JP7475783B2 - Conductor Deterioration Detection Device - Google Patents

Conductor Deterioration Detection Device Download PDF

Info

Publication number
JP7475783B2
JP7475783B2 JP2020116743A JP2020116743A JP7475783B2 JP 7475783 B2 JP7475783 B2 JP 7475783B2 JP 2020116743 A JP2020116743 A JP 2020116743A JP 2020116743 A JP2020116743 A JP 2020116743A JP 7475783 B2 JP7475783 B2 JP 7475783B2
Authority
JP
Japan
Prior art keywords
measured
contact
holding
held
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020116743A
Other languages
Japanese (ja)
Other versions
JP2022014466A (en
Inventor
薫 村田
賢一 石橋
武 中野
和俊 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2020116743A priority Critical patent/JP7475783B2/en
Publication of JP2022014466A publication Critical patent/JP2022014466A/en
Application granted granted Critical
Publication of JP7475783B2 publication Critical patent/JP7475783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、導体劣化検出装置に関する。 The present invention relates to a conductor deterioration detection device.

従来、電柱上に布設される絶縁被覆付き電線(以下、単に「電線」と呼ぶ。)は、外部からの水の浸入により内部の銅導体が腐食し、送電能力に影響することがある。電線の保守管理を行うためには、送電能力に影響する前に銅導体の腐食有無、または、腐食の程度を把握する必要がある。一方、非破壊で銅導体の腐食を検出する装置として、渦電流探傷法を用いた導体劣化検出装置が知られている(例えば特許文献1参照)。導体劣化検出装置は、励磁コイルと検出コイルとを有し、励磁コイルに交流電圧を印加して磁束を発生させることで銅導体に渦電流を発生させ、渦電流の磁束に基づく検出コイルの検出値により、電線の探傷を検出するものである。 Conventionally, insulated electric wires (hereinafter simply referred to as "electric wires") laid on utility poles can corrode the copper conductor inside due to the infiltration of water from the outside, affecting the power transmission capacity. In order to perform maintenance and management of the electric wires, it is necessary to know whether or not the copper conductor is corroded, and the extent of the corrosion, before it affects the power transmission capacity. Meanwhile, a conductor deterioration detection device using eddy current testing is known as a device for non-destructively detecting corrosion of copper conductors (see, for example, Patent Document 1). The conductor deterioration detection device has an excitation coil and a detection coil, and applies an AC voltage to the excitation coil to generate a magnetic flux, thereby generating an eddy current in the copper conductor, and detects the flaws in the electric wire from the detection value of the detection coil based on the magnetic flux of the eddy current.

導体劣化検出装置により電柱上に布設された電線を検査する場合、作業者が高所に登り当該装置を電線に取り付けて電線の延在方向に移動させる作業を行うリスクを低減するため、例えばクランプ部と検出部とが一体化された検出装置が用いられる(例えば、特許文献2参照)。 When inspecting electric wires installed on utility poles using a conductor deterioration detection device, in order to reduce the risk of an operator climbing to a high place, attaching the device to the electric wire, and moving it in the direction in which the electric wire extends, a detection device in which, for example, a clamp unit and a detection unit are integrated is used (see, for example, Patent Document 2).

特開2018-132469号公報JP 2018-132469 A 特開2015-186430号公報JP 2015-186430 A

ところで、上述の導体劣化検出装置では、例えば、検出コイルの中心軸の位置に対応する検出位置に対して、クランプ部で保持された電線が当該電線の幅方向にずれると検出コイルの出力値が低下し、検出精度に影響することがある。特に、外径が異なる複数種類の電線を検査対象とする場合、クランプ部で保持された電線の中心軸が、当該電線の外径の違いにより幅方向にずれるおそれがあることから、改善の余地がある。 However, in the above-mentioned conductor deterioration detection device, for example, if the electric wire held by the clamping portion is displaced in the width direction of the electric wire with respect to the detection position corresponding to the position of the central axis of the detection coil, the output value of the detection coil may decrease, which may affect the detection accuracy. In particular, when inspecting multiple types of electric wires with different outer diameters, there is room for improvement because the central axis of the electric wire held by the clamping portion may be displaced in the width direction due to differences in the outer diameters of the electric wires.

本発明は、保持機構により保持された電線の外径違いによる幅方向のずれを抑制し、検出精度の低下を抑制することができる導体劣化検出装置を提供することを目的とする。 The present invention aims to provide a conductor deterioration detection device that can suppress the shift in the width direction caused by differences in the outer diameter of the electric wire held by the holding mechanism and suppress the decrease in detection accuracy.

上記目的を達成するために、本発明に係る導体劣化検出装置は、断面形状が円形状に形成される被測定物に対して渦電流を発生させる励磁コイルと、前記被測定物に発生した渦電流による磁束を検出する検出コイルと、前記励磁コイル及び前記検出コイルを収容する筐体と、を備え、前記筐体は、非磁性材料で形成され、外径が異なる複数種類の前記被測定物に対して、第1接点にて接触する接触面を有する検査基台と、前記被測定物が前記検査基台に接触している接触状態において、前記検査基台との間で前記被測定物を保持する保持機構と、を有し、前記保持機構は、回動軸を中心に回動自在に形成され、前記被測定物が前記保持機構により保持された保持状態において、前記被測定物の外周面に対して、第2接点及び第3接点で接触する第1アーム部と、前記保持状態における保持位置と前記保持状態から前記被測定物を開放する開放位置との間において、外力により前記第1アーム部を前記回動軸の回動方向に回動させる第2アーム部と、を有し、前記保持状態において、前記被測定物の中心軸と前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面と、前記検査基台の前記接触面とが前記第1接点で接触するように保持し、前記第1接点は、前記保持状態において、前記回動軸の軸方向から視た場合、前記検出コイルの中心軸を通って前記検査基台の前記接触面に直交し前記被測定物の中心軸を通る仮想線上に配置され、前記第2接点は、前記保持状態において、前記回動軸の軸方向から見た場合、前記第1接点と前記被測定物の中心軸とを通る仮想線の回動軸側に配置され、前記第3接点は、前記保持状態において、前記回動軸の軸方向から見た場合、前記仮想線を挟んで前記回動軸と反対側に配置される、ことを特徴とする。 In order to achieve the above object, a conductor deterioration detection device according to the present invention comprises an excitation coil which generates an eddy current in an object to be measured having a circular cross-sectional shape , a detection coil which detects magnetic flux due to the eddy current generated in the object to be measured, and a housing which accommodates the excitation coil and the detection coil, the housing having an inspection base which is formed of a non-magnetic material and has a contact surface which comes into contact at a first contact with a plurality of types of objects to be measured having different outer diameters, and a holding mechanism which holds the object to be measured between the inspection base in a contact state in which the object to be measured is in contact with the inspection base, the holding mechanism being formed to be rotatable about a rotation axis, and in a holding state in which the object to be measured is held by the holding mechanism, a first arm portion which comes into contact with an outer peripheral surface of the object to be measured at a second contact and a third contact, and a holding position in the holding state and a release position for the object to be measured from the holding state. and a second arm portion that rotates the first arm portion in the rotation direction of the rotation axis by an external force between an open position where the first arm portion is rotated and an open position where the second arm portion is rotated and held such that, in the held state, the outer peripheral surface of the object to be measured, which is arranged so that the central axis of the object to be measured and the central axis of the detection coil are perpendicular to each other, and the contact surface of the inspection base is in contact with the first contact point, and when viewed in the axial direction of the rotation axis in the held state, the first contact point is located on a virtual line that passes through the central axis of the detection coil, is perpendicular to the contact surface of the inspection base and passes through the central axis of the object to be measured, the second contact point is located on the rotation axis side of the virtual line that passes through the first contact and the central axis of the object to be measured, when viewed in the axial direction of the rotation axis in the held state, and the third contact point is located on the opposite side of the rotation axis across the virtual line, when viewed in the axial direction of the rotation axis in the held state.

上記目的を達成するために、本発明に係る導体劣化検出装置は、断面形状が円形状に形成される被測定物に対して渦電流を発生させる励磁コイルと、前記被測定物に発生した渦電流による磁束を検出する検出コイルと、前記励磁コイル及び前記検出コイルを収容する筐体と、を備え、前記筐体は、非磁性材料で形成され、外径が異なる複数種類の前記被測定物に対して、第1接点にて接触する接触面を有する検査基台と、前記被測定物が前記検査基台に接触している接触状態において、前記検査基台との間で前記被測定物を保持する保持機構と、を有し、前記保持機構は、回動軸を中心に回動自在に形成され、前記被測定物が前記保持機構により保持された保持状態において、前記被測定物の外周面に対して、第2接点及び第3接点で接触する第1アーム部と、前記保持状態における保持位置と前記保持状態から前記被測定物を開放する開放位置との間において、外力により前記第1アーム部を前記回動軸の回動方向に回動させる第2アーム部と、を有し、前記保持状態において、前記被測定物の中心軸と前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面と、前記検査基台の前記接触面とが前記第1接点で接触するように保持し、前記第1接点は、前記保持状態において、前記回動軸の軸方向から視た場合、前記検出コイルの中心軸を通って前記検査基台の前記接触面に直交し前記被測定物の中心軸を通る仮想線上に配置され、前記第2接点は、前記保持状態において、前記回動軸の軸方向から見た場合、前記第1接点と前記被測定物の中心軸とを通る仮想線の回動軸側に配置され、前記第3接点は、前記保持状態において、前記回動軸の軸方向から見た場合、前記仮想線を挟んで前記回動軸と反対側に配置され、前記検査基台上の前記接触面と前記回動軸との間の前記軸方向と直交する上下方向における距離は、前記被測定物のうち最も外径が大きい大径電線が前記保持機構により保持された状態において、前記検査基台の前記接触面と前記大径電線の中心軸との間の前記上下方向における距離より短い、ことを特徴とする。 In order to achieve the above object, a conductor deterioration detection device according to the present invention comprises an excitation coil that generates an eddy current in an object to be measured having a circular cross-sectional shape , a detection coil that detects magnetic flux due to the eddy current generated in the object to be measured, and a housing that accommodates the excitation coil and the detection coil, the housing having an inspection base formed of a non-magnetic material and having a contact surface that comes into contact at a first contact with a plurality of types of objects to be measured having different outer diameters, and a holding mechanism that holds the object to be measured between the inspection base and the inspection base in a contact state in which the object to be measured is in contact with the inspection base, the holding mechanism being formed to be rotatable about a rotation axis, and having a first arm portion that contacts an outer peripheral surface of the object to be measured at a second contact point and a third contact point in a holding state in which the object to be measured is held by the holding mechanism, and a second arm portion that rotates the first arm portion in a rotation direction of the rotation axis by an external force between a holding position in the holding state and an release position in which the object to be measured is released from the holding state, and in the holding state , the first contact is disposed on a virtual line that passes through the central axis of the detection coil, is perpendicular to the contact surface of the inspection base, and passes through the central axis of the object to be measured when viewed from the axial direction of the rotation shaft in the held state; the second contact is disposed on the rotation axis side of the virtual line that passes through the first contact and the central axis of the object to be measured when viewed from the axial direction of the rotation shaft in the held state; and the third contact is disposed on the opposite side to the rotation axis across the virtual line when viewed from the axial direction of the rotation shaft in the held state; and a distance between the contact surface on the inspection base and the rotation axis in a vertical direction perpendicular to the axial direction is shorter than a distance in the vertical direction between the contact surface of the inspection base and the central axis of the large diameter electric wire when a large diameter electric wire having the largest outer diameter of the objects to be measured is held by the holding mechanism.

また、上記導体劣化検出装置において、前記第1アーム部は、前記第2接点を有する第1保持面と、前記回動軸の軸方向から見た場合、前記第1保持面より前記回動軸から遠くに設けられ、前記第3接点を有する第2保持面と、を有し、前記第1保持面は、前記回動軸の軸方向から見た断面形状が直線状であり、前記第2保持面は、前記回動軸の軸方向から見た断面形状が、前記保持状態で前記被測定物側と反対側に凹むように形成された湾曲状である、ものである。
また、上記導体劣化検出装置において、前記検査基台は、前記軸方向と直交する上下方向のうち下方向に向けて凹状に形成され、前記回動軸の軸方向から見た場合、前記保持機構により保持される前記被測定物を目標接触位置に向けて案内する案内部を有し、前記目標接触位置は、前記保持状態において、前記被測定物の中心軸と前記励磁コイルの中心軸及び前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面が接触する前記接触面の前記第1接点に対応する接触位置である。
Furthermore, in the above-mentioned conductor deterioration detection device, the first arm portion has a first holding surface having the second contact point, and a second holding surface having the third contact point and located farther from the rotation axis than the first holding surface when viewed in the axial direction of the rotation axis, wherein the first holding surface has a linear cross-sectional shape when viewed in the axial direction of the rotation axis, and the second holding surface has a curved cross-sectional shape when viewed in the axial direction of the rotation axis that is concave toward the side opposite the object to be measured in the held state.
In addition, in the above-mentioned conductor deterioration detection device, the inspection base is formed concavely toward the downward direction in the up-down direction perpendicular to the axial direction, and when viewed from the axial direction of the rotation axis, has a guide portion that guides the object to be measured held by the holding mechanism toward a target contact position, and the target contact position is a contact position corresponding to the first contact point of the contact surface with which the outer peripheral surface of the object to be measured contacts, the outer peripheral surface being arranged so that the central axis of the object to be measured is perpendicular to the central axis of the excitation coil and the central axis of the detection coil in the held state.

本発明に係る導体劣化検出装置によれば、保持機構により保持された電線の外径違いによる幅方向のずれを抑制し、検出精度の低下を抑制することができる、という効果を奏する。 The conductor deterioration detection device according to the present invention has the advantage of being able to suppress misalignment in the width direction due to differences in the outer diameter of the wire held by the holding mechanism, thereby suppressing a decrease in detection accuracy.

図1は、実施形態に係る導体劣化検出装置の電線取付状態を示す斜視図である。FIG. 1 is a perspective view showing a state in which an electric wire is attached to a conductor deterioration detection device according to an embodiment. 図2は、実施形態に係る導体劣化検出装置の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a conductor deterioration detection device according to an embodiment. 図3は、実施形態に係る導体劣化検出装置の概略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a conductor deterioration detection device according to an embodiment. 図4は、実施形態に係る導体劣化検出装置の主要部の部分断面図である。FIG. 4 is a partial cross-sectional view of a main part of a conductor deterioration detection device according to an embodiment. 図5は、実施形態に係る導体劣化検出装置の大径電線取付状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a state in which a large-diameter electric wire is attached to a conductor deterioration detection device according to an embodiment. 図6は、実施形態に係る導体劣化検出装置の中径電線取付状態を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a state in which a medium-diameter electric wire is attached to a conductor deterioration detection device according to an embodiment. 図7は、実施形態に係る導体劣化検出装置の小径電線取付状態を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing a state in which a small diameter electric wire is attached to a conductor deterioration detection device according to an embodiment. 図8は、導体劣化検出装置における第1アーム部の回動軸と外径が異なる電線の各中心軸との位置関係を回動軸の軸方向から見た模式図である。FIG. 8 is a schematic diagram showing the positional relationship between the rotation axis of the first arm portion in the conductor deterioration detection device and the central axes of the electric wires having different outer diameters, as viewed from the axial direction of the rotation axis. 図9は、導体劣化検出装置における第2保持面の湾曲形状を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the curved shape of the second holding surface in the conductor deterioration detection device. 図10(A)は、電線の幅方向のずれと導体劣化検出装置の出力値とのの関係を表に表した図、図10(B)は、電線の幅方向のずれと導体劣化検出装置の出力値の減衰率との関係をグラフに表した図である。FIG. 10(A) is a table showing the relationship between the widthwise deviation of a wire and the output value of a conductor deterioration detection device, and FIG. 10(B) is a graph showing the relationship between the widthwise deviation of a wire and the attenuation rate of the output value of a conductor deterioration detection device. 図11(A)及び図11(B)は、実施形態の変形例に係る導体劣化検出装置の概略構成を示す模式図である。11A and 11B are schematic diagrams showing a schematic configuration of a conductor deterioration detection device according to a modified example of the embodiment. 図12(A)及び図12(B)は、実施形態の変形例に係る導体劣化検出装置の概略構成を示す模式図である。12A and 12B are schematic diagrams showing a schematic configuration of a conductor deterioration detection device according to a modified example of the embodiment. 図13(A)及び図13(B)は、実施形態の変形例に係る導体劣化検出装置の概略構成を示す模式図である。13A and 13B are schematic diagrams showing a schematic configuration of a conductor deterioration detection device according to a modified example of the embodiment.

以下に、本発明に係る導体劣化検出装置の実施形態について図面を参照しつつ詳細に説明する。なお、本実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、下記実施形態における構成要素は、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 Below, an embodiment of a conductor deterioration detection device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to this embodiment. Furthermore, the components in the following embodiment include those that a person skilled in the art would easily imagine, or those that are substantially the same. Furthermore, the components in the following embodiment can be omitted, replaced, or modified in various ways without departing from the gist of the invention.

[実施形態]
図1は、本実施形態に係る導体劣化検出装置の電線取付状態を示す斜視図である。図2は、導体劣化検出装置の機能的構成を示すブロック図である。図3は、導体劣化検出装置の概略構成を示す斜視図である。図4は、導体劣化検出装置の主要部の部分断面図である。図5は、導体劣化検出装置の大径電線取付状態を示す部分断面図である。図6は、導体劣化検出装置の中径電線取付状態を示す部分断面図である。図7は、導体劣化検出装置の小径電線取付状態を示す部分断面図である。図8は、導体劣化検出装置における第1アーム部の回動軸と外径が異なる電線の各中心軸との位置関係を回動軸の軸方向から見た模式図である。図9は、導体劣化検出装置における第2保持面の湾曲形状を説明するための模式図である。図10(A)は、電線の幅方向のずれと導体劣化検出装置の出力値とのの関係を表に表した図、図10(B)は、電線の幅方向のずれと導体劣化検出装置の出力値の減衰率との関係をグラフに表した図である。なお、図5~図9、図11(A)~図13(B)では、筐体4に収容される検出コイル11については省略されている。
[Embodiment]
FIG. 1 is a perspective view showing an electric wire mounting state of the conductor deterioration detection device according to the present embodiment. FIG. 2 is a block diagram showing the functional configuration of the conductor deterioration detection device. FIG. 3 is a perspective view showing a schematic configuration of the conductor deterioration detection device. FIG. 4 is a partial cross-sectional view of a main part of the conductor deterioration detection device. FIG. 5 is a partial cross-sectional view showing a large diameter electric wire mounting state of the conductor deterioration detection device. FIG. 6 is a partial cross-sectional view showing a medium diameter electric wire mounting state of the conductor deterioration detection device. FIG. 7 is a partial cross-sectional view showing a small diameter electric wire mounting state of the conductor deterioration detection device. FIG. 8 is a schematic view showing the positional relationship between the rotation axis of the first arm part in the conductor deterioration detection device and each central axis of the electric wires having different outer diameters, as viewed from the axial direction of the rotation axis. FIG. 9 is a schematic view for explaining the curved shape of the second holding surface in the conductor deterioration detection device. FIG. 10(A) is a table showing the relationship between the width direction deviation of the electric wire and the output value of the conductor deterioration detection device, and FIG. 10(B) is a graph showing the relationship between the width direction deviation of the electric wire and the attenuation rate of the output value of the conductor deterioration detection device. 5 to 9 and 11(A) to 13(B), the detection coil 11 housed in the housing 4 is omitted.

ここで、図1~図9(図11(A)~図13(B)を含む)のX方向は、本実施形態における導体劣化検出装置の幅方向である。Y方向は、本実施形態における導体劣化検出装置の奥行き方向であり、幅方向と直交する方向である。Z方向は、本実施形態における導体劣化検出装置の上下方向であり、幅方向及び奥行き方向と直交する方向である。なお、Z方向は、例えば、本実施形態における導体劣化検出装置の鉛直方向として説明し、Z方向のうちZ1方向を鉛直方向上側とし、Z2方向を鉛直方向下側とする。 Here, the X direction in Figures 1 to 9 (including Figures 11(A) to 13(B)) is the width direction of the conductor deterioration detection device in this embodiment. The Y direction is the depth direction of the conductor deterioration detection device in this embodiment, and is a direction perpendicular to the width direction. The Z direction is the up-down direction of the conductor deterioration detection device in this embodiment, and is a direction perpendicular to the width direction and the depth direction. Note that the Z direction is described as, for example, the vertical direction of the conductor deterioration detection device in this embodiment, and the Z1 direction of the Z direction is the vertical upper side, and the Z2 direction is the vertical lower side.

本実施形態に係る導体劣化検出装置1は、いわゆる渦電流探傷法(ECT:EddyCurrent Testing)を用いて、被測定物となる電線Wの導体W1の劣化を検出する検査装置である。電線Wは、導体W1と、導体W1を覆う絶縁被覆W2とを含んで構成される。導体W1は、導電性を有する複数の金属素線を束ねたり撚り合わせたりして構成される芯線である。絶縁被覆W2は、絶縁性を有する樹脂材料からなり、導体W1の外周面(外面)を覆い絶縁するものである。電線Wは、当該電線Wの延在方向と直交する方向の断面形状が略円形状に形成され、導体W1、絶縁被覆W2が電線Wの延在方向に沿ってほぼ同じ径で線状に延びるように形成される。導体劣化検出装置1は、励磁コイル10が発生させる磁界(磁束)によって当該電線Wの導体W1に渦電流を発生させ、検出コイル11が導体W1に発生する当該渦電流に応じた磁界(磁束)を検出することで、導体W1の劣化を検出する。 The conductor deterioration detection device 1 according to this embodiment is an inspection device that detects deterioration of the conductor W1 of the electric wire W to be measured by using the so-called eddy current testing (ECT). The electric wire W includes a conductor W1 and an insulating coating W2 that covers the conductor W1. The conductor W1 is a core wire formed by bundling or twisting a plurality of conductive metal wires. The insulating coating W2 is made of an insulating resin material, and covers and insulates the outer peripheral surface (outer surface) of the conductor W1. The electric wire W is formed so that the cross-sectional shape in the direction perpendicular to the extension direction of the electric wire W is approximately circular, and the conductor W1 and the insulating coating W2 extend linearly with approximately the same diameter along the extension direction of the electric wire W. The conductor deterioration detection device 1 generates an eddy current in the conductor W1 of the electric wire W by using a magnetic field (magnetic flux) generated by the excitation coil 10, and detects deterioration of the conductor W1 by detecting a magnetic field (magnetic flux) generated in the conductor W1 by the detection coil 11.

導体劣化検出装置1によって検査する導体W1の劣化とは、導体W1の腐食であり、例えば、経年変化等によって発生する。以下の説明では、導体劣化検出装置1によって検査する電線Wは、例えば、電柱等を介して空中に架けられた架空配電線であるものとして説明するが、これに限らない。また、導体劣化検出装置1によって検査する電線Wは、外径が異なる複数種類の電線Wのうち検査対象となる検査対象電線Wsである。本実施形態では、例えば、検査対象電線Wsのうち最も外径が大きい大径電線Ws1の外径φD1をφ21とし、最も外径が小さい小径電線Ws3の外径φD3をφ9とし、大径電線Ws1と小径電線Ws3との間の中径電線Ws2の外径φD2をφ15として説明するが、これらに限らない。導体劣化検出装置1は、図2に示すように、検出部2と、電源部3とを備える。 The deterioration of the conductor W1 inspected by the conductor deterioration detection device 1 is corrosion of the conductor W1, which occurs due to, for example, aging. In the following description, the electric wire W inspected by the conductor deterioration detection device 1 is described as, for example, an overhead power distribution line suspended in the air via a utility pole or the like, but is not limited to this. In addition, the electric wire W inspected by the conductor deterioration detection device 1 is the inspection target electric wire Ws that is the inspection target among multiple types of electric wires W with different outer diameters. In this embodiment, for example, the outer diameter φD1 of the large diameter electric wire Ws1 with the largest outer diameter among the inspection target electric wires Ws is described as φ21, the outer diameter φD3 of the small diameter electric wire Ws3 with the smallest outer diameter is described as φ9, and the outer diameter φD2 of the medium diameter electric wire Ws2 between the large diameter electric wire Ws1 and the small diameter electric wire Ws3 is described as φ15, but is not limited to these. As shown in FIG. 2, the conductor deterioration detection device 1 includes a detection unit 2 and a power supply unit 3.

検出部2は、検査対象電線Wsにおける導体W1の劣化を検出する部分である。検出部2は、電源部3と電気的に接続され、電源部3から受電して駆動する。検出部2は、筐体4と、励磁コイル10と、検出コイル11とを備える。 The detection unit 2 is a part that detects deterioration of the conductor W1 in the electric wire Ws to be inspected. The detection unit 2 is electrically connected to the power supply unit 3 and is driven by receiving power from the power supply unit 3. The detection unit 2 includes a housing 4, an excitation coil 10, and a detection coil 11.

筐体4は、励磁コイル10及び検出コイル11が設けられる箱状の部材である。筐体4は、絶縁性を有する非磁性材料によって構成される。筐体4は、検査対象電線Wsの延在方向が長辺方向となる略直方体箱状に形成される。筐体4は、検査基台5と、保持機構6と、筐体本体7とを有する。筐体本体7は、内部が中空状に形成され、当該内部に励磁コイル10及び検出コイル11が収容される。筐体4は、検査対象電線Wsが空中にある場合、図1に示すように、検査対象電線Wsが保持機構6に保持された保持状態において、検査基台5に対して鉛直方向上側に配置される。 The housing 4 is a box-shaped member in which the excitation coil 10 and detection coil 11 are provided. The housing 4 is made of a non-magnetic material having insulating properties. The housing 4 is formed in a substantially rectangular box shape with the extension direction of the electric wire Ws to be inspected being the long side direction. The housing 4 has an inspection base 5, a holding mechanism 6, and a housing main body 7. The housing main body 7 is formed to be hollow inside, and the excitation coil 10 and detection coil 11 are housed inside. When the electric wire Ws to be inspected is in the air, the housing 4 is positioned vertically above the inspection base 5 in a holding state in which the electric wire Ws to be inspected is held by the holding mechanism 6, as shown in FIG. 1.

励磁コイル10及び検出コイル11は、導電性を有する金属線(例えば銅線)を複数回、同心円状に巻いたものであり、リング状に形成される。励磁コイル10及び検出コイル11は、同一形状を有する。励磁コイル10及び検出コイル11は、図2に示すように、励磁コイル10の中心軸10aまたは検出コイル11の中心軸11aの軸方向から見た場合、一部が重なり合うように配置され、かつ延在方向に並べて保持される。励磁コイル10及び検出コイル11は、電源部3と電気的に接続される。励磁コイル10は、電源部3から交流電流が印加されることによって磁界(磁束)を発生させ、発生させた磁界によって導体W1に渦電流に応じた磁界の磁束変化により誘導電流が流れる。検出コイル11は、導体W1で発生した渦電流に応じた磁界の磁束変化により誘導電流が流れる。検出コイル11に生じた誘導電流は、電源部3に向けて流れる。 The excitation coil 10 and the detection coil 11 are formed by concentrically winding a conductive metal wire (e.g., copper wire) multiple times, and are formed into a ring shape. The excitation coil 10 and the detection coil 11 have the same shape. As shown in FIG. 2, the excitation coil 10 and the detection coil 11 are arranged so that they overlap each other when viewed from the axial direction of the central axis 10a of the excitation coil 10 or the central axis 11a of the detection coil 11, and are held side by side in the extension direction. The excitation coil 10 and the detection coil 11 are electrically connected to the power supply unit 3. The excitation coil 10 generates a magnetic field (magnetic flux) when an alternating current is applied from the power supply unit 3, and the generated magnetic field causes an induced current to flow in the conductor W1 due to a magnetic flux change of the magnetic field corresponding to the eddy current. The detection coil 11 causes an induced current to flow due to a magnetic flux change of the magnetic field corresponding to the eddy current generated in the conductor W1. The induced current generated in the detection coil 11 flows toward the power supply unit 3.

電源部3は、励磁コイル10に対して交流電流を印加し、検出コイル11を流れる誘導電流に基づいて検出信号を出力する部分である。電源部3は、電源回路12と、発振回路13と、増幅回路14と、ノイズフィルタ15とを有する。電源部3は、信号分析装置16に電気的に接続される。 The power supply unit 3 applies an alternating current to the excitation coil 10 and outputs a detection signal based on the induced current flowing through the detection coil 11. The power supply unit 3 has a power supply circuit 12, an oscillator circuit 13, an amplifier circuit 14, and a noise filter 15. The power supply unit 3 is electrically connected to a signal analysis device 16.

電源回路12は、外部の交流電源(不図示)及び発振回路13に電気的に接続されており、例えば、発振回路13に給電を行う。発振回路13は、増幅回路14に電気的に接続されており、例えば、電源回路12からの給電に応じて、増幅回路14を介して励磁コイル10に交流電流を出力して励磁させ、磁界を発生させる。増幅回路14は、励磁コイル10と電気的に接続されており、例えば、発振回路13から出力される交流電流を増幅する。ノイズフィルタ15は、検出コイル11に電気的に接続され、検出コイル11で発生した誘導電流に基づく検出信号からノイズ成分を除去する。信号分析装置16は、例えば、スペクトルアナライザ、オシロスコープ等であり、検出コイル11からノイズフィルタ15を介して出力された検出信号の波形を表示する。作業者は、信号分析装置16に表示または出力される信号波形に基づいて検査対象電線Wsにおける導体W1の劣化有無を判定することができる。 The power supply circuit 12 is electrically connected to an external AC power supply (not shown) and the oscillator circuit 13, and for example, supplies power to the oscillator circuit 13. The oscillator circuit 13 is electrically connected to the amplifier circuit 14, and for example, in response to power supply from the power supply circuit 12, outputs an AC current to the excitation coil 10 via the amplifier circuit 14 to excite it and generate a magnetic field. The amplifier circuit 14 is electrically connected to the excitation coil 10, and for example, amplifies the AC current output from the oscillator circuit 13. The noise filter 15 is electrically connected to the detection coil 11 and removes noise components from the detection signal based on the induced current generated in the detection coil 11. The signal analysis device 16 is, for example, a spectrum analyzer, an oscilloscope, etc., and displays the waveform of the detection signal output from the detection coil 11 through the noise filter 15. The operator can determine whether the conductor W1 in the inspection target electric wire Ws has deteriorated based on the signal waveform displayed or output by the signal analysis device 16.

検査基台5は、筐体4の一部であって、検査対象電線Wsと接触する部分である。検査基台5は、筐体4の鉛直方向下側に設けられている。検査基台5は、接触面21と、案内部22と、回動軸23と、把持部24とを有する。 The inspection base 5 is a part of the housing 4 and is the part that comes into contact with the electric wire Ws to be inspected. The inspection base 5 is provided on the vertically lower side of the housing 4. The inspection base 5 has a contact surface 21, a guide portion 22, a rotation shaft 23, and a grip portion 24.

接触面21は、鉛直方向下側に向けて形成され、検査対象電線Wsが保持機構6に保持された保持状態において、検査対象電線Wsと第1接点Gにて接触する部分である。第1接点Gは、検査対象電線Wsが保持機構6に保持された保持状態において、検査対象電線Wsの外周面と接触面21とが接触する接触点である。第1接点Gは、図4に示すように、検査対象電線Wsが保持機構6に保持された保持状態において、検出コイル11の中心軸11aと、検査対象電線Wsの中心軸Osとが直交するように配置されたときの仮想線P上に位置することが好ましい。 The contact surface 21 is formed facing vertically downward and is a portion that comes into contact with the test target electric wire Ws at the first contact point G when the test target electric wire Ws is held by the holding mechanism 6. The first contact point G is a contact point where the outer circumferential surface of the test target electric wire Ws comes into contact with the contact surface 21 when the test target electric wire Ws is held by the holding mechanism 6. As shown in FIG. 4, the first contact point G is preferably located on an imaginary line P when the central axis 11a of the detection coil 11 and the central axis Os of the test target electric wire Ws are arranged so as to be perpendicular to each other when the test target electric wire Ws is held by the holding mechanism 6.

案内部22は、上下方向のうち下方向に向けて凹状に形成され、回動軸23の軸方向から見た場合、保持機構6により保持される検査対象電線Wsを目標接触位置に向けて案内する部分である。ここで目標接触位置は、上記保持状態において、検査対象電線Wsの中心軸Osと励磁コイル10の中心軸10a及び検出コイル11の中心軸11aとが直交するように配置された検査対象電線Wsの外周面が接触する接触面21の第1接点Gに対応する接触位置である。案内部22は、具体的には、回動軸23の軸方向から見た断面形状がU字状であり、斜め下方向に向けて開口する。案内部22は、接触面21と平行に形成され、奥行き方向に向けて貫通する軸受用貫通孔22aを有する。 The guide portion 22 is formed concavely downward in the up-down direction, and is a portion that guides the test target electric wire Ws held by the holding mechanism 6 toward the target contact position when viewed from the axial direction of the rotating shaft 23. Here, the target contact position is a contact position corresponding to the first contact point G of the contact surface 21 where the outer circumferential surface of the test target electric wire Ws, which is arranged so that the central axis Os of the test target electric wire Ws is perpendicular to the central axis 10a of the exciting coil 10 and the central axis 11a of the detecting coil 11, comes into contact in the above-mentioned holding state. Specifically, the cross-sectional shape of the guide portion 22 when viewed from the axial direction of the rotating shaft 23 is U-shaped, and opens diagonally downward. The guide portion 22 has a bearing through hole 22a formed parallel to the contact surface 21 and penetrating in the depth direction.

回動軸23は、検査基台5から鉛直方向下側に突出して形成された案内部22の軸受用貫通孔22a(図4)に嵌入して、保持機構6を回動自在に軸支する。回動軸23の軸線方向は、導体劣化検出装置1の奥行き方向と平行である。 The pivot shaft 23 fits into the bearing through hole 22a (Fig. 4) of the guide portion 22, which protrudes vertically downward from the inspection base 5, and supports the holding mechanism 6 so that it can rotate freely. The axial direction of the pivot shaft 23 is parallel to the depth direction of the conductor deterioration detection device 1.

把持部24は、案内部22の鉛直方向下側端部に連結され、鉛直方向下側に向けて延在して形成された部分である。把持部24は、作業者が導体劣化検出装置1を架空配電線に取り付ける際に、当該作業者が手指で一時的に把持する部分である。把持部24は、図1及び図3に示すように、ゴム製のロープ50が挿通する貫通孔24aを有する。ロープ50は、一方の端部が保持機構6の第2アーム部31に取り付けられている。ロープ50の他方の端部を作業者が把持して鉛直方向下側に向けて引くことで第2アーム部31が回動軸23を中心に開放位置から保持位置に回動する。保持位置は、検査対象電線Wsが保持機構6により保持された保持状態における第2アーム部31の位置である。開放位置は、当該保持状態から検査対象電線Wsが開放される第2アーム部31の位置である。ロープ50は、把持部24及び貫通孔24aと接触する範囲において、保護部材51により覆われている。 The gripping portion 24 is connected to the lower end of the guide portion 22 in the vertical direction and is formed by extending downward in the vertical direction. The gripping portion 24 is a portion that is temporarily gripped by an operator with his/her fingers when the operator attaches the conductor deterioration detection device 1 to an overhead power distribution line. As shown in FIG. 1 and FIG. 3, the gripping portion 24 has a through hole 24a through which a rubber rope 50 is inserted. One end of the rope 50 is attached to the second arm portion 31 of the holding mechanism 6. When the operator grips the other end of the rope 50 and pulls it downward in the vertical direction, the second arm portion 31 rotates from the release position to the holding position around the pivot shaft 23. The holding position is the position of the second arm portion 31 in the holding state in which the inspection target electric wire Ws is held by the holding mechanism 6. The release position is the position of the second arm portion 31 where the inspection target electric wire Ws is released from the holding state. The rope 50 is covered by a protective member 51 in the area where it comes into contact with the gripping portion 24 and the through hole 24a.

保持機構6は、図5~図7に示すように、検査基台5側に設けられており、検査対象電線Wsが検査基台5に接触している接触状態において、検査基台5との間で検査対象電線Wsを保持するものである。保持機構6は、第1アーム部30と、第2アーム部31とを有する。 As shown in Figs. 5 to 7, the holding mechanism 6 is provided on the inspection base 5 side, and holds the inspection target electric wire Ws between the inspection base 5 and the holding mechanism 6 when the inspection target electric wire Ws is in contact with the inspection base 5. The holding mechanism 6 has a first arm portion 30 and a second arm portion 31.

第1アーム部30は、回動軸23を中心に回動自在に形成され、検査対象電線Wsが保持機構6により保持された保持状態において、検査対象電線Wsの外周面に対して、第2接点H及び第3接点Iで接触する部分である。回動軸23は、例えば、絶縁性を有する樹脂材料からなり、細長い棒状部材であるヒンジピンにより構成される。すなわち、保持機構6は、ヒンジピンにより第1アーム部30を回動自在に支持する部分を含む。第1アーム部30は、回動軸23の軸方向(Y方向)から見た場合、L字状またはV字状に形成されており、一方の端部が第2アーム部31に連結されている。第1アーム部30及び第2アーム部31は、回動軸23の軸方向から見た場合、略S字状に形成される。 The first arm portion 30 is formed to be rotatable around the pivot shaft 23, and is a portion that contacts the outer peripheral surface of the test target electric wire Ws at the second contact H and the third contact I when the test target electric wire Ws is held by the holding mechanism 6. The pivot shaft 23 is, for example, made of an insulating resin material and is configured by a hinge pin that is a long and thin rod-shaped member. In other words, the holding mechanism 6 includes a portion that supports the first arm portion 30 rotatably by the hinge pin. When viewed from the axial direction (Y direction) of the pivot shaft 23, the first arm portion 30 is formed in an L-shape or a V-shape, and one end is connected to the second arm portion 31. When viewed from the axial direction of the pivot shaft 23, the first arm portion 30 and the second arm portion 31 are formed in an approximately S-shape.

第1アーム部30は、第1保持面32と、回動軸23の軸方向から見た場合、第1保持面32より回動軸23から遠くに設けられた第2保持面33とを有する。第1アーム部30は、検査対象電線Wsが保持機構6に保持された保持状態において、検査対象電線Wsの外周面と第1保持面32とが接触し、かつ当該外周面と第2保持面33とが接触する。したがって、検査対象電線Wsが保持機構6に保持された保持状態において、検査対象電線Wsの外周面と第1保持面32とが接触する接触点が第2接点Hである。一方、検査対象電線Wsが保持機構6に保持された保持状態において、検査対象電線Wsの外周面と第2保持面33とが接触する接触点が第3接点Iである。 The first arm portion 30 has a first holding surface 32 and a second holding surface 33 that is provided farther from the rotation shaft 23 than the first holding surface 32 when viewed in the axial direction of the rotation shaft 23. When the first arm portion 30 is in a holding state in which the electric wire Ws to be inspected is held by the holding mechanism 6, the outer peripheral surface of the electric wire Ws to be inspected comes into contact with the first holding surface 32, and the outer peripheral surface comes into contact with the second holding surface 33. Therefore, when the electric wire Ws to be inspected is held by the holding mechanism 6, the contact point where the outer peripheral surface of the electric wire Ws to be inspected comes into contact with the first holding surface 32 is the second contact point H. On the other hand, when the electric wire Ws to be inspected is held by the holding mechanism 6, the contact point where the outer peripheral surface of the electric wire Ws to be inspected comes into contact with the second holding surface 33 is the third contact point I.

第1保持面32は、回動軸23の軸方向から見た断面形状が直線状である。一方、第2保持面33は、回動軸23の軸方向から見た断面形状が、検査対象電線Wsが保持機構6に保持された保持状態で検査対象電線Ws側と反対側に凹むように形成された湾曲状である。 The first holding surface 32 has a linear cross-sectional shape when viewed from the axial direction of the pivot shaft 23. On the other hand, the second holding surface 33 has a curved cross-sectional shape when viewed from the axial direction of the pivot shaft 23, which is concave on the side opposite to the side of the electric wire Ws to be inspected when the electric wire Ws to be inspected is held by the holding mechanism 6.

第2保持面33は、図9に示すように、回動軸23の軸方向から見た場合、例えばφ45.07の仮想円Vと外接するように形成される。外径が異なる検査対象電線Wsを、接触面21における目標接触位置で接触するように、形状が固定された第1アーム部30で保持するには、例えば、幾何学上、可動側の一辺または二辺の形状を円弧状にする必要がある。 9, the second holding surface 33 is formed so as to circumscribe an imaginary circle V of, for example, φ45.07 when viewed from the axial direction of the rotation shaft 23. In order to hold the test subject electric wires Ws having different outer diameters with the first arm portion 30 having a fixed shape so as to contact them at the target contact position on the contact surface 21, for example, from a geometrical standpoint, it is necessary to make one or two sides of the movable side have an arc shape.

本実施形態では、一方を平面とし、他方を曲面とすることで、仮想線Pから検査対象電線Wsの中心軸Osがずれないように、検査対象電線Wsが保持機構6に保持された保持状態で検査対象電線Wsが検査基台5の接触面21における目標接触位置で接するようにしている。仮想円Uの大きさは、検査対象電線の外径、回動軸23の位置、第1保持面32または第2保持面33の角度、形状等により異なるが、外径φ21,φ15,φ9の各検査対象電線Wsと外接する円がφ45.07の仮想円Vとなる(図9)。第2接点Hは、対応する接触位置が、検査対象電線Wsが保持機構6に保持された保持状態において、回動軸23の軸方向から見た場合、第1接点Gと検査対象電線Wsの中心軸Osとを通る仮想線Pの回動軸23側に配置される。第3接点Iは、対応する接触位置が、検査対象電線Wsが保持機構6に保持された保持状態において、回動軸23の軸方向から見た場合、仮想線Pを挟んで回動軸23と反対側に配置される。検査対象電線Wsは、図5~図7に示すように、外径の違いに関わらず、検査対象電線Wsが保持機構6に保持された保持状態において、検査基台5及び保持機構6により、第1接点G、第2接点H、及び第3接点Iの3点で3方向から保持される。 In this embodiment, one side is flat and the other side is curved, so that the central axis Os of the test target electric wire Ws does not deviate from the virtual line P, and the test target electric wire Ws is in contact with the target contact position on the contact surface 21 of the inspection base 5 in the state in which the test target electric wire Ws is held by the holding mechanism 6. The size of the virtual circle U varies depending on the outer diameter of the test target electric wire, the position of the rotation axis 23, the angle and shape of the first holding surface 32 or the second holding surface 33, etc., but the circle circumscribing each of the test target electric wires Ws with outer diameters φ21, φ15, and φ9 is a virtual circle V with a diameter of φ45.07 (FIG. 9). The second contact H is located on the rotation axis 23 side of the virtual line P passing through the first contact G and the central axis Os of the test target electric wire Ws when viewed from the axial direction of the rotation axis 23 in the state in which the test target electric wire Ws is held by the holding mechanism 6. The third contact I has a corresponding contact position located on the opposite side of the rotation shaft 23 across the imaginary line P when viewed from the axial direction of the rotation shaft 23 in a state in which the electric wire Ws to be inspected is held by the holding mechanism 6. As shown in Figures 5 to 7, regardless of the difference in outer diameter, the electric wire Ws to be inspected is held from three directions by the inspection base 5 and the holding mechanism 6 at three points, the first contact G, the second contact H, and the third contact I, in a state in which the electric wire Ws to be inspected is held by the holding mechanism 6.

第2アーム部31は、外力により第1アーム部30を回動軸23の回動方向に回動させる部分である。第2アーム部31は、第1アーム部30と同様に、回動軸23を中心に回動自在に形成されており、上述した保持位置と開放位置との間で回動する。第2アーム部31は、図1及び図3に示すように、回動軸23から離間する離間方向に沿って延在して形成されており、離間方向の端部を作業者が把持して当該第2アーム部31を回動させることができる。保持機構6は、第1アーム部30及び第2アーム部31を開放位置から保持位置に向かう回動軸回りに回動するように付勢するコイルばね35を有する。コイルばね35は、金属製のねじりコイルばねであり、内側にヒンジピンが配置される。コイルばね35は、一端が検査基台5側に係止され、他端が第2アーム部31側に係止される。 The second arm portion 31 is a portion that rotates the first arm portion 30 in the rotation direction of the rotation shaft 23 by an external force. The second arm portion 31 is formed to be rotatable around the rotation shaft 23, like the first arm portion 30, and rotates between the holding position and the open position described above. As shown in Figs. 1 and 3, the second arm portion 31 is formed to extend along the direction away from the rotation shaft 23, and an operator can grasp the end portion in the direction away to rotate the second arm portion 31. The holding mechanism 6 has a coil spring 35 that biases the first arm portion 30 and the second arm portion 31 to rotate around the rotation shaft from the open position toward the holding position. The coil spring 35 is a metal torsion coil spring, and a hinge pin is arranged inside. One end of the coil spring 35 is engaged with the inspection base 5 side, and the other end is engaged with the second arm portion 31 side.

本実施形態における導体劣化検出装置1では、図5に示すように、検査基台5上の接触面21と回動軸23との間の軸方向と直交する上下方向における距離T1は、大径電線Ws1が保持機構6により保持された状態において、検査基台5の接触面21と大径電線Ws1の中心軸Os1との間の上下方向における距離T2より短い。距離T1を距離T2より短く(T1<T2)設定した場合、図8に示すように、回動軸23と大径電線Ws1の中心軸Os1とを結ぶ線を半径とする仮想円Uに対して仮想線Pが略接し、かつ中心軸Os1,Os2,Os3が仮想円Uと略重なることから、回動軸23の軸方向から見た各検査対象電線Wsの保持位置の幅方向のズレを最小にすることが可能となる。例えば、大径電線Ws1が保持された保持状態において、回動軸23を通って接触面21に直交する仮想線Qと仮想線Pとの間の距離をL1とする(図5)。中径電線Ws2が保持された保持状態において、仮想線Qと仮想線Pとの間の距離をL2とする(図6)。小径電線Ws3が保持された保持状態において、仮想線Qと仮想線Pとの間の距離をL3とする(図7)。距離L1を基準とすると、上記構成において、T1<T2では、L2≒L1、L3≒L1となる。 In the conductor deterioration detection device 1 of this embodiment, as shown in Fig. 5, the distance T1 in the vertical direction perpendicular to the axial direction between the contact surface 21 on the inspection base 5 and the rotation axis 23 is shorter than the distance T2 in the vertical direction between the contact surface 21 of the inspection base 5 and the central axis Os1 of the large diameter electric wire Ws1 when the large diameter electric wire Ws1 is held by the holding mechanism 6. When the distance T1 is set shorter than the distance T2 (T1 < T2), as shown in Fig. 8, the virtual line P is approximately tangent to the virtual circle U whose radius is the line connecting the rotation axis 23 and the central axis Os1 of the large diameter electric wire Ws1, and the central axes Os1, Os2, and Os3 are approximately overlapping with the virtual circle U, so that the widthwise deviation of the holding position of each inspection target electric wire Ws as viewed from the axial direction of the rotation axis 23 can be minimized. For example, in the state where the large diameter electric wire Ws1 is held, the distance between the imaginary lines Q and P that pass through the rotation axis 23 and are perpendicular to the contact surface 21 is defined as L1 (FIG. 5). In the state where the medium diameter electric wire Ws2 is held, the distance between the imaginary lines Q and P is defined as L2 (FIG. 6). In the state where the small diameter electric wire Ws3 is held, the distance between the imaginary lines Q and P is defined as L3 (FIG. 7). When the distance L1 is taken as the reference, in the above configuration, when T1<T2, L2≒L1 and L3≒L1.

次に、導体劣化検出装置1による検査方法の一例について説明する。なお、導体劣化検出装置1は、上述したように、コイルばね35が保持機構6を開ける方向、すなわち回動軸23を中心として保持位置から開放位置に向かう方向に付勢するものとする。 Next, an example of an inspection method using the conductor deterioration detection device 1 will be described. As described above, the conductor deterioration detection device 1 biases the coil spring 35 in a direction that opens the holding mechanism 6, that is, in a direction from the holding position to the open position around the pivot shaft 23.

まず、作業者は、保持機構6が開いた状態で、導体劣化検出装置1における検出部2を検査対象電線Wsに引っ掛ける。検出部2を検査対象電線Wsに引っ掛ける場合、作業者は、例えば、電柱に登って把持部24を把持しながら、検査対象電線Wsを案内部22の開口を介して検査基台5に向けて挿入する。また、作業者が電柱に登ることなく地上で作業をする場合、例えば、一端が把持部24に連結された棒状部材を把持しながら、検査対象電線Wsを案内部22の開口を介して検査基台5に向けて挿入する。 First, with the holding mechanism 6 open, the worker hooks the detection unit 2 of the conductor deterioration detection device 1 onto the electric wire Ws to be inspected. When hooking the detection unit 2 onto the electric wire Ws to be inspected, the worker, for example, climbs a utility pole and while holding the gripping unit 24, inserts the electric wire Ws to be inspected toward the inspection base 5 through the opening of the guide unit 22. Also, when the worker works on the ground without climbing a utility pole, for example, while holding a rod-shaped member one end of which is connected to the gripping unit 24, inserts the electric wire Ws to be inspected toward the inspection base 5 through the opening of the guide unit 22.

次に、作業者は、ロープ50を鉛直方向下側に向けて引くことで当該ロープ50の一端に接続された第2アーム部31を動かして保持機構6を閉じる。これにより、保持機構6は、回動軸23を中心として開放位置から保持位置に回動する。このとき、作業者は、ロープ50を手指によりたぐって直接引いてもよいが、ロープ50の他端に重りを接続することで当該重りによる鉛直方向下側への荷重を利用してロープ50を引いてもよい。 Next, the worker pulls the rope 50 vertically downward to move the second arm 31 connected to one end of the rope 50 and close the holding mechanism 6. This causes the holding mechanism 6 to rotate from the open position to the holding position around the pivot 23. At this time, the worker may pull the rope 50 directly with his or her fingers, or may connect a weight to the other end of the rope 50 and use the load of the weight to pull the rope 50 vertically downward.

次に、作業者は、所定の操作を行って電源部3により検出部2への通電を開始し、検査対象電線Wsに対する導体劣化検出を行う。このとき、作業者は、保持機構6を保持位置にて維持するようにロープ50を鉛直方向下側に向けて継続して引く。そして、作業者は、信号分析装置16に表示された信号波形等を見ながら、検査対象電線Wsの導体劣化有無を測定する。 Then, the worker performs a predetermined operation to start the power supply unit 3 to supply electricity to the detection unit 2, and performs conductor deterioration detection for the electric wire Ws to be inspected. At this time, the worker continues to pull the rope 50 vertically downward so as to maintain the holding mechanism 6 in the holding position. Then, the worker measures the presence or absence of conductor deterioration of the electric wire Ws to be inspected while observing the signal waveform displayed on the signal analysis device 16.

次に、作業者は、測定が終了したのち、鉛直方向下側に引っ張っていたロープ50を開放して保持機構6を開いた状態にする。これにより、保持機構6は、回動軸23を中心に保持位置から開放位置に回動して開放状態となる。つづいて、作業者は、検出部2が検査対象電線Wsに引っかかった状態で、かつ保持機構6が開いた状態を維持しながら、ロープ50を検査対象電線Wsの延在方向のいずれか一方に向けて引くことで導体劣化検出装置1を移動する。作業者は、導体劣化検出装置1を移動させた後に、上記作業により測定を行う。 Next, after the measurement is completed, the worker releases the rope 50 that was being pulled vertically downward to open the holding mechanism 6. This causes the holding mechanism 6 to rotate from the holding position to the open position around the pivot shaft 23 and enter the open state. Next, while keeping the detection unit 2 hooked on the electric wire Ws to be inspected and the holding mechanism 6 open, the worker moves the conductor deterioration detection device 1 by pulling the rope 50 in either direction of the extension of the electric wire Ws to be inspected. After moving the conductor deterioration detection device 1, the worker performs the measurement using the above procedure.

作業者は、測定を終了する場合、保持機構6が開いた状態で、検出部2を検査対象電線Wsから外す。検出部2を検査対象電線Wsから外す場合、作業者は、例えば、電柱に登って把持部24を把持しながら、検査対象電線Wsを検査基台5側から案内部22の開口を介して外部に出す。また、作業者が電柱に登ることなく地上で作業をする場合、例えば、一端が把持部24に連結された棒状部材を把持しながら、検査対象電線Wsを案内部22の開口を介して外部に出す。 When the operator finishes the measurement, he or she removes the detection unit 2 from the electric wire Ws to be inspected with the holding mechanism 6 open. When removing the detection unit 2 from the electric wire Ws to be inspected, the operator, for example, climbs a utility pole and while holding the gripping unit 24, takes the electric wire Ws to be inspected from the inspection base 5 side to the outside through the opening of the guide unit 22. Also, when the operator works on the ground without climbing a utility pole, for example, he or she holds a rod-shaped member one end of which is connected to the gripping unit 24 and takes the electric wire Ws to be inspected to the outside through the opening of the guide unit 22.

図10(A)は、検査対象電線Wsの幅方向のずれ[mm]に対する導体劣化検出装置の出力値(検出値)[mV]及び減衰率[%]の変化の一例を表に表した図である。図10(B)は、検査対象電線Wsの幅方向のずれと減衰率との関係の一例をグラフに表した図である。図10(A)において、検査対象電線Wsの幅方向のずれが0[mm]のときを基準位置、そのときの出力値12.6[mV]を基準値とし、2.5[mm]のときの出力値が10.5[mV]のとき、減衰率は、(12.6-10.5)/12.6≒0.16(16.7[%])となる。減衰率は、図10(B)に示すように、検査対象電線Wsが基準位置から幅方向にずれると一定の割合で上昇するが、ずれ量が5[mm]を越えると上昇する割合が低下する。このように、検査対象電線Wsが導体劣化検出装置1に保持された際の幅方向の位置ずれを抑制することで、検出値の低下を防止して導体劣化検出装置1の検出精度の低下を抑制することが可能となる。 Figure 10 (A) is a table showing an example of the change in the output value (detection value) [mV] and attenuation rate [%] of the conductor deterioration detection device with respect to the shift [mm] in the width direction of the inspection target electric wire Ws. Figure 10 (B) is a graph showing an example of the relationship between the shift in the width direction of the inspection target electric wire Ws and the attenuation rate. In Figure 10 (A), the reference position is when the shift in the width direction of the inspection target electric wire Ws is 0 [mm], the output value at that time is 12.6 [mV], and when the output value at 2.5 [mm] is 10.5 [mV], the attenuation rate is (12.6-10.5)/12.6 ≒ 0.16 (16.7 [%]). As shown in Figure 10 (B), the attenuation rate increases at a constant rate when the inspection target electric wire Ws is shifted in the width direction from the reference position, but the rate of increase decreases when the shift amount exceeds 5 [mm]. In this way, by suppressing the positional shift in the width direction when the test target electric wire Ws is held in the conductor deterioration detection device 1, it is possible to prevent a decrease in the detection value and suppress a decrease in the detection accuracy of the conductor deterioration detection device 1.

本実施形態における導体劣化検出装置1は、例えば、保持機構6により完全に保持された大径電線Ws1の位置から幅方向のずれを0[mm]とした場合、中径電線Ws2を保持したときの幅方向のずれは0.19[mm]となり、小径電線Ws3を保持したときの幅方向のずれは0.03[mm]となる。この結果、中径電線Ws2及び小径電線Ws3は、いずれも減衰率が1.3%以下となる。これにより、導体劣化検出装置1は、外径が異なる電線Wを検査対象とした場合に、保持機構6により保持された電線Wの幅方向のずれを抑制し検出値の低下を少なくすることで、導体W1の劣化有無の検出精度の低下を抑制することができる。 In the conductor deterioration detection device 1 of this embodiment, for example, when the widthwise deviation from the position of the large diameter electric wire Ws1 completely held by the holding mechanism 6 is 0 [mm], the widthwise deviation when the medium diameter electric wire Ws2 is held is 0.19 [mm], and the widthwise deviation when the small diameter electric wire Ws3 is held is 0.03 [mm]. As a result, the attenuation rate of both the medium diameter electric wire Ws2 and the small diameter electric wire Ws3 is 1.3% or less. As a result, when electric wires W with different outer diameters are inspected, the conductor deterioration detection device 1 can suppress the decrease in the detection accuracy of the presence or absence of deterioration of the conductor W1 by suppressing the widthwise deviation of the electric wire W held by the holding mechanism 6 and reducing the decrease in the detection value.

以上説明したように、本実施形態における導体劣化検出装置1は、保持機構6が、検査対象電線Wsが検査基台5に接触し、かつ第1アーム部30が、保持状態にある検査対象電線Wsの外周面に対して、第2接点H及び第3接点Iで接触する。これにより、保持機構6により検査対象電線Wsを3点で保持することが可能となり、検査対象電線Wsを安定して保持することができる。 As described above, in the conductor deterioration detection device 1 of this embodiment, the holding mechanism 6 brings the test target electric wire Ws into contact with the test base 5, and the first arm portion 30 contacts the outer circumferential surface of the test target electric wire Ws in the held state at the second contact point H and the third contact point I. This makes it possible for the holding mechanism 6 to hold the test target electric wire Ws at three points, and the test target electric wire Ws can be stably held.

第1アーム部30は、第2接点Hに対応する接触位置が、回動軸23の軸方向から見た場合、仮想線Pの回動軸23側に配置され、第3接点Iに対応する接触位置が、仮想線Pを挟んで回動軸23と反対側に配置される。これにより、第1接点Gに対して、第2接点H及び第3接点Iが偏った位置にならず、検査対象電線Wsを互いに異なる3方向から支持することが可能となり、検査対象電線Wsを安定して保持することができる。 When viewed from the axial direction of the pivot shaft 23, the contact position of the first arm portion 30 corresponding to the second contact H is located on the pivot shaft 23 side of the imaginary line P, and the contact position corresponding to the third contact I is located on the opposite side of the pivot shaft 23 across the imaginary line P. This prevents the second contact H and the third contact I from being offset relative to the first contact G, making it possible to support the electric wire Ws to be inspected from three different directions, and to stably hold the electric wire Ws to be inspected.

検査基台5上の接触面21と回動軸23との間の軸方向と直交する上下方向における距離T1は、大径電線Ws1が保持機構6により保持された状態において、検査基台5の接触面21と大径電線Ws1の中心軸Os1との間の上下方向における距離T2より短い。上記構成において、例えば、距離T1Aが距離T2より長く設定された場合、図8に示すように、仮想回動軸23Aと大径電線Ws1の中心軸Os1とを結ぶ線を半径とする仮想円UAに対して仮想線Pが接することなく交差し、かつ中心軸Os2,Os3が仮想円UAと重なる位置にないことから、回動軸23の軸方向から見た大径電線Ws1の保持位置と、中径電線Ws2及び小径電線Ws3の保持位置とは幅方向においてずれが生じる。例えば、保持機構6により完全に保持された大径電線Ws1の位置から幅方向のずれを0[mm]とした場合、中径電線Ws2を保持したときの幅方向のずれは2.53[mm]となり、小径電線Ws3を保持したときの幅方向のずれは4.76[mm]となる。 The distance T1 in the vertical direction perpendicular to the axial direction between the contact surface 21 on the inspection base 5 and the pivot shaft 23 is shorter than the distance T2 in the vertical direction between the contact surface 21 of the inspection base 5 and the central axis Os1 of the large diameter electric wire Ws1 when the large diameter electric wire Ws1 is held by the holding mechanism 6. In the above configuration, for example, if the distance T1A is set longer than the distance T2, as shown in FIG. 8, the virtual line P intersects without touching the virtual circle UA whose radius is the line connecting the virtual pivot shaft 23A and the central axis Os1 of the large diameter electric wire Ws1, and the central axes Os2 and Os3 are not in a position overlapping with the virtual circle UA, so that the holding position of the large diameter electric wire Ws1 as viewed from the axial direction of the pivot shaft 23 and the holding positions of the medium diameter electric wire Ws2 and the small diameter electric wire Ws3 are misaligned in the width direction. For example, if the widthwise deviation from the position of the large diameter electric wire Ws1 completely held by the holding mechanism 6 is 0 [mm], the widthwise deviation when the medium diameter electric wire Ws2 is held is 2.53 [mm], and the widthwise deviation when the small diameter electric wire Ws3 is held is 4.76 [mm].

一方、距離T1を距離T2より短く設定した場合、回動軸23と大径電線Ws1の中心軸Os1とを結ぶ線を半径とする仮想円Uに対して仮想線Pが略接し、かつ中心軸Os1,Os2,Os3が仮想円Uと略重なることから、回動軸23の軸方向から見た各検査対象電線Wsの保持位置の幅方向のズレを最小にすることが可能となる。このように、上記構成により、保持機構6により保持された検査対象電線Wsの外径違いによる幅方向のずれを抑制し、検出精度の低下を抑制することができる。 On the other hand, when distance T1 is set shorter than distance T2, imaginary line P is approximately tangent to imaginary circle U whose radius is the line connecting rotation shaft 23 and central axis Os1 of large diameter electric wire Ws1, and central axes Os1, Os2, and Os3 are approximately overlapping with imaginary circle U, so that it is possible to minimize the widthwise shift of the holding position of each inspection target electric wire Ws as viewed from the axial direction of rotation shaft 23. In this way, with the above configuration, it is possible to suppress the widthwise shift caused by the difference in outer diameter of the inspection target electric wire Ws held by holding mechanism 6, and suppress the deterioration of detection accuracy.

また、本実施形態における導体劣化検出装置1は、第1アーム部30が、第2接点Hを有する第1保持面32の回動軸方向から見た断面形状が直線状であり、第3接点Iを有する第2保持面33の回動軸方向から見た断面形状が、湾曲状である。第1及び第2保持面32,33の回動軸方向から見た断面形状がいずれも直線状である場合、幾何学上、形状が固定された第1アーム部30により保持された検査対象電線Wsの外径の違いにより検査対象電線Wsが幅方向においてずれが生じる。一方、第2保持面33の回動方向から見た断面形状を湾曲状にすることで、外径が異なる検査対象電線Wsを保持する際に、基準位置に対する検査対象電線Wsの幅方向のずれを吸収することができる。第1保持面32と第2保持面33との間で形成される角度は、第2保持面33を平面とした場合、90°となることが好ましい。 In addition, in the conductor deterioration detection device 1 in this embodiment, the first arm portion 30 has a linear cross-sectional shape as viewed from the rotation axis direction of the first holding surface 32 having the second contact H, and a curved cross-sectional shape as viewed from the rotation axis direction of the second holding surface 33 having the third contact I. If the cross-sectional shapes as viewed from the rotation axis direction of the first and second holding surfaces 32, 33 are both linear, the inspection target electric wire Ws will be shifted in the width direction due to the difference in the outer diameter of the inspection target electric wire Ws held by the first arm portion 30, whose shape is fixed, from a geometrical perspective. On the other hand, by making the cross-sectional shape as viewed from the rotation direction of the second holding surface 33 curved, it is possible to absorb the widthwise shift of the inspection target electric wire Ws relative to the reference position when holding the inspection target electric wires Ws with different outer diameters. The angle formed between the first holding surface 32 and the second holding surface 33 is preferably 90° when the second holding surface 33 is a flat surface.

また、本実施形態における導体劣化検出装置1は、検査基台5における案内部22が、凹状に形成された部分の内側に挿入される検査対象電線Wsを接触面21に向けて案内するので、検査対象電線Wsと検査基台5との間の接触をスムーズに行うことが可能となる。 In addition, in the conductor deterioration detection device 1 of this embodiment, the guide portion 22 on the inspection base 5 guides the inspection target electric wire Ws inserted inside the concave portion toward the contact surface 21, making it possible to smoothly make contact between the inspection target electric wire Ws and the inspection base 5.

また、本実施形態における導体劣化検出装置1は、空中にある検査対象電線Wsに対して検査を行う場合、筐体4が検査基台5に対して鉛直方向上側に配置される。これにより、第2アーム部31が下側を向くことから、鉛直方向下側から作業を行う作業者が当該第2アーム部31を直接的または間接的に容易に操作することが可能となる。 In addition, when the conductor deterioration detection device 1 in this embodiment performs an inspection on the inspection target electric wire Ws in the air, the housing 4 is positioned vertically above the inspection base 5. This causes the second arm portion 31 to face downward, making it possible for an operator working from below in the vertical direction to easily operate the second arm portion 31 directly or indirectly.

上記実施形態では、ロープ50を単に把持部24の貫通孔24aに挿通させたものについて説明したが、これに限定されるものではない。図11(A)、図11(B)、図12(A)、図12(B)、図13(A)、及び図13(B)は、実施形態の変形例に係る導体劣化検出装置の概略構成を示す模式図である。なお、図12(A)及び図12(B)では、コイルばね35が省略されている。また、図11(A)~図12(B)に示すコイルばね35は、保持機構6を開ける方向、すなわち回動軸23を中心として保持位置から開放位置に向かう方向に付勢するものとする。図13(A)、図13(B)に示すコイルばね35は、保持機構6を閉じる方向、すなわち回動軸23を中心として開放位置から保持位置に向かう方向に付勢するものとする。 In the above embodiment, the rope 50 is simply inserted through the through hole 24a of the gripping portion 24, but the present invention is not limited to this. Figures 11(A), 11(B), 12(A), 12(B), 13(A), and 13(B) are schematic diagrams showing the general configuration of a conductor deterioration detection device according to a modified embodiment. Note that the coil spring 35 is omitted in Figures 12(A) and 12(B). The coil spring 35 shown in Figures 11(A) to 12(B) is biased in a direction to open the holding mechanism 6, that is, in a direction from the holding position to the open position around the pivot shaft 23. The coil spring 35 shown in Figures 13(A) and 13(B) is biased in a direction to close the holding mechanism 6, that is, in a direction from the open position to the holding position around the pivot shaft 23.

実施形態の変形例に係る導体劣化検出装置1Aは、図11(A)~図12(B)に示すように、把持部24に対して、回動軸52aを中心に回動するロックカム52が設けられている。回動軸52aは、軸方向が回動軸23の軸方向と平行に配置される。ロックカム52は、保持機構6がコイルばね35の付勢力により回動軸23を中心に反時計回りに回動することから、ロープ50が鉛直方向上側に引っ張られ、当該ロックカム52とロープ50との接触面の摩擦力で回動軸52aを中心に時計回りに回動する(図11(A))。この結果、ロックカム52は、ロープ50を貫通孔24aの内周壁との間で挟んで、当該ロープ50を把持部24にロックする。 As shown in Figs. 11(A) to 12(B), the conductor deterioration detection device 1A according to the modified embodiment is provided with a lock cam 52 that rotates around a pivot 52a relative to the gripping portion 24. The pivot 52a is arranged with its axial direction parallel to the axial direction of the pivot 23. As the holding mechanism 6 rotates counterclockwise around the pivot 23 due to the biasing force of the coil spring 35, the rope 50 is pulled vertically upward, and the lock cam 52 rotates clockwise around the pivot 52a due to the frictional force of the contact surface between the lock cam 52 and the rope 50 (Fig. 11(A)). As a result, the lock cam 52 clamps the rope 50 between itself and the inner wall of the through hole 24a, locking the rope 50 to the gripping portion 24.

検査対象電線Wsが保持機構6により保持された保持状態において、ロープ50が鉛直方向下側に引かれた場合(図11(B)の矢印方向)、保持機構6が回動せず、弾性体であるロープ50が鉛直方向下側に伸びるが弾性により鉛直方向上側に向けて反発する。これにより、ロックカム52は、ロープ50を貫通孔24aの内周壁との間で挟んでロープ50を把持部24に固定する(図12(A))。これにより、測定時に作業者がロープを常に鉛直方向下側に引っ張る必要がなくなり、作業負荷を軽減することができる。 When the rope 50 is pulled vertically downward (in the direction of the arrow in FIG. 11(B)) while the test target electric wire Ws is held by the holding mechanism 6, the holding mechanism 6 does not rotate and the rope 50, which is an elastic body, stretches vertically downward, but then recoils vertically upward due to its elasticity. As a result, the lock cam 52 clamps the rope 50 between itself and the inner wall of the through hole 24a, fixing the rope 50 to the gripping portion 24 (FIG. 12(A)). This eliminates the need for the operator to constantly pull the rope vertically downward during measurement, reducing the workload.

検査対象電線Wsを保持機構6から開放する場合、作業者は、ロープ50の引く必要がある。そこで、作業者は、ロープ50を鉛直方向下側に引きながら、引く方向を第2アーム部31の延在方向と略直交する方向に変えることで、ロックカム52のロックが外れて、ロープ50がフリーとなり、検査対象電線Wsが保持機構6から開放される(図12(B))。 When releasing the electric wire Ws to be inspected from the holding mechanism 6, the worker needs to pull the rope 50. Then, while pulling the rope 50 vertically downward, the worker changes the pulling direction to a direction approximately perpendicular to the extension direction of the second arm portion 31, thereby unlocking the lock cam 52, freeing the rope 50, and releasing the electric wire Ws to be inspected from the holding mechanism 6 (FIG. 12 (B)).

実施形態の変形例に係る導体劣化検出装置1Bは、図13(A)、図13(B)に示すように、把持部24に対して、回動軸53aを中心に回動するローラ53が設けられている。回動軸53aは、その軸方向が回動軸23の軸方向と平行に配置される。ローラ53は、貫通孔24aの内周壁における鉛直方向下側に配置され、ロープ50と貫通孔24aの内周壁との摺動を軽減するものである。ローラ53は、ロープ50の延在方向の移動に応じて回動する。 As shown in Figs. 13(A) and 13(B), the conductor deterioration detection device 1B according to the modified embodiment has a roller 53 that rotates around a rotation axis 53a with respect to the gripping portion 24. The rotation axis 53a is arranged so that its axial direction is parallel to the axial direction of the rotation axis 23. The roller 53 is arranged vertically below the inner wall of the through hole 24a, and reduces sliding between the rope 50 and the inner wall of the through hole 24a. The roller 53 rotates in response to movement of the rope 50 in the extension direction.

作業者は、第2アーム部31を鉛直方向上側に押し上げることで保持機構6を開いた状態にして、検査対象電線Wsを案内部22の開口を介して検査基台5に向けて挿入する。このとき、ロープ50は、ローラ53により貫通孔24aの内周壁と摺動することなくスムーズに移動する。次に、作業者は、第2アーム部31を手離すとコイルばね35の付勢力により保持機構6が閉じる。そして、作業者は、ロープ50を鉛直方向下側に引くことで保持機構6を完全に閉じる。このとき、上述したように、ロープ50の他端に重りを接続すると、作業者がロープ50を常に引く必要がなく、作業負荷を軽減することができる。 The worker opens the holding mechanism 6 by pushing the second arm portion 31 vertically upward, and inserts the electric wire Ws to be inspected through the opening of the guide portion 22 toward the inspection base 5. At this time, the rollers 53 allow the rope 50 to move smoothly without sliding against the inner wall of the through hole 24a. Next, when the worker releases the second arm portion 31, the force of the coil spring 35 closes the holding mechanism 6. The worker then pulls the rope 50 vertically downward to completely close the holding mechanism 6. At this time, if a weight is connected to the other end of the rope 50 as described above, the worker does not need to constantly pull the rope 50, and the workload can be reduced.

作業者は、測定が終了したのち、鉛直方向下側に引っ張っていたロープ50を開放し、第2アーム部31を第2アーム部31を鉛直方向上側に押し上げることで保持機構6を開いた状態にする。このように、ローラ53が回動することで、ロープ50を貫通孔24aの内周壁と摺動させることなくスムーズに移動させることができる。 After completing the measurement, the operator releases the rope 50 that was being pulled vertically downward, and pushes the second arm portion 31 vertically upward to open the holding mechanism 6. In this way, the roller 53 rotates, allowing the rope 50 to move smoothly without sliding against the inner wall of the through hole 24a.

なお、上記実施形態では、筐体4は、検出部2として励磁コイル10及び検出コイル11を収容しているが、これに限定されるものではない。例えば、筐体4は、検出部2に加えて、電源部3を収容してもよい。 In the above embodiment, the housing 4 houses the excitation coil 10 and the detection coil 11 as the detection unit 2, but this is not limited to this. For example, the housing 4 may house the power supply unit 3 in addition to the detection unit 2.

1 導体劣化検出装置
4 筐体
5 検査基台
6 保持機構
10 励磁コイル
11 検出コイル
21 接触面
22 案内部
23 回動軸
30 第1アーム部
31 第2アーム部
32 第1保持面
33 第2保持面
G 第1接点
H 第2接点
I 第3接点
REFERENCE SIGNS LIST 1 Conductor deterioration detection device 4 Housing 5 Inspection base 6 Holding mechanism 10 Excitation coil 11 Detection coil 21 Contact surface 22 Guide portion 23 Rotation shaft 30 First arm portion 31 Second arm portion 32 First holding surface 33 Second holding surface G First contact H Second contact I Third contact

Claims (4)

断面形状が円形状に形成される被測定物に対して渦電流を発生させる励磁コイルと、
前記被測定物に発生した渦電流による磁束を検出する検出コイルと、
前記励磁コイル及び前記検出コイルを収容する筐体と、を備え、
前記筐体は、
非磁性材料で形成され、外径が異なる複数種類の前記被測定物に対して、第1接点にて接触する接触面を有する検査基台と、
前記被測定物が前記検査基台に接触している接触状態において、前記検査基台との間で前記被測定物を保持する保持機構と、を有し、
前記保持機構は、
回動軸を中心に回動自在に形成され、前記被測定物が前記保持機構により保持された保持状態において、前記被測定物の外周面に対して、第2接点及び第3接点で接触する第1アーム部と、
前記保持状態における保持位置と前記保持状態から前記被測定物を開放する開放位置との間において、外力により前記第1アーム部を前記回動軸の回動方向に回動させる第2アーム部と、を有し、
前記保持状態において、前記被測定物の中心軸と前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面と、前記検査基台の前記接触面とが前記第1接点で接触するように保持し、
前記第1接点は、
前記保持状態において、前記回動軸の軸方向から視た場合、前記検出コイルの中心軸を通って前記検査基台の前記接触面に直交し前記被測定物の中心軸を通る仮想線上に配置され、
前記第2接点は、
前記保持状態において、前記回動軸の軸方向から見た場合、前記第1接点と前記被測定物の中心軸とを通る前記仮想線の回動軸側に配置され、
前記第3接点は、
前記保持状態において、前記回動軸の軸方向から見た場合、前記仮想線を挟んで前記回動軸と反対側に配置される、
ことを特徴とする導体劣化検出装置。
An excitation coil that generates an eddy current in an object to be measured having a circular cross-sectional shape ;
a detection coil for detecting a magnetic flux due to an eddy current generated in the object to be measured;
a housing that houses the excitation coil and the detection coil,
The housing includes:
an inspection base formed of a non-magnetic material and having a contact surface that comes into contact at a first contact point with a plurality of types of objects to be measured having different outer diameters;
a holding mechanism for holding the object to be measured between the object to be measured and the inspection base in a contact state in which the object to be measured is in contact with the inspection base,
The holding mechanism includes:
a first arm portion that is formed to be rotatable about a rotation axis and that comes into contact with an outer circumferential surface of the object to be measured at a second contact point and a third contact point when the object to be measured is in a held state in which the object to be measured is held by the holding mechanism;
a second arm portion that rotates the first arm portion in a rotation direction of the rotation shaft by an external force between a holding position in the holding state and a release position at which the object to be measured is released from the holding state,
In the held state, the object is held so that an outer peripheral surface of the object to be measured, which is disposed so that a central axis of the object to be measured and a central axis of the detection coil are perpendicular to each other, and the outer peripheral surface of the object to be measured is held so that the outer peripheral surface of the object to be measured and the contact surface of the inspection base are in contact with each other at the first contact point;
The first contact is
In the held state, when viewed from the axial direction of the rotation shaft, the detection coil is disposed on a virtual line that passes through a central axis of the detection coil, is perpendicular to the contact surface of the inspection base, and passes through a central axis of the object to be measured,
The second contact is
In the held state, when viewed from the axial direction of the rotation shaft, the first contact point is disposed on the rotation shaft side of the imaginary line passing through the first contact point and a central axis of the object to be measured,
The third contact is
In the held state, when viewed from the axial direction of the rotation shaft, the holding member is disposed on the opposite side to the rotation shaft across the virtual line.
A conductor deterioration detection device comprising:
断面形状が円形状に形成される被測定物に対して渦電流を発生させる励磁コイルと、
前記被測定物に発生した渦電流による磁束を検出する検出コイルと、
前記励磁コイル及び前記検出コイルを収容する筐体と、を備え、
前記筐体は、
非磁性材料で形成され、外径が異なる複数種類の前記被測定物に対して、第1接点にて接触する接触面を有する検査基台と、
前記被測定物が前記検査基台に接触している接触状態において、前記検査基台との間で前記被測定物を保持する保持機構と、を有し、
前記保持機構は、
回動軸を中心に回動自在に形成され、前記被測定物が前記保持機構により保持された保持状態において、前記被測定物の外周面に対して、第2接点及び第3接点で接触する第1アーム部と、
前記保持状態における保持位置と前記保持状態から前記被測定物を開放する開放位置との間において、外力により前記第1アーム部を前記回動軸の回動方向に回動させる第2アーム部と、を有し、
前記保持状態において、前記被測定物の中心軸と前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面と、前記検査基台の前記接触面とが前記第1接点で接触するように保持し、
前記第1接点は、
前記保持状態において、前記回動軸の軸方向から視た場合、前記検出コイルの中心軸を通って前記検査基台の前記接触面に直交し前記被測定物の中心軸を通る仮想線上に配置され、
前記第2接点は、
前記保持状態において、前記回動軸の軸方向から見た場合、前記第1接点と前記被測定物の中心軸とを通る前記仮想線の回動軸側に配置され、
前記第3接点は、
前記保持状態において、前記回動軸の軸方向から見た場合、前記仮想線を挟んで前記回動軸と反対側に配置され、
前記検査基台上の前記接触面と前記回動軸との間の前記軸方向と直交する上下方向における距離は、
前記被測定物のうち最も外径が大きい大径電線が前記保持機構により保持された状態において、前記検査基台の前記接触面と前記大径電線の中心軸との間の前記上下方向における距離より短い、
ことを特徴とする導体劣化検出装置。
An excitation coil that generates an eddy current in an object to be measured having a circular cross-sectional shape ;
a detection coil for detecting a magnetic flux due to an eddy current generated in the object to be measured;
a housing that houses the excitation coil and the detection coil,
The housing includes:
an inspection base formed of a non-magnetic material and having a contact surface that comes into contact at a first contact point with a plurality of types of objects to be measured having different outer diameters;
a holding mechanism for holding the object to be measured between the object to be measured and the inspection base in a contact state in which the object to be measured is in contact with the inspection base,
The holding mechanism includes:
a first arm portion that is formed to be rotatable about a rotation axis and that comes into contact with an outer circumferential surface of the object to be measured at a second contact point and a third contact point when the object to be measured is in a held state in which the object to be measured is held by the holding mechanism;
a second arm portion that rotates the first arm portion in a rotation direction of the rotation shaft by an external force between a holding position in the holding state and a release position at which the object to be measured is released from the holding state,
In the held state, the object is held so that an outer peripheral surface of the object to be measured, which is disposed so that a central axis of the object to be measured and a central axis of the detection coil are perpendicular to each other, and the outer peripheral surface of the object to be measured is held so that the outer peripheral surface of the object to be measured and the contact surface of the inspection base are in contact with each other at the first contact point;
The first contact is
In the held state, when viewed from the axial direction of the rotation shaft, the detection coil is disposed on a virtual line that passes through a central axis of the detection coil, is perpendicular to the contact surface of the inspection base, and passes through a central axis of the object to be measured,
The second contact is
In the held state, when viewed from the axial direction of the rotation shaft, the first contact point is disposed on the rotation shaft side of the imaginary line passing through the first contact point and a central axis of the object to be measured,
The third contact is
In the held state, when viewed from an axial direction of the rotation shaft, the holding member is disposed on an opposite side to the rotation shaft across the virtual line,
The distance between the contact surface on the inspection base and the rotation axis in a vertical direction perpendicular to the axial direction is
when the large-diameter electric wire having the largest outer diameter among the objects to be measured is held by the holding mechanism, the distance is shorter than the distance in the up-down direction between the contact surface of the inspection base and the central axis of the large-diameter electric wire,
A conductor deterioration detection device comprising:
前記第1アーム部は、
前記第2接点に対応する接触位置を有する第1保持面と、
前記回動軸の軸方向から見た場合、前記第1保持面より前記回動軸から遠くに設けられ、前記第3接点に対応する位置を有する第2保持面と、を有し、
前記第1保持面は、
前記回動軸の軸方向から見た断面形状が直線状であり、
前記第2保持面は、
前記回動軸の軸方向から見た断面形状が、前記保持状態で前記被測定物側と反対側に凹むように形成された湾曲状である、
請求項1または2に記載の導体劣化検出装置。
The first arm portion is
a first support surface having a contact location corresponding to the second contact;
a second holding surface that is provided farther from the rotation shaft than the first holding surface when viewed from the axial direction of the rotation shaft and has a position corresponding to the third contact point;
The first holding surface is
The cross-sectional shape as viewed from the axial direction of the rotation shaft is linear,
The second holding surface is
a cross-sectional shape of the rotating shaft as viewed from an axial direction thereof is curved so as to be recessed toward a side opposite to the object to be measured in the held state;
The conductor deterioration detection device according to claim 1 or 2.
前記検査基台は、The inspection base includes:
前記軸方向と直交する上下方向のうち下方向に向けて凹状に形成され、前記回動軸の軸方向から見た場合、前記保持機構により保持される各前記被測定物を目標接触位置に向けて案内する案内部を有し、a guide portion that is formed in a concave shape toward a downward direction in a vertical direction perpendicular to the axial direction and that guides each of the objects to be measured held by the holding mechanism toward a target contact position when viewed from the axial direction of the rotation shaft,
前記目標接触位置は、The target contact position is
前記保持状態において、前記被測定物の中心軸と前記励磁コイルの中心軸及び前記検出コイルの中心軸とが直交するように配置された前記被測定物の外周面が接触する前記接触面の前記第1接点に対応する接触位置である、a contact position corresponding to the first contact point of the contact surface with which an outer circumferential surface of the object to be measured contacts, the outer circumferential surface of the object to be measured being arranged so that a central axis of the object to be measured is perpendicular to a central axis of the excitation coil and a central axis of the detection coil in the held state.
請求項1または2に記載の導体劣化検出装置。The conductor deterioration detection device according to claim 1 or 2.
JP2020116743A 2020-07-07 2020-07-07 Conductor Deterioration Detection Device Active JP7475783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020116743A JP7475783B2 (en) 2020-07-07 2020-07-07 Conductor Deterioration Detection Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020116743A JP7475783B2 (en) 2020-07-07 2020-07-07 Conductor Deterioration Detection Device

Publications (2)

Publication Number Publication Date
JP2022014466A JP2022014466A (en) 2022-01-20
JP7475783B2 true JP7475783B2 (en) 2024-04-30

Family

ID=80120231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020116743A Active JP7475783B2 (en) 2020-07-07 2020-07-07 Conductor Deterioration Detection Device

Country Status (1)

Country Link
JP (1) JP7475783B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003214A (en) 2005-06-21 2007-01-11 Honda Motor Co Ltd Nondestructive inspection method of signal line with shield
JP2007271607A (en) 2006-03-07 2007-10-18 Tokyo Electric Power Co Inc:The Abnormality detection device
JP2012208022A (en) 2011-03-30 2012-10-25 Yazaki Corp Current detector
JP2014238386A (en) 2013-05-09 2014-12-18 日置電機株式会社 Detection sensor and measuring device
JP2016191694A (en) 2015-03-31 2016-11-10 矢崎エナジーシステム株式会社 Current detection device
JP2018132469A (en) 2017-02-17 2018-08-23 矢崎エナジーシステム株式会社 Eddy current flaw inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003214A (en) 2005-06-21 2007-01-11 Honda Motor Co Ltd Nondestructive inspection method of signal line with shield
JP2007271607A (en) 2006-03-07 2007-10-18 Tokyo Electric Power Co Inc:The Abnormality detection device
JP2012208022A (en) 2011-03-30 2012-10-25 Yazaki Corp Current detector
JP2014238386A (en) 2013-05-09 2014-12-18 日置電機株式会社 Detection sensor and measuring device
JP2016191694A (en) 2015-03-31 2016-11-10 矢崎エナジーシステム株式会社 Current detection device
JP2018132469A (en) 2017-02-17 2018-08-23 矢崎エナジーシステム株式会社 Eddy current flaw inspection device

Also Published As

Publication number Publication date
JP2022014466A (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US5804964A (en) Wire rope damage index monitoring device
CA2256843C (en) Cable clamp with universal positioning
US5793205A (en) Coil and guide system for eddy current examination of pipe
JP5579167B2 (en) Faraday photocurrent sensor device
US7570045B2 (en) Attachment device and method for fastening electrical cable monitoring instruments to electrical cables
JP7475783B2 (en) Conductor Deterioration Detection Device
US5744955A (en) Apparatus and method of detecting loss of cross-sectional area of magnetic metallic strength members used in conductors such as aluminum conductor steel reinforced (ACSR) conductors
KR20150061262A (en) Apparatus for Defect Detection in Cable of Bridges
JP2731334B2 (en) Strand break detection device
BR9910010A (en) Test process for the detection of irregularities in the wall thickness of inaccessible metal tubes, and, particularly device for carrying out the test process
JP5353324B2 (en) Insulation inspection equipment
JP4698174B2 (en) Steel pipe inner surface deterioration detection method and apparatus
GB2206969A (en) Non-destructive magnetic testing device
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
WO1998048269A1 (en) Apparatus and method of detecting loss of cross-sectional area of magnetic metallic strength members used in conductors such as aluminum conductor steel reinforced (&#39;acsr&#39;) conductors
JP3076310B2 (en) Eddy current probe
KR200183472Y1 (en) An apparatus for detecting abnormality of a power transmittion line
JP5243828B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JP2006071350A (en) Method and apparatus for diagnosing deterioration of insulated covered wire
JP6750481B2 (en) Grounding device and grounding method
JP2008164393A (en) Device and method for determining deterioration of shielding conductor of high voltage cable
KR100361644B1 (en) Aluminium Conductor Steel Reinforced Inner Corrosion Detection Method and Dector Contolled by Radio Frequency
CN219495174U (en) Automatic detection device for wire diameter of electronic wire rod
JP2007271495A (en) Corrosion evaluation method using eddy current test
CN217133389U (en) Petroleum pipe column online nondestructive testing device based on geomagnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416