Fe and unavoidable impurities (such as Cu), and may further contain other elements.
The PC steel material of the present invention may contain elements such as Mn, P, and S, which are the five main steel elements other than C and Si. In addition, the PC steel material may contain, for example, Ni, Cr, Ti, B, etc.

〔Mn(マンガン)〕
Mnは、製鋼段階における脱酸剤として好ましい元素であり、本発明のPC鋼材においては、組織をマルテンサイトとするために焼入れ性を向上させる元素としても作用する。Mnの含有率は、強度を確保するために、0.1%以上添加することが好ましい。また、機械的性質の観点から、2.0%以下が好ましく、0.5~1.0%であることがより好ましく、0.6~0.9%であることが更に好ましい。
[Mn (manganese)]
Mn is a preferred element as a deoxidizer in the steelmaking stage, and in the PC steel material of the present invention, it also acts as an element that improves hardenability by making the structure martensite. In order to ensure strength, the Mn content is preferably 0.1% or more. From the viewpoint of mechanical properties, the Mn content is preferably 2.0% or less, more preferably 0.5 to 1.0%, and even more preferably 0.6 to 0.9%.

〔P(リン)〕
Pは、機械的性質や耐遅れ破壊性を損なう元素で、一般的なPC鋼材においてもその含有量が0.03%以下であることが規定されている。本発明のPC鋼材においてもより少ないほうが好ましい。Pの含有率は、0.03%以下であることが好ましく、0.02%以下であることがより好ましい。
[P (phosphorus)]
P is an element that impairs mechanical properties and delayed fracture resistance, and its content is regulated to be 0.03% or less in general PC steel materials. The lower the content, the better in the PC steel material of the present invention. The P content is preferably 0.03% or less, and more preferably 0.02% or less.

〔S(硫黄)〕
Sは、機械的性質や耐遅れ破壊性を損なう元素で、一般的なPC鋼材においてもその含有量が0.03%以下であることが規定されている。本発明のPC鋼材においてもより少ないほうが好ましい。Sの含有率は、0.03%以下であることが好ましく、0.01%以下であることがより好ましい。
[S (sulfur)]
S is an element that impairs mechanical properties and delayed fracture resistance, and its content is regulated to be 0.03% or less in general PC steel materials. The lower the content, the better in the PC steel material of the present invention. The S content is preferably 0.03% or less, and more preferably 0.01% or less.

〔Cu(銅)〕
Cuは、製鋼上不可避的不純物であり、脆性の原因となるので、一般的なPC鋼材においてもその含有量が0.3%以下であることが規定されている。本発明のPC鋼材においてもより少ないほうが好ましく、Cuの含有率は、質量%で0.3%以下であることが好ましく、0.15%以下であることがより好ましい。
[Cu (copper)]
Cu is an unavoidable impurity in steelmaking and causes brittleness, so its content in general PC steel is regulated to be 0.3% or less. In the PC steel of the present invention, the lower the content, the better, and the Cu content is preferably 0.3% or less, and more preferably 0.15% or less, by mass%.

〔Ni(ニッケル)〕
Niは、焼入れ性や耐遅れ破壊性を改善する元素であるが、経済性に優れないので、1.5%を上限に必要に応じて添加してもよい。
[Ni (nickel)]
Ni is an element that improves hardenability and delayed fracture resistance, but is not economically advantageous, so it may be added, if necessary, up to an upper limit of 1.5%.

〔Cr(クロム)〕
Crは、焼入れ性を改善する元素であるが、多量に添加すると熱処理時に溶解し難い炭化物を形成するので、その添加量は、2.0%以下にすることが好ましい。
[Cr (Chromium)]
Cr is an element that improves hardenability, but if added in a large amount, it forms carbides that are difficult to dissolve during heat treatment, so the amount of Cr added is preferably 2.0% or less.

〔Ti(チタン)〕
Tiは、微細炭窒化物を形成し、結晶粒微細化効果により、機械的性質を改善する元素である。0.05%以上添加しても効果がないので、0.05%以下の範囲で、必要に応じて添加してもよい。
[Ti (Titanium)]
Ti is an element that forms fine carbonitrides and improves mechanical properties by refining crystal grains. Since there is no effect when added in an amount of 0.05% or more, Ti may be added in a range of 0.05% or less as necessary.

〔B(ホウ素)〕
Bは、極微量で焼入れ性や耐遅れ破壊性を改善する元素である。0.0005%以上で効果が得られるため、この範囲で添加してもよい。
[B (boron)]
B is an element that improves hardenability and delayed fracture resistance even in a very small amount. Since the effect can be obtained at 0.0005% or more, B may be added within this range.

本発明のPC鋼材の金属組織は、焼戻しマルテンサイトを主体とし、体積率で5%未満の未溶解フェライトや3%未満の未変態オーステナイトを含んでも良い。 The metal structure of the PC steel material of the present invention is mainly composed of tempered martensite, and may contain less than 5% by volume of undissolved ferrite and less than 3% by volume of untransformed austenite.

本発明のPC鋼材の引張強さは1200N/mm以上であり、1420N/mm以上であることが好ましい。また、本発明のPC鋼材の引張強さは、1600N/mm以下であることが好ましい。 The tensile strength of the PC steel material of the present invention is 1200 N/ mm2 or more, and preferably 1420 N/ mm2 or more. Also, the tensile strength of the PC steel material of the present invention is preferably 1600 N/ mm2 or less.

本発明のPC鋼材の遅れ破壊強度比は0.90以上である。
ここで、「遅れ破壊強度比」とは、遅れ破壊試験において一定の引張荷重を100時間加えても破断しない最大の荷重を、遅れ破壊試験を行う前の引張強度で除した値である。
本発明のPC鋼材の遅れ破壊強度比は0.93以上が好ましく、0.94以上がより好ましく、0.95以上が更に好ましい。
The PC steel material of the present invention has a delayed fracture strength ratio of 0.90 or more.
Here, the "delayed fracture strength ratio" is a value obtained by dividing the maximum load at which a certain tensile load is applied for 100 hours in a delayed fracture test without causing fracture by the tensile strength before the delayed fracture test.
The delayed fracture strength ratio of the PC steel material of the present invention is preferably 0.93 or more, more preferably 0.94 or more, and even more preferably 0.95 or more.

本発明のPC鋼材は、種々の用途に用いることができる。例えば、コンクリート構造物の補強筋として使用することで、補強筋の遅れ破壊に伴うコンクリート構造物の破壊を防止することが可能となる。
本発明のPC鋼材の形状は特に限定されず、引張強度と耐遅れ破壊特性が要求される任意の用途に使用するのに適した形状とすることができる。
本発明のPC鋼材の具体的な態様の例としては、PC鋼棒、PC鋼線及びPC鋼より線が挙げられる。
PC鋼棒については、前述のとおり、日本工業規格(JIS) G 3109「PC鋼棒」およびJIS G 3137「細径異形PC鋼棒」にて、公称断面積、単位質量、引張強さ、耐力、伸び、リラクセーション値などが規格化されている。
PC鋼線については、JIS G 3536「PC鋼線及びPC鋼より線」にて、公称断面積、単位質量、引張強さ、耐力、伸び、リラクセーション値などが規格化されている。
The PC steel material of the present invention can be used for various purposes. For example, by using it as a reinforcing bar of a concrete structure, it becomes possible to prevent the destruction of the concrete structure due to delayed fracture of the reinforcing bar.
The shape of the PC steel material of the present invention is not particularly limited, and it can be in any shape suitable for use in any application requiring tensile strength and delayed fracture resistance.
Specific examples of the PC steel material of the present invention include a PC steel bar, a PC steel wire, and a PC steel strand.
As described above, the nominal cross-sectional area, unit mass, tensile strength, yield strength, elongation, relaxation value, etc. of PC steel bars are standardized in Japanese Industrial Standards (JIS) G 3109 "PC steel bars" and JIS G 3137 "Small diameter deformed PC steel bars."
For PC steel wires, the nominal cross-sectional area, unit mass, tensile strength, yield strength, elongation, relaxation value, etc. are standardized in JIS G 3536 "PC steel wires and PC steel strands."

本発明のPC鋼材は、以下に説明する耐遅れ破壊特性に優れたPC鋼材の製造方法(本発明のPC鋼材の製造方法)により製造することができる。 The PC steel material of the present invention can be manufactured by the manufacturing method of PC steel material with excellent delayed fracture resistance described below (the manufacturing method of PC steel material of the present invention).

[耐遅れ破壊特性に優れたPC鋼材の製造方法]
本発明は、質量%で、C:0.10~0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であるPC鋼材に対して、下記条件を満たすひずみ時効処理を行う、耐遅れ破壊特性に優れたPC鋼材の製造方法にも関するものである。
付与する予ひずみ:塑性ひずみで0.2~0.6%
時効温度:200~300℃
時効時間:0.1~100時間
[Manufacturing method for PC steel with excellent delayed fracture resistance]
The present invention also relates to a method for producing PC steel material with excellent delayed fracture resistance, which comprises subjecting PC steel material containing, by mass%, 0.10 to 0.60% C and 1.0% or more Si, having a tempered martensite metal structure, and having a tensile strength of 1200 N/mm2 or more to a strain aging treatment that satisfies the following conditions:
Pre-strain applied: Plastic strain of 0.2 to 0.6%
Aging temperature: 200-300°C
Aging time: 0.1 to 100 hours

耐遅れ破壊特性に優れたPC鋼材とは、具体的には、前述の遅れ破壊強度比が0.90以上であるPC鋼材である。
本発明のPC鋼材の製造方法は、上記のように、質量%で、C:0.10~0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であるPC鋼材に対して、特定のひずみ時効処理を行うものである。
Specifically, PC steel having excellent delayed fracture resistance is a PC steel having the above-mentioned delayed fracture strength ratio of 0.90 or more.
As described above, the method for manufacturing PC steel material of the present invention involves carrying out a specific strain aging treatment on PC steel material that contains, by mass%, C: 0.10 to 0.60%, Si: 1.0% or more, has a tempered martensite metal structure, and has a tensile strength of 1200 N/ mm2 or more.

本発明のPC鋼材の製造方法に用いられる特定のひずみ時効処理を行う前のPC鋼材を、「ひずみ時効処理前のPC鋼材」とも呼ぶ。
ひずみ時効処理前のPC鋼材についての化学成分、金属組織、引張強さは、前述した本発明のPC鋼材と同様である。
The PC steel material before the specific strain aging treatment used in the PC steel material manufacturing method of the present invention is also called "PC steel material before strain aging treatment."
The chemical composition, metal structure, and tensile strength of the PC steel material before strain aging treatment are the same as those of the PC steel material of the present invention described above.

ひずみ時効処理前のPC鋼材は、公知の方法により入手することができる。
例えば、質量%で、C:0.10~0.60%、Si:1.0%以上を含有する鋼材(焼き入れ可能な鋼材であり、例えば、フェライトとパーライトからなる金属組織を有する鋼材)に対して、焼き入れ、及び焼き戻しを行うことで、金属組織を焼戻しマルテンサイトとし、かつ引張強さを1200N/mm以上に調節することができる。
上記焼き入れ及び焼き戻しについての条件は特に限定されない。
焼き入れの際の加熱温度は、フェライトとパーライトからオーステナイトへの変態が開始する温度であるAc1点以上であることが好ましく、例えば850~950℃とすることが挙げられる。
焼き入れの際の加熱方法及び加熱速度は特に限定されない。
加熱方法としては、例えば、誘導性の加熱、通電による抵抗加熱(例えば、放射電熱を利用した炉加熱)などが挙げられる。
焼き入れの際の冷却方法、冷却温度及び冷却速度は、焼入れ可能な範囲であれば特に限定されない。
焼き戻しの際の加熱温度は、焼き戻しができる温度であれば特に限定されないが、例えば、低温焼戻し脆性が生じない400℃以上、かつ、逆変態が起こらない650℃以下で実施することが好ましい。
焼き戻しの際の加熱方法、加熱速度及び時間は特に限定されないが、所望の強度となるように、温度と時間を調整する必要がある。
The PC steel material before strain aging treatment can be obtained by a known method.
For example, by quenching and tempering a steel material containing, by mass%, C: 0.10 to 0.60% and Si: 1.0 % or more (a steel material that can be hardened, for example, a steel material having a metal structure consisting of ferrite and pearlite), the metal structure can be made into tempered martensite and the tensile strength can be adjusted to 1200 N/mm2 or more.
The conditions for the above quenching and tempering are not particularly limited.
The heating temperature during quenching is preferably equal to or higher than the Ac1 point, which is the temperature at which transformation from ferrite and pearlite to austenite begins, and may be, for example, 850 to 950°C.
The heating method and heating rate during quenching are not particularly limited.
Examples of the heating method include inductive heating and resistance heating by passing electricity (for example, furnace heating using radiant heat).
The cooling method, cooling temperature and cooling rate during quenching are not particularly limited as long as they are within the ranges that allow quenching.
The heating temperature during tempering is not particularly limited as long as the tempering is possible, but it is preferable to perform the tempering at a temperature of 400°C or higher at which low-temperature temper brittleness does not occur and 650°C or lower at which reverse transformation does not occur.
The heating method, heating rate and time during tempering are not particularly limited, but it is necessary to adjust the temperature and time so as to obtain the desired strength.

以下、ひずみ時効処理について説明する。 The strain aging treatment is explained below.

〔付与する予ひずみ〕
付与する予ひずみは、塑性ひずみで0.2~0.6%であり、好ましくは0.3~0.6%である。
付与する予ひずみが塑性ひずみで0.2%未満では、固着される転位量が少ない(応力緩和も大きい)ため、耐遅れ破壊特性を向上させることができない。また、付与する予ひずみが塑性ひずみで0.6%超では、転位が増殖しすぎるため、固着されない転位が残り、耐遅れ破壊特性を向上させることができない。
ひずみを付与する方法は特に限定されず、公知の方法でひずみ時効処理前のPC鋼材に0.2~0.6%の引張塑性ひずみを与えることができる。ひずみの付与は、例えば、端部を掴んで引張加工する方法やピンチロール間で挟んで連続的に張力を与える方法、段ロールを用いて連続的に曲げ加工する方法などにより行うことができる。
ひずみを付与する際の温度は、時効温度以下に限定される。例えば、冷間加工では200℃以下、加工とひずみ時効を同時に行う場合は、時効温度(200~300℃)で行ってもよい。
[Prestrain to be applied]
The prestrain applied is a plastic strain of 0.2 to 0.6%, preferably 0.3 to 0.6%.
If the pre-strain applied is less than 0.2% in terms of plastic strain, the amount of dislocations that are fixed is small (stress relaxation is also large), and therefore delayed fracture resistance cannot be improved.If the pre-strain applied is more than 0.6% in terms of plastic strain, dislocations increase too much, and dislocations that are not fixed remain, and therefore delayed fracture resistance cannot be improved.
The method of applying strain is not particularly limited, and a tensile plastic strain of 0.2 to 0.6% can be applied to the PC steel material before strain aging treatment by a known method. The application of strain can be performed, for example, by a method of pulling the PC steel material by gripping the end portion, a method of applying continuous tension by clamping the PC steel material between pinch rolls, or a method of continuously bending the PC steel material using corrugated rolls.
The temperature at which strain is applied is limited to the aging temperature or lower. For example, in cold working, the temperature is 200° C. or lower, and in the case where working and strain aging are carried out simultaneously, the temperature may be the aging temperature (200 to 300° C.).

〔時効温度〕
時効温度は、200~300℃であり、好ましくは220~280℃であり、より好ましくは240~260℃であり、さらに好ましくは250℃である。時効温度が250℃の場合に、応力緩和が最小、すなわち可動転位が最も少ない状態になる。
時効温度が200℃未満では、炭素の拡散が不十分で固着されず、300℃超では、固着が外れやすく、回復により転位が減少してしまうため、強度が低下してしまう。
時効温度に加熱する際の加熱方法及び加熱速度は特に限定されない。
[Aging temperature]
The aging temperature is 200 to 300° C., preferably 220 to 280° C., more preferably 240 to 260° C., and further preferably 250° C. When the aging temperature is 250° C., the stress relaxation is minimized, that is, the number of mobile dislocations is minimized.
If the aging temperature is less than 200°C, carbon diffusion is insufficient and carbon is not fixed, whereas if the aging temperature exceeds 300°C, carbon is easily released from the fixed state and dislocations are reduced by recovery, resulting in a decrease in strength.
The heating method and heating rate when heating to the aging temperature are not particularly limited.

〔時効時間〕
時効時間は、0.1~100時間であるが、温度の影響を受けるためその目安として、公知である焼戻しパラメータ(P)が、10000≦P≦12000となる範囲で実施することが好ましい。
P=T×(C+logt)
Tは温度(K)を表し、tは時間(h)を表し、Cは化学成分による定数を表す。Cは下記式を用いて算出する。
C=21.3-5.8×(炭素の含有率(質量%))
時効時間は、0.1~100時間であることが好ましく、0.1~2時間であることがより好ましく、2時間であることが更に好ましい。
[Statute of Limitations]
The aging time is 0.1 to 100 hours, but since it is affected by temperature, it is preferable to carry out the aging within a range where the known tempering parameter (P) is 10,000≦P≦12,000 as a guideline.
P = T x (C + log t)
T represents temperature (K), t represents time (h), and C represents a constant depending on the chemical components. C is calculated using the following formula.
C = 21.3 - 5.8 x (carbon content (mass%))
The aging time is preferably 0.1 to 100 hours, more preferably 0.1 to 2 hours, and even more preferably 2 hours.

本発明のPC鋼材の製造方法で製造したPC鋼材は、トレーサー水素量で表される格子欠陥量が、ひずみ時効を行うことにより、ひずみ時効を行う前に対して、10%以上低減されていることが好ましい。 The PC steel material manufactured by the PC steel material manufacturing method of the present invention preferably has a lattice defect amount, represented by the amount of tracer hydrogen, that is reduced by 10% or more by strain aging compared to the amount before strain aging.

以下に、実施例に基づいて本発明を更に詳細に説明するが、本発明の範囲は以下に示す実施例により限定的に解釈されない。 The present invention will be described in more detail below with reference to examples, but the scope of the present invention should not be interpreted as being limited to the examples shown below.

<ひずみ時効処理前のPC鋼棒の作製>
下記表1に示した化学成分(残部Fe及び不可避的不純物)の熱間圧延され組織がフェライトとパーライトからなる鋼線材を用いた。この鋼線材を出発材として、デスケーリング、伸線加工を行い、φ(直径)5mmに形状を整えた、伸線材を作製した。作製した伸線材を高周波誘導加熱と水冷を組み合わせて、連続焼入れを行い、続いて所定の強度になるように高周波誘導加熱により焼戻しを行った。このようにして、ひずみ時効処理前のPC鋼棒を作製した。
なお、すべての実施例及び比較例のPC鋼棒の金属組織は100%焼戻しマルテンサイトであった。
<Preparation of PC steel bar before strain aging treatment>
A hot-rolled steel wire having a structure consisting of ferrite and pearlite and having the chemical composition (balance Fe and unavoidable impurities) shown in Table 1 below was used. Using this steel wire as a starting material, descaling and wire drawing were performed to produce a drawn wire material shaped to a diameter of 5 mm. The produced drawn wire material was subjected to continuous quenching by combining high-frequency induction heating and water cooling, and then tempered by high-frequency induction heating to a predetermined strength. In this manner, a PC steel bar before strain aging treatment was produced.
The metal structure of the PC steel bars in all of the Examples and Comparative Examples was 100% tempered martensite.

<ひずみ時効処理>
作製したひずみ時効処理前のPC鋼棒に対して、下記表1に示すひずみ量(全ひずみ及び塑性ひずみ)を付与し、下記表1に示す時効温度及び時効時間でひずみ時効処理を行った。
ひずみ付与においては、引張試験によって応力ひずみ曲線を見ながら下降伏点後までひずみが加わった後に除荷した。
なお、引張試験時の荷重変化と伸びの関係から、上降伏点あるいは下降伏点に相当する荷重を求めた。
時効加熱方法については、予め炉を時効温度に加熱しておいて、そこに予ひずみ付与後の試験片を投入することで行った。
<Strain aging treatment>
The prepared PC steel bars before strain aging treatment were given the strain amounts (total strain and plastic strain) shown in Table 1 below, and were subjected to strain aging treatment at the aging temperature and for the aging time shown in Table 1 below.
In applying strain, the stress-strain curve was observed in a tensile test, and the strain was applied up to the lower yield point, after which the load was removed.
The load corresponding to the upper yield point or the lower yield point was determined from the relationship between the load change and the elongation during the tensile test.
The aging heating method was performed by heating a furnace to the aging temperature in advance and placing the test piece after the prestraining was applied therein.

<遅れ破壊試験>
試験片に対し、
溶液:0.1mol/L NaOH+5.0 g/L NHSCN、
溶液温度:30℃、
電流密度:100A/m
の条件で陰極電解法による水素チャージと、負荷応力0.20σ~0.95σの一定弾性応力負荷を同時に行う。σは引張強度である。
また、48~96時間の水素チャージ後溶液交換を行うことで、それ以後も試験片内部の水素を平衡状態に保つことができる。
100時間経過後も破断しなかったものについては未破断材とし、応力除荷と同時に水素チャージも終了した。
<Delayed fracture test>
For the test piece,
Solution: 0.1 mol/L NaOH + 5.0 g/L NH4SCN ,
Solution temperature: 30° C.
Current density: 100A/ m2
Under the condition above, hydrogen charging by cathodic electrolysis and constant elastic stress loading of 0.20σ B to 0.95σ B are simultaneously performed, where σ B is the tensile strength.
In addition, by replacing the solution after 48 to 96 hours of hydrogen charging, the hydrogen inside the test piece can be kept in equilibrium thereafter.
Those that did not break even after 100 hours were regarded as unbroken specimens, and hydrogen charging was terminated at the same time as the stress was removed.

<引張強度>
図1に示す全長300mmの試験片を用いて、両端の30mmを掴み部、中央部80mmを標点距離として、ひずみ時効処理前の引張特性を確認した。引張試験時の最大荷重を試験片の断面積(2.5×2.5×π=19.6mm)で除して引張強さをそれぞれ求め、4本の平均値をひずみ時効処理前の引張強度とした。その結果、ひずみ時効処理前の引張強度は1470N/mmであった。
また、試験片の一部は、所定の時効条件を施したのち、遅れ破壊試験を実施せず引張試験で最大荷重を求めた。
<Tensile strength>
Using a test piece with a total length of 300 mm as shown in Figure 1, the tensile properties before strain aging treatment were confirmed with 30 mm at both ends as gripping parts and 80 mm at the center as the gauge length. The maximum load during the tensile test was divided by the cross-sectional area of the test piece (2.5 x 2.5 x π = 19.6 mm2 ) to determine the tensile strength, and the average value of the four pieces was taken as the tensile strength before strain aging treatment. As a result, the tensile strength before strain aging treatment was 1470 N/ mm2 .
In addition, some of the test pieces were subjected to predetermined aging conditions, and then the maximum load was determined in a tensile test without carrying out a delayed fracture test.

<格子欠陥量の測定>
ひずみ時効処理後のPC鋼棒より試験片を切り出し、無負荷で、
溶液:0.1mol/L NaOH+5.0 g/L NHSCN、
溶液温度:30℃、
電流密度:100A/m
チャージ時間:24h
の条件で陰極電解法による水素チャージを行った。
水素チャージ後の試験片を、アルゴンガス中で100℃/hの速度で加熱しながら、試験片から放出される水素をガスクロマトグラフ法で検出する昇温脱離分析を行った。その結果、本発明のPC鋼材の製造方法で製造したPC鋼棒であるサンプルNo.1について、ひずみ時効しないものの水素量は、3.26ppmであり、ひずみ時効材の水素量は2.84ppmであった。
なお、ひずみ時効処理後のPC鋼棒からの試験片は、図2に示すように、ひずみ時効処理後のPC鋼棒の中央部80mmの中央部30mmを切り出して作成した。
<Measurement of Lattice Defect Amount>
Test pieces were cut out from the PC steel bars after strain aging treatment, and
Solution: 0.1 mol/L NaOH + 5.0 g/L NH4SCN ,
Solution temperature: 30° C.
Current density: 100A/ m2
Charge time: 24 hours
Hydrogen charging was carried out by cathodic electrolysis under the following conditions.
The hydrogen-charged test specimen was heated in argon gas at a rate of 100°C/h, and the hydrogen released from the test specimen was detected by gas chromatography. As a result, for sample No. 1, which is a PC steel bar manufactured by the PC steel material manufacturing method of the present invention, the hydrogen content of the non-strain-aged material was 3.26 ppm, and the hydrogen content of the strain-aged material was 2.84 ppm.
The test specimens from the PC steel bars after strain aging treatment were prepared by cutting out a central 30 mm portion of a central 80 mm portion of the PC steel bars after strain aging treatment, as shown in FIG.

下記表1中の化学成分の含有量の単位は「質量%」である。 The units of content of chemical components in Table 1 below are "mass %."

下記表1中遅れ破壊試験の判定は、以下の基準で行った。
◎:大幅に改善されている
〇:改善されている
×:改善されていない
The delayed fracture test results in Table 1 below were judged according to the following criteria.
◎: Significantly improved 〇: Improved ×: Not improved

Figure 0007479794000001
Figure 0007479794000001

表1に示したように、本発明のPC鋼材の製造方法で製造したPC鋼棒は、遅れ破壊強度比が0.90以上であった(サンプルNo.1、3、及び4)。特に、サンプルNo.1は、遅れ破壊強度比が0.95であり、最も優れた耐遅れ破壊特性を示した。
また、本発明のPC鋼材の製造方法で製造したPC鋼棒は、トレーサー水素量で表される格子欠陥量が、ひずみ時効を行うことにより、ひずみ時効を行う前に対して、10%以上低減された(ひずみ時効前の水素量3.26ppm、ひずみ時効後の水素量2.84ppm)。
As shown in Table 1, the PC steel bars manufactured by the PC steel bar manufacturing method of the present invention had a delayed fracture strength ratio of 0.90 or more (samples No. 1, 3, and 4). In particular, sample No. 1 had a delayed fracture strength ratio of 0.95, and showed the most excellent delayed fracture resistance.
Furthermore, the amount of lattice defects, represented by the amount of tracer hydrogen, of the PC steel rod manufactured by the PC steel manufacturing method of the present invention was reduced by 10% or more by strain aging compared to before strain aging (hydrogen amount before strain aging: 3.26 ppm, hydrogen amount after strain aging: 2.84 ppm).

Claims (1)

質量%で、C:0.10~0.60%、Si:1.0%以上2.5%以下、Mn:0.1%以上2.0%以下、P:0.03%以下、S:0.03%以下、Cu:0.3%以下、Ni:1.5%を上限、Cr:2.0%以下、Ti:0.05%以下、残部鉄及び不可避的不純物からなり、金属組織が焼戻しマルテンサイトであり、引張強さが1200N/mm以上であるPC鋼材に対して、下記条件を満たすひずみ時効処理を行う、耐遅れ破壊特性に優れたPC鋼材の製造方法。
付与する予ひずみ:塑性ひずみで0.2~0.6%
時効温度:200~300℃
時効時間:0.1~100時間
A method for manufacturing PC steel material with excellent resistance to delayed fracture, which comprises, by mass%, C: 0.10 to 0.60%, Si: 1.0% to 2.5% , Mn: 0.1% to 2.0% , P: 0.03% or less, S: 0.03% or less, Cu: 0.3% or less, Ni: up to 1.5%, Cr: 2.0% or less, Ti: 0.05% or less, the balance being iron and unavoidable impurities , and which has a metal structure of tempered martensite and a tensile strength of 1,200 N/ mm2 or more, is subjected to strain aging treatment that satisfies the following conditions.
Pre-strain applied: Plastic strain of 0.2 to 0.6%
Aging temperature: 200-300°C
Aging time: 0.1 to 100 hours
JP2019077963A 2019-04-16 2019-04-16 PC steel with excellent delayed fracture resistance and its manufacturing method Active JP7479794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019077963A JP7479794B2 (en) 2019-04-16 2019-04-16 PC steel with excellent delayed fracture resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019077963A JP7479794B2 (en) 2019-04-16 2019-04-16 PC steel with excellent delayed fracture resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020176286A JP2020176286A (en) 2020-10-29
JP7479794B2 true JP7479794B2 (en) 2024-05-09

Family

ID=72935752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019077963A Active JP7479794B2 (en) 2019-04-16 2019-04-16 PC steel with excellent delayed fracture resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7479794B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173739A (en) 2000-12-01 2002-06-21 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
JP2002194481A (en) 2000-12-21 2002-07-10 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
WO2011111873A1 (en) 2010-03-11 2011-09-15 新日本製鐵株式会社 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
WO2011111872A1 (en) 2010-03-11 2011-09-15 新日本製鐵株式会社 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP2014043612A (en) 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal High strength steel excellent in delayed fracture resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279086B2 (en) * 1994-08-18 2002-04-30 住友金属工業株式会社 Machine structural steel with excellent delayed fracture resistance
JPH08120399A (en) * 1994-10-25 1996-05-14 Sumitomo Metal Ind Ltd Steel for machine structure excellent in delayed fracture resistance
JPH08209289A (en) * 1995-02-06 1996-08-13 Sumitomo Metal Ind Ltd Steel for machine structural use excellent in delayed fracture resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173739A (en) 2000-12-01 2002-06-21 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
JP2002194481A (en) 2000-12-21 2002-07-10 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
WO2011111873A1 (en) 2010-03-11 2011-09-15 新日本製鐵株式会社 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
WO2011111872A1 (en) 2010-03-11 2011-09-15 新日本製鐵株式会社 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP2014043612A (en) 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal High strength steel excellent in delayed fracture resistance

Also Published As

Publication number Publication date
JP2020176286A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6180351B2 (en) High strength steel wire and high strength steel wire with excellent stretchability
EP2634280B1 (en) High carbon steel wire rod having excellent wire drawability
JP5802162B2 (en) Wire rod and steel wire using the same
JP5833485B2 (en) Wire rod and steel wire using the same
JP5846080B2 (en) High-strength steel with excellent delayed fracture resistance
KR20190037680A (en) Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
KR20150002848A (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
JP2004360005A (en) High strength pc steel wire having excellent delayed fracture property, and its production method
US20070082223A1 (en) Stainless steel wire, spring and method of manufacturing the spring
EP3115478A1 (en) High-carbon steel wire having superior wire drawing properties and method for producing same
KR20170002541A (en) Steel wire
JP2007138289A (en) Thick high strength hot rolled steel plate and its production method
JP5741773B2 (en) Steel and rebar for rebar
JP7479794B2 (en) PC steel with excellent delayed fracture resistance and its manufacturing method
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP3153072B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
KR100266934B1 (en) Steel bar for prestressed concrete and method for producing the same
CN108350544B (en) Steel wire
JP6347311B2 (en) Steel wire with excellent delayed fracture resistance
JPH10287957A (en) High strength pc steel bar and its manufacture
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JPH08291370A (en) High strength steel rod excellent in delayed fracture resistance and its production
JP5360544B2 (en) Steel plate and steel plate coil
KR0143498B1 (en) Making method of pc wire rod
WO2023105852A1 (en) Stainless steel having excellent cold forgeability, hydrogen embrittlement resistance properties or corrosion resistance and non-magnetism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240424

R150 Certificate of patent or registration of utility model

Ref document number: 7479794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150