JP7474730B2 - 遊技機 - Google Patents

遊技機 Download PDF

Info

Publication number
JP7474730B2
JP7474730B2 JP2021166938A JP2021166938A JP7474730B2 JP 7474730 B2 JP7474730 B2 JP 7474730B2 JP 2021166938 A JP2021166938 A JP 2021166938A JP 2021166938 A JP2021166938 A JP 2021166938A JP 7474730 B2 JP7474730 B2 JP 7474730B2
Authority
JP
Japan
Prior art keywords
board
pin
connector
led
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021166938A
Other languages
English (en)
Other versions
JP2023057415A (ja
Inventor
誠 岩間
Original Assignee
株式会社藤商事
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社藤商事 filed Critical 株式会社藤商事
Priority to JP2021166938A priority Critical patent/JP7474730B2/ja
Publication of JP2023057415A publication Critical patent/JP2023057415A/ja
Application granted granted Critical
Publication of JP7474730B2 publication Critical patent/JP7474730B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pinball Game Machines (AREA)

Description

本発明は遊技機に関し、遊技機の性能向上に寄与する技術に関する。
弾球遊技機や回動遊技機においては液晶表示画面、スピーカ、LED、役物、振動体、ブロワー等を用いた各種の演出を行って遊技を盛り上げる工夫をしている。
下記特許文献では、各種演出動作の制御のための技術が開示されている。
特開2014-64693号公報
このような遊技機では、基板数の増加や配線の複雑化や困難化などをなるべく招かずに、より興趣の高い演出を実現することが望ましい。
そこで本発明では、これらの構成の煩雑化を招かずに有効な演出効果を得ることができる構成を提案することを目的とする。
本発明の遊技機は、抽選結果に基づいて遊技を行う遊技機であって、遊技動作に係わる電子部品を搭載する第1基板を有し、前記第1基板に搭載されるICチップである第1の電子部品は、電気的接続が不要となる不使用端子があり、前記第1基板には、前記第1の電子部品の前記不使用端子を含めた全ての端子に対応する表面実装用のパッドが形成され、前記第1の電子部品の全ての端子は対応するパッドに半田付けされており、前記不使用端子に対応するパッドは、前記不使用端子以外には電気的に接続されておらず、ベタグランドとの間の最短距離が前記第1の電子部品の各端子に対応するパッドのピッチの2倍の距離よりも短くなるように前記不使用端子に対応するパッドは、ベタグランドに近接して形成されている。
また前記第1基板には、前記第1の電子部品が複数個あり、前記第1基板には、複数個の前記第1の電子部品の全てについて、前記不使用端子を含めた全ての端子に対応するパッドが形成され、複数個の前記第1の電子部品の全ての端子は対応するパッドに半田付けされている。
本発明の遊技機によれば効率的な構成で興趣の高い演出が実現される。
本発明に係る実施の形態の遊技機の外観を示す正面側の斜視図である。 実施の形態の遊技機の遊技盤の構成を示す図である。 実施の形態の遊技機の制御構成を示すブロック図である。 実施の形態の先読み予告演出の例の説明図である。 実施の形態の遊技機の扉を開いた状態の斜視図である。 実施の形態の遊技機の内枠を開いた状態の斜視図である。 実施の形態の遊技盤の裏側の基板配置の説明図である。 実施の形態の遊技機の扉及び内枠の基板配置の説明図である。 実施の形態の遊技機の内枠の基板配置の説明図である。 各種デバイスの配置の説明図である。 基板の接続構成のブロック図である。 電源基板300についての電源系入出力の説明図である。 内枠LED中継基板400の回路図である。 内枠LED中継基板400の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の回路図である。 前枠LED接続基板500の信号の流れを示すブロック図である。 前枠LED接続基板500の信号の流れを示すブロック図である。 中継基板550の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右上LED基板600の回路図である。 サイドユニット右下LED基板620の回路図である。 サイドユニット右下LED基板620の回路図である。 サイドユニット上LED基板630の回路図である。 ボタンLED接続基板640の回路図である。 ボタンLED基板660の回路図である。 ボタンLED基板660の回路図である。 LED接続基板700の回路図である。 LED接続基板700の回路図である。 LED接続基板700の回路図である。 LED接続基板700の回路図である。 LED接続基板700の回路図である。 LED接続基板700の回路図である。 の盤裏左中継基板720の回路図である。 装飾基板740の回路図である。 中継基板760の回路図である。 LED基板780の回路図である。 LED基板790の回路図である。 盤裏下中継基板800の回路図である。 装飾基板820の回路図である。 基板の他の接続構成のブロック図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED接続基板1500の回路図である。 LED基板1600の回路図である。 構成A1-1の説明図である。 LED基板780の表面層のパターンの説明図である。 LED基板780の裏面層のパターンの説明図である。 LEDドライバの端子の説明図である。 LED基板790の表面層のパターンの説明図である。 LED基板790の裏面層のパターンの説明図である。 構成A1-2の説明図である。 サイドユニット上LED基板630の表面層のパターンの説明図である。 サイドユニット上LED基板630の裏面層のパターンの説明図である。 構成A2-1の説明図である。 構成A2-2の説明図である。 構成A3-1の説明図である。 LED接続基板1500の表面層の配置例の説明図である。 LED接続基板1500の裏面層の配置例の説明図である。 サイドユニット右上LED基板600の表面層の配置例の説明図である。 サイドユニット右上LED基板600の裏面層の配置例の説明図である。 LED接続基板1500の表面層の他の配置例の説明図である。 構成A3-2の説明図である。 構成A4-1の説明図である。 LED基板1600の表面層のパターンの説明図である。 LED基板1600の裏面層のパターンの説明図である。 LEDドライバ1601の端子の説明図である。 構成A5の説明図である。 LED接続基板1500Aの回路図である。 構成A6の説明図である。 LED基板790Aの回路図である。 構成A7-1の説明図である。 構成A7-2の説明図である。 構成A7-3の説明図である。 構成A8-1、A8-2の説明図である。 構成A8-1、A8-2の説明図である。 構成A9-1の説明図である。 構成A9-2の説明図である。 構成A9-3の説明図である。 スレーブアドレス設定の説明図である。 スレーブアドレス設定の配線の説明図である。 装飾基板820の表面層のパターンの説明図である。 装飾基板820の裏面層のパターンの説明図である。 装飾基板820の他の表面層のパターンの説明図である。 装飾基板820の他の例の回路図である。 装飾基板820の他の例の裏面層のパターン例の説明図である。 装飾基板820のさらに他の例の回路図である。 装飾基板820のさらに他の表面層のパターンの説明図である。 装飾基板820のさらに他の裏面層のパターンの説明図である。 前枠LED接続基板500の表面の部品配置の説明図である。 前枠LED接続基板500の裏面の部品配置の説明図である。 前枠LED接続基板500の表面のパターンの説明図である。 前枠LED接続基板500の第1内層のパターンの説明図である。 前枠LED接続基板500の第2内層のパターンの説明図である。 前枠LED接続基板500の裏面のパターンの説明図である。 S/P変換回路509の配置位置の拡大図である。 P/S変換回路506の配置位置の拡大図である。 バッファ回路503の配置位置の拡大図である。 パッドとベタグランドの近接状態の説明図である。
以下、添付図面を参照し、本発明に係る実施の形態を次の順序で説明する。
<1.遊技機の構造>
<2.遊技機の制御構成>
[2.1 主制御基板]
[2.2 演出制御基板]
<3.動作の概要説明>
[3.1 遊技状態]
[3.2 図柄変動表示ゲーム]
[3.3 当りについて]
[3.4 演出について]
<4.開閉構造と基板の配置>
<5.基板の接続構成>
[5.1 各基板の接続状態]
[5.2 内枠LED中継基板400]
[5.3 前枠LED接続基板500]
[5.4 中継基板550]
[5.5 サイドユニット右上LED基板600]
[5.6 サイドユニット右下LED基板620]
[5.7 サイドユニット上LED基板630]
[5.8 ボタンLED接続基板640]
[5.9 ボタンLED基板660]
[5.10 LED接続基板700]
[5.11 盤裏左中継基板720]
[5.12 装飾基板740]
[5.13 中継基板760]
[5.14 LED基板780]
[5.15 LED基板790]
[5.16 盤裏下中継基板800]
[5.17 装飾基板820]
<6.基板の接続構成の他の例>
[6.1 各基板の接続状態]
[6.2 LED接続基板1500]
[6.3 LED基板1600]
<7.注目構成の説明>
[7.1 コネクタ端子と演出駆動手段の端子の関係]
[7.2 スレーブアドレス]
[7.3 チップの不使用端子]
[7.4 その他]
<1.遊技機の構造>

図1及び図2を参照して、本発明に係る実施形態としてのパチンコ遊技機1の構造について説明する。図1はパチンコ遊技機1の外観を示す正面側の斜視図を、図2はパチンコ遊技機1が有する遊技盤3の正面側を示した図である。
なお、パチンコ遊技機1の場合、枠部材と、枠部材に対して開閉可能に設けられた扉部材と、枠部材に対して交換可能に取り付けられた交換部材を有する。
以下説明するパチンコ遊技機1では、枠部材に相当する構成としての内枠2、扉部材に相当する構成としての扉6、交換部材に相当する構成としての遊技盤3を有することになる。
図1に示すパチンコ遊技機1(以下「遊技機1」と略称する場合がある)は、木製の外枠4の前面に額縁状の内枠2を開閉可能に取り付け、内枠2の裏面に取り付けた遊技盤収納フレーム(図示せず)内に遊技盤3(図2参照)を装着し、この遊技盤3の表面に形成した遊技領域3aを内枠2の開口部に臨ませた構成を有する。遊技盤3は内枠2に対して交換可能に着脱できるため交換部材と呼ぶことができる。
この遊技領域3aの前側には、透明ガラスを支持した扉6が設けられている。また遊技盤3の背面側には、遊技動作を制御するための各種制御基板(図3参照)が配設されている。
扉6の前側(遊技者側)においては、例えば遊技盤3の周囲の全部又は一部を囲むような装飾ユニットとしてサイドユニット10が形成されている。
サイドユニット10は、それ自体が遊技機1のテーマに合わせた装飾形状とされるとともに、内部にLEDや役物等の演出部材が設けられることもあり、遊技者に遊技の雰囲気を伝える演出効果を発揮する。このサイドユニット10は扉6に対して交換可能に取り付けられたユニットとされる。
扉6の前側には扉ロック解除用のキーシリンダ(図示せず)が設けられており、このキーシリンダにキーを差し込んで一方側に操作すれば内枠2に対する扉6のロック状態を解除して扉6を前側に開放でき、また、他方側に操作すれば外枠4に対する内枠2のロック状態を解除して内枠2を前側に開放できるようになっている。
扉6の下側には、ヒンジ(図示せず)により内枠2に開閉自在に枢支された前面操作パネル7が配置されている。
前面操作パネル7には、上受け皿ユニット8が設けられ、この上受け皿ユニット8には、排出された遊技球を貯留する上受け皿9が形成されている。
また上受け皿ユニット8には、上受け皿9に貯留された遊技球を遊技機1の下方に抜くための球抜きボタン14と、遊技球貸出装置(図示せず)に対して遊技球の払い出しを要求するための球貸しボタン11と、遊技球貸出装置に挿入した有価価値媒体の返却を要求するためのカード返却ボタン12とが設けられている。
また上受け皿ユニット8には、遊技者が操作可能に構成された演出ボタン13(操作手段)が設けられている。この演出ボタン13は、所定の入力受付期間中に内蔵ランプ(ボタンLED75)が点灯されて操作可能(入力受付可能)となり、その内蔵ランプ点灯中に所定の操作(押下、連打、長押し等)をすることにより演出に変化をもたらすことが可能となっている。
また上受け皿ユニット8には、遊技者やホールスタッフ等の使用者が各種の項目の選択や方向指示等を行うための十字キー15aや、選択項目の決定を指示するための決定ボタン15b等の操作子が設けられている。
また前面操作パネル7の右端部側には、発射装置32(図3参照)を作動させるための発射操作ハンドル15が設けられている。
また扉6の上部の両側と発射操作ハンドル15の上側とには、音響により音演出効果(効果音)を発揮するスピーカ46が設けられている。図1では扉6の上部の2つのスピーカ46のみを示している。
複数のスピーカ46により、演出に関する音などについて、いわゆるステレオ音響再生や、より多チャネルの音響再生を行うことができるようにされている。
また、扉6の適所には、光の装飾により光演出効果を発揮する装飾ランプ45(例えばフルカラーLEDによる光演出用LED等:図3参照)が複数設けられている。この装飾ランプ45としてのフルカラーLED(光演出用LED)等は、パチンコ遊技機1の周囲、例えば扉6の周縁やサイドユニット10内に複数個設けられている。
図2を参照して、遊技盤3の構成について説明する。
図示の遊技盤3には、発射された遊技球を案内する球誘導レール5が盤面区画部材として環状に装着されており、この球誘導レール5取り囲まれた略円形状の領域が遊技領域3a、四隅は非遊技領域となっている。
この遊技領域3aの略中央部には、例えば3つ(左、中、右)の表示エリア(図柄変動表示領域)において、独立して数字やキャラクタや記号などによる複数種類の装飾図柄(例えば、左図柄(左表示エリア対応)、中図柄(中表示エリア対応)、右図柄(右表示エリア対応))の変動表示動作(変動表示および停止表示)が可能である液晶表示装置(LCD)36が設けられている。
この液晶表示装置36は、後述する演出制御基板30の制御の下、装飾図柄の変動表示動作の他、種々の演出を画像により表示する。
また遊技領域3a内には、液晶表示装置36の表示面の周りを遠巻きに囲繞する形でセンター飾り48が設けられている。センター飾り48は、遊技盤3の前面側に沿って設けられ、周囲の遊技球から液晶表示装置36の表示面を保護すると共に、遊技球の打ち出しの強さ又はストローク長により、遊技球の流路を左右に振り分けることを可能とする流路振分手段として働く。
本実施形態では、センター飾り48の存在によって遊技領域3a内の上部両側(左側と右側)に遊技球の流路が形成されるように、センター飾り48は遊技領域3aのほぼ中央部に配置されている。発射装置32により遊技領域3aの上部側に打ち込まれた遊技球は、鎧枠部48bの上部側で左右に振り分けられ、センター飾り48の左側の左流下経路3bと右側の右流下経路3cとの何れかを流下する。
また遊技盤3の下部の非遊技領域は各種機能表示部となっており、ドット表示器による特別図柄表示装置38a(第1の特別図柄表示手段)と特別図柄表示装置38b(第2の特別図柄表示手段)とが設けられている。
なお特別図柄表示装置38a、38bを含む各種機能表示部を図4に拡大して示している。
特別図柄表示装置38a、38bでは、ドット表示器により表現される「特別図柄」の変動表示動作による特別図柄変動表示ゲームが実行されるようになっている。そして上記の液晶表示装置36では、特別図柄表示装置38a、38bによる特別図柄の変動表示と時間的に同調して、画像による装飾図柄を変動表示して、種々の予告演出(演出画像)と共に装飾図柄変動表示ゲームが実行されるようになっている(これらの図柄変動表示ゲームについての詳細は追って説明する)。
また各種機能表示部には、特別図柄表示装置38a、38bと同じくドット表示器からなる複合表示装置(保留複合表示用LED表示器)38cが配設されている。複合と称したのは、特別図柄1、2、普通図柄の作動保留球数の表示、変動時間短縮機能作動中(時短中)および高確率状態中(高確中)の状態報知という、5つの表示機能を有する保留・時短・高確複合表示装置(以下単に「複合表示装置」と称する)であるからである。
また各種機能表示部には、同じくドット表示器からなる複合表示装置38dが設けられている。
この複合表示装置38dでは、4つのLEDの点灯・消灯状態の組合せにより、大当りに係る規定ラウンド数(最大ラウンド数)を報知するラウンド数表示が行われる。例えば4つのLEDの点灯・消灯状態の組合せにより、大当りに係る規定ラウンド数(最大ラウンド数)を報知する。
また複合表示装置38dでは、普通図柄表示として、1個のLEDにより表現される普通図柄の変動表示動作により普通図柄変動表示ゲームが実行されるようになっている。
また複合表示装置38dでは、3個のLEDにより右打ち表示が行われるようになっている。
図2のセンター飾り48の下方には、内部に始動口34(第1の特別図柄始動口:第1の始動手段)が設けられている。始動口34の内部には、遊技球の通過を検出する検出センサ34a(始動口センサ34a、図3参照)が形成されている。
また右流下経路3cには、開閉動作を行う始動口35(第2の特別図柄始動口:第2の始動手段)が設けられ、内部には、遊技球の通過を検出する検出センサ35a(始動口センサ35a:図3参照)が形成されている。
第1の特別図柄始動口である始動口34は、特別図柄表示装置38aにおける第1の特別図柄(以下、第1の特別図柄を「特別図柄1」と称し、場合により「特図1」と略称する)の変動表示動作の始動条件に係る入賞口であり、始動口開閉手段(始動口を開放又は拡大可能にする手段)を有しない入賞率固定型の入賞装置として構成されている。本実施形態では、遊技領域3a内の遊技球落下方向変換部材(例えば遊技くぎ、風車44、センター飾り48など)の作用により、始動口34へは、左流下経路3bを流下してきた遊技球については入球(入賞)容易な構成であるのに対し、右流下経路3cを流下してきた遊技球については入球困難または入球不可能な構成となっている。
始動口35は、特別図柄表示装置38bにおける第2の特別図柄(以下、第2の特別図柄を「特別図柄2」と称し、場合により「特図2」と略称する)の変動表示動作の始動条件に係る入賞口であり、この始動口35の入賞領域は、入賞可能な開状態と、入賞を不可能にする閉状態とに開閉可能に構成される。
始動口35は、特別図柄表示装置38bにおける特別図柄2の変動表示動作の始動条件に係る入賞口であり、普通電動役物41によって開閉制御がなされる可変始動口として構成されている。
普通電動役物41は、始動口35への遊技球の入球を可能とする開状態と、始動口35への遊技球の入球を困難または不可能にする閉状態とに制御される。
また遊技領域3aにおける左右下方には、一般入賞口43が2つ設けられており、それぞれの内部には、遊技球の通過を検出する一般入賞口センサ43aが形成されている。
また遊技盤の領域内には遊技球の流下を妨害しない位置に、視覚的演出効果を奏する可動体役物(図示せず)が配設されている。
また普通電動役物41の斜め上方、つまり右流下経路3cの中間部より上部側には、遊技球が通過可能な通過ゲート(特定通過領域)からなる普通図柄始動口37(第3の始動手段)が設けられている。この普通図柄始動口37は、複合表示装置38dの普通図柄の変動表示動作に係る入賞口であり、その内部には、通過する遊技球を検出する普通図柄始動口センサ37a(図3参照)が形成されている。なお本実施形態では、普通図柄始動口37は右流下経路3c側にのみに形成され、左流下経路3b側には形成されていない。しかし本発明はこれに限らず、左流下経路3bのみに形成してもよいし、両流下経路にそれぞれ形成してもよい。
右流下経路3c内の普通図柄始動口37からの経路途中には、開放扉52bにより大入賞口50を開放または拡大可能に構成された特別変動入賞装置52(特別電動役物)が設けられており、その内部には大入賞口50に入球した遊技球を検出する大入賞口センサ52a(図3参照)が形成されている。
大入賞口50の周囲は、流下する遊技球を大入賞口50の方向に寄せる働きをする案内部55や風車53が設けられている。
大入賞口50への遊技球の入球過程は次のようになる。
センター飾り48の上面と球誘導レール5との間の遊動領域を通過し右流下経路3cを経た遊技球は、案内部55によって大入賞口50の方向に導かれる。大入賞口50が開いている状態(大入賞口開状態)であれば、遊技球が大入賞口50内に導かれる。
なお本実施形態の遊技機1では、遊技者が特別変動入賞装置52側に発射位置を狙い定めた場合(遊技球が右流下経路3cを通過するように狙いを定めた場合)、始動口34側には遊技球が誘導され難い、又は誘導されない構成となっている。従って「大入賞口閉状態」であれば、始動口34への入賞が困難又は不可能とされるようになっている。
また始動口35は、後述の電サポ有り状態を伴う遊技状態になると、通常状態よりも有利な開閉パターンで動作するようになっている。
本実施形態の場合、遊技者がどのような打ち方をすれば有利な状況となるかについては、遊技状態に応じて変化する。具体的には、後述の「電サポ無し状態」を伴う遊技状態であれば、遊技球が左流下経路3bを通過するように狙いを定める「左打ち」が有利とされ、後述の「電サポ有り状態」を伴う遊技状態であれば、遊技球が右流下経路3cを通過するように狙いを定める「右打ち」が有利とされる。
本実施形態の遊技機1においては、遊技領域3aに設けられた各種入賞口のうち、普通図柄始動口37以外の入賞口への入賞があった場合には、各入賞口別に約束づけられた入賞球1個当りの賞球数(例えば、始動口34または始動口35は3個、大入賞口50は13個、一般入賞口43は10個)が遊技球払出装置19(図3参照)から払い出されるようになっている。上記の各入賞口に入賞しなかった遊技球は、アウト口49を介して遊技領域3aから排出される。
ここで「入賞」とは、入賞口がその内部に遊技球を取り込んだり、或いは入賞口が遊技球を内部に取り込む構造ではなく通過型のゲートからなる入賞口(例えば、普通図柄始動口37)である場合はそのゲートを遊技球が通過したりすることを言い、実際には入賞口ごとに形成された各入賞検出スイッチにより遊技球が検出された場合、その入賞口に「入賞」が発生したものとして扱われる。この入賞に係る遊技球を「入賞球」とも称する。なお、入賞口に遊技球が入口すれば、その遊技球は入賞検出スイッチにより検出されることとなるため、本明細書中では特に断りのない限り、入賞検出スイッチに遊技球が検出されたか否かによらず、入賞口に遊技球が入口した場合を含めて「入賞」と称する場合がある。
<2.遊技機の制御構成>

図3のブロック図を参照して、遊技機1の遊技動作制御を実現するための構成(制御構成)について説明する。
本実施形態の遊技機1は、遊技動作全般に係る制御(遊技動作制御)を統括的に司る主制御基板(主制御手段)20と、主制御基板20から演出制御コマンドを受けて、演出手段による演出の実行制御(現出制御)を統括的に司る演出制御基板30(演出制御手段)と、賞球の払い出し制御を行う払出制御基板(払出制御手段)29と、外部電源(図示せず)から遊技機1に必要な電源を生成し供給する電源基板(電源制御手段(図示せず))と、を有して構成される。
なお、図3において、各部への電源供給ルートは省略している。
[2.1 主制御基板]
主制御基板20は、CPU(Central Processing Unit)20a(主制御CPU)を内蔵したマイクロプロセッサを搭載すると共に、遊技動作制御手順を記述した制御プログラムの他、遊技動作制御に必要な種々のデータを格納するROM(Read Only Memory)20b(主制御ROM)と、ワーク領域やバッファメモリとして機能するRAM(Random Access Memory)20c(主制御RAM)とを搭載し、全体としてマイクロコンピュータを構成している。
また図示はしていないが、主制御基板20は、周期的割込みや一定周期のパルス出力作成機能(ビットレートジェネレータ)や時間計測の機能を実現するためのCTC(Counter Timer Circuit)、及び主制御CPU20aに割込み信号を付与するタイマ割込み等の割込許可/割込禁止機能を発揮する割込みコントローラ回路、及び電源投入時や遮断時や電源異常などを検知してシステムリセット信号を出力して主制御CPU20aをリセット可能なリセット回路、及び制御プログラムの動作異常を監視するウォッチドッグタイマ(WDT)回路、及び予め設定したアドレス範囲内でプログラムが正しく実行されているか否かを監視する指定エリア外走行禁止(IAT)回路、及びハードウェア的に一定範囲の乱数を生成するためのカウンタ回路等も備えている。
上記カウンタ回路は、乱数を生成する乱数生成回路と、その乱数生成回路から所定のタイミングで乱数値をサンプリングするサンプリング回路とを含んで構成され、全体として16ビットカウンタとして働く。主制御CPU20aは、処理状態に応じて上記サンプリング回路に指示を送ることで、上記乱数生成回路が示している数値を内部抽選用乱数値(大当り判定用乱数(乱数の大きさ:65536))として取得し、その乱数値を大当り抽選に利用する。なお、内部抽選用乱数は、当り狙い打ち等のゴト行為を防ぐために、適宜なソフトウェア処理で生成しているソフト乱数値と、ハード乱数値とを加算したものを取得している。
主制御基板20には、始動口34への入賞(入球)を検出する始動口センサ34aと、始動口35への入賞を検出する始動口センサ35aと、普通図柄始動口37の通過を検出する普通図柄始動口センサ37aと、大入賞口50への入賞を検出する大入賞口センサ52aと、一般入賞口43への入賞を検出する一般入賞口センサ43aと、アウト口49から排出される遊技球(アウト球)を検出するOUT監視スイッチ49aが接続され、主制御基板20はこれらから出力される検出信号を受信可能とされている。主制御基板20は、各センサからの検出信号に基づき、何れの入賞口に遊技球が入球したのかを把握可能とされる。
また主制御基板20には、始動口35の可動翼片を開閉制御するための普通電動役物ソレノイド41cと、大入賞口50の開放扉52bを開閉制御するための大入賞口ソレノイド52cとが接続され、主制御基板20はこれらを制御するための制御信号を送信可能となっている。
さらに主制御基板20には、特別図柄表示装置38aと特別図柄表示装置38bとが接続され、主制御基板20は、特別図柄1、2を表示制御するための制御信号を送信可能とされている。さらにまた、主制御基板20には、複合表示装置38cが接続され、保留数表示や状態表示を制御するための制御信号を送信可能とされている。
また、主制御基板20には、複合表示装置38dが接続され、主制御基板20は、複合表示装置38dに表示される普通図柄表示、右打ち表示、ラウンド表示の表示制御するための制御信号を送信可能とされている。
さらに、主制御基板20には、枠用外部集中端子基板21が接続され、主制御基板20は、枠用外部集中端子基板21を介し、遊技機外部に設けられたホールコンピュータHCに対し所定の遊技情報(例えば、大当り情報、賞球数情報、図柄変動実行情報等)を送信可能とされている。
なお、ホールコンピュータHCは、主制御基板20からの遊技情報を監視して、パチンコホールの遊技機の稼働状況を統括的に管理するための情報処理装置(コンピュータ装置)である。
さらにまた、主制御基板20には、払出制御基板(払出制御部)29が接続され、賞球の払い出しの必要がある場合には、払出制御基板29に対し、払い出しに関する制御コマンド(賞球数を指定する払出制御コマンド)を送信可能とされている。
払出制御基板29には、発射装置32を制御する発射制御基板(発射制御部)28と、遊技球の払い出しを行う遊技球払出装置(遊技球払出手段)19とが接続されている。この払出制御基板29の主な役割は、主制御基板20からの払出制御コマンドの受信、払出制御コマンドに基づく遊技球払出装置19の賞球払い出し制御、主制御基板20への状態信号の送信などである。
遊技球払出装置19には、遊技球の供給不足を検出する補給切れ検出センサ19aや払い出される遊技球(賞球)を検出する球計数センサ19bが設けられており、払出制御基板29は、これらの各検出信号を受信可能とされている。また遊技球払出装置19には、遊技球を払い出すための球払出機構部(図示せず)を駆動する払出モータ19cが設けられており、払出制御基板29は、払出モータ19cを制御するための制御信号を送信可能とされている。
さらに、払出制御基板29には、上受け皿9が遊技球で満杯状態を検出する満杯検出センサ60(本実施形態では、上受け皿9に貯留される遊技球の貯留状態を検出する検出センサ)と、前扉開放センサ61(例えば扉6や内枠2の開放状態を検出する検出センサ)が接続されている。
払出制御基板29は、満杯検出センサ60、前扉開放センサ61、補給切れ検出センサ19a、球計数センサ19bからの検出信号に基づいて、主制御基板20に対して、各種の状態信号を送信可能となっている。この状態信号には、満杯状態を示す球詰り信号、少なくとも内枠2が開放されていることを示す扉開放信号、遊技球払出装置19からの遊技球の供給不足を示す補給切れ信号、賞球の払出不足や球計数センサ19bに異常が発生したこと示す計数エラー信号、払い出し動作が完了したことを示す払出完了信号などが含まれ、様々な状態信号を送信可能な構成となっている。主制御基板20は、これら状態信号に基づいて、内枠2の開放状態(扉開放エラー)や、遊技球払出装置19の払出動作が正常か否か(補給切れエラー)や、上受け皿9の満杯状態(球詰りエラー)等を監視する。
さらにまた、払出制御基板29には発射制御基板28が接続され、発射制御基板28に対し発射を許可する許可信号を送信可能とされている。発射制御基板28は、払出制御基板29からの許可信号が出力されていることに基づき、発射装置32に設けられた発射ソレノイド(図示せず)への通電を制御し、発射操作ハンドル15の操作による遊技球の発射動作を実現している。具体的には、払出制御基板29から発射許可信号が出力されていること(発射許可信号ON状態)、発射操作ハンドル15に設けられたタッチセンサにより遊技者がハンドルに触れていることを検出されていること、発射操作ハンドル15に設けられた発射停止スイッチ(図示せず)が操作されていないことを条件に、遊技球の発射動作が許容される。従って、発射許可信号が出力されていない場合には(発射許可信号OFF状態)、発射操作ハンドル15を操作しても発射動作は実行されず、遊技球が発射されることはない。また、遊技球の打ち出しの強さは、発射操作ハンドル15の操作量に応じて変化可能となっている。
なお、払出制御基板29が上記球詰りエラーを検出すると、主制御基板20に球詰り信号を送信すると共に発射制御基板28に対する発射許可信号の出力を停止し(発射許可信号OFF)、上受け皿9の満杯状態が解消されるまで打ち出し動作を停止する制御を行うようになっている。
また、払出制御基板29は、発射制御基板28に対する発射の許可信号の出力を、主制御基板20より発射許可が指示されたことを条件に行う。
主制御基板20にはRAMクリアスイッチ98が接続されており、これらスイッチからの検出信号を受信可能とされている。
RAMクリアスイッチ98は、主制御RAM20cの所定領域を初期化することを指示入力するための例えば押しボタン式のスイッチとされる。
RAMクリアスイッチ98は、内枠2が開放された状態で操作可能に設けられたRAMクリアボタンの操作に応じてON/OFFされる。
RAMクリアスイッチ98は、遊技機1内部の適所に設けられている。例えば、主制御基板20上に配置される。
また主制御基板20は、性能表示器97が接続されている。
性能表示器97は、例えば7セグメント表示器を有して構成され、性能情報(後述する)の表示が可能とされた表示手段として機能する。性能表示器97は、例えば主制御基板20上の視認し易い位置に搭載されている。
(性能表示について)
主制御基板20は、性能表示器97に対し所定の性能情報を表示させるための制御信号を送信可能とされている。
性能情報とは、パチンコホールや関係各庁が確認したい情報であり、遊技機1に対する過剰賞球等の不正賞球ゴトの有無や遊技機1本来の出玉性能などに関する情報などがその代表例である。従って、性能情報自体は、予告演出等とは異なり、遊技者が遊技に興じる際に、その遊技進行自体には直接的に関係の無い情報となる。
このため性能表示器97は、遊技機1内部、例えば、主制御基板20、払出制御基板29、発射制御基板28、上記中継基板、演出制御基板30上や、基板ケース(基板を保護する保護カバー)など、内枠2が開放状態とされたときに表示情報を視認可能となる位置に設けられている。
ここで、性能情報には、具体的に次のような情報を採用することができる。
(1)特定状態中において入賞により払い出された総払出個数(特定中総賞球数:α個)を、当該特定状態中おいて遊技領域3aから排出された総アウト球数(特定中アウト個数:β個)で除した値(α/β)に基づく情報(特定比率情報)を、性能情報として採用することができる。
上記「総払出個数」とは、入賞口(始動口34、始動口35、一般入賞口43、大入賞口50)に入賞した際に払い出された遊技球(賞球)の合計値である。本実施形態の場合、始動口34または始動口35は3個、大入賞口50は13個、一般入賞口43は10個である。
また、特定状態として、何れの状態を採用するかについては、如何なる状態下の性能情報を把握したいかに応じて適宜定めることができる。本実施形態の場合であれば、通常状態、潜確状態、時短状態、確変状態、大当り遊技中のうち、何れの状態も採用することができる。また、複数種類の状態を計測対象としてもよい。例えば、通常状態と確変状態や、当り遊技中を除く全ての遊技状態等であり、その計測対象とする種類は適宜定めることができる。
また、特定状態中の期間として、大当り抽選確率が低確率状態又は高確率状態の何れかの期間を採用してもよい。
また、1又は複数の特定の入賞口を計測対象から除外したものを総払出個数としてもよい(特定入賞口除外総払出個数)。例えば、各入賞口のうち、大入賞口50を計測対象から除外したものを、総払出個数としてもよい。
(2)その他、総払出個数、特定入賞口除外総払出個数、総アウト球数の何れかだけを計測し、その計測結果を性能情報としてもよい。
本実施形態では、通常状態中の総払出個数(通常時払出個数)と、通常状態中の総アウト球数(通常時アウト個数)とをリアルタイムで計測し、通常時払出個数を通常時アウト個数で除した値に百を乗じた値(通常時払出個数÷通常時アウト個数×100で算出される値)を性能情報(以下「通常時比率情報」と称する)として表示する。なお、この際の表示値は、小数点第1位を四捨五入した値とする。
従って、通常時払出個数、通常時アウト個数、通常時比率情報の各データが、主制御RAM20cの該当領域(特定中総賞球数格納領域、特定中アウト個数格納領域、特定比率情報格納領域)にそれぞれ格納(記憶)されるようになっている。但し、単に永続的に計測して性能情報を表示するのではなく、総アウト球数が所定の規定個数(例えば、60000個)に達した場合、一旦、計測を終了する。この規定個数とは、通常状態の総アウト球数ではなく、全遊技状態中(当り遊技中を含む)の総アウト球数(以下「全状態アウト個数」と称する)である。この全状態アウト個数もリアルタイムに計測され、主制御RAM20cの該当領域(全状態アウト個数格納領域)に格納される。以下、説明の便宜のために、特定中総賞球数格納領域、特定中アウト個数格納領域、特定比率情報格納領域、全状態アウト個数格納領域を「計測情報格納領域」と略称する。
そして、終了時点の通常時比率情報を主制御RAM20cの所定領域(性能表示格納領域)に格納し(今回の通常時比率情報を記憶)、その後、計測情報格納領域(通常時払出個数、通常時アウト個数および全状態アウト個数)をクリアしてから、再度、計測を開始する(通常時払出個数、通常時アウト個数、通常時比率情報および全状態アウト球数の計測を開始する)。そして、性能表示器97には、前回の通常時比率情報(計測履歴情報)と、現在計測中の通常時比率情報とが表示されるようになっている。なお、前回の情報に限らず、前々回やその前(3回前)などの履歴を表示可能に構成してもよく、何回前までの情報を表示するかについては適宜定めることができる。
(演出制御コマンド)
主制御基板20は、処理状態に応じて、特別図柄変動表示ゲームに関する情報やエラーに関する情報等を含む種々の演出制御コマンドを、演出制御基板30に対して送信可能とされている。但し、ゴト行為等の不正を防止するために、主制御基板20は演出制御基板30に対して信号を送信するのみで、演出制御基板30からの信号を受信不可能な片方向通信の構成となっている。
ここで、演出制御コマンドは、1バイト長のモード(MODE)と、同じく1バイト長のイベント(EVENT)からなる2バイト構成により機能を定義し、MODEとEVENTの区別を行うために、MODEのBit7はON、EVENTのBit7をOFFとしている。これらの情報を有効なものとして送信する場合、モード(MODE)及びイベント(EVENT)の各々に対応してストローブ信号が出力される。すなわち、主制御CPU20aは、送信すべきコマンドがある場合、演出制御基板30にコマンドを送信するためのモード(MODE)情報の設定及び出力を行い、この設定から所定時間経過後に1回目のストローブ信号の送信を行う。さらに、このストローブ信号の送信から所定時間経過後にイベント(EVENT)情報の設定及び出力を行い、この設定から所定時間経過後に2回目のストローブ信号の送信を行う。ストローブ信号は、演出制御CPU30aが確実にコマンドを受信可能とする所定期間、主制御CPU20aによりアクティブ状態に制御される。
[2.2 演出制御基板]
演出制御基板30は、演出制御CPU30aを内蔵したマイクロプロセッサを搭載すると共に、演出制御処理に要する演出データを格納した演出制御ROM30bと、ワーク領域やバッファメモリとして機能する演出制御RAM30cとを搭載したマイクロコンピュータを中心に構成され、その他、音響制御部(音源IC)、RTC(Real Time Clock)機能部、カウンタ回路、割込みコントローラ回路、リセット回路、WDT回路などが設けられ、演出動作全般を制御する。
演出制御CPU30aは演出制御プログラム及び主制御部20から受信した演出制御コマンドに基づいて、各種演出動作のための演算処理や各演出手段の制御を行う。演出手段とは、本実施形態のパチンコ遊技機1の場合、液晶表示装置36(主液晶表示装置36M、副液晶表示装置36S)、光表示装置45a、音響発生装置46a、及び図示を省略した可動体役物となる。
演出制御ROM30bは、演出制御CPU30aによる演出動作の制御プログラムや、演出動作制御に必要な種々のデータを記憶する。
演出制御RAM30cは、演出制御CPU30aが各種演算処理に使用するワークエリアや、テーブルデータ領域、各種入出力データや処理データのバッファ領域等として用いられる。
なお、演出制御基板30は、例えば1チップマイクロコンピュータとその周辺回路が搭載された構成とされるが、演出制御基板30の構成は各種考えられる。例えばマイクロコンピュータに加えて、各部とのインタフェース回路、演出のための抽選用乱数を生成する乱数生成回路、各種の時間計数のためのCTC、ウォッチドッグタイマ(WDT)回路、演出制御CPU30aに割込み信号を与える割込コントローラ回路などを備える場合もある。
この演出制御基板30の主な役割は、主制御部20からの演出制御コマンドの受信、演出制御コマンドに基づく演出の選択決定、液晶表示装置36の表示制御(表示データ供給)、音響発生装置46aの音声出力制御、光表示装置45a(LED)の発光制御、可動体役物の動作制御(可動体役物モータ80cの駆動制御)などとなる。
この演出制御基板30は、液晶表示装置36に対する制御装置としての機能も備えているため、演出制御基板30には、いわゆるVDP(Video Display Processor)、画像ROM、VRAM(Video RAM)としての機能も備えられ、また演出制御CPU30aは、液晶制御部としても機能する。
VDPは、画像展開処理や画像の描画などの映像出力処理全般の制御を行う機能を指している。
画像ROMとは、VDPが画像展開処理を行う画像データ(演出画像データ)が格納されているメモリを指す。
VRAMは、VDPが展開した画像データを一時的に記憶する画像メモリ領域である。
演出制御基板30は、これらの構成により、主制御部20からのコマンドに基づいて各種の画像データを生成し、主液晶表示装置36M、及び副液晶表示装置36Sに出力する。これによって主液晶表示装置36M及び副液晶表示装置36Sにおいて各種の演出画像が表示される。
ここで、図2において示される「液晶表示装置36」は「主液晶表示装置36M」である。副液晶表示装置36Sについては図2における図示が省略されている。
また演出制御基板30は、複数のスピーカ46を含む音響発生装置46aに対する音響制御部(例えば図4の音コントローラ230)を有しており、音響制御部が出力する音響信号はアンプ部46dで増幅されてスピーカ46に供給される。なお音響制御部としての音コントローラ230は演出制御基板30に内蔵されるものとして説明するが、音響制御部は演出制御基板30とは別体の音源ICを用いてもよい。
また、演出制御基板30には、装飾ランプ45や各種LEDを含む光表示装置45aに対する光表示制御部として機能するランプドライバ部45dと、可動体(図示せず)を動作させる可動体役物モータ80cに対する駆動制御部として機能するモータドライバ部80d(モータ駆動回路)とが接続されている。演出制御基板30は、これらランプドライバ部45dやモータドライバ部80dに指示を行って光表示装置45aによる光表示動作や可動体役物モータ80cの動作を制御する。
演出制御基板30にはまた、可動体役物の動作を監視するための原点スイッチ81や位置検出センサ82が接続されている。
原点スイッチ81は、例えばフォトインターラプタ等で構成され、可動体役物モータ80cが原点位置にあるか否かを検出する。原点位置は、例えば可動体が図2の盤面に通常は表出しない位置などとされる。演出制御基板30は、この原点スイッチ81の検出情報に基づいて可動体役物モータ80cが原点位置にあるか否かを判定可能とされている。
また、演出制御基板30は、位置検出センサ82からの検出情報に基づき、可動体役物の現在の動作位置(例えば、原点位置からの移動量)を監視しながらその動作態様を制御する。さらに演出制御基板30は、位置検出センサ82からの検出情報に基づき、可動体役物の動作の不具合を監視し、不具合が生じれば、これをエラーとして検出する。
また演出制御基板30には、図中に操作部17として示す演出ボタン13や十字キー15a、決定ボタン15bのスイッチ、つまり演出ボタン13、十字キー15a、決定ボタン15bの操作検出スイッチが接続され、演出制御基板30は、演出ボタン13、十字キー15a、決定ボタン15bからの操作検出信号をそれぞれ受信可能とされている。
さらに、演出制御基板30には、図1に示した発射操作ハンドル15が遊技者等の使用者により触れられているか否かを検出するためのハンドルセンサ83(タッチセンサ)が設けられている。演出制御基板30はこのハンドルセンサ83の検出情報に基づいて発射操作ハンドル15が使用者によりタッチされているか否かを判定可能とされる。
演出制御基板30は、主制御部20から送られてくる演出制御コマンドに基づき、予め用意された複数種類の演出パターンの中から抽選により、又は一意に演出パターンを選択(決定)し、必要なタイミングで各種の演出手段を制御して、目的の演出を現出させる。これにより、演出パターンに対応する液晶表示装置36による演出画像の表示、スピーカ46からの音の再生、装飾ランプ45やLEDの点灯点滅駆動が実現され、種々の演出パターン(装飾図柄変動表示動作や予告演出など)が時系列的に展開されることにより、広義の意味での「演出シナリオ」が実現される。
ここで、演出制御コマンドについて、演出制御基板30(演出制御CPU30a)は、主制御部20(主制御CPU20a)が送信する上述したストローブ信号の入力に基づき割込み処理を発生させてその受信・解析を行う。具体的に、演出制御CPU30aは、上述したストローブ信号の入力に基づいてコマンド受信割込処理用の制御プログラムを実行し、これにより実現される割込み処理において、演出制御コマンドを取得し、コマンド内容の解析を行う。
この際、演出制御CPU30aは、ストローブ信号の入力に基づいて割込みが発生した場合には、他の割込みに基づく割込み処理(定期的に実行されるタイマ割込処理)の実行中であっても、当該処理に割り込んでコマンド受信割込処理を行い、他の割込みが同時に発生してもコマンド受信割込処理を優先的に行うようになっている。
<3.動作の概要説明>
次に、上記のような制御構成(図3)により実現される遊技機1の遊技動作の概要について説明する。
[3.1 遊技状態]
遊技機1では、特別遊技状態である大当り遊技の他、複数種類の遊技状態を設定可能に構成されている。本実施形態の理解を容易なものとするために、先ず、種々の遊技状態について説明する。
遊技機1は、低確率状態又は高確率状態のどちらかと、非時短状態又は時短状態のどちらかと、が組み合わされたいずれかの遊技状態で遊技が進行する。
低確率状態は、大当り抽選の当選確率が相対的に低い状態であり、高確率状態は、大当り抽選の当選確率が相対的に高い状態である。
非時短状態は、始動口35に遊技球が相対的に入球しにくい状態であり、時短状態は、始動口35に遊技球が相対的に入球しやすい状態である。例えば、時短状態の方が非時短状態よりも、普図当り抽選に当選したときの始動口35の開放時間が長く設定されている。しかしながら、時短状態の方が非時短状態よりも始動口35に遊技球が入球しやすいのであれば、時短状態の方が非時短状態よりも、例えば、普図当り抽選の当選確率を高くしたり、普通図柄の変動時間を短くしたりしてもよい。
本実施形態において、「通常状態」とは、低確率状態及び非時短状態を言い、初期状態に相当する。
[3.2 図柄変動表示ゲーム]
図柄変動表示ゲームについて説明する。
(特別図柄変動表示ゲーム)
本実施形態のパチンコ遊技機1では、所定の始動条件、具体的には、遊技球が始動口34又は始動口35に遊技球が入球(入賞)したことに基づき、主制御基板20において乱数抽選による「大当り抽選」が行われる。主制御基板20は、その抽選結果に基づき、特別図柄表示装置38a、38bに特別図柄1、特別図柄2を変動表示して特別図柄変動表示ゲームを開始させ、所定時間経過後に、その結果を特別図柄表示装置に導出表示して、これにより特別図柄変動表示ゲームを終了させる。
ここで本実施形態では、始動口34への入賞に基づく大当り抽選と、始動口35への入賞に基づく大当り抽選とは別個独立して行われる。このため、始動口34に関する大当り抽選結果は特別図柄表示装置38a側で、始動口35に関する大当り抽選結果は特別図柄表示装置38b側で導出されるようになっている。具体的には、特別図柄表示装置38a側においては、始動口34に遊技球が入球したことを条件に、特別図柄1を変動表示して第1の特別図柄変動表示ゲームが開始され、他方、特別図柄表示装置38b側においては、始動口35に遊技球が入球したことを条件に、特別図柄2を変動表示して第2の特別図柄変動表示ゲームが開始されるようになっている。そして、特別図柄表示装置38a、又は特別図柄表示装置38bにおける特別図柄変動表示ゲームが開始されると、所定の変動表示時間経過後に、大当り抽選結果が「大当り」の場合には所定の「大当り」態様で、それ以外の場合には所定の「はずれ」態様で、変動表示中の特別図柄が停止表示され、これによりゲーム結果(大当り抽選結果)が導出されるようになっている。
なお本明細書中では、説明の便宜上、特別図柄表示装置38a側の第1の特別図柄変動表示ゲームを「特別図柄変動表示ゲーム1」と称し、特別図柄表示装置38b側の第2の特別図柄変動表示ゲームを「特別図柄変動表示ゲーム2」と称する。また特に必要のない限り、「特別図柄1」と「特別図柄2」とを単に「特別図柄」と称し(場合により「特図」と略称する)、また「特別図柄変動表示ゲーム1」と「特別図柄変動表示ゲーム2」とを単に「特別図柄変動表示ゲーム」と称する。
(装飾図柄変動表示ゲーム)
また、上述の特別図柄変動表示ゲームが開始されると、これに伴って、主液晶表示装置36Mに装飾図柄(演出的な遊技図柄)を変動表示して装飾図柄変動表示ゲームが開始され、これに付随して種々の演出が展開される。そして特別図柄変動表示ゲームが終了すると、装飾図柄変動表示ゲームも終了し、特別図柄表示装置には大当り抽選結果を示す所定の特別図柄が、そして主液晶表示装置36Mには当該大当り抽選結果を反映した装飾図柄が導出表示されるようになっている。すなわち、装飾図柄の変動表示動作を含む演出的な装飾図柄変動表示ゲームにより、特別図柄変動表示ゲームの結果を反映表示するようになっている。
従って、例えば特別図柄変動表示ゲームの結果が「大当り」である場合(大当り抽選結果が「大当り」である場合)、装飾図柄変動表示ゲームではその結果を反映させた演出が展開される。そして特別図柄表示装置において、特別図柄が大当りを示す表示態様(例えば、7セグが「7」の表示状態)で停止表示されると、主液晶表示装置36Mには、「左」「中」「右」の各表示エリアにおいて、装飾図柄が「大当り」を反映させた表示態様(例えば「左」「中」「右」の各表示エリアにおいて、3個の装飾図柄が「7」「7」「7」の表示状態)で停止表示される。
この「大当り」となった場合、具体的には、特別図柄変動表示ゲームが終了して、これに伴い装飾図柄変動表示ゲームが終了し、その結果として「大当り」の図柄態様が導出表示された後、特別変動入賞装置52の大入賞口ソレノイド52cが作動して開放扉52bが所定のパターンで開閉動作を行い、これにより大入賞口50が開閉され、通常遊技状態よりも遊技者に有利な特別遊技状態(大当り遊技)が発生する。この大当り遊技では、開放扉52bにより、大入賞口の開放時間が所定時間(最大開放時間:例えば、29.8秒)経過するまでか、又は大入賞口に入賞した遊技球数(大入賞口50への入賞球)が所定個数(最大入賞数:役物の1回の作動によりその入口が開き、または拡大した入賞口に対して許容される入賞球数の上限個数:例えば、9個)に達するまで、その入賞領域が開放または拡大され、これら何れかの条件を満した場合に大入賞口が閉鎖される、といった「ラウンド遊技」が、予め定められた規定ラウンド数(例えば、最大16ラウンド)繰り返される。
上記大当り遊技が開始すると、最初に大当りが開始された旨を報知するオープニング演出が行われ、オープニング演出が終了した後、ラウンド遊技が予め定められた規定ラウンド数を上限として複数回行われる。そして、規定ラウンド数終了後には、大当りが終了される旨を報知するエンディング演出が行われ、これにより大当り遊技が終了するようになっている。
上記の装飾図柄変動表示ゲームの実行に必要な情報に関しては、先ず主制御基板20が、始動口34又は始動口35に遊技球が入球(入賞)したことに基づき、具体的には、始動口センサ34a又は始動口センサ35aにより遊技球が検出されて始動条件(特別図柄に関する始動条件)が成立したことを条件に、「大当り」又は「はずれ」の何れであるかを抽選する‘当落抽選(当否種別抽選)’と、「大当り」であったならばその大当り種別を、「はずれ」であったならばそのはずれ種別を抽選する‘図柄抽選(当選種別(当り種別)抽選)’を含む大当り抽選を行い(はずれが1種類の場合は、はずれについて種別抽選を行う必要がないためその抽選を省略してもよい)、その抽選結果情報に基づき、特別図柄の変動パターンや、当選種別に応じて最終的に停止表示させる特別図柄(以下、「特別停止図柄」と称する)を決定する。
そして、主制御基板20は、処理状態を特定する演出制御コマンドとして、少なくとも特別図柄の変動パターン情報(例えば、大当り抽選結果及び特別図柄の変動時間に関する情報等)を含む「変動パターン指定コマンド」を演出制御基板30側に送信する。これにより、装飾図柄変動表示ゲームに必要とされる基本情報が演出制御基板30に送られる。なお本実施形態では、演出のバリエーションを豊富なものとするべく、特別停止図柄の情報(図柄抽選結果情報(当り種別に関する情報))を含む「装飾図柄指定コマンド」も演出制御基板30に送信するようになっている。
上記特別図柄の変動パターン情報には、特定の予告演出(例えば、後述の「リーチ演出」や「疑似連演出」など)の発生の有無を指定する情報を含むことができる。詳述するに、特別図柄の変動パターンは、大当り抽選結果に応じて、当りの場合の「当り変動パターン」と、はずれの場合の「はずれ変動パターン」に大別される。これら変動パターンには、例えば、後述のリーチ演出の発生を指定する‘リーチ変動パターン’、リーチ演出の発生を指定しない‘通常変動パターン’、疑似連演出とリーチ演出との発生(重複発生)を指定する‘疑似連有りリーチ変動パターン’、疑似連演出の発生を指定し、リーチ演出の発生は指定しない‘疑似連有り通常変動パターン’等、複数種類の変動パターンが含まれる。なお、リーチ演出や疑似連演出の演出時間を確保する関係上、通常、リーチ演出や疑似連演出を指定する変動パターンの方が、通常変動パターンよりも変動時間が長く定められている。
演出制御基板30は、主制御基板20から送られてくる演出制御コマンド(ここでは、変動パターン指定コマンドと装飾図柄指定コマンド)に含まれる情報に基づいて、装飾図柄変動表示ゲーム中に時系列的に展開させる演出内容(予告演出等の演出シナリオ)や、最終的に停止表示する装飾図柄(装飾停止図柄)を決定し、特別図柄の変動パターンに基づくタイムスケジュールに従い装飾図柄を変動表示して装飾図柄変動表示ゲームを実行させる。これにより、特別図柄表示装置38a、38bによる特別図柄の変動表示と時間的に同調して、主液晶表示装置36Mによる装飾図柄が変動表示され、特別図柄変動表示ゲームの期間と装飾図柄変動表示ゲーム中の期間とが、実質的に同じ時間幅となる。また演出制御基板30は、演出シナリオに対応するように、主液晶表示装置36M又は光表示装置45a或いは音響発生装置46aをそれぞれ制御し、装飾図柄変動表示ゲームにおける各種演出を展開させる。これにより、主液晶表示装置36Mでの画像の再生(画像演出)と、効果音の再生(音演出)と、装飾ランプ45やLEDなどの点灯点滅駆動(光演出)とが実現される。
このように特別図柄変動表示ゲームと装飾図柄変動表示ゲームとは不可分的な関係を有し、特別図柄変動表示ゲームの表示結果を反映したものが装飾図柄変動表示ゲームにおいて表現されることとしているので、この二つの図柄変動表示ゲームを等価的な図柄遊技と捉えても良い。本明細書中では特に必要のない限り、上記二つの図柄変動表示ゲームを単に「図柄変動表示ゲーム」と称する場合がある。
(普通図柄変動表示ゲーム)
また遊技機1においては、普通図柄始動口37に遊技球が通過(入賞)したことに基づき、主制御基板20において乱数抽選による「補助当り抽選」が行なわれる。この抽選結果に基づき、LEDにより表現される普通図柄を複合表示装置38dで変動表示させて普通図柄変動表示ゲームを開始し、一定時間経過後に、その結果をLEDの点灯と非点灯の組合せにて停止表示するようになっている。例えば、普通図柄変動表示ゲームの結果が「補助当り」であった場合、複合表示装置38dの普通図柄の表示部を特定の点灯状態(例えば、2個のLED39が全て点灯状態、又は「○」と「×」を表現するLEDのうち「○」側のLEDが点灯状態)にて停止表示させる。
この「補助当り」となった場合には、普通電動役物ソレノイド41c(図3参照)が作動し、これにより可動翼片が開いて始動口35が開放または拡大されて遊技球が流入し易い状態(始動口開状態)となり、通常遊技状態よりも遊技者に有利な補助遊技状態(以下、「普電開放遊技」と称する)が発生する。この普電開放遊技では可動翼片により、始動口35の開放時間が所定時間(例えば0.2秒)経過するまでか、又は始動口35に入賞した遊技球数が所定個数(例えば4個)に達するまで、その入賞領域が開放または拡大され、これら何れかの条件を満たした場合に始動口35を閉鎖する、といった動作が所定回数(たとえば、最大2回)繰り返されるようになっている。
(保留について)
ここで本実施形態では、特別/装飾図柄変動表示ゲーム中、普通図柄変動表示ゲーム中、大当り遊技中、又は普電開放遊技中等に、始動口34又は始動口35若しくは普通図柄始動口37に入賞が発生した場合、すなわち始動口センサ34a又は始動口センサ35a若しくは普通図柄始動口センサ37aからの検出信号の入力があり、対応する始動条件(図柄遊技開始条件)が成立した場合、これを変動表示ゲームの始動権利に係るデータとして、変動表示中に関わるものを除き、所定の上限値である最大保留記憶数(例えば最大4個)まで保留記憶されるようになっている。この図柄変動表示動作に供されていない保留中の保留データ、又はその保留データに係る遊技球を、「作動保留球」とも称する。この作動保留球の数を遊技者に明らかにするため、遊技機1の適所に設けた専用の保留表示器(図示せず)、又は液晶表示装置36(主液晶表示装置36M又は副液晶表示装置36S)による画面中にアイコン画像として設けた保留表示器を点灯表示させる。
また本実施形態では、特別図柄1、特別図柄2、及び普通図柄に関する作動保留球をそれぞれ最大4個まで主制御RAM20cの該当記憶領域に保留記憶し、特別図柄又は普通図柄の変動確定回数として保留する。なお、特別図柄1、特別図柄2、及び普通図柄に関する各作動保留球数の最大記憶数(最大保留記憶数)は特に制限されない。また、各図柄の最大保留記憶数の全部又は一部が異なっていてもよく、その数は遊技性に応じて適宜定めることができる。
[3.3 当りについて]
続いて、遊技機1における「当り」について説明する。
本実施形態の遊技機1においては、複数種類の当りを対象に大当り抽選(当り抽選)を行うようになっている。本例の場合、当りの種別には、大当り種別に属する例えば「通常4R」「通常6R」「確変6R」「確変10R」の各大当りが含まれる。
なお、上記「R」の表記は、規定ラウンド数(最大ラウンド数)を意味する。
大当り種別は、条件装置の作動契機となる当りである。ここで「条件装置」とは、その作動がラウンド遊技を行うための役物連続作動装置の作動に必要な条件とされている装置で、特定の特別図柄の組合せが表示され、又は遊技球が大入賞口内の特定の領域を通過した場合に作動するものを言う。
上記確変状態は、大当り種別に当選することなく、特別図柄変動表示ゲームの実行回数が所定回数(例えば70回:規定ST回数)終了した場合に、高確率状態を終了させて低確率に移行させる、いわゆる「回数切り確変機(ST機)」となっており、規定ST回数が終了したときは、次ゲームから通常状態に移行される。但し、次回大当りが当選するまで継続させるタイプの「一般確変機」としてもよい。
なお、特別図柄変動表示ゲームの実行回数は、特別図柄変動表示ゲーム1、及び特別図柄変動表示ゲーム2の合計実行回数(特図1及び特図2の合計変動回数)であってもよいし、何れか一方の実行回数(例えば特別図柄変動表示ゲーム2の実行回数)であってもよい。また、時短状態の回数についても60回や100回に限らず、遊技性に応じて適宜定めることができる。また、どのような種類の当りを設けるかについても特に制限はなく、適宜定めることができる。
ここで、本例では、大当り種別と同様に「はずれ」についても複数の種別が設けられている。具体的には、「はずれ1」「はずれ2」「はずれ3」の三種のはずれ種別が設けられている。
前述のように、当落抽選の結果が「はずれ」であった場合には、図柄抽選においてはずれ種別の抽選が行われる。
[3.4 演出について]
(演出モード)
次に、演出モード(演出状態)について説明する。本実施形態の遊技機1には、遊技状態に関連する演出を現出させるための複数種類の演出モードが設けられており、その演出モード間を行き来可能に構成されている。具体的には、通常状態、時短状態、潜確状態、確変状態のそれぞれに対応した、通常演出モード、時短演出モード、潜確演出モード、確変演出モードが設けられている。各演出モードでは、装飾図柄の変動表示画面のバックグラウンドとしての背景表示が、それぞれ異なる背景演出により表示され、遊技者が現在、どのような遊技状態に滞在しているかを把握することができるようになっている。
演出制御基板30(演出制御CPU30a)は、複数種類の演出モード間を移行制御する機能部(演出状態移行制御手段)を有する。演出制御基板30(演出制御CPU30a)は、主制御基板20(主制御CPU20a)から送られてくる特定の演出制御コマンド、具体的には、主制御基板20側で管理される遊技状態情報を含む演出制御コマンドに基づいて、主制御基板20側で管理される遊技状態と整合性を保つ形で、現在の遊技状態を把握し、複数種類の演出モード間を移行制御可能に構成されている。上記のような特定の演出制御コマンドとしては、例えば、変動パターン指定コマンド、装飾図柄指定コマンド、遊技状態に変化が生じる際に送られる遊技状態指定コマンド等がある。
(予告演出)
次に、予告演出について説明する。演出制御基板30は、主制御基板20からの演出制御コマンドの内容、具体的には、少なくとも変動パターン指定コマンドに含まれる変動パターン情報に基づき、現在の演出モードと大当り抽選結果とに関連した様々な「予告演出」を現出制御可能に構成されている。このような予告演出は、当り種別に当選したか否かの期待度(以下「当選期待度」と称する)を示唆(予告)し、遊技者の当選期待感を煽るための「煽り演出」として働く。予告演出として代表的なものには、「リーチ演出」や「疑似連演出」、さらには「先読み予告演出」等がある。演出制御基板30は、これら演出を実行(現出)制御可能な予告演出制御手段として機能する。
「リーチ演出」とは、リーチ状態を伴う演出態様(リーチ状態を伴う変動表示態様:リーチ変動パターン)を言い、具体的には、リーチ状態を経由して最終的なゲーム結果を導出表示するような演出態様を言う。リーチ演出には当選期待度に関連付けられた複数種類のリーチ演出が含まれる。例えば、ノーマルリーチ演出が出現した場合に比べて、当選期待度が相対的に高まるものがある。このようなリーチ演出を‘スーパーリーチ演出’と言う。この「スーパーリーチ」の多くは、当選期待感を煽るべく、ノーマルリーチよりも相対的に長い演出時間(変動時間)を持つ。また、ノーマルリーチやスーパーリーチには複数種類のリーチ演出が含まれる。本例では、スーパーリーチには、スーパーリーチ1、2、3、4という複数種類のリーチ演出が含まれ、これらスーパーリーチ1~4の当選期待度については「スーパーリーチ1<スーパーリーチ2<スーパーリーチ3<スーパーリーチ4」という関係性を持たせている。
「疑似連演出」とは、装飾図柄の疑似的な連続変動表示状態(疑似連変動)を伴う演出態様を言い、「疑似連変動」とは、装飾図柄変動表示ゲーム中において、装飾図柄の一部又は全部を一旦仮停止状態とし、その仮停止状態から装飾図柄の再変動表示動作を実行する、といった表示動作を1回または複数回繰り返す変動表示態様をいう。この点、複数回の図柄変動表示ゲームに跨って展開されるような後述の「先読み予告演出(連続予告演出)」とは異なる。このような「疑似連」は、基本的には、疑似変動回数が多くなるほど当選期待度が高まるようにその発生率(出現率)が定められており、例えば、疑似変動回数に応じて、スーパーリーチ等の期待感を煽るための演出が選択され易くされている。
「先読み予告演出」(以下では「先読み予告」や「先読み演出」と略称する場合もある)とは、先読み判定の結果に基づいて、判定対象の図柄の変動表示が行われるよりも前に、有利状態に制御される可能性を報知する演出を意味する。なお、「有利状態」は、遊技者にとって有利な状態を意味する。
具体的に、本例の先読み演出は、未だ図柄変動表示ゲームの実行(特別図柄の変動表示動作)には供されていない作動保留球(未消化の作動保留球)について、主に、保留表示態様や先に実行される図柄変動表示ゲームの背景演出等を利用して、当該作動保留球が図柄変動表示ゲームに供される前に、当選期待度を事前に報知し得る演出態様で行われる。なお、図柄変動表示ゲームにおいては、上記「リーチ演出」の他、いわゆる「SU(ステップアップ)予告演出」や「タイマ予告演出」、「復活演出」、「プレミア予告演出」などの種々の演出が発生し、ゲーム内容を盛り上げるようになっている。
ここで、図4を参照し、上記先読み予告演出の一例としての「保留変化予告演出」について説明する。
本実施形態の遊技機1の場合、主液晶表示装置36Mの画面内の上側の表示エリアには、装飾図柄変動表示ゲームを現出する表示エリア(装飾図柄の変動表示演出や予告演出を現出するための表示領域)が設けられており、また画面内の下側の表示エリアには、特別図柄1側の作動保留球数を表示する保留表示領域76(保留表示部a1~d1)と特別図柄2側の作動保留球数を表示する保留表示領域77(保留表示部a2~d2)とが設けられている。作動保留球の有無に関しては、所定の保留表示態様により、その旨が報知される。図5では、作動保留球の有無を点灯状態(作動保留球あり:図示の「○(白丸印)」)、又は消灯状態(作動保留球なし:図示の破線の丸印)にて、現在の作動保留球数に関する情報が報知される例を示している。
作動保留球の有無に関する表示(保留表示)は、その発生順(入賞順)に順次表示され、各保留表示領域76、77において、一番左側の作動保留球が、当該保留表示内の全作動保留球のうち時間軸上で一番先に生じた(つまり最も古い)作動保留球として表示される。また、保留表示領域76、77の左側には、現に特別図柄変動表示ゲームに供されている作動保留球を示すための変動中表示領域78が設けられている。本実施形態の場合、変動中表示領域78は、受座Jのアイコン上に、現在ゲームに供されているゲーム実行中保留Kのアイコンが載る形の画像が現れるように構成されている。すなわち、特別図柄1又は特別図柄2の変動表示が開始される際に、保留表示領域76、77に表示されていた最も古い保留a1又はa2のアイコン(アイコン画像)が、ゲーム実行中保留Kのアイコンとして、変動中表示領域78おける受座Jのアイコン上に移動し、その状態が所定の表示時間にわたって維持される。
作動保留球が発生した場合、主制御基板20から、大当り抽選結果に関連する先読み判定情報と、先読み判定時の作動保留球数(今回発生した作動保留球を含め、現存する作動保留球数)とを指定する「保留加算コマンド」が演出制御基板30に送信される(図28のステップS1309~S1312参照)。
本実施形態の場合、上記保留加算コマンドは2バイトで構成され、保留加算コマンドは、先読み判定時の作動保留球数を特定可能とする上位バイト側のデータと、先読み判定情報を特定可能とする下位バイト側データとから構成される。
ここで、上記説明から理解されるように、本実施形態では、始動口34又は始動口35に入賞が発生して新たに保留球が生じたことに基づいて、当該保留球についての先読み判定として、当該保留球に係る図柄変動表示ゲームについての大当り抽選が行われる。後述するように、主制御基板20は、このような先読み判定として行った大当り抽選の結果を表す情報を、主制御RAM20cの該当記憶領域に保留記憶する。
先読み判定時に得られた大当り抽選結果の情報は、図柄変動表示ゲームにおける図柄変動パターンを選択(抽選)するために用いられるものであり、いわば「変動パターン選択用情報」と換言することができる。従って、主制御基板20は、先読み判定を行って、その結果得られる「変動パターン選択用情報」を主制御RAM20cの所定領域に保留記憶していると言うことができる。
演出制御基板30は、主制御基板20が送信した上記の保留加算コマンドを受信すると、これに含まれる先読み判定情報に基づき、上記保留表示に関連する表示制御処理の一環として、「先読み予告演出」に関する演出制御処理を行う。具体的には、先読み予告演出の実行可否を抽選する「先読み予告抽選」を行い、これに当選した場合には、先読み予告演出を現出させる。
ここで、先読み判定情報とは、具体的には、主制御基板20において、作動保留球が図柄変動表示ゲームに供される際に実行される大当り抽選結果(変動開始時の大当り抽選結果)や変動開始時の変動パターンを先読み判定して得られる遊技情報である。すなわち、この情報には、少なくとも変動開始時の当落抽選結果を先読み判定した情報(先読み当落情報)が含まれ、その他、図柄抽選結果を先読み判定した情報(先読み図柄情報)や変動開始時の変動パターンを先読み判定した情報(先読み変動パターン情報)を含ませることができる。如何なる情報を含む保留加算コマンドを演出制御基板30に送るかについては、先読み予告にて報知する内容に応じて適宜定めることができる。
本例では、保留加算コマンドには先読み当落情報、先読み図柄情報、及び先読み変動パターン情報が含まれているものとする。
なお、作動保留球発生時の先読み判定により得られる「先読み変動パターン」は、必ずしも作動保留球が実際に変動表示動作に供されるときに得られる「変動開始時の変動パターン」そのものではある必要はない。例えば、上記変動開始時の変動パターンが「スーパーリーチ1」を指定する変動パターンであるケースを代表的に説明すれば、本ケースでは、先読み変動パターンにより指定される内容が「スーパーリーチ1」というリーチ演出の種類そのものではなく、その骨子である「スーパーリーチ種別」である旨を指定することができる。
本実施形態の場合、先読み予告抽選に当選した場合には、保留表示部a1~d1、a2~d2の保留アイコンのうちで、その先読み予告対象となった保留アイコンが、例えば、通常の保留表示(通常保留表示態様)の白色から、予告表示の青色、緑色、赤色、デンジャー柄(或いは虹色などの特殊な色彩や絵柄)による保留表示(特別保留表示態様)に変化し得る「保留表示変化系」の先読み予告演出(「保留変化予告」とも称する)が行われる。
図5では、ハッチングされた保留表示部b1の作動保留球が、特別保留表示に変化した例を示している。ここで、保留アイコンの青色、緑色、赤色、デンジャー柄の表示は、この順に、当選期待度が高いことを意味しており、特にデンジャー柄の保留アイコンの表示は、大当り当選期待度が極めて高い表示となるプレミアム的な保留アイコンとされている。
(演出手段)
遊技機1における各種の演出は、遊技機1に配設された演出手段により現出される。この演出手段は、視覚、聴覚、触覚など、人間の知覚に訴えることにより演出効果を発揮し得る刺激伝達手段であれば良く、装飾ランプ45やLED装置などの光発生手段(光表示装置45a:光演出手段)、スピーカ46などの音響発生装置(音響発生装置46a:音演出手段)、主液晶表示装置36Mや副液晶表示装置36Sなどの演出表示装置(表示手段)、操作者の体に接触圧を伝える加圧装置、遊技者の体に風圧を与える風圧装置、その動作により視覚的演出効果を発揮する可動体役物などは、その代表例である。ここで、演出表示装置は、画像表示装置と同じく視覚に訴える表示装置であるが、画像によらないもの(例えば7セグメント表示器)も含む点で画像表示装置と異なる。画像表示装置と称する場合は主として画像表示により演出を現出するタイプを指し、7セグメント表示器のように画像以外により演出を現出するものは、上記演出表示装置の概念の中に含まれる。
<4.開閉構造と基板の配置>

上述した図3の構成は、実際には複数の基板を経由して実現される。以下では、遊技機1に搭載される基板うちの一部の基板を抜粋して、それらの配置を説明する。また基板の搭載位置のために遊技機1の開閉構造についても説明する。
図5は扉6を開いた状態を示している。
扉6が開放されることで、内枠2及び内枠2に装着された遊技盤3が直接表出される。
なお扉6に配置される基板と内枠2に配置される基板の間は伝送線路H8としてのハーネスによって配線接続されている。
また遊技機1は、外枠4に対して内枠2を開くこともできるように構成されている。
図6は内枠2を開いた状態を示している。内枠2が開かれることで、内枠2に取り付けられた遊技盤3も外枠4から開放された状態になる。図6では遊技盤3の背面側となる位置に取り付けられた背面カバー18が見えている状態を示している。図6では遊技盤3が示されていないが、背面カバー18を外す(開く)と遊技盤3の背面側が表出する。実際には背面カバー18が透明又は半透明であることで、図6の状態で遊技盤3の背面側が視認可能である。
なお、遊技盤3はさらに内枠2から取り外すことができる。
このように、遊技機1は大きく分けて、外枠4、外枠4に取り付けられた内枠2、内枠2に取り付けられた遊技盤3、及び遊技盤3及び内枠2の前面側に位置する扉6による構成される。各種の基板は、遊技盤3、内枠2、扉6のいずれかに取り付けられる。
図7は遊技盤3に取り付けられる基板のいくつかについて位置を示したものである。なお図7は遊技盤3を背面側から見た状態で、遊技領域3aの裏側に装着される基板を示している。従って、図の右側は、遊技盤3を正面側から見たときの左側となる。図では位置の目安のため、遊技盤3のフレームの輪郭を一点鎖線で示している。
図示するように遊技盤3の裏側には、中央やや上部に演出制御基板30が配置され、その下方に主制御基板20が配置される。また演出制御基板30と重なるように液晶制御基板901が配置され、その近傍にROM基板902,液晶インタフェース基板903が配置される。
遊技盤3裏面左側にはLED接続基板700が配置され、その上部近傍に電源モジュール基板904が配置される。
また遊技盤3の上方に上接続基板905が配置される。
主制御基板20の近傍には、中継基板760、装飾基板740、盤裏左中継基板720、遊技盤接続基板906、盤裏下中継基板800、枠LED中継基板840が配置される。
また遊技盤に取り付けられる可動体役物(不図示)上に取り付けられる基板として、LED基板780,790や、装飾基板820がある。
図8は扉6に取り付けられる基板のいくつかについて、それらの位置を遊技機1の正面側から見た状態で示している。なお遊技機1内の構成として、位置の目安のために、扉6、演出ボタン13、発射操作ハンドル15、上部のスピーカ46を一点鎖線で示している。
扉6の上方に中継基板550が設けられる。
また同じく扉6の上方にサイドユニット上LED基板630が設けられ、扉6の右上にはサイドユニット右上LED基板600が設けられ、その下方にサイドユニット右下LED基板620が設けられる。なお、これらサイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630は、サイドユニット10(図1参照)内に取り付けられ、各基板は、サイドユニット10が扉6に装着されることで、この図8の位置状態となる。
扉6の左側上部には枠左LED基板907が配置され、その下方には枠左下LED基板908が配置される。
また扉6の下方には前枠LED接続基板500が配置される。
また右下にはボタンLED接続基板640が配置され、演出ボタン13の内部にボタンLED基板660が配置される。
次に内枠2に取り付けられる基板の位置を説明する。図9は遊技機1を背面から見た図である。遊技機1の背面側は大部分が透明又は半透明の背面カバー18により保護されている。
この背面側の下方に電源基板300と払出制御基板29が前後に配置されている。
また背面側からみて下方右側には内枠LED中継基板400が取り付けられる。
図10では、扉6や遊技盤3に配置される各種デバイスの配置位置を示している。各デバイスの位置の目安のため、遊技盤3と扉6の輪郭を一点鎖線で示している。
図10において、扉6のサイドユニット10内に設けられるデバイスとしては、サイドユニットデバイス101、サイドユニット右下可動物位置検出スイッチ102、サイドユニット右下可動物モータ103、サイドユニット右上可動物モータ104、サイドユニット右上可動物ソレノイド105、ブロア106、フォトカプラPC1F、PC2F、PC3Fがそれぞれ図示の位置に配置される。フォトカプラPC1F、PC2F、PC3Fはサイドユニット右下LED基板620に取り付けられている。
また図10において遊技盤3に取り付けられるデバイスとしては、下奥可動物上位置検出スイッチ120、下奥可動物右位置検出スイッチ121、振り分け位置検出スイッチ122、下前可動物位置検出スイッチ123、下前可動物モータ124、下奥可動物左位置検出スイッチ125、下奥可動物左モータ126、下奥可動物下右位置検出スイッチ127、下奥可動物下左位置検出スイッチ128、上可動物左モータ129、上可動物左位置検出スイッチ130、左可動物モータ131、上可動物位置検出スイッチ132、上可動物右モータ133、左可動物位置検出スイッチ134、下奥可動物右モータ135が、それぞれ図示の位置に配置される。
なお、以上の図7、図8、図9に示した基板は、遊技機1に設けられる基板の一部にすぎない。特に、以降の説明で対象とする主な基板を図示したものである。
また図10に示したデバイスも、遊技機1に設けられるデバイスの一部にすぎない。
<5.基板の接続構成>
[5.1 各基板の接続状態]

上述のように配置される各基板の接続構成を説明するとともに、電源電圧の供給経路について言及する。
図11は、遊技盤3、内枠2、扉6にそれぞれ配置される基板の一例を示している。
この場合、遊技盤3に搭載される基板として、主制御基板20、演出制御基板30、枠LED中継基板840、LED接続基板700、盤裏左中継基板720、装飾基板740、中継基板760、LED基板780、LED基板790、盤裏下中継基板800、装飾基板820を示している。
内枠2に搭載される基板としては、電源基板300、払出制御基板29、内枠LED中継基板400を示している。
扉6に搭載される基板としては、前枠LED接続基板500、中継基板550、サイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630、ボタンLED接続基板640、ボタンLED基板660を示している。
これらの各基板は、遊技機1に搭載される基板の一部であり、遊技盤3、内枠2、扉6に搭載される基板は、図示するもの以外にも各種の基板がある。この図11は、本発明の実施の形態としての技術の説明に用いるために抜粋した基板の接続系統を示しているものであり、全ての基板を示しているものではない。
電源基板300はAC入力電源に基づいて各部に動作電源となる直流電圧を供給する元になる基板である。
主制御基板20、演出制御基板30、払出制御基板29については図3で説明したとおりである。
前枠LED接続基板500は、扉6に設けられたLED、可動体のモータ、ソレノイド、ブロワー等の演出手段に対して、動作の制御信号や電源電圧を供給するための基板である。
サイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630はサイドユニット10内に配置される基板で、LEDや可動体役物のモードの駆動制御系を構成する。またこれらの基板は、モータの位置センサやタッチセンサ、その他の各種のセンサの検出信号を演出制御基板30に送信する検出系も構成する。
上述のように扉6には装飾ユニットの1つとしてサイドユニット10が取り付けられており、サイドユニット10は扉6に対して着脱し交換可能とされている。サイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630はサイドユニット10とともに着脱されることになる。
サイドユニット10が装着され、中継基板550とサイドユニット右上LED基板600の伝送線路H10が接続されることで電気的には図11に示す構成となる。
ボタンLED基板660は演出ボタン13内のLED及びその発光駆動系を構成し、また各種検出センサの検出信号を転送する回路が構成されている。
ボタンLED接続基板640は、ボタンLED基板660への制御信号や電源電圧を中継し、また各種センサの検出信号を転送する。
内枠LED中継基板400は、演出制御基板30と接続される枠LED中継基板840と前枠LED接続基板500の間を中継するとともに必要な信号処理を行い、また電源電圧の生成、供給を行う。
枠LED中継基板840は内枠LED中継基板400と演出制御基板30との間の信号経路を中継する。
LED基板780,790は、遊技盤3におけるLEDが搭載され、その発光駆動を行う。中継基板760はLEDの発光駆動信号の中継を行う。これらLED基板780,790、中継基板760は可動体役物に取り付けられている。
装飾基板740は中継及び他のLED基板の駆動を行う。
盤裏左中継基板720は中継を行う。
装飾基板820はLEDを搭載する。
盤裏下中継基板800は中継を行う。
LED接続基板700は、演出制御基板30からの制御信号に基づいてLED、モータ等の演出手段の発光駆動のための各種必要な信号処理を行う。
これらの各基板の間はハーネス、ケーブルによる伝送線路Hにより電気的に接続される。「伝送線路H」とは、図示する伝送線路H1,H2,・・・H31の総称である。
各伝送線路Hにおいて、信号や電源電圧等を伝送する個々の配線経路を単に「線路」ともいう。
伝送線路Hは1又は複数の線路の集合を指す。
伝送線路Hは、フレキシブルハーネス、フレキシブル基板、ワイヤーハーネスなどの各種の形態のものを含む。また伝送線路Hは、複数の線路が一体化されたものでもよいし、個々の線路がバインダ、テープなどでまとめられたものでもよい。
さらにコネクタ同士が直接接続される場合、その各コネクタの端子が伝送線路Hとなる。つまりハーネス等の線材が存在しない場合も「伝送線路H」に含める。
即ち伝送線路Hは、特定の種別、形状を指すのではなく、基板間等で電気的配線を形成するものを広く指す。
電源基板300と払出制御基板29は伝送線路H1で接続される。
また電源基板300と内枠LED中継基板400は伝送線路H3で接続される。
これらの伝送線路H1,H3は内枠2内で配設されるハーネス等によるものとなる。
電源基板300と演出制御基板30は伝送線路H2で接続される。
払出制御基板29と主制御基板20は伝送線路H4で接続される。
内枠LED中継基板400と枠LED中継基板840は伝送線路H7で接続される。
これらの伝送線路H2,H4,H7は、内枠2と遊技盤3の間を跨いで接続するハーネス等によるものとなる。
主制御基板20と演出制御基板30は伝送線路H5で接続される。
演出制御基板30と枠LED中継基板840は伝送線路H6で接続される。
演出制御基板30とLED接続基板700は伝送線路H20で接続される。
LED接続基板700と盤裏左中継基板720は伝送線路H21で接続される。
盤裏左中継基板720と装飾基板740は伝送線路H22で接続される。
装飾基板740と中継基板760は伝送線路H23で接続される。可動体役物に取り付けられている中継基板760との接続のため伝送線路H23はフレキシブルケーブルとされることが考えられる。
中継基板760とLED基板780は伝送線路H24で接続される。
LED基板780とLED基板790は伝送線路H25で接続される。
LED接続基板700と盤裏下中継基板800は伝送線路H30で接続される。
盤裏下中継基板800と装飾基板820は伝送線路H31で接続される。
これらの伝送線路H5,H6,H20,H21,H22,H23,H24,H25,H30,H31は遊技盤3内で配設されるハーネスによるものとなる。
内枠LED中継基板400と前枠LED接続基板500は伝送線路H8で接続される。
この伝送線路H8は、内枠2と扉6の間を跨いで接続するハーネス等によるものとなる。
前枠LED接続基板500と中継基板550は伝送線路H9で接続される。
中継基板550とサイドユニット右上LED基板600は伝送線路H10で接続される。
サイドユニット右上LED基板600とサイドユニット右下LED基板620は伝送線路H11で接続される。
サイドユニット右上LED基板600とサイドユニット上LED基板630は伝送線路H12で接続される。
前枠LED接続基板500とボタンLED接続基板640は伝送線路H15で接続される。
ボタンLED接続基板640とボタンLED基板660は伝送線路H16で接続される。
これらの伝送線路H9,H10,H11,H12,H15,H16は扉6内で配設されるハーネス等によるものとなる。
電源基板300は、伝送線路H1,H2,H3により各部に電源電圧を供給する。
図12に電源基板300についての電源系入出力を示している。
電源基板300は、コネクタCN1A~CN7Aが搭載されている。
コネクタCN5A,CN6A、CN7Aには、図11では図示を省略した伝送線路H40,H41,H42の伝送線路端が接続される。
以降、コネクタCN1A~CN7A或いは更に他の図に表れるコネクタも含めて、これらを総称する場合には「コネクタCN」と表記する。
そして本明細書では「コネクタCN」は基板上に設けられるコネクタ端子部品を指す。そして伝送線路Hの端部に形成されるコネクタ接続のため端子部を「伝送線路端」と呼ぶこととする。
「コネクタCN」は「伝送線路端」と接続される。或いは「コネクタCN」は対応する形状の他のコネクタCNと直接接続される場合もある。
3端子構成のコネクタCN5Aには伝送線路H40により、遊技機1の電源プラグ301からのAC24V電源が供給される(AC-IN(A)、AC-IN(B))。
またグランド端子302、伝送線路H40、コネクタCN5Aを介したFG(フレームグランド)経路(FG)が形成される。グランド端子302は例えば遊技機本体外に接続される。
2端子構成のコネクタCN6Aには伝送線路H41が接続され、グランド端子303,304を介したFG経路(FG-1)が形成される。グランド端子303,304は例えば遊技機本体に接続される。
2端子構成のコネクタCN7Aには伝送線路H42が接続され、グランド端子305,306を介したFG経路(FG-2)が形成される。グランド端子305,306は例えば遊技機本体に接続される。
14端子構成のコネクタCN1Aには伝送線路H1-1が接続される。また3端子構成のコネクタCN4Aには伝送線路H1-1が接続される。これら2つのハーネス等としての伝送線路H1-1、H1-2を、上述の図11では伝送線路H1として示した。
伝送線路H1-1により払出制御基板29に対して、35V直流電圧(DC35VA)、12V直流電圧(DC12VA)、5V直流電圧(DC5VA)が供給され、またグランド経路(GND)が形成される。
伝送線路H1-2により払出制御基板29に対して、2系統の24V直流電圧(DC24VA、DC24VB)が供給され、またFG経路(FG)が形成される。
主制御基板20に対しては、払出制御基板29を介して35V直流電圧(DC35VA)、12V直流電圧(DC12VA)、5V直流電圧(DC5VA)が供給され、またグランド経路(GND)が形成される。
20端子構成のコネクタCN2Aには伝送線路H2が接続される。
伝送線路H2により演出制御基板30に対して、5V直流電圧(DC5VB)、12V直流電圧(DC12VB)、35V直流電圧(DC35VB)が供給され、またグランド経路(GND)が形成される。
この伝送線路H2による電源供給に基づいて、演出制御基板30からLED接続基板700には、5V直流電圧(DC5VB)、12V直流電圧(DC12VB)、35V直流電圧(DC35VB)が供給され、LED接続基板700及び下流の各基板(盤裏左中継基板720、盤裏下中継基板800等)における動作電源として用いられる。
一方、枠LED中継基板840は、単なる中継配線を有する基板で電源電圧は不要とされ、演出制御基板30からの電源電圧供給は行われていない。
なお説明上、「上流」「下流」という表現を用いるが、データや制御信号に関しては、主制御基板20が最も上流で、次いで演出制御基板30とし、演出制御基板30からLEDやモータ等の実際の演出デバイスに向かって「下流」とする。
電源電圧については、電源基板300が最も上流であり、実際の演出デバイスに向かって「下流」とする。
6端子構成のコネクタCN3Aには伝送線路H3が接続される。
伝送線路H3により内枠LED中継基板400に対して、12V直流電圧(DC12VB)が供給され、またグランド経路(GND)が形成される。
つまり内枠LED中継基板400は、演出制御基板30から制御される基板であるが、電源基板300から直接電源電圧供給を受ける構成とされている。
内枠LED中継基板400より下流の扉6に設けられる各基板(前枠LED接続基板500等)は、内枠LED中継基板400から電源電圧の供給を受ける。
[5.2 内枠LED中継基板400]

以下、図11に示した基板のうちのいくつかの回路構成を説明していく。まず内枠LED中継基板400を図13,図14を用いて説明する。
図13,図14は内枠LED中継基板400に設けられる回路構成を分けて示したものである。
内枠LED中継基板400には、図13に示すコネクタCN1B、CN2B、CN3B、及び図14に示すコネクタCN4Bが搭載される。
コネクタCN1Bは枠LED中継基板840との間を接続する伝送線路H7の伝送線路端が接続される。
枠LED中継基板840についての詳細は省略するが、上述のように単なる中継配線を有する基板である。従ってコネクタCN1Bは、実質的には、伝送線路H7、枠LED中継基板840、伝送線路H6を介して演出制御基板30との間の配線を形成するものとなる。
このコネクタCN1Bは“1”~“28”の数字を付したように第1ピンから第28ピンまでの28端子構成である。
なお説明の便宜上、コネクタCNの「ピン」という用語は、ピン形状のオス端子のみを指すのではなく、オス端子、メス端子のいずれも含み、また、いわゆる平面上のコンタクトパターンや、それに対応する端子なども含むものとして用いる。
第1ピン、第3ピン、第5ピン、第7ピン、第8ピン、第17ピン、第18ピンはグランド端子とされる。第2ピンはクロック信号S_IN_CLK、第4ピンはロード信号S_IN_LOAD、第6ピンはシリアルデータ信号S_IN_DATAの各端子としてアサインされている。
第9ピンはクリア信号CLR_L、第10ピンはクリア信号CLR_M、第11ピンはクロック信号CLK_L、第12ピンはクロック信号CLK_M、第13ピンはデータ信号DATA_L、第14ピンはデータ信号DATA_M、第15ピンはイネーブル信号ENABLE_L、第16ピンはイネーブル信号ENABLE_Mの各端子としてアサインされている。
第19ピンから第28ピンはスピーカ46としての右上スピーカ、右中スピーカ、右下スピーカ、左上スピーカ、左中スピーカ、下スピーカのそれぞれについての+端子、-端子にアサインされている。
ここでシリアルデータ信号S_IN_DATAは、前枠LED接続基板500から受信され、内枠LED中継基板400から演出制御基板30へ送信されるシリアルデータである。
クロック信号S_IN_CLK、ロード信号S_IN_LOADは、演出制御基板30から内枠LED中継基板400に供給され、さらに前枠LED接続基板500に送られる。これらは下流側である前枠LED接続基板500からのシリアルデータ送信動作に用いられる。
クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_Mは、演出制御基板30から供給される演出デバイスの駆動制御に用いられる信号である。
例えばデータ信号DATA_L、DATA_Mは、LEDの階調を示す発光駆動信号やモータ駆動信号などであり、クリア信号CLR_L、CLR_M等、クロック信号CLK_L、CLK_M等、イネーブル信号ENABLE_L、ENABLE_M等は、LEDドライバやモータドライバの動作制御のための信号である。
なお、クロック信号CLK_L、CLK_M等の末尾の「_L」は主にLEDの動作制御に用いる信号で、「_M」は主にモータ動作制御に用いる信号であることを示している。
コネクタCN2Bは前枠LED接続基板500との間を接続する伝送線路H8の伝送線路端が接続される。
このコネクタCN2Bは“1”~“30”の数字を付したように第1ピンから第30ピンまでの30端子構成である。
第1ピン、第3ピンは5V直流電圧(DC5VB)の端子とされる。
第27ピンから第30ピンまでの4つのピンは12V直流電圧(DC12VB)の端子とされる。
第5ピン、第7ピン、第8ピン、第17ピン、第18ピンはグランド端子とされる。
なお、コネクタCN2Bのハウジングにおける導体点P1,P2はグランドに接続されている。これはコネクタの取り付け強度のためである。導体点P1,P2はコネクタ内部でグランド端子とは接続されていない。
他の図示する全てのコネクタCNについても、ハウジングにおける導体点P1,P2は、コネクタ内部でグランド端子とは接続されていない。
第2ピンはクロック信号S_IN_CLK、第4ピンはロード信号S_IN_LOAD、第6ピンはシリアルデータ信号S_IN_DATAの各端子としてアサインされている。
第9ピンはクリア信号CLR_L、第10ピンはクリア信号CLR_M、第11ピンはクロック信号CLK_L、第12ピンはクロック信号CLK_M、第13ピンはデータ信号DATA_L、第14ピンはデータ信号DATA_M、第15ピンは汎用出力ポート、第16ピンはイネーブル信号ENABLE_Mの各端子としてアサインされている。
第19ピンから第26ピンはスピーカ46としての右上スピーカ、右中スピーカ、右下スピーカ、左上スピーカ、左中スピーカのそれぞれについての+端子、-端子に、図示のようにアサインされている。
コネクタCN3Bは図11では図示を省略したスピーカ46の1つである下スピーカとの接続のためのコネクタである。このコネクタCN3Bは“1"2”の数字を付した第1ピン、第2ピンが下スピーカについての+端子、-端子にアサインされ、コネクタCN1Bの第27ピン、第28ピンと接続されている。
図14のコネクタCN4Bは、電源基板300との間を接続する伝送線路H3の伝送線路端が接続され、図12に示した電源基板300のコネクタCN3Aとの間で接続されることになる。
このコネクタCN4Bは“1”~“6”の数字を付したように第1ピンから第6ピンまでの6端子構成であり、電源基板300のコネクタCN3Aと同様にアサインされている。即ち第1ピン、第2ピン、第3ピンは12V直流電圧(DC12VA)が電源基板300から供給される端子とされる。第4ピン、第5ピン、第6ピンはグランド端子とされる。
この場合、内枠LED中継基板400では第1ピン、第2ピン、第3ピンからの12V直流電圧(DC12VA)を、ヒューズF1Bを介して電圧レギュレータ401に入力する構成とされ、電圧レギュレータ401の出力として5V直流電圧(DC5VB)を得るようにしている。電圧レギュレータ401の入力端子側とグランド間にはコンデンサC3B,C4B,C5B,C6Bが並列に接続される。電圧レギュレータ401の出力端子側とグランド間にはコンデンサC7B,抵抗R24Bが並列に接続される。
即ち12V直流電圧(DC12VA)から5V直流電圧(DC5VB)を生成する5V生成部410が形成されている。
図13のコネクタCN2Bの第1ピン、第3ピンからは、このように内枠LED中継基板400で生成された5V直流電圧(DC5VB)が下流側の基板に供給されることになる。
なおコネクタCN2Bの第27ピンから第30ピンを介して下流側の基板に供給される12V直流電圧(DC12VB)は、図14のコネクタCN4Bの第1ピン、第2ピン、第3ピンを介して電源基板300から供給される電圧である。
図13に示すように、内枠LED中継基板400にはICによるバッファ回路402,403が配置されている。
バッファ回路402,403としては、第1ピンのCONT端子がLレベル時にはインバータ、Hレベル時にはバッファとして機能するICを用いており、この場合、5V直流電圧(DC5VB)によりHレベルを印加することでバッファとして機能させている。
また動作電源として、第20ピンのVCC端子に5V直流電圧(DC5VB)が印加される。
バッファ回路402,403は、CMOS8回路入りのシュミットトリガバッファとされ、第2ピン(A1端子)から第9ピン(A8端子)に入力された信号に対してバッファ、即ち信号補償(劣化したH/L信号波形の修復)を行い、それぞれ第18ピン(Y1端子)から第11ピン(Y8端子)から出力する。
つまりA1端子に入力された信号はバッファ処理されてY1端子から出力され、A2端子に入力された信号はバッファ処理されてY2端子から出力され、・・・A8端子に入力された信号はバッファ処理されてY8端子から出力される。
なおバッファ処理とは信号の増幅や波形成形などによる信号補償処理のことであるが、主にデジタルデータとしてのパルス信号を対象とするため、波形成形の意味合いが大きい。以下ではこれらの処理を「バッファ処理」又は「信号補償」などと表記する。
バッファ回路402は、クロック信号S_IN_CLK、ロード信号S_IN_LOAD、シリアルデータ信号S_IN_DATAの信号補償を行う。
コネクタCN1Bの第2ピンからのクロック信号S_IN_CLKは、バッファ回路402のA3端子に入力され、Y3端子から出力されてコネクタCN2Bの第2ピンに供給される。
コネクタCN1Bの第4ピンからのロード信号S_IN_LOADは、バッファ回路402のA1端子に入力され、Y1端子から出力されてコネクタCN2Bの第4ピンに供給される。
下流側からコネクタCN2Bの第6ピンに入力されたシリアルデータ信号S_IN_DATAは、バッファ回路402のA5端子に入力され、Y5端子から出力されてコネクタCN1Bの第6ピンに供給される。
またバッファ回路402は、第3ピン(A2端子)、第5ピン(A4端子)、第7ピン(A6端子)、第8ピン(A7端子)、第9ピン(A8端子)、第10ピン(GND端子)、第19ピン(G ̄端子)はグランドに接続されている。第11ピン(Y8端子)、第12ピン(Y7端子)、第13ピン(Y6端子)、第15ピン(Y4端子)、第17ピン(Y2端子)はオープンとされている。
バッファ回路403は、クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、データ信号DATA_M、第15ピンはイネーブル信号ENABLE_L、第16ピンはイネーブル信号ENABLE_Mの信号補償を行う。
コネクタCN1Bの第9ピン~第16ピンから入力されるこれらの各信号は、それぞれバッファ回路402のA1端子~A8端子のいずれかに入力され、Y1端子~Y8端子から出力されてコネクタCN2Bの第9ピン~第16ピンに供給される。
またバッファ回路403は、第10ピン(GND端子)、第19ピン(G ̄端子)はグランドに接続されている。
以上の通り、内枠LED中継基板400では、次の構成を有する。
・演出制御基板30(枠LED中継基板840)からコネクタCN1Bに供給されるクロック信号S_IN_CLK、ロード信号S_IN_LOADを、バッファ回路402で信号補償して、コネクタCN2Bにより下流側に送信する。
・下流の前枠LED接続基板500からコネクタCN2Bに供給されるシリアルデータ信号S_IN_DATAを、バッファ回路402で信号補償して、コネクタCN1Bにより上流側に送信する。
・演出制御基板30(枠LED中継基板840)からコネクタCN1Bに供給されるクリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_Mを、バッファ回路403で信号補償して、コネクタCN2Bにより下流側に送信する。
・スピーカへの音声信号を中継して下流側の基板又はスピーカユニットへ直接送信する。
・演出制御基板30側(枠LED中継基板840)と接続されるコネクタCN1B(伝送線路H7)からは電源電圧は供給されない。
・コネクタCN4Bにより電源基板300から12V直流電圧(DC12V)を受け取り、ヒューズF1Bを介して下流側に供給する12V直流電圧(DC12VB)とする。
・12V直流電圧(DC12V)を用いて内枠LED中継基板400及び下流側で用いる5V直流電圧(DC5VB)を生成し、バッファ回路402の、403の動作電源とするとともに下流側に供給する。
なお内枠LED中継基板400では、以上言及した以外にも、図13,図14に示したとおり、所要箇所に抵抗R1B~R26B、チップ抵抗RA1B、RA2Bによる抵抗、コンデンサC1B~C17Bが接続される。
例えばクロック信号S_IN_CLK、ロード信号S_IN_LOAD、クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_Mについては、入力側(コネクタCN1B側)に抵抗R25B、R26B、R8B、R9B、R10B、R11B、R12B、R13B、R14B、R15Bがダンピング抵抗として挿入されている。また出力側(コネクタCN2B側)に抵抗R3B、R2B、チップ抵抗RA1B、RA2Bがダンピング抵抗として挿入されている。
この場合、コネクタとダンピング抵抗の間の配線距離をLA、ダンピング抵抗とバッファ回路402,403の間の配線距離をLBとした場合、
LA<LB
の関係となっている。つまり、バッファ回路402,403よりもコネクタ(CN1B又はCN2B)の近くにダンピング抵抗を配置するようにする。これにより信号ノイズの低減性能を高めている。
[5.3 前枠LED接続基板500]

前枠LED接続基板500を図15,図16,図17,図18,図19,図20を用いて説明する。これらの図は前枠LED接続基板500に設けられる回路構成を分けて示したものである。
前枠LED接続基板500にはコネクタとして、図15のコネクタCN2C、CN5C、CN6C、CN8C、図16のコネクタCN1C、CN4C、図17のコネクタCN3C、図18のコネクタCN7C、CN9C、図20のコネクタCN10Cが搭載される。
図15のコネクタCN2Cは、図13の内枠LED中継基板400のコネクタCN2Bとの間を接続する伝送線路H8の伝送線路端が接続される。
従って、このコネクタCN2Cは“1”~“30”の数字を付したように第1ピンから第30ピンまでの30端子構成であり、端子のアサインは上述のコネクタCN2Bと同様となる。コネクタCN2Cのハウジングにおける導体点P1,P2もグランドに接続されている。これはコネクタの取り付け強度のためであって導体点P1,P2はコネクタ内部でグランド端子とは接続されていない。
なお、重ねて言及しないが、後述のコネクタCN1C、CN3C、CN4C、CN7C、CN8C、CN9C、CN10Cのハウジングにおける導体点P1,P2も取り付け強度のためにグランドに接続されている。
コネクタCN5Cは、スピーカ46の1つである右中スピーカとの接続のためのコネクタである。このコネクタCN3Bは“1"2”の数字を付した第1ピン、第2ピンが右中スピーカについての+端子、-端子にアサインされ、コネクタCN2Cの第20ピン、第22ピンと接続されている。
コネクタCN6Cは、スピーカ46の1つである左中スピーカとの接続のためのコネクタである。このコネクタCN6Bは“1"2”の数字を付した第1ピン、第2ピンが左中スピーカについての+端子、-端子にアサインされ、コネクタCN2Cの第24ピン、第26ピンと接続されている。
コネクタCN8Cは、スピーカ46の1つである右上スピーカ、左上スピーカとの接続のためのコネクタである。このコネクタCN6Bは“1"2”の数字を付した第1ピン、第2ピンが右上スピーカについての+端子、-端子にアサインされ、コネクタCN2Cの第19ピン、第21ピンと接続されている。また“3"4”の数字を付した第3ピン、第4ピンが左上スピーカについての+端子、-端子にアサインされ、コネクタCN2Cの第23ピン、第25ピンと接続されている。
図16のコネクタCN1Cは、図11では図示を省略したLED基板と接続されるコネクタである。
またコネクタCN4Cも不図示のハンドル内LED基板に接続される。
コネクタCN1Cは“1”~“13”の数字を付したように第1ピンから第13ピンまでの13端子構成である。
第1ピンと第6ピンはグランド端子、第2ピンはクロック信号CLKの端子、第3ピンは5V直流電圧(DC5V)の端子、第4ピンはデータ信号DATAの端子、第5ピンはリセット信号RESETの端子、第7ピンは12V直流電圧(DC12V)の端子とされている。
第8ピンから第13ピンは、コネクタCN1Cが接続される不図示の下流側のLED基板に設けられたLEDドライバから供給されるR、G、BのLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)の入力端子である。
このLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)は、そのままコネクタCN4Cの第2ピンから第7ピンを介して不図示の別の下流側のハンドル内LED基板に供給される。
つまり前枠LED接続基板500の下流側には、コネクタCN1C、コネクタCN4Cにより不図示のLED基板とハンドル内LED基板が接続されるが、LED基板にLEDドライバが搭載される。そのLEDドライバは、コネクタCN1Cからのクロック信号CLK、5V直流電圧(DC5V)、データ信号DATA、リセット信号RESETの端子、12V直流電圧(DC12V)を用いて動作し、当該LED基板上のLEDを駆動するとともに、ハンドル内LED基板のLEDについてのLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)も生成する。LED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)は、前枠LED接続基板500を中継してハンドル内LED基板のLEDに供給されることになる。
なお、LED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)の経路となるため、コネクタCN4Cの第2ピンから第7ピンのそれぞれについては保護回路としてツェナーダイオードD8C~D15Cが接続されている。
またコネクタCN4Cの第1ピンには12V直流電圧(DC12VB)が印加され、不図示のハンドル内LED基板側に電源電圧供給がなされる。
このような構成は、前枠LED接続基板500の下流に2つのLED基板が接続され、一方にのみLEDドライバが設けるようにするために用いられる。
即ち前枠LED接続基板500は、LEDドライバの動作のために、クロック信号CLK、5V直流電圧(DC5V)、データ信号DATA、リセット信号RESET、12V直流電圧(DC12V)を出力する。そしてそのLEDドライバによるLED発光駆動電流を戻し、中継して他方のLED基板に送る構成である。
この場合、下流側の2つのLED基板の駆動について、LEDドライバが1個ですむ。特に共通のLED駆動制御信号で発光制御する場合、一方のLED基板にのみLED駆動制御信号を送信すればよく、配線構成の簡易化を促進できる。つまり、クロック信号CLK、5V直流電圧(DC5V)、データ信号DATA、リセット信号RESET、12V直流電圧(DC12V)を両方のLED基板に送信しなくてもよい。
またLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)を中継することで、下流の2つのLED基板間でこれらを伝送するハーネスが不要となる。
図17のコネクタCN3Cは、下流側の中継基板550との間を接続する伝送線路H9の伝送線路端が接続される。
このコネクタCN3Cは“1”~“22”の数字を付したように第1ピンから第22ピンまでの22端子構成である。
第1ピン、第3ピン、第11ピン、第13ピン、第18ピンの5つのピンはグランド端子とされる。
第2ピンは5V直流電圧(DC5VB)の端子とされる。
第5ピン、第7ピン、第9ピンの3つのピンは12V直流電圧(DC12VB)の端子とされる。
第4ピンはシリアルデータ信号S_IN_DATAx、第6ピンはロード信号S_IN_LOAD、第8ピンはクロック信号S_IN_CLKの各端子としてアサインされている。
第10ピンはイネーブル信号ENABLE_L、第12ピンはクリア信号CLR_P、第14ピンはリセット信号RESET_P、第15ピンはクロック信号CLK_M、第16ピンはデータ信号DATA_P、第17ピンはリセット信号RESET_M、第19ピンはデータ信号DATA_M、第20ピンは駆動汎用信号1、第21ピンはイネーブル信号ENABLE_M、第22ピンは駆動汎用信号2、の各端子としてアサインされている。
図18のコネクタCN7Cは、十字キー15a、決定キー15bや不図示の音量ボタン、光量ボタン等の検出のための不図示の基板と接続される。このコネクタCN7Cは“1”~“9”で示す第1ピンから第9ピンの9端子構成であり、第1ピンはグランド端子とされ、第2ピンから第9ピンの各ピンには十字キー15a等の操作の検出信号であるセンス信号SENS0~SENS7が入力される。
なお、第2ピンから第9ピンのセンス信号SENS0~SENS7については、チップ抵抗RA3C、RA4Cを介して5V直流電圧(DC5VB)によりプルアップされている。
コネクタCN9Cは、発射操作ハンドル15に設けられる不図示のタッチセンサと接続される。このコネクタCN9Cは“1"2”で示す2端子構成で、第1ピンはタッチセンサからのセンス信号SENS14が入力され、第2ピンはグランド端子とされる。
なお、センス信号SENS14については、抵抗R26Cを介して5V直流電圧(DC5VB)によりプルアップされている。
図20のコネクタCN10Cは、図11のボタンLED接続基板640との間を接続する伝送線路H15の伝送線路端が接続される。
このコネクタCN10Cは“1”~“20”を付した第1ピンから第20ピンまでの20端子構成である。
第2ピン、第4ピン、第12ピン、第13ピン、第19ピンの5つのピンはグランド端子とされる。
第8ピンは5V直流電圧(DC5VB)の端子とされる。
第6ピンは12V直流電圧(DC12VB)の端子とされる。
第5ピン、第7ピンは12Vモータ駆動電圧(MOT12V)の端子とされる。
第1ピンはモータ駆動信号MOTφ/2、第3ピンはモータ駆動信号MOTφ/1、第9ピンはモータ駆動信号MOTφ2、第10ピンはモータ駆動信号DCMOT3、第11ピンはモータ駆動信号MOTφ1の各端子としてアサインされている。
第14ピンはクリア信号CLR_L、第16ピンはクロック信号CLK_L、第18ピンはデータ信号DATA_Lの各端子としてアサインされている。
第15ピン、第17ピン、第20ピンは下流側からの検出信号であるセンス信号SENS8、SENS9、SENS11が入力される端子である。
なお、センス信号SENS8、SENS9、SENS11については、チップ抵抗RA5Cを介して5V直流電圧(DC5VB)によりプルアップされている。
この前枠LED接続基板500での電源電圧について説明する。
前枠LED接続基板500には、ICとして、先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファであるバッファ回路501,502,503,507,508や、トリプルバッファゲートであるバッファ回路504,512,513が搭載される。
これらに対する電源電圧としては、コネクタCN2Cの第1ピンから供給される5V直流電圧(DC5VB)が用いられる。
またICとして、図18のパラレル/シリアル(以下「P/S」)変換回路505,506が搭載されるが、これらに対する電源電圧も、コネクタCN2Cの第1ピンから供給される5V直流電圧(DC5VB)が用いられる。
またICとして、図19のS/P変換回路509(LEDドライバ)が搭載され、これに対する電源電圧としては、コネクタCN2Cの第27ピン~第30ピンから供給される12V直流電圧(DC12VB)が用いられる。
またICとして、図19のモータドライバ510,511が搭載されるが、これらは電源電圧として、12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を用いている。
12Vモータ駆動電圧(MOT12V)はモータ駆動用の電源電圧としており、12V直流電圧(DC12VS)はモータドライバ510,511等のモータドライバ用の電源電圧としている。
12Vモータ駆動電圧(MOT12V)は12V直流電圧(DC12VB)から分離している。図15に示すように、コネクタCN2Cの第27ピン~第30ピンに対しては、グランドとの間にコンデンサC11が挿入され、コンデンサC11の正極側にショットキーバリアダイオードD18Cのアノード側が接続されている。ショットキーバリアダイオードD18Cのカソード側とグランドの間には、抵抗R27C、コンデンサC12C、C13C、チップバリスタ515が並列に接続される。この構成により、過電圧保護がなされた電源電圧として12Vモータ駆動電圧(MOT12V)が分離される。
即ち12V直流電圧(DC12VA)から12Vモータ駆動電圧(MOT12V)を分離する電源分離/保護回路520が形成されている。
12V直流電圧(DC12VS)については、図19に示すダイオードD19C、抵抗R34C、コンデンサC21Cによる電源分離/保護回路521を用いて、12V直流電圧(DC12VB)から分離している。
前枠LED接続基板500における各種信号の流れについて以下説明する。
図15のコネクタCN2Cには、内枠LED中継基板400から、クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、汎用出力ポートの信号(汎用信号HANYOU)、イネーブル信号ENABLE_Mが送信されてくる。
これらの各信号は、バッファ回路501のA1端子~A8端子に入力され、信号補償される。
なお内枠LED中継基板400から供給されたクリア信号CLR_L、CLR_Mは、前枠LED接続基板500内ではリセット信号RESET_L、RESET_Mとして示している。
クロック信号CLK_L、データ信号DATA_L、リセット信号RESET_Lは、バッファ回路501で信号補償された後、チップ抵抗RA1Cを介して、図16のバッファ回路504に供給される。そしてバッファ処理された上で、コネクタCN1Cから不図示のLED基板に出力される。
また図15のバッファ回路501で信号補償された、これらのクロック信号CLK_L、汎用信号HANYOU、データ信号DATA_L、リセット信号RESET_Lは、図17のバッファ回路502のA5端子,A6端子,A7端子,A8端子に供給される。そして信号補償されたバッファ回路502のY5端子,Y6端子,Y7端子,Y8端子の出力は、コネクタCN3Cからクロック信号CLK_P、イネーブル信号ENABLE_L(汎用信号HANYOUより)、データ信号DATA_P、リセット信号RESET_Pとして中継基板550に出力される。
つまり中継基板550以降の下流側には、上流の内枠LED中継基板400から出力されてきたLED制御等のための信号が、バッファ回路501、502で信号補償されて送信されることになる。
なお、クロック信号CLK_PはツェナーダイオードD5Cと抵抗R19Cによる定電圧/保護回路、イネーブル信号ENABLE_LはツェナーダイオードD4Cと抵抗R15Cによる定電圧/保護回路、データ信号DATA_PはツェナーダイオードD6Cと抵抗R20Cによる定電圧/保護回路、リセット信号RESET_PはツェナーダイオードD7Cと抵抗R21Cによる定電圧/保護回路をそれぞれ介してコネクタCN3Cから出力される。
また、図15のバッファ回路501で信号補償されたクロック信号CLK_L、データ信号DATA_L、リセット信号RESET_Lは図20のバッファ回路512に供給される。そして増幅処理された上で、コネクタCN10CからボタンLED接続基板640に対し、クロック信号CLK_L、データ信号DATA_L、クリア信号CLR_L(リセット信号RESET_L)として出力される。
従ってボタンLED接続基板640以降の下流側には、上流の内枠LED中継基板400から出力されてきたLED制御等のための信号が、バッファ回路501、512で信号補償されて送信されることになる。
また図15のバッファ回路501で信号補償されたクロック信号CLK_L、データ信号DATA_L、汎用信号HANYOU_Lは、図19のシリアル/パラレル(S/P)変換回路509に供給される。このS/P変換回路509は、LEDドライバとしてのチップを利用して構成している。LEDドライバは、クロック信号CLK_L、データ信号DATA_Lに応じた発光駆動電流を出力するデバイスであるが、この場合、主にモータ駆動のためのシリアル/パラレル変換のために用いている。つまりLEDドライバチップをモータ駆動手段の一部として用いている。
LEDドライバチップによって構成されるS/P変換回路509は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3の7端子を用いている。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3の出力(電流23-R1、23-G1、23-B1、23-R2、23-G2、23-B2、23-R3)は、バッファ回路508でバッファ処理されたうえで、モータドライバ510の入力端子IN1、IN2、IN3、IN4、モータドライバ511の入力端子IN1、IN3、IN4に供給される。
なお、出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3は、電流23-R1、23-G1、23-B1、23-R2、23-G2、23-B2、23-R3を流すためにチップ抵抗RA6C、RA7Cを介して5V直流電圧(DC5VB)に接続されている。
モータドライバ510は入力端子IN1、IN2、IN3、IN4の信号に基づいて出力端子OUT1、OUT2、OUT3、OUT4から、モータ駆動信号MOT1-1、MOT1-/1、MOT1-2、MOT1-/2を出力する。
モータドライバ511は入力端子IN1、IN3、IN4の信号に基づいて出力端子OUT1、OUT3、OUT4から、モータ駆動信号MOT3-1、MOT3-3、MOT3-4を出力する。
モータ駆動信号MOT1-1、MOT1-/1、MOT1-2、MOT1-/2、MOT3-1は、図20のコネクタCN10に供給され、上述のようにモータ駆動信号MOTφ1、MOTφ/1、MOTφ2、MOTφ/2、DCMOT3としてボタンLED接続基板640に出力される。
モータ駆動信号MOT3-3、MOT3-4は、図17のコネクタCN3Cに供給され、上述の駆動汎用信号1、駆動汎用信号2として中継基板550に出力される。
以上は前枠LED接続基板500内において、クロック信号CLK_L-、データ信号DATA_L-、汎用信号HANYOU_L-を用いて、下流側のボタンLED接続基板640以降のモータ駆動信号を生成する回路系となる。
図15のコネクタCN2Cから入力されるクロック信号CLK_M、データ信号DATA_M、イネーブル信号ENABLE_M、クリア信号CLR_M(リセット信号RESET_M)は、バッファ回路501で信号補償された後、チップ抵抗RA2Cを介して、図17のバッファ回路503のA1端子,A3端子,A5端子,A7端子に供給される。そして信号補償されたバッファ回路503のY1端子,Y3端子,Y5端子,Y7端子の出力は、コネクタCN3Cからクロック信号CLK_M、データ信号DATA_M、イネーブル信号ENABLE_M、リセット信号RESET_Mとして中継基板550に出力される。
従って、中継基板550以降の下流側には、上流の内枠LED中継基板400からのモータ制御のための信号が、バッファ回路501、503で信号補償されて送信されることになる。
なお、クロック信号CLK_MはツェナーダイオードD12Cと抵抗R22Cによる定電圧/保護回路、イネーブル信号ENABLE_MはツェナーダイオードD16Cと抵抗R24Cによる定電圧/保護回路、データ信号DATA_MはツェナーダイオードD14Cと抵抗R23Cによる定電圧/保護回路、リセット信号RESET_MはツェナーダイオードD17Cと抵抗R25Cによる定電圧/保護回路をそれぞれ介してコネクタCN3Cから出力される。
図15のコネクタCN2Cから入力されるクロック信号S_IN_CLK、ロード信号S_IN_LOADは、図17のバッファ回路502のA3端子,A2端子に供給される。そして信号補償されたバッファ回路502のY3端子,Y2端子の出力は、コネクタCN3Cからクロック信号S_IN_CLK、ロード信号S_IN_LOADとして中継基板550に出力される。
従って、中継基板550以降の下流側には、シリアルデータ送信のための信号が、バッファ回路501、502で信号補償されて送信されることになる。
なお、クロック信号S_IN_CLKはツェナーダイオードD3Cと抵抗R11Cによる定電圧/保護回路、ロード信号S_IN_LOADはツェナーダイオードD2Cと抵抗R9Cによる定電圧/保護回路をそれぞれ介してコネクタCN3Cから出力される。
下流側の中継基板550から図17のコネクタCN3Cから入力されるシリアルデータ信号S_IN_DATAxは、バッファ回路502のA1端子に供給される。そして信号補償されたバッファ回路502のY1端子の出力は、図18のP/S変換回路505のSI端子(シリアル入力端子)に入力される。
P/S変換回路505,及び同図のP/S変換回路506は、CMOS8ビットシフトレジスタであり、8ビットのパラレル入出力、シリアル入力、およびシリアル出力を持ち、データの並列-直列変換を行う。
P/S CONT 端子=Lの場合、Q/D1端子~Q/D8端子の8端子はパラレル出力となり、SI端子のデータがCK端子の入力波形の立ち上がりで各レジスタに蓄えられるとともにQ/D1端子~Q/D8端子へ出力される。またCLR/LOAD端子=Lにすることで、CK端子の入力に非同期に各レジスタはリセットされる。
P/S CONT端子=Hの場合、Q/D1端子~Q/D8端子の8端子はパラレル入力となりCLR/LOAD端子=LでCK端子入力に非同期にQ/D1端子~Q/D8端子の入力データが各レジスタに蓄えられる。
本例の場合、P/S変換回路505、506は、P/S CONT端子に5V直流電圧(DC5VB)が印加されることとでP/S CONT端子=Hとされ、Q/D1端子~Q/D8端子の8端子はパラレル入力とされる。
また、図15のコネクタCN2Cから入力されるクロック信号S_IN_CLK、ロード信号S_IN_LOADはそれぞれバッファ回路513でバッファ処理されてP/S変換回路505、506に入力される。即ちクロック信号S_IN_CLKがCK端子の入力となり、ロード信号S_IN_LOADがCLR/LOAD端子の入力となる。
P/S変換回路505のパラレル入力端子であるQ/D1端子~Q/D8端子においては、Q/D1端子にセンス信号SENS8、Q/D2端子にセンス信号SENS9、Q/D4端子にセンス信号SENS11、Q/D7端子にセンス信号SENS14が入力される。
Q/D3端子、Q/D5端子、Q/D6端子、Q/D8端子はグランドに接続されている。即ち各入力は「0」(Lレベル)となる。
センス信号SENS8、SENS9、SENS11は、図20のコネクタCN10Cに下流のボタンLED接続基板640から入力される、ボタン操作を検出するスイッチセンサや、ボタン内部の可動体の回転位置や原点位置を検出するセンサの検出信号である。
センス信号SENS14は図18のコネクタCN9Cから入力されるタッチセンサの検出信号である。
P/S変換回路505は以上のように入力されるシリアルデータ信号S_IN_DATAx、センス信号SENS8、SENS9、SENS11、SENS14をまとめてシリアルデータに変換してQ8C端子からシリアルデータ信号SDT1として出力する。このシリアルデータ信号SDT1はP/S変換回路506のSI端子に入力される。
P/S変換回路506のパラレル入力端子であるQ/D1端子~Q/D8端子においては、Q/D1端子にセンス信号SENS0、Q/D2端子にセンス信号SENS1、Q/D3端子にセンス信号SENS2、Q/D4端子にセンス信号SENS3、Q/D5端子にセンス信号SENS4、Q/D6端子にセンス信号SENS5、Q/D7端子にセンス信号SENS6、Q/D8端子にセンス信号SENS7が入力される。
これらのセンス信号SENS0~SENS7は、図18のコネクタCN7Cに入力される、十字キー15a等の検出信号である。
コネクタCN7Cからのセンス信号SENS0~SENS7は、バッファ回路507で信号補償されたうえで、P/S変換回路506の上記の各端子に入力される。
P/S変換回路506は以上のようにSI端子入力されるP/S変換回路505からのシリアルデータ信号SDT1と、センス信号SENS0~SENS7をまとめてシリアルデータに変換し、シリアルデータ信号SDT2としてQ8端子から出力する。このシリアルデータ信号SDT2は抵抗R35C、コンデンサC27Cのよるフィルタを介してバッファ回路513に入力され、バッファ処理される。この出力が、当該前枠LED接続基板500からのシリアルデータ信号S_IN_DATAとして、図15のコネクタCN2Cから上流側に送信される。
以上の通り、前枠LED接続基板500では次の構成を有する。
図21に、上流の内枠LED中継基板400からコネクタCN2Cに供給されるクロック信号CLK_L、CLK_M、クリア信号CLR_L、CLR_M(リセット信号RESET_L、RESET_M)、データ信号DATA_L、DATA_M、汎用信号HANYOU、イネーブル信号ENABLE_Mについての流れをまとめた。
・クロック信号CLK_L、クリア信号CLR_L(リセット信号RESET_L)、データ信号DATA_L、汎用信号HANYOUは、バッファ回路501、502を介してコネクタCN3Cによりクロック信号CLK_P、リセット信号RESET_P、データ信号DATA_P、イネーブル信号ENABLE_Lとして下流側に送信される。
・クロック信号CLK_L、クリア信号CLR_L(リセット信号RESET_L)、データ信号DATA_Lは、バッファ回路504を介してコネクタCN1Cによりクロック信号CLK、リセット信号RESET、データ信号DATAとして下流側に送信される。
・クロック信号CLK_L、クリア信号CLR_L(リセット信号RESET_L)、データ信号DATA_Lは、バッファ回路512を介してコネクタCN10Cによりクロック信号CLK_L、クリア信号CLR_L、データ信号DATA_Lとして下流側に送信される。
・クロック信号CLK_L、データ信号DATA_Lは、汎用信号HANYOUは、S/P変換回路509に供給されモータ駆動電流の生成に用いられる。
・クロック信号CLK_M、クリア信号CLR_M(リセット信号RESET_M)、データ信号DATA_M、イネーブル信号ENABLE_Mは、バッファ回路501、503を介してコネクタCN3Cによりクロック信号CLK_M、リセット信号RESET_M、データ信号DATA_M、イネーブル信号ENABLE_Mとして下流側に送信される。
・モータ駆動手段として構成されるS/P変換回路509、バッファ回路508、モータドライバ510,511によりモータ駆動信号MOTφ1、MOTφ/1、MOTφ2、MOTφ/2、DCMOT3が生成され、コネクタCN10Cから下流側に送信される。
また図22に、シリアルデータ信号S_IN_DATA、クロック信号S_IN_CLK、ロード信号S_IN_LOAD、及びセンス信号SENS0~SENS7、SENS8、SENS9、SENS11、SENS14についての流れをまとめた。
・クロック信号S_IN_CLK、ロード信号S_IN_LOADは、バッファ回路502を介してコネクタCN3Cから下流側に送信される。
・クロック信号S_IN_CLK、ロード信号S_IN_LOADは、バッファ回路513を介してP/S変換回路505、506に供給され、パラレル/シリアル変換処理に用いられる。
・下流側からコネクタCN3Cに入力されるシリアルデータ信号S_IN_DATAxは、バッファ回路502を介してP/S変換回路505に入力され、P/S変換回路505でセンス信号SENS8、SENS9、SENS11、SENS14とまとめてシリアルデータ化され、シリアルデータ信号SDT1としてP/S変換回路506に入力される。また下流側からコネクタCN7Cに入力されるセンス信号SENS0~SENS7がバッファ回路507を介してP/S変換回路506に入力される。P/S変換回路506では、P/S変換回路505からのシリアルデータ信号SDT1と、センス信号SENS0~SENS7とがまとめられてシリアルデータ化され、シリアルデータ信号SDT2が出力される。このシリアルデータ信号SDT2が、バッファ回路513を介してコネクタCN2Cから上流側に、前枠LED接続基板500からのシリアルデータ信号S_IN_DATAとして送信される。
また前枠LED接続基板500ではさらに次の構成を有する。
・スピーカへの音声信号を中継してスピーカユニットへ送信する。
・コネクタCN2Cにより12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)からモータ駆動信号生成に用いる12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を分離している。LED及びLEDドライバ用の12V直流電圧(DC12VB)と、モータ駆動用の12Vモータ駆動電圧(MOT12V)と、モータドライバ用の12V直流電圧(DC12VS)として用途に応じて電源を分けることでノイズによる悪影響を防止している。
・12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を下流側に動作電源電圧として供給している。
なお前枠LED接続基板500では、以上に言及したものも含めて、図15~図20のとおり、所要箇所に抵抗R1C、R2C・・・、チップ抵抗RA1C、RA2C・・・による抵抗、コンデンサC1C、C2C・・・、ダイオード(ツェナーダイオード、ショットキーバリアダイオードを含む)D1C、D2C・・・等の電子素子が接続される。
クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、汎用出力ポートの信号(汎用信号HANYOU)、イネーブル信号ENABLE_Mなどの信号線のダンピング抵抗としては、図15のコネクタCN2C側に抵抗R8C、R10C、R12C、R13C、R14C、R16C、R17C、R18Cを挿入し、さらにチップ抵抗RA1C、RA2Cを挿入している。つまりコネクタCN2Cの近傍と信号分岐の手前にダンピング抵抗を入れることで波形を成形する構成としている。
また図示の通りタップTP1C~TP14Cが設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
[5.4 中継基板550]

中継基板550の構成を図23に示す。中継基板550にはコネクタCN1D、CN2Dが搭載される。
コネクタCN1Dは、図17の前枠LED接続基板500のコネクタCN3Cとの間を接続する伝送線路H9の伝送線路端が接続される。
従って、このコネクタCN1Dは“1”~“22”の数字を付したように第1ピンから第22ピンまでの22端子構成であり、端子のアサインは上述のコネクタCN3Cと同様となる。コネクタCN1Dのハウジングにおける導体点P1,P2も取り付け強度のためにグランドに接続されている。
コネクタCN2Dは、下流側のサイドユニット右上LED基板600との間を接続する伝送線路H10の伝送線路端が接続される。
このコネクタCN2Dは“1”~“20”の数字を付したように第1ピンから第20ピンまでの20端子構成である。
第3ピン、第9ピン、第11ピン、第16ピンの4つのピンはグランド端子とされる。
第1ピンは5V直流電圧(DC5VB)の端子とされる。
第5ピン、第7ピンの2つのピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンはシリアルデータ信号S_IN_DATAx、第4ピンはロード信号S_IN_LOAD、第6ピンはクロック信号S_IN_CLKの各端子としてアサインされている。
第8ピンはイネーブル信号ENABLE_L、第10ピンはクロック信号CLK_P、第12ピンはリセット信号RESET_P、第13ピンはクロック信号CLK_M、第14ピンはデータ信号DATA_P、第15ピンはリセット信号RESET_M、第17ピンはデータ信号DATA_M、第18ピンは駆動汎用信号1、第19ピンはイネーブル信号ENABLE_M、第20ピンは駆動汎用信号2、の各端子としてアサインされている。
この中継基板550では、コネクタCN1Dの第5ピン、第7ピン、第9ピンの3端子にアサインされている12V直流電圧(DC12VB)を、コネクタCN2D側では第5ピン、第7ピンの2端子に集約して下流側に転送している。
またコネクタCN1Dでは第1ピン、第3ピン、第11ピン、第13ピン、第18ピンの5端子をグランド端子としたものを、コネクタCN2D側では第3ピン、第9ピン、第11ピン、第16ピンの4端子としている。
これにより下流側へのコネクタCN2Dの端子数を削減している。
またコネクタCN1DとコネクタCN2Dは、コネクタの種類が異なるものとしている。コネクタCN2Dの方が1ピンあたりの定格電流が大きく、このためコネクタCN2Dの電源端子とグランド端子の数を少なくできる。
またコネクタCN2DのほうがコネクタCN1Dより抜き差しが容易で、端子が太く、ハウジングが大きいものとなっている。
[5.5 サイドユニット右上LED基板600]

サイドユニット右上LED基板600を図24,図25,図26,図27,図28,図29を用いて説明する。これらの図はサイドユニット右上LED基板600に設けられる回路構成を分けて示したものである。
サイドユニット右上LED基板600にはコネクタとして、図24のコネクタCN1E、図25のコネクタCN7E、図26のコネクタCN2E、CN3E、図28のコネクタCN4E、CN5E、CN6Eが搭載される。
図24のコネクタCN1Eは、図23の中継基板550のコネクタCN2Dとの間を接続する伝送線路H10の伝送線路端が接続される。
従って、このコネクタCN1Eは“1”~“20”の数字を付したように第1ピンから第20ピンまでの20端子構成であり、端子のアサインは上述のコネクタCN2Dと同様となる。
図25のコネクタCN7Eは、図10に示したサイドユニットデバイス101におけるセンサに接続され、第3ピンにセンス信号SENS2Xが入力される。このセンサ101Sは例えばサイドユニットデバイス101の遊技者の操作を検出するセンサである。当該センサ101Sのセンス信号SENS2Xは抵抗R64Eを介して5V直流電圧(DC5V)によりプルアップされている。
第1ピンにはサイドユニットデバイス101のセンサ101S側の電源電圧となる12V直流電圧(DC12VB)が印加される。第2ピンにはグランド端子とされる。
図26のコネクタCN2Eは、下流側のサイドユニット上LED基板630との間を接続する伝送線路H12の伝送線路端が接続される6端子構成コネクタである。
このコネクタCN2Eは第1ピンから第6ピンが、グランド端子、クロック信号CLKの端子、データ信号DATAの端子、リセット信号RESETの端子、グランド端子、12V直流電圧(DC12VB)の端子としてアサインされている。
コネクタCN3Eは、下流側のサイドユニット右下LED基板620との間を接続する伝送線路H11の伝送線路端が接続される。
このコネクタCN3Eは“1”~“16”の数字を付したように第1ピンから第16ピンまでの16端子構成である。
第1ピンは5V直流電圧(DC5VB)の端子とされる。
第8ピン、第13ピンはグランド端子とされる。
第15ピンは12Vモータ駆動電圧(MOT12V)の端子とされる。なお第15ピンとグランド間には保護回路としてツェナーダイオードD11Eが接続される。
第2ピンはクロック信号CLK、第3ピンはセンス信号SENS1X、第4ピンはデータ信号DATA、第5ピンはセンス信号SENS_A、第6ピンはリセット信号RESET、第7ピンはセンス信号SENS_B、第9ピンはセンス信号SENS_Cの各端子としてアサインされている。
なおセンス信号SENS1Xは、図25に示すように、抵抗R13Eを介して5V直流電圧(DC5V)によりプルアップされている。
またセンス信号SENS_A、センス信号SENS_B、センス信号SENS_Cもそれぞれ抵抗R29E、R27E、R21Eを介して5V直流電圧(DC5V)によりプルアップされている。
また図26のコネクタCN3Eは、第10ピンはモータ駆動信号MOT1-/2、第12ピンはモータ駆動信号MOT1-/1、第14ピンはモータ駆動信号MOT1-2、第16ピンはモータ駆動信号MOT1-1の各端子としてアサインされている。
なお第10ピン、第12ピン、第14ピン、第16ピンとグランド間には保護回路としてそれぞれツェナーダイオードD10E,D12E,D13E,D14Eが接続される。
図28のコネクタCN4Eは、サイドユニット右上可動物モータ104(図10参照)に接続される。このコネクタCN4Eは第1ピンが12Vモータ駆動電圧(MOT12V)の端子、第2ピンが振動制御信号L_VIBの端子とされる。
コネクタCN5Eは、サイドユニット右上可動物ソレノイド105(図10参照)と接続される。このコネクタCN5Eは第1ピンが12Vモータ駆動電圧(MOT12V)の端子、第2ピンがソレノイド制御信号L_SOL_01の端子とされる。
コネクタCN6Eは、サイドユニット上のブロア106(図10参照)と接続される。このコネクタCN6Eは第1ピンが12Vモータ駆動電圧(MOT12V)の端子、第2ピンがブロア制御信号L_BROの端子とされる。
なお、コネクタCN2E、CN3E、CN4E、CN5E、CN6E、CN7Eのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
このサイドユニット右上LED基板600での電源電圧について説明する。
サイドユニット右上LED基板600には、ICとして、図25のバッファ回路601,図26のバッファ回路604,図28のバッファ回路607が搭載される。これらは先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファである。
これらに対する電源電圧としては5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)は、図24のコネクタCN1Eの第1ピンから供給される5V直流電圧(DC5VB)について、ヒューズF1Eを介したコンデンサC1Eの正極側の電圧である。
またICとして、図25のP/S変換回路602,603が搭載されるが、これらに対する電源電圧も5V直流電圧(DC5V)とされる。P/S変換回路602,603は図18のP/S変換回路505と同様のICである。
またICとして、図27のLEDドライバ605、図28のS/P変換回路(LEDドライバ)606が搭載され、これに対する電源電圧としては、コネクタCN1Eの第5ピン、第7ピンから供給される12V直流電圧(DC12VB)が用いられる。
この場合の12V直流電圧(DC12VB)は、図24のコネクタCN1Eの第5ピン、第7ピンからヒューズF2Eを介したコンデンサC2Eの正極側の電圧として取り出される。
またICとして、図28のモータドライバ608,609が搭載されるが、これらは電源電圧として、12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を用いている。
12Vモータ駆動電圧(MOT12V)は12V直流電圧(DC12VB)から分離している。
図29に示すように、12V直流電圧(DC12VB)のラインに対して、ショットキーバリアダイオードD8Eのアノード側が接続されている。ショットキーバリアダイオードD8Eのカソード側とグランドの間には、抵抗R23E、コンデンサC10E、C11E、チップバリスタ611が並列に接続される。この構成により、過電圧保護がなされた電源電圧として12Vモータ駆動電圧(MOT12V)が分離される。
12V直流電圧(DC12VS)は、同図に示すように、ダイオードD7E、抵抗R17E、コンデンサC8Eによる回路を用いて、12V直流電圧(DC12VB)から分離している。
サイドユニット右上LED基板600における各種信号の流れについて以下説明する。
図24のコネクタCN1Eには、中継基板550から、ロード信号S_IN_LOAD、クロック信号S_IN_CLK、イネーブル信号ENABLE_L(リセット信号RESET_M)、クロック信号CLK_P、リセット信号RESET_P、データ信号DATA_Pが入力され、これらの信号はダンピング抵抗R66E、R9E、R11E、R12Eを介して図25のバッファ回路601に供給され、信号補償される。
なお、これらの各信号の信号経路には図24のように抵抗R3EとツェナーダイオードD2E、抵抗R6EとツェナーダイオードD3E、抵抗R66EとツェナーダイオードD15E、抵抗R9EとツェナーダイオードD6E、抵抗R11EとツェナーダイオードD5E、抵抗R12EとツェナーダイオードD15Eによる保護回路が設けられている。
クロック信号CLK_P、データ信号DATA_P、リセット信号RESET_Pは、バッファ回路601で信号補償された後、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aとして出力され、図26のバッファ回路604に入力される。この場合、クロック信号CLK_A、はA1端子とA5端子、データ信号DATA_AはA2端子とA6端子、リセット信号RESET_AはA3端子とA7端子に入力される。
そしてバッファ処理されてY1端子、Y2端子、Y3端子から出力される信号が、ダンピング抵抗R18E、R19E、R20Eを介してコネクタCN2Eからクロック信号CLK、データ信号DATA、リセット信号RESETとして出力される。
またバッファ処理されてY5端子、Y6端子、Y7端子から出力される信号がダンピング抵抗R24E、R25E、R26Eを介してコネクタCN3Eからクロック信号CLK、データ信号DATA、リセット信号RESETとして出力される。
つまり図26に示すクロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aは、それぞれバッファ回路604の入力前に2系統に分岐され、それぞれバッファ処理される。そのうえで、それぞれが、コネクタCN2E、CN3Eから別々の基板に、クロック信号CLK、データ信号DATA、リセット信号RESETとして出力される。従ってバッファ回路604が2系統への分岐を行いつつバッファ処理を行うことになり、それぞれ分岐後に適切なバッファ処理が可能となる。
また、このようにコネクタCN2E、CN3Eから出力されるクロック信号CLK、データ信号DATA、リセット信号RESETは、元々は図24のコネクタCN1Eから入力されたクロック信号CLK_P、データ信号DATA_P、リセット信号RESET_Pである。これらは上述のように図25のバッファ回路601でバッファ処理されたうえで、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aとして出力され、図26のバッファ回路604の段階で2系統に分岐される。つまり分岐前もバッファ処理されることで、それまでの伝送路での減衰が補償されたうえで分岐されることになる。共通の信号を2つの基板に分配する際に安定した信号供給を実現している。
図25のバッファ回路601から出力されるクロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aは、図27のLEDドライバ605にも供給される。
LEDドライバ605は、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aに応じた発光駆動電流を出力する。
LEDドライバ605は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3、LEDR4、LEDG4、LEDB4、LEDR5、LEDG5の14端子を用いている。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3、LEDR4、LEDG4、LEDB4、LEDR5、LEDG5は、発光部612として形成された14系統のLED回路のそれぞれに接続され、発光駆動電流(25-R1、25-G1、25-B1・・・25-R5、25-G5、25-B5)を流す。
発光部612の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
この構成では、図24のコネクタCN1Eから入力されたクロック信号CLK_P、データ信号DATA_P、リセット信号RESET_Pを、図25のバッファ回路601でバッファ処理した上で分岐される。そのバッファ処理後のクロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aは、分岐の一方として、図27のLEDドライバ605に供給される。また分岐の他方は図26のバッファ回路604に供給され、さらに分岐され、バッファ処理後にコネクタCN2E、CN3Eから下流の基板に送信される。
この場合、発光駆動制御のための信号を、バッファ回路601でバッファ処理した後にLEDドライバと下流の基板への送信用に分岐していることで、安定した送信を行うとともに、バッファ回路構成を効率化している。
また、図25のバッファ回路601から出力されるクロック信号CLK_A、データ信号DATA_A、及びリセット信号RESET_Mは、図28のS/P変換回路606に供給される。
このS/P変換回路606は、LEDドライバとしてのチップを利用して構成している。LEDドライバは、クロック信号CLK_L、データ信号DATA_Lに応じた発光駆動電流を出力するデバイスであるが、この場合、主にモータ駆動のためのシリアル/パラレル変換のために用いている。つまりLEDドライバチップをモータ駆動手段の一部として用いている。
LEDドライバチップによって構成されるS/P変換回路606は、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Mに応じた発光駆動電流を出力するデバイスであるが、この場合、主にモータ駆動のためのシリアル/パラレル変換回路として機能する。S/P変換回路606は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3の7端子を用いている。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3の出力(電流30-G1,30-B1,30-R2,30-G2,30-B2,30-R3,30-G3)は、バッファ回路607でバッファ処理されたうえで、モータドライバ608の入力端子IN2、IN3、IN4、モータドライバ609の入力端子IN1、IN2、IN3、IN4に供給される。
なお、出力端子LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3は、抵抗R60E、R61E、R62E、R56E、R57E、R58E、R59Eを介して5V直流電圧(DC5V)に接続されている。これは5V直流電圧(DC5V)を電源として、電流30-G1,30-B1,30-R2,30-G2,30-B2,30-R3,30-G3を流すためである。
モータドライバ608は入力端子IN2、IN3、IN4の信号に基づいて出力端子OUT2、OUT3、OUT4から、ブロア制御信号L_BRO、ソレノイド制御信号L_SOL01、振動制御信号L_VIBを出力する。これらのブロア制御信号L_BRO、ソレノイド制御信号L_SOL01、振動制御信号L_VIBはそれぞれコネクタCN6E、CN5E、CN4Eに供給される。
モータドライバ609は入力端子IN1、IN2、IN3、IN4の信号に基づいて出力端子OUT1、OUT2、OUT3、OUT4から、モータ駆動信号MOT1-1、MOT1-2、MOT1-/1、MOT1-/2を出力する。これらのモータ駆動信号MOT1-1、MOT1-2、MOT1-/1、MOT1-/2は図26のコネクタCN3Eに供給される。
従ってLEDドライバ605からモータドライバ609までの回路は、サイドユニット右上LED基板600内において、下流側のサイドユニット右下LED基板620のモータ駆動信号を生成する回路系となる。
図24のコネクタCN1Eから入力されるロード信号S_IN_LOAD、クロック信号S_IN_CLKはダンピング抵抗R3E、R6Eを介して、図25のバッファ回路601で信号補償された後、P/S変換回路602,603のそれぞれのCLR/LOAD端子、CK端子に入力され、パラレル/シリアル変換処理の制御を行う。
P/S変換回路602,603は、P/S CONT端子に5V直流電圧(DC5V)が印加されることとでP/S CONT端子=Hとされ、Q/D1端子~Q/D8端子の8端子はパラレル入力とされる。
P/S変換回路603のパラレル入力端子であるQ/D1端子~Q/D8端子においては、Q/D1端子にセンス信号SENS_C、Q/D2端子にセンス信号SENS_B、Q/D4端子にセンス信号SENS_A、Q/D4端子にセンス信号SENS1X、Q/D5端子にセンス信号SENS2Xが入力される。
Q/D6端子、Q/D7端子、Q/D8端子はグランドに接続されている。
センス信号SENS_A、SENS_B、SENS_C、SENS1Xは、コネクタCN3Eから入力される。センス信号SENS2XはコネクタCN7Eから入力される。
P/S変換回路603は以上のように入力されるセンス信号SENS_A、SENS_B、SENS_C、SENS1X、SENS2Xをまとめてシリアルデータ(シリアルデータ信号SDT3)に変換してQ8C端子から出力する。このシリアルデータ信号SDT3はP/S変換回路602のSI端子に入力される。
P/S変換回路602のパラレル入力端子であるQ/D1端子~Q/D8端子においては、Q/D1端子、Q/D2端子、Q/D8端子に5V直流電圧(DC5V)が印加され、他はグランドに接続されている。
P/S変換回路602はSI端子に入力されるP/S変換回路603からのシリアルデータ信号SDT3と、Q/D1端子~Q/D8端子の論理(H/L)をまとめてシリアルデータ(シリアルデータ信号SDT4)に変換してQ8端子から出力する。このシリアルデータ信号SDT4はバッファ回路601に入力され、バッファ処理される。この出力が当該サイドユニット右上LED基板600からのシリアルデータ信号S_IN_DATAxとして、図24のダンピング抵抗R1Eを介してコネクタCN1Eから上流側に送信される。
以上の通り、サイドユニット右上LED基板600では次の構成を有する。
・イネーブル信号ENABLE_L(リセット信号RESET_M)、クロック信号CLK_P、リセット信号RESET_P、データ信号DATA_Pが入力され、これらに対してバッファ回路601でバッファ処理を行う。そしてバッファ処理後の信号は、LED発光に用いられたり、モータ駆動信号の生成に用いられたり、下流側へ転送されたりする。
・クロック信号S_IN_CLK、ロード信号S_IN_LOADは、バッファ回路601介してP/S変換回路602,603に供給され、パラレル/シリアル変換処理に用いられる。
・各種センス信号SENS_A、SENS_B、SENS_C、SENS1X、SENS2Xをまとめてシリアルデータに変換してシリアルデータ信号S_IN_DATAxが生成される。このシリアルデータ信号S_IN_DATAxを上流側に送信される。なお上述のように、このシリアルデータ信号S_IN_DATAxは、前枠LED接続基板500においてさらにセンス信号SENS8、SENS9、SENS11、SENS1とともにシリアルデータ化され、シリアルデータ信号S_IN_DATAとされて内枠LED中継基板400を介して演出制御基板30に送信されることになる。
・コネクタCN1Eにより12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)からモータ駆動信号生成に用いる12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を分離している。
・12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を下流側に動作電源電圧として供給している。
なおサイドユニット右上LED基板600では、以上に言及したものも含めて、図24~図29に示すとおり、所要箇所に抵抗R1E、R2E・・・、コンデンサC1E、C2E・・・、ダイオード(ツェナーダイオードを含む)D1E、D2E・・・等の電子素子が接続される。
また図示の通りタップTP1E、TP2E・・・が設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
[5.6 サイドユニット右下LED基板620]

サイドユニット右下LED基板620を図30,図31を用いて説明する。これらの図はサイドユニット右下LED基板620に設けられる回路構成を分けて示したものである。
サイドユニット右下LED基板620にはコネクタとして、図30のコネクタCN1F、CN3F、CN4F、図31のコネクタCN2Fが搭載される。
図30のコネクタCN3Fは、図26のサイドユニット右上LED基板600のコネクタCN3Eとの間を接続する伝送線路H11の伝送線路端が接続される。
従って、このコネクタCN3Fは“1”~“16”の数字を付したように第1ピンから第16ピンまでの16端子構成であり、端子のアサインは上述のコネクタCN3Eと同様となる。
コネクタCN1Fは、図10に示したサイドユニット右下可動物モータ103に接続される。
第3ピン、第4ピンには12Vモータ駆動電圧(MOT12V)が印加される。第1ピン、第2ピン、第5ピン、第6ピンからはコネクタCN3Fから入力されたモータ駆動信号MOT1-/2、MOT1-/1、MOT1-2、MOT1-1が出力される。
コネクタCN4Fは、図10に示したサイドユニット右下可動物位置検出スイッチ102に接続される。
第1ピンは12V直流電圧(DC12VB)、第2ピンはグランドの端子とされる。第3ピンは、接続された位置検出スイッチからのセンス信号SENS1Xの入力端子となる。
図31のコネクタCN2Fは、サイドユニット10に配置されるLED基板(不図示)に接続される。第1ピンは12V直流電圧(DC12VB)の端子とされる。第2ピンから第5ピンは発光駆動信号の端子となる。
なお、コネクタCN1F、CN2F、CN3F、CN4Fのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
このサイドユニット右下LED基板620での電源電圧について説明する。
サイドユニット右下LED基板620には、フォトカプラPC1F、PC2F、PC3Fが搭載される。
これらに対する電源電圧としては5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN3Fの第1ピンから供給される。
またサイドユニット右下LED基板620には、ICとして、図31のLEDドライバ621が搭載され、これに対する電源電圧としては、コネクタCN1Eの第11ピンから供給される12V直流電圧(DC12VB)が用いられる。
また、図30のコネクタCN1Fから出力される12Vモータ駆動電圧(MOT12V)は、コネクタCN3Fの第15ピンから供給される。
サイドユニット右下LED基板620における各種信号の流れについて説明する。
コネクタCN3Fには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号は図31のLEDドライバ621に供給される。
LEDドライバ621は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
LEDドライバ621は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3、LEDR4、LEDG4、LEDB4の12端子を用いLED発光駆動を行う。また出力端子LEDR7、LEDG7、LEDB7、LEDR8の4端子を用いてコネクタCN2Fに接続された不図示のLED基板のLED発光駆動を行う。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3、LEDR4、LEDG4、LEDB4は、発光部622として形成された12系統のLED回路のそれぞれに接続され、発光駆動電流(27-R1、27-G1、27-B1・・・27-R4、27-G4、27-B4)を流す。
発光部622の各系統のLED回路は、それぞれ図示のとおり、1又は3つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
出力端子LEDR7、LEDG7、LEDB7、LEDR8は発光駆動部623の4系統に接続される。発光駆動部623では、4系統の発光駆動電流(27-R7、27-G7、27-B7・・・27-R8)をコネクタCN2Fから出力する。
図30のフォトカプラPC1F、PC2F、PC3Fによって、センス信号SENS_A、SENS_B、SENS_Cが得られる。これらはコネクタCN3Fからサイドユニット右上LED基板600に送信される。
またコネクタCN4Fから得られるセンス信号SENS1XもコネクタCN3Fからサイドユニット右上LED基板600に送信される。
これらのセンス信号SENS_A、SENS_B、SENS_C、SENS1Xは上述のようにシリアルデータ化される。
なおサイドユニット右下LED基板620では、以上に言及したものも含めて、図30、図31に示すとおり、所要箇所に抵抗R1F、R2F・・・、コンデンサC1F、C2F・・・等の電子素子が接続される。
また図示の通りタップTP1F、TP2F・・・が設けられ所要箇所との接続に用いられる。
[5.7 サイドユニット上LED基板630]

サイドユニット上LED基板630を、図32を用いて説明する。
サイドユニット上LED基板630にはコネクタCN1Tが搭載される。
コネクタCN1Tは、図26のサイドユニット右上LED基板600のコネクタCN2Eとの間を接続する伝送線路H12の伝送線路端が接続される。
従って、このコネクタCN1Tは“1”~“6”の数字を付したように第1ピンから第6ピンまでの6端子構成であり、端子のアサインは上述のコネクタCN2Eと同様となる。
なお、コネクタCN1Tのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
このサイドユニット上LED基板630には、ICとして、LEDドライバ631が搭載され、これに対する電源電圧としては、コネクタCN1Tの第6ピンから供給される12V直流電圧(DC12VB)が用いられる。
各種信号の流れについて説明する。
コネクタCN1Tには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号はLEDドライバ631に供給される。
LEDドライバ631は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
LEDドライバ631は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3の9端子を用いてLED発光駆動を行う。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3は、発光部632として形成された9系統のLED回路のそれぞれに接続され、発光駆動電流(27-R1、27-G1、27-B1・・・27-R3、27-G3、27-B3)を流す。
発光部632の各系統のLED回路は、それぞれ図示のとおり、2つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
なおサイドユニット上LED基板630では、以上に言及したものも含めて、図32に示すとおり、所要箇所に抵抗R1T、R2T・・・、コンデンサC1T、C2T・・・等の電子素子が接続される。
また図示の通りタップTP1T、TP2T・・・が設けられ所要箇所との接続に用いられる。
[5.8 ボタンLED接続基板640]

ボタンLED接続基板640を、図33を用いて説明する。
ボタンLED接続基板640にはコネクタとして、コネクタCN1G、CN2G、CN3G、CN4G、CN5G、CN6G、CN8Gが搭載される。
コネクタCN1Gは、図20の前枠LED接続基板500のコネクタCN10Cとの間を接続する伝送線路H15の伝送線路端が接続される。
従って、このコネクタCN1Eは“1”~“20”の数字を付したように第1ピンから第20ピンまでの20端子構成であり、端子のアサインは上述のコネクタCN10Cと同様となる。
コネクタCN2Gは、図11に示したボタンLED基板660との間を接続する伝送線路H16の伝送線路端が接続される。
第3ピン、第7ピンにはボタンLED基板660の電源電圧となる12V直流電圧(DC12VB)が印加される。第1ピンと第6ピンはグランド端子とされている。
第2ピン、第4ピン、第5ピンは、それぞれクロック信号CLK、データ信号DATA、リセット信号RESETの端子とされる。
コネクタCN3Gは、不図示のモータに接続される。
コネクタCN1Gから入力されるモータ駆動信号MOTφ1、MOTφ/1、MOTφ2、MOTφ/2は、コネクタCN3Gの第6ピン、第2ピン、第5ピン、第1ピンから出力される。
またコネクタCN1Gから入力される12Vモータ駆動電圧(MOT12V)が、図示の12Vモータ駆動電圧(MOT12VA)として第3ピン、第4ピンに印加される。
コネクタCN4Gは、不図示の振動デバイスに接続される。第1ピンに振動デバイスの電源電圧として12Vモータ駆動電圧(MOT12VA)が印加され、第2ピンに振動デバイスの駆動信号として、コネクタCN1Gから入力されるモータ駆動信号DCMOT3が出力される。振動デバイスにはDCモータが用いられている。
コネクタCN5Gは、演出ボタン13内の押しボタンセンサに接続される。
第1ピンは12V直流電圧(DC12VB)、第2ピンはグランドの端子とされる。第3ピンは、接続された押しボタンセンサからのセンス信号SENS8の入力端子となる。
コネクタCN6Gは、回転原点センサに接続される。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された回転原点センサからのセンス信号SENS9の入力端子となる。
コネクタCN8Gは、回転演出ライトセンサに接続される。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された回転演出ライトセンサからのセンス信号SENS11の入力端子となる。
なお、各コネクタCN1G、CN2G、CN3G、CN4G、CN5G、CN6G、CN8Gのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
このボタンLED接続基板640にはバッファ回路641が搭載される。これに対する電源電圧としては、5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN1Gの第8ピンから供給される。
ボタンLED接続基板640における各種信号の流れについて説明する。
上流の前枠LED接続基板500からコネクタCN1Gに供給されるクロック信号CLK_L、クリア信号CLR_L、データ信号DATA_Lは、チップ抵抗RA1Gを介してバッファ回路641に入力され、バッファ処理される。そしてチップ抵抗RA2Gを介してコネクタCN2Gに送られ、下流のボタンLED基板660に送信される。
なおバッファ回路641の5V直流電圧(DC5V)とグランド間にコンデンサC1Gが挿入される。
なお図示を省略しているが、ボタンLED接続基板640では、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
[5.9 ボタンLED基板660]

ボタンLED基板660を図34,図35を用いて説明する。これらの図はボタンLED基板660に設けられる回路構成を分けて示したものである。
ボタンLED基板660図34のコネクタCN1Hが搭載される。
コネクタCN1Hは、図33のボタンLED接続基板640のコネクタCN2Gとの間を接続する伝送線路H16の伝送線路端が接続される。
従って、このコネクタCN1Hは“1”~“7”の数字を付したように第1ピンから第7ピンまでの7端子構成であり、端子のアサインは上述のコネクタCN2Gと同様となる。
またコネクタCN1Hのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
このボタンLED基板660には、コネクタCN1Hに入力される電源電圧として12V直流電圧(DC12VB)が供給されている。
ボタンLED基板660には、ICとして、図34のLEDドライバ661、図35のLEDドライバ663が搭載され、これに対する電源電圧としては、12V直流電圧(DC12VB)が用いられる。
発光部664,662の電源電圧も12V直流電圧(DC12VB)が用いられる。
ボタンLED基板660における各種信号の流れについて説明する。
コネクタCN1Hには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号は図34のチップ抵抗RA1Hを介してLEDドライバ661に供給される。
LEDドライバ661は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
LEDドライバ661は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を用いて24系統のLED発光駆動を行う。
即ち出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8には、発光部662として形成された24系統のLED回路のそれぞれに接続され、発光駆動電流(19-R1、19-G1、19-B1・・・19-R8、19-G8、19-B8)を流す。
発光部662の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
クロック信号CLK、データ信号DATA、リセット信号RESETは、図35のLEDドライバ663にも供給される。
LEDドライバ663は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR6、LEDG6、LEDB6を、3端子ずつ用いて6系統のLED発光駆動を行う。
即ち出力端子LEDR1、LEDG1、LEDB1・・・LEDR6、LEDG6、LEDB6には、発光部664として形成された6系統のLED回路のそれぞれに接続され、発光駆動電流(20-R1、20-G1、20-B1・・・20-R6、20-G6、20-B6)を流す。
発光部664の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLEDの直列接続と抵抗素子により構成されている。各LEDには並列にツェナーダイオードが接続されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
なおサイドユニット右下LED基板620では、以上に言及したもの以外にも、図34、図35に示すとおり、所要箇所に抵抗R1H、R2H・・・、コンデンサC1H、C2H・・・、ダイオード(ツェナーダイオードも含む)D1H、D2H・・・等の電子素子が接続される。
また図示の通りタップTP1H、TP2H・・・が設けられ所要箇所との接続に用いられる。
[5.10 LED接続基板700]

続いて、遊技盤3側に配置される基板を説明していく。
まずLED接続基板700を図36,図37,図38,図39,図40,図41を用いて説明する。これらの図はLED接続基板700に設けられる回路構成を分けて示したものである。
LED接続基板700は図11のとおり、遊技盤3において演出制御基板30と接続される基板である。
LED接続基板700にはコネクタとして、図36のコネクタCN1J、図37のコネクタCN5J、CN6J、図38のコネクタCN2J、CN3J、CN4J、CN12J、図39のコネクタCN10J、図40のコネクタCN7C、CN11J、図41のコネクタCN8J、CN9Jが搭載される。
図36のコネクタCN1Jは、図11のように演出制御基板30との間を接続する伝送線路H20の伝送線路端が接続される。
このコネクタCN1Jは“1”~“40”の数字を付したように第1ピンから第40ピンまでの40端子構成である。
コネクタCN1Jの第1ピン、第2ピン、第8ピン、第9ピン、第10ピン、第16ピン、第18ピン、第19ピン、第20ピン、第22ピン、第29ピン、第31ピン、第32ピン、33ピン、第34ピン、第39ピン、第40ピンはグランドに接続される。
第4ピン、第6ピンは5V直流電圧(DC5VB)の端子とされる。
第12ピン、第14ピン、第24ピン、第26ピン、第28ピン、第30ピンは12V直流電圧(DC12VB)の端子とされる。
第11ピン、第17ピン、第35ピン、第37ピンは未使用である。
第3ピンはクロック信号P_S_IN_CLK、第5ピンはシリアルデータ信号P_S_IN_DATA、第7ピンはロード信号P_S_IN_LOADの各端子としてアサインされている。
なお、シリアルデータ信号P_S_IN_DATAはLED接続基板700から演出制御基板30に送信するシリアルデータであり、クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADは、シリアルデータ信号P_S_IN_DATAの送信のために演出制御基板30から供給される信号である。
第13ピンはクロック信号P_S_OUT_CLK、第15ピンはシリアルデータ信号P_S_OUT_DATAの各端子としてアサインされている。
シリアルデータ信号P_S_OUT_DATAはクロック信号P_S_OUT_CLKとともに演出制御基板30から送信されてくるシリアルデータである。
第21ピンはクリア信号M_S_CLR(リセット信号RESET_M)、第23ピンはクロック信号M_S_OUT_CLK(クロック信号CLK_M)、第25ピンはシリアルデータ信号M_S_OUT_DATA(シリアルデータ信号DATA_M)、第27ピンはイネーブル信号M_S_ENABLEP(ラッチ信号LATCH_M)の各端子としてアサインされている。
シリアルデータ信号M_S_OUT_DATAはクロック信号M_S_OUT_CLKとともに演出制御基板30から送信されてくるシリアルデータである。
なお、コネクタCN1J及び後述のコネクタCN2J、CN3J、CN4J、CN5J、CN6J、CN7J、CN8J、CN9J、CN10J、CN11J、CN12Jのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
図37のコネクタCN5Jは、不図示の可動物のモータに接続される。第3ピン、第4ピンにはモータの電源電圧となる18V直流電圧(MOT18VA)が印加される。
第1ピンはモータ駆動信号MOT6-/2、第2ピンはモータ駆動信号MOT6-/1、第5ピンはモータ駆動信号MOT6-2、第6ピンはモータ駆動信号MOT6-1の各端子としてアサインされている。
図37のコネクタCN6Jも不図示の他の可動物のモータに接続される。第3ピン、第4ピンにはモータの電源電圧となる18V直流電圧(MOT18VA)が印加される。
第1ピンはモータ駆動信号MOT7-/2、第2ピンはモータ駆動信号MOT7-/1、第5ピンはモータ駆動信号MOT7-2、第6ピンはモータ駆動信号MOT7-1の各端子としてアサインされている。
図38のコネクタCN2Jは、役物の位置検出スイッチと接続される。第1ピンには位置検出スイッチ側の電源電圧となる12V直流電圧(DC12VB)が印加される。第3ピンはグランド端子とされる。
このコネクタCN2Jの第2ピンには例えば下奥可動物右位置検出スイッチ121(図10参照)の検出信号であるセンス信号SENSv0が入力される。センス信号SENSv0については、抵抗R5Jを介して5V直流電圧(DC5V)によりプルアップされている。
コネクタCN4Jも役物の位置検出スイッチと接続され、第1ピンは位置検出スイッチ側の電源電圧となる12V直流電圧(DC12VB)の端子、第3ピンはグランド端子とされる。
このコネクタCN4Jの第2ピンには例えば、下奥可動物左位置検出スイッチ125(図10参照)の検出信号であるセンス信号SENSv1が入力される。センス信号SENSv1については、抵抗R29Jを介して5V直流電圧(DC5V)によりプルアップされている。
コネクタCN12Jも役物の位置検出スイッチと接続され、第1ピンは位置検出スイッチ側の電源電圧となる12V直流電圧(DC12VB)の端子、第3ピンはグランド端子とされる。
このコネクタCN12Jの第2ピンには例えば、下奥可動物上位置検出スイッチ120(図10参照)の検出信号であるセンス信号SENSv9が入力される。センス信号SENSv9については、抵抗R31Jを介して5V直流電圧(DC5V)によりプルアップされている。
コネクタCN3Jは、図7の電源モジュール基板904に接続される。第1ピン、第2ピン、第4ピンが18V直流電圧Vout、第7ピン、第9ピン、第10ピンが35V直流電圧(DC35V)、第5ピン、第6ピン、第8ピンがグランドの各端子として用いられる。
図39のコネクタCN10Jは、不図示の中継基板と接続される。“1”~“32”の数字を付したように第1ピンから第32ピンまでの32端子構成である
第1ピンはヒューズF6Jを介して12V直流電圧(DC12VB)が印加される端子、第2ピンはヒューズF9Jを介して5V直流電圧(DC5V)が印加される端子、第3ピン、第4ピン、第5ピンは12Vモータ駆動電圧(MOT12V)が印加される端子である。
第9ピン、第13ピン、第17ピン、第21ピン、第25ピン、第27ピン、第29ピン、第30ピン、第31ピン、第32ピンはグランドに接続される。
第7ピンはモータ駆動信号MOT1-/2、第8ピンはモータ駆動信号MOT1-/1、第10ピンはモータ駆動信号MOT1-2、第12ピンはモータ駆動信号MOT1-1の各端子としてアサインされている。
第14ピンはモータ駆動信号MOT2-/2、第16ピンはモータ駆動信号MOT2-/1、第18ピンはモータ駆動信号MOT2-2、第20ピンはモータ駆動信号MOT2-1の各端子としてアサインされている。
第22ピンはモータ駆動信号MOT3-/2、第24ピンはモータ駆動信号MOT3-/1、第26ピンはモータ駆動信号MOT3-2、第28ピンはモータ駆動信号MOT3-1の各端子としてアサインされている。
第7ピンはクロック信号CLK_Bの端子、第11ピンはデータ信号DATA_Bの端子である。第15ピンはセンス信号SENSv2の端子、第19ピンはセンス信号SENSv3の端子、第23ピンはセンス信号SENSv4の端子とされている。
センス信号SENSv2は例えば図10の上可動物位置検出スイッチ132の検出信号、センス信号SENSv3は例えば上可動物左位置検出スイッチ130の検出信号、センス信号SENSv4は例えば左可動物位置検出スイッチ134の検出信号である。
図40のコネクタCN7Jは、不図示のLED基板と接続される。第1ピンは12V直流電圧(DC12VB)の端子とされる。第5ピンと第6ピンは18VLED駆動電圧(LED18V)の端子とされる。第4ピン、第7ピン、第8ピンはグランドに接続される。
第2ピンはクロック信号CLK_Eの端子、第3ピンはデータ信号DATA_Eの端子である。
コネクタCN11Jは図11に示した盤裏下中継基板800との間を接続する伝送線路H30の伝送線路端が接続される。“1”~“16”の数字を付したように第1ピンから第16ピンまでの16端子構成である。
第4ピン、第6ピンはヒューズF10Jを介して12V直流電圧(DC12VB)が印加される端子、第7ピン、第9ピンはヒューズF11Jを介して12Vモータ駆動電圧(MOT12V)が印加される端子である。
第1ピン、第15ピン、第16ピンはグランドに接続される。
第3ピンはモータ駆動信号MOT4-/2、第5ピンはモータ駆動信号MOT4-/1、第11ピンはモータ駆動信号MOT4-2、第13ピンはモータ駆動信号MOT4-1の各端子とされる。
第14ピンはセンス信号SENSv7の端子とされている。センス信号SENSv7は例えば図10の下前可動物位置検出スイッチ123の検出信号である。
第2ピン、第8ピン、第10ピン、第12ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8を盤裏下中継基板800側に出力する端子である。
図41のコネクタCN9Jは、不図示のLED基板と接続される。第1ピンは12V直流電圧(DC12VB)の端子とされる。第10ピンは5V直流電圧(DC5V)の端子とされる。第4ピン、第9ピンはグランドに接続される。
第2ピンはクロック信号CLK_Dの端子、第3ピンはデータ信号DATA_Dの端子である。
第8ピン、第7ピン、第6ピン、第5ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8の端子である。この発光駆動電流13-B7、13-R8、13-G8、13-B8は不図示のLED基板に搭載されたLEDドライバによって流されるものである。コネクタCN9Jの第2ピン、第3ピンからのクロック信号CLK_Dとデータ信号DATA_Dは、その不図示のLED基板に搭載されたLEDドライバに供給され、それに基づいてLEDドライバにより発光駆動電流13-B7、13-R8、13-G8、13-B8が流される。この発光駆動電流13-B7、13-R8、13-G8、13-B8は、図40のコネクタCN11Jから、盤裏下中継基板800を介して、後述する装飾基板820の発光部821(図48参照)のLEDに流れ、それらのLEDを発光させる。
コネクタCN9Jの第11ピンはセンス信号SENSv8の端子とされている。センス信号SENSv8は例えば図10の振り分け位置検出スイッチ122の検出信号である。
図41のコネクタCN8Jは図11に示した盤裏左中継基板720との間を接続する伝送線路H21の伝送線路端が接続される。“1”~“24”の数字を付したように第1ピンから第24ピンまでの24端子構成である。
第1ピン~第4ピンはヒューズF12Jを介して18Vモータ駆動電圧(MOT18VB)が印加される端子、第5ピン、第9ピンはヒューズF7Jを介して12V直流電圧(DC12VB)が印加される端子、第11ピンはヒューズF8Jを介して5V直流電圧(DC5VB)が印加される端子である。
第7ピン、第13ピン、第14ピン、第19ピン、第20ピンはグランドに接続される。
第15ピンはクロック信号CLK_Cの端子、第17ピンはデータ信号DATA_Cの端子である。
第6ピンと第8ピンはモータ駆動信号MOT5-/2、第10ピンと第12ピンはモータ駆動信号MOT5-/1、第16ピンと第18ピンはモータ駆動信号MOT5-2、第22ピンと第24ピンはモータ駆動信号MOT5-1の各端子とされる。この場合、駆動するモータが高トルクのモータとされており18Vモータ駆動電圧(MOT18VB)で駆動する。そして消費電力が多いためモータ駆動信号MOT5-/2、MOT5-/1、MOT5-2、MOT5-1は、それぞれ2本のピン/線路を用いるようにしている。
第21ピンはセンス信号SENSv6の端子、第23ピンはセンス信号SENSv5の端子とされている。センス信号SENSv6は例えば図10の下奥可動物下左位置検出スイッチ128の検出信号、センス信号SENSv5は例えば下奥可動物下右位置検出スイッチ127の検出信号である。
このLED接続基板700での電源電圧について説明する。
LED接続基板700には、ICとして、先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファである図36のバッファ回路703、704や、トリプルバッファゲートである図39のバッファ回路705、図41のバッファ回路707,708が搭載される。
これらに対する電源電圧としては、図36に示したように、コネクタCN1Jからの5V直流電圧(DC5VB)に基づく5V直流電圧(DC5V)が用いられる。
またICとして、図36のP/S変換回路701,702が搭載されるが、これらに対する電源電圧も5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5VB)は、コネクタCN1JからヒューズF1Jを介した、コンデンサC4Jの正極側から取り出される。なおP/S変換回路701,702は図18のP/S変換回路505と同様のICである。
なお、コネクタCN2J、CN4J、CN7J、CN8J、CN10J、CN11J、CN12Jから下流側に出力される12V直流電圧(DC12VB)は、コネクタCN1JからヒューズF2Jを介した、コンデンサC5Jの正極側から取り出される。
またLED接続基板700には、ICとして、図37のモータドライバ710~713が搭載され、これらに対する電源電圧としては、12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を用いている。
さらにモータドライバ714、715,716が搭載され、これらに対する電源電圧としては、18Vモータ駆動電圧(MOT18VA)と12V直流電圧(DC12VS)を用いている。
12Vモータ駆動電圧(MOT12V)は電源分離/保護回路719により12V直流電圧(DC12VB)から分離している。
図36に示すように、コネクタCN1Jの第12ピン、第14ピン、第24ピン、第26ピン、第28ピン、第30ピンに対しては、ショットキーバリアダイオードD5Jのアノード側が接続されている。ショットキーバリアダイオードD5Jのカソード側とグランドの間には、抵抗R6J、コンデンサC14J、C15J、チップバリスタ709が並列に接続される。この電源分離/保護回路719としての構成により、過電圧保護がなされた電源電圧として12Vモータ駆動電圧(MOT12V)が分離される。
12V直流電圧(DC12VS)は、図38に示すダイオードD1J、抵抗R1J、コンデンサC3Jによる回路を用いて、12V直流電圧(DC12VB)から分離している。
18Vモータ駆動電圧(MOT18VA)、18Vモータ駆動電圧(MOT18VB)、及び18VLED駆動電圧(LED18V)は、同じく図38に示すようにコネクタCN3Jから入力される18V直流電圧Voutから分離される。
18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF3Jを介してショットキーバリアダイオードD7Jのアノード側が接続されている。ショットキーバリアダイオードD7Jのカソード側とグランドの間には、抵抗R7J、コンデンサC17J、C18Jが並列に接続される。この構成により18Vモータ駆動電圧(MOT18VA)が取り出される。
また同じく18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF4Jを介してショットキーバリアダイオードD9Jのアノード側が接続されている。ショットキーバリアダイオードD9Jのカソード側とグランドの間には、抵抗R8J、コンデンサC20J、C21Jが並列に接続される。この構成により18Vモータ駆動電圧(MOT18VB)が取り出される。
また同じく18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF5Jを介してショットキーバリアダイオードD11Jのアノード側が接続されている。ショットキーバリアダイオードD11Jのカソード側とグランドの間には、抵抗R9J、コンデンサC23J、C24Jが並列に接続される。この構成により18VLED駆動電圧(LED18V)が取り出される。
LED接続基板700における各種信号の流れについて以下説明する。
図36のコネクタCN1Jには、演出制御基板30から、クロック信号P_S_OUT_CLK、シリアルデータ信号P_S_OUT_DATAが送信されてくる。これらは、LED接続基板700よりも下流の動作制御に用いられる信号である。
クロック信号P_S_OUT_CLK、シリアルデータ信号P_S_OUT_DATAは、図36でクロック信号CLK_P、シリアルデータ信号DATA_Pとして示すようにバッファ回路703のA5端子、A7端子に入力されて信号補償される。
そしてバッファ回路703のY5端子、Y7端子から出力され、クロック信号CLK_A、シリアルデータ信号DATA_Aとして示すように図40のバッファ回路706に入力されてバッファ処理される。そしてコネクタCN7Jから、クロック信号CLK_E、シリアルデータ信号DATA_Eとして示すように下流側に送信される。
またバッファ回路703のY5端子、Y7端子から出力されるクロック信号CLK_A、シリアルデータ信号DATA_Aは、図39のバッファ回路705にも入力されてバッファ処理され、コネクタCN10Jから、クロック信号CLK_B、シリアルデータ信号DATA_Bとして下流側に送信される。
さらにクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路707にも入力されてバッファ処理され、コネクタCN9Jから、クロック信号CLK_D、シリアルデータ信号DATA_Dとして下流側に送信される。
さらにクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路708にも入力されてバッファ処理され、コネクタCN8Jから、クロック信号CLK_C、シリアルデータ信号DATA_Cとして下流側の盤裏左中継基板720に送信される。
図36のコネクタCN1Jには、演出制御基板30から、クリア信号M_S_CLR(リセット信号RESET_M)、クロック信号M_S_OUT_CLK(クロック信号CLK_M)、シリアルデータ信号M_S_OUT_DATA(シリアルデータ信号DATA_M)、イネーブル信号M_S_ENABLEP(ラッチ信号LATCH_M)が送信されてくる。
これらはモータ駆動のための制御に用いられる。
これらの信号はバッファ回路704のA7端子、A1端子、A3端子、A5端子に入力されて信号補償される。そしてチップ抵抗RA4Jを介して、図37のモータドライバ710~716にそれぞれ入力される。
即ちモータドライバ710~716のそれぞれにおいて、リセット信号RESET_MはRESET端子に、ラッチ信号LATCH_MはLATCH端子に、クロック信号CLK_MはSCLK端子に、シリアルデータ信号DATA_MはSDIN端子に、それぞれ入力される。
モータドライバ710~713は、これらの入力に応じて、それぞれ12V系のモータ駆動信号を生成する。
即ちモータドライバ710は、コネクタCN10Jから出力するモータ駆動信号MOT1-/2、MOT1-/1、MOT1-2、MOT1-1を生成する。
モータドライバ711は、コネクタCN10Jから出力するモータ駆動信号MOT2-/2、MOT2-/1、MOT2-2、MOT2-1を生成する。
モータドライバ712は、コネクタCN10Jから出力するモータ駆動信号MOT3-/1、MOT3-2、MOT3-1を生成する。
モータドライバ713は、コネクタCN11Jから出力するモータ駆動信号MOT4-/2、MOT4-/1、MOT4-2、MOT4-1を生成する。
またモータドライバ714~716は、同じくリセット信号RESET_M、ラッチ信号LATCH_M、クロック信号CLK_M、シリアルデータ信号DATA_Mの入力に応じて、それぞれ18V系のモータ駆動信号を生成する。
即ちモータドライバ714は、コネクタCN8Jから出力するモータ駆動信号MOT5-/2、MOT5-/1、MOT5-2、MOT5-1を生成する。
モータドライバ715は、コネクタCN5Jから出力するモータ駆動信号MOT6-/2、MOT6-/1、MOT6-2、MOT6-1を生成する。
モータドライバ716は、コネクタCN6Jから出力するモータ駆動信号MOT7-/2、MOT7-/1、MOT7-2、MOT7-1を生成する。
図36のコネクタCN1Jには、演出制御基板30から、クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADが送信されてくる。
クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADは、バッファ回路703のA3端子、A2端子に入力されて信号補償される。そしてバッファ回路703のY3端子、Y2端子からチップ抵抗RA1Jを介してP/S変換回路701,702のCK端子、CLR/LOAD端子に入力される。
P/S変換回路701,702には、P/S CONT端子に5V直流電圧(DC5V)が印加されることとでP/S CONT端子=Hとされ、Q/D1端子~Q/D8端子の8端子はパラレル入力とされる。そしてP/S変換回路701,702は、クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADに応じてパラレル-シリアル変換を行う。
P/S変換回路701のQ/D1端子には、図41のコネクタCN9Jからのセンス信号SENSv8が入力される。図36に示すように、このセンス信号SENSv8は抵抗R23Jを介して5V直流電圧(DC5V)によりプルアップされている。
またP/S変換回路701のQ/D2端子には、図38のコネクタCN12Jからのセンス信号SENSv9が入力される。
Q/D3端子~Q/D7端子の入力はグランドレベル「0」(Lレベル)、Q/D8端子は5Vレベル「1」(Hレベル)とされている。
P/S変換回路702は以上のパラレル入力をシリアルデータ(シリアルデータ信号SDT5)に変換してQ8C端子から出力する。このシリアルデータ信号SDT5はP/S変換回路702のSI端子に入力される。
P/S変換回路702のQ/D1端子~Q/D8端子の8端子には、センス信号SENSv0~SENSv7が入力される。センス信号SENSv0はコネクタCN2Jから入力される。センス信号SENSv1はコネクタCN4Jから入力される。センス信号SENSv2~SENSv4はコネクタCN10Jから入力される。センス信号SENSv5、SENSv6はコネクタCN8Jから入力される。センス信号SENSv5、SENSv7はコネクタCN11Jから入力される。
センス信号SENSv2~SENSv7は、それぞれ抵抗R24J、R2J、チップ抵抗RA3Jを介して5V直流電圧(DC5V)によりプルアップされている。
P/S変換回路702は以上のようにSI端子入力されるP/S変換回路701からのシリアルデータ信号SDT5と、センス信号SENSv0~SENSv7をまとめてシリアルデータ(シリアルデータ信号SDT6)に変換してQ8C端子から出力する。このシリアルデータ信号SDT6はバッファ回路703のA1端子に入力され、バッファ処理される。そしてY1出力がチップ抵抗RA1Jを介してコネクタCN1Jの第3ピンに供給され、当該LED接続基板700からのシリアルデータ信号P_S_IN_DATAとして、上流の演出制御基板30に送信される。
以上の通り、LED接続基板700では次の構成を有する。
・下流側から入力されるセンス信号SENSv0~SENSv9をシリアルデータ化し、バッファ回路703を介してコネクタCN1Jから上流側にシリアルデータ信号P_S_IN_DATAとして送信する。
・演出制御基板30から送信されてくる、クロック信号P_S_OUT_CLK、シリアルデータ信号P_S_OUT_DATAを、バッファ回路703、及びバッファ回路(705,706,707,708のいずれか)を介して下流側に転送する。
・演出制御基板30から送信されてくるクリア信号M_S_CLR(リセット信号RESET_M)、クロック信号M_S_OUT_CLK(クロック信号CLK_M)、シリアルデータ信号M_S_OUT_DATA(シリアルデータ信号DATA_M)、イネーブル信号M_S_ENABLEP(ラッチ信号LATCH_M)を、バッファ回路704を介してモータドライバ710~716に供給し、モータ駆動信号(MOT1-/2、MOT1-/1、MOT1-2、MOT1-1・・・MOT7-/2、MOT7-/1、MOT7-2、MOT7-1)を生成して、下流側(モータ)に送信する。
・コネクタCN1Jにより12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を受け取り、動作電源としている。
・コネクタCN3Jにより18V直流電圧Voutを受け取り、18V系の動作電源(高輝度LEDや高トルクモータの動作電源)としている。
・12V直流電圧(DC12VB)、5V直流電圧(DC5V)、12Vモータ駆動電圧(MOT12V)、18Vモータ駆動電圧(MOT18V)、18VLED駆動電圧(LED18V)を下流側に動作電源電圧として供給している。
なおLED接続基板700では、以上に言及したものも含めて、図36~図41のとおり、所要箇所に抵抗R1J、R2J・・・、チップ抵抗RA1J、RA2J・・・による抵抗、コンデンサC1J、C2J・・・、ダイオード(ツェナーダイオード、ショットキーバリアダイオードを含む)D1J、D2J・・・等の電子素子が接続される。
また図示の通りタップTP1J、TP2J・・・が設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
[5.11 盤裏左中継基板720]

盤裏左中継基板720の構成を図42に示す。盤裏左中継基板720にはコネクタCN1K、CN2Kが搭載される。
コネクタCN1Kは、図41のLED接続基板700のコネクタCN8Jとの間を接続する伝送線路H21の伝送線路端が接続される。
従って、このコネクタCN1Kは“1”~“24”の数字を付したように第1ピンから第24ピンまでの24端子構成であり、端子のアサインは上述のコネクタCN8Jと同様となる。
コネクタCN2Kは、下流側の装飾基板740との間を接続する伝送線路H22の伝送線路端が接続される。
このコネクタCN1Bは“1”~“22”の数字を付したように第1ピンから第22ピンまでの22端子構成である。
第4ピン、第7ピン、第10ピンはグランド端子とされる。
第6ピンは5V直流電圧(DC5V)の端子とされる。
第8ピン、第9ピンは12V直流電圧(DC12VB)の端子とされる。
第11ピン、第12ピン、第13ピン、第14ピンは18Vモータ駆動電圧(MOT18VB)の端子とされる。
第5ピンはクロック信号CLK_Cの端子、第3ピンはデータ信号DATA_Cの端子である。
第15ピンと第16ピンはモータ駆動信号MOT5-/2、第17ピンと第18ピンはモータ駆動信号MOT5-/1、第19ピンと第20ピンはモータ駆動信号MOT5-2、第21ピンと第22ピンはモータ駆動信号MOT5-1の各端子とされる。
第2ピンはセンス信号SENSv6の端子、第1ピンはセンス信号SENSv5の端子とされている。
なお、コネクタCN1K,CN2Kのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
この盤裏左中継基板720では、コネクタCN1Kの第7ピン、第13ピン、第14ピン、第19ピン、第20ピンのグランド端子を、コネクタCN2K側で第4ピン、第7ピン、第10ピンの3端子として、24端子から22端子のコネクタに変換している。これにより下流側へのコネクタCN2Dの端子数を削減している。
[5.12 装飾基板740]

装飾基板740を、図43を用いて説明する。
装飾基板740には、コネクタCN1L、CN2L、CN3L、CN4L、CN5L、CN6Lが搭載される。
コネクタCN1Lは、図42の盤裏左中継基板720のコネクタCN2Kとの間を接続する伝送線路H22の伝送線路端が接続される。
従って、このコネクタCN1Lは“1”~“22”の数字を付したように第1ピンから第22ピンまでの22端子構成であり、端子のアサインは上述のコネクタCN2Kと同様となる。
なお、コネクタCN1K~CN6Kのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
コネクタCN2Lは、不図示の可動物の位置検出スイッチに接続される。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された位置検出スイッチからのセンス信号SENSv5の入力端子となる。
コネクタCN3Lは、不図示の可動物の他の位置検出スイッチに接続される。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された位置検出スイッチからのセンス信号SENSv6の入力端子となる。
コネクタCN4Lは、図11に示した中継基板760との間を接続する伝送線路H23の伝送線路端が接続される。“1”~“14”の数字を付したように第1ピンから第14ピンまでの14端子構成である。
第1ピン、第2ピン、第3ピンは12V直流電圧(DC12VB)が印加される端子、第12ピン、第13ピン、第14ピンは5V直流電圧(DC5V)が印加される端子である。
第4ピン、第5ピン、第7ピン、第8ピン、第10ピン、第11ピンはグランドに接続される。
第6ピンはクロック信号CLK_Cの端子、第9ピンはデータ信号DATA_Cの端子である。
コネクタCN4Lは伝送線路H23としてフレキシブルケーブル(例えばフレキシブルフラットケーブル)が接続されるが、フレキシブルケーブルは定格電流が小さいため、電源端子及びグランド端子の本数を、コネクタCN1Lよりも多くしている。
コネクタCN5Lは不図示の可動物のモータに接続される。
第3ピン、第4ピンは18Vモータ駆動電圧(MOT18V)が印加される端子である。
第1ピンはモータ駆動信号MOT5-/2、第2ピンはモータ駆動信号MOT5-/1、第5ピンはモータ駆動信号MOT5-2、第6ピンはモータ駆動信号MOT5-1の各端子とされる。
コネクタCN6Lは不図示の可動物のLED基板に接続される。
第1ピン、第2ピンは12V直流電圧(DC12VB)が印加される端子である。
第3ピン~第24ピンは、発光駆動電流09-R1、09-G1、09-B1・・・09-R8、09-G8までの22系統の発光駆動電流端子とされる。
この装飾基板740にはトリプルバッファゲートであるバッファ回路741が搭載される。これに対する電源電圧としては、5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN1Lの第6ピンから供給される。
またLEDドライバ742が搭載されるが、これに対する電源電圧としては、12V直流電圧(DC12VB)が用いられる。12V直流電圧(DC12VB)はコネクタCN1Lの第8ピン、第9ピンから供給される。
なお、コネクタCN5Lから下流側に供給する18Vモータ駆動電圧(MOT18V)はコネクタCN1Lの第11ピン~第14ピンから得られる。
装飾基板740における各種信号の流れについて説明する。
上流の盤裏左中継基板720からコネクタCN1Lに供給されるクロック信号CLK_C、データ信号DATA_Cは、バッファ回路741に入力され、バッファ処理される。そしてコネクタCN4Lに送られ、下流の中継基板760に送信される。
またクロック信号CLK_C、データ信号DATA_Cは、LEDドライバ742にも供給される。
LEDドライバ742は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDR8、LEDG8を用いて22系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDR8、LEDG8は、コネクタCN6Lの第3ピン~第24ピンに接続され、不図示の可動物のLED基板における22系統のLED回路に対して発光駆動電流(09-R1、09-G1、09-B1・・・09-R6、09-G6、09-B6)を流す構成とされる。
以上の通り、装飾基板740では次の構成を有する。
・上流から送信されてくる、クロック信号CLK_C、データ信号DATA_Cを、バッファ回路703を介して下流側に転送する。
・クロック信号CLK、データ信号DATAは、LEDドライバ742でも用いる。LEDドライバ742により他のLED基板の発光部の発光駆動を行う。
・コネクタCN1Lにより12V直流電圧(DC12VB)、5V直流電圧(DC5V)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)や18Vモータ駆動電圧(MOT18VB)を下流側に動作電源電圧として供給している。
なお装飾基板740では、以上に言及したもの以外にも、図43に示すとおり、所要箇所に抵抗R1L、R2L・・・、コンデンサC1L、C2L・・・等の電子素子が接続される。
また図示の通りタップTP1L、TP2Lが設けられ所要箇所との接続に用いられる。
[5.13 中継基板760]

中継基板760の構成を図44に示す。中継基板760にはコネクタCN1M、CN2M、CN3Mが搭載される。
コネクタCN1Mは、図43の装飾基板740のコネクタCN4Lとの間を接続する伝送線路H23の伝送線路端が接続される。
従って、このコネクタCN1Mは“1”~“14”の数字を付したように第1ピンから第14ピンまでの14端子構成であり、端子のアサインは上述のコネクタCN4Lと同様となる。
コネクタCN2Mは、不図示のLED基板と接続される。
第4ピン、第6ピンはグランド端子とされる。
第5ピンは5V直流電圧(DC5V)の端子とされる。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
コネクタCN3Mは、下流側のLED基板780との間を接続する伝送線路H24の伝送線路端が接続される。
このコネクタCN1Bは“1”~“6”の数字を付したように第1ピンから第6ピンまでの6端子構成である。
第4ピン、第6ピンはグランド端子とされる。
第5ピンは5V直流電圧(DC5V)の端子とされる。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
なお、コネクタCN1M,CN2M,CN3Mのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
この中継基板760には図13のバッファ回路402と同様の、CMOS8回路入りのシュミットトリガバッファであるバッファ回路761が搭載される。これに対する電源電圧としては、5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN1Mの第12ピン、第13ピン、第14ピンから供給される。
上流の装飾基板740からコネクタCN1Mに供給されるクロック信号CLK_C、データ信号DATA_Cは、バッファ回路761のA1端子、A2端子に入力され、信号補償される。そしてY1端子、Y2端子から出力され、コネクタCN2Mによりクロック信号CLK、データ信号DATAとして下流側に送信される。
またクロック信号CLK_C、データ信号DATA_Cは、バッファ回路761のA5端子、A6端子にも入力され、信号補償される。そしてY5端子、Y6端子から出力され、コネクタCN3Mによりクロック信号CLK、データ信号DATAとして下流のLED基板780に送信される。
従って装飾基板740は、クロック信号CLK_C、データ信号DATA_Cをバッファ処理したうえで、下流側の2つのLED基板(LED基板780と不図示のLED基板)に送信していることになる。
[5.14 LED基板780]

LED基板780は不図示の可動体内に配置され、可動体部分のLED発光を行う基板とされている。
LED基板780の構成を図45に示す。LED基板780にはコネクタCN1N、CN2Nが搭載される。
コネクタCN1Nは、図44の中継基板760のコネクタCN3Mとの間を接続する伝送線路H24の伝送線路端が接続される。
従って、このコネクタCN1Nは“1”~“6”の数字を付したように第1ピンから第6ピンまでの6端子構成であり、端子のアサインは上述のコネクタCN3Mと同様となる。
コネクタCN2Nは、LED基板790と接続される。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第4ピンはグランド端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
なお、コネクタCN1N,CN2Nのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
LED基板780にはトリプルバッファゲートであるバッファ回路781が搭載される。これに対する電源電圧としては、5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN1Nの第5ピンから供給される。
またLEDドライバ782が搭載されるが、これに対する電源電圧としては、12V直流電圧(DC12VB)が用いられる。12V直流電圧(DC12VB)はコネクタCN1Nの第1ピンから供給される。
LED基板780における各種信号の流れについて説明する。
上流の中継基板760からコネクタCN1Nに供給されるクロック信号CLK、データ信号DATAは、バッファ回路781に入力され、バッファ処理される。そしてコネクタCN2Nに送られ、下流のLED基板790に送信される。
またクロック信号CLK、データ信号DATAは、LEDドライバ782にも供給される。
LEDドライバ782は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDB7、LEDR8を用いて22系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDB7、LEDR8は、発光部783として形成された22系統のLED回路のそれぞれに接続され、発光駆動電流(03-R1、03-G1、03-B1・・・03-G7、03-B7、03-R8)を流す。
発光部783の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
以上の通り、LED基板780では次の構成を有する。
・上流から送信されてくるクロック信号CLK、データ信号DATAを、バッファ回路781を介して下流側に転送する。
・クロック信号CLK、データ信号DATAは、LEDドライバ782でも用いて発光部783の発光駆動を行う。
・コネクタCN1Nにより12V直流電圧(DC12VB)、5V直流電圧(DC5V)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)を下流側に動作電源電圧として供給している。
なおLED基板780では、以上に言及したもの以外にも、図45に示すとおり、所要箇所に抵抗R1N、R2N・・・、コンデンサC1N、C2N・・・等の電子素子が接続される。
また、図示の通りタップTP1N、TP2Nが設けられ所要箇所との接続に用いられる。
[5.15 LED基板790]

LED基板790は不図示の可動体内に配置され、可動体部分のLED発光を行う基板とされている。
LED基板790の構成を図46に示す。LED基板790にはコネクタCN1Xが搭載されている。
コネクタCN1Xは、図45のLED基板780のコネクタCN2Nとの間を接続する伝送線路H25の伝送線路端が接続される。
従って、このコネクタCN1Xは“1”~“4”の数字を付したように第1ピンから第4ピンまでの4端子構成であり、端子のアサインは上述のコネクタCN2Nと同様となる。
なお、コネクタCN1Xのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
LED基板790にはLEDドライバ791が搭載される。LEDドライバ791に対する電源電圧として12V直流電圧(DC12VB)が用いられる。12V直流電圧(DC12VB)はコネクタCN1Xの第1ピンから供給される。
LED基板790における各種信号の流れについて説明する。
上流のLED基板780からコネクタCN1Xに供給されるクロック信号CLK、データ信号DATAは、LEDドライバ791に供給される。
LEDドライバ791は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5、LEDR6を用いて16系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5、LEDR6は、発光部792として形成された16系統のLED回路のそれぞれに接続され、発光駆動電流(02-R1、02-G1、02-B1・・・02-G5、02-B5、02-R6)を流す。
発光部792の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
以上のLED基板790では次の構成を有する。
・上流から送信されてくるクロック信号CLK、データ信号DATAをLEDドライバ791で用いて発光部792の発光駆動を行う。
・コネクタCN1Xにより12V直流電圧(DC12VB)を受け取り、動作電源としている。
なおLED基板790では、以上に言及したもの以外にも、図46に示すとおり、所要箇所に抵抗R1X、R2X・・・、コンデンサC1X、C2X・・・等の電子素子が接続される。また、図示の通りタップTP1X、TP2Xが設けられ所要箇所との接続に用いられる。
なおLED基板790にはLEDドライバ791と発光部792が搭載されるがバッファ回路は搭載されていない。このためLED基板780のコネクタCN2NからLED基板790のコネクタCN1Xには12V直流電圧(DC12VB)だけ供給され、5V直流電圧(DC5V)は供給されない。即ち5V直流電圧(DC5V)は、演出制御基板30からの5V直流電圧(DC5VB)に基づいて(図36のコネクタCN1Jの第4ピン及び第6ピン参照)、バッファ回路が設けられているLED基板780まで供給される構成となっている。
[5.16 盤裏下中継基板800]

盤裏下中継基板800の構成を図47に示す。盤裏下中継基板800にはコネクタCN1Q、CN2Q、CN3Q、CN4Qが搭載される。
コネクタCN1Qは、図40のLED接続基板700のコネクタCN11Jとの間を接続する伝送線路H30の伝送線路端が接続される。
従って、このコネクタCN1Qは“1”~“16”の数字を付したように第1ピンから第16ピンまでの16端子構成であり、端子のアサインは上述のコネクタCN11Jと同様となる。
コネクタCN2Qは可動物モータに接続される。
第3ピン、第4ピンは12Vモータ駆動電圧(MOT12V)が印加される端子である。
第1ピンはモータ駆動信号MOT4-/2、第2ピンはモータ駆動信号MOT4-/1、第5ピンはモータ駆動信号MOT4-2、第6ピンはモータ駆動信号MOT4-1の各端子とされる。
コネクタCN3Qは、下流側の装飾基板820との間を接続する伝送線路H31の伝送線路端が接続される。
このコネクタCN3Qは“1”~“10”の数字を付したように第1ピンから第10ピンまでの10端子構成である。
第1ピンから第6ピンは12V直流電圧(DC12VB)の端子とされる。
第7ピン、第8ピン、第9ピン、第10ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8の端子である。
このコネクタCN3Qは伝送線路H31としてフレキシブルケーブル(例えばフレキシブルフラットケーブル)が接続され、定格電流が小さいため、他のコネクタよりも電源端子の本数を多くしている。例えばコネクタCN3Qの12V直流電圧(DC12VB)のための端子数(6本)は、コネクタCN1Qの12V直流電圧(DC12VB)の端子数(2本)より多い。
コネクタCN4Qは、位置検出スイッチに接続される。
第1ピンは12V直流電圧(DC12VB)、第2ピンはグランドの端子とされる。第3ピンは、接続された位置検出スイッチからのセンス信号SENSv7の入力端子となる。
なお、コネクタCN1Q、CN2Q、CN3Q、CN4Qのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
この盤裏下中継基板800では、コネクタCN1Qにより供給された信号や電圧をコネクタCN2Q、CN3Q、CN4Qにより下流に分配している。
コネクタCN1Qでは12V直流電圧(DC12VB)を第4ピン、第6ピンの2端子で入力しているが、コネクタCN3Qでは第1ピンから第6ピンの6端子で12V直流電圧(DC12VB)を下流に送信している。結果として上流に対する端子数(コネクタCN1Qの端子数)より、下流に対する端子数(コネクタCN2Q、CN3Q、CN4Qの端子数総計)が増えている。
[5.17 装飾基板820]

装飾基板820を、図48を用いて説明する。
装飾基板820には、コネクタCN1Sが搭載される。
コネクタCN1Sは、図47の盤裏下中継基板800のコネクタCN3Qとの間を接続する伝送線路H31の伝送線路端が接続される。
従って、このコネクタCN1Sは“1”~“10”の数字を付したように第1ピンから第10ピンまでの10端子構成であり、端子のアサインは上述のコネクタCN3Qと同様となる。
装飾基板820には4系統のLED回路を備えた発光部821が設けられ、それぞれコネクタCN1Sを介した発光駆動電流13-B7、13-R8、13-G8、13-B8により発光駆動される。発光部821のLEDのアノード側はコネクタCN1Sを介して供給される12V直流電圧(DC12VB)が印加される。
この装飾基板820は不図示の可動体内に配置され、可動体部分のLED発光を行う基板とされている。
ここで、発光部821は、LED1,LED2・・・LED9として破線で囲って示すように9個のLEDチップを有する。図からわかるように、各LEDチップは、R、G、Bの各色の発光を行うフルカラーLEDチップである。なお図の「GA」「RA」「BA」はそれぞれフルカラーLEDチップ内におけるグリーンLEDのアノード、レッドLEDのアノード、ブルーLEDのアノードの意味である。
この装飾基板820では、演出の仕様上、赤と緑の2色で発光を行うものとされる。この場合に、単色の赤色LEDチップと緑色LEDチップを用いずに、フルカラーLEDチップを用いるようにしている。そして図示のようにフルカラーLEDチップにおいて使用しないブルーLEDの直列回路はアノード側とカソード側を共に12V直流電圧(DC12VB)のラインに接続し、発光駆動電流が流れない構成としている。例えばLED1,LED2,LED3の直列回路では、ブルーLEDを3つ直列接続し、その直列回路のアノード側とカソード側が12V直流電圧(DC12VB)のラインに接続される。
この構成の場合、通常は赤と緑で単色LEDチップを2個使用するところを1つのフルカラーLEDチップを配置することで、低コスト化を実現できる。
またフルカラーLEDチップにおけるR、G、Bの3つの端子のそれぞれに発光駆動電流の端子を接続するものとすると、コネクタCN1Sの端子数(ピン数)が増え、またLEDドライバで使用する発光駆動電流の端子も増える。このため上記のように不使用のブルーLEDには発光駆動電流を供給しないようにする。これによりコネクタ構成やLEDドライバの構成、さらには配線が簡易化され、コストダウンにもなる。
また不使用の色の端子(BA)を未接続にするとノイズ等で意図せず発光する可能性があるので、アノード側とカソード側を12V直流電圧(DC12VB)のラインに接続し、意図しない発光を防止している。
なお、フルカラーLEDチップにおける不使用の端子(ブルーLEDのアノード/カソード)は未接続でもよい。
また、その基板にグランドがある場合は、フルカラーLEDチップにおける不使用端子の両端にグランドを接続してもよい。
また図48の装飾基板820では、フルカラーLEDチップにおけるグリーンLEDの系統には抵抗R1S、R3S、R5Sが接続され、レッドLEDの系統には抵抗R2S、R4S、R6Sが接続されているが、不使用のブルーLEDの端子(BA)には電流が流れないのでブルーLEDの系統には抵抗を接続していない。これも回路の簡易化、コスタダウンを促進する。
<6.基板の接続構成の他の例>
[6.1 各基板の接続状態]

ここで図11の接続構成に代わる例を図49に挙げておく。
図49において図11と同一のブロックには同一符号を付して説明を省略する。この図49の例は、図11の遊技盤3側において、LED接続基板700に代えて、LED接続基板1500を用いる例である。
LED接続基板1500は、演出制御基板30の下流に、伝送線路H50により接続される。そしてLED接続基板1500は、演出制御基板30からの制御信号に基づいて遊技盤3におけるLED、モータ等の演出手段の発光駆動のための各種必要な信号処理を行う。
図49ではLED接続基板1500の下流として、LED基板1600を例示している。LED基板1600は、LED接続基板1500から、不図示の中継基板や他のLED基板を介して接続される例もあるし、LED接続基板1500に直接接続される例もある。この図49では、LED基板1600は、LED接続基板1500の下流側に接続される複数の基板のうちの1つである例とする。
なお図49の構成において、LED接続基板1500の下流に、図11に示した盤裏左中継基板720からLED基板790までの各基板や、盤裏下中継基板800と装飾基板820の各基板などが、LED基板1600と並列に接続されることも考えられる。
[6.2 LED接続基板1500]
LED接続基板1500を図50,図51,図52,図53,図54,図55,図56,図57を用いて説明する。これらの図はLED接続基板1500に設けられる回路構成を分けて示したものである。
LED接続基板1500にはコネクタとして、図50のコネクタCN1V,CN2V,CN3V、図51のコネクタCN4V~CN8V、図52又は図53のコネクタCN9V~CN16V、図54のコネクタCN17V~CN20V、図57のコネクタCN21V~CN25V、図56のコネクタCN26V~CN28Vが搭載される。
図50のコネクタCN1Vは、図49のように演出制御基板30との間を接続する伝送線路H50の伝送線路端が接続される。
このコネクタCN1Vは“1”~“40”の数字を付したように第1ピンから第40ピンまでの40端子構成である。
コネクタCN1Vの第1ピン、第2ピン、第8ピン、第9ピン、第10ピン、第16ピン、第18ピン、第19ピン、第20ピン、第22ピン、第29ピン、第32ピン、第33ピン、第34ピン、第39ピン、第40ピンはグランドに接続される。
第4ピン、第6ピンは5V直流電圧(DC5VB)の端子とされる。
第12ピン、第14ピン、第24ピン、第26ピン、第28ピン、第30ピンは12V直流電圧(DC12VB)の端子とされる。
第36ピン、第38ピンは35V直流電圧(DC35V)の端子とされる。
第17ピンは未使用である。
第3ピンは図55のモータドライバ制御部1530としてのLSIに対するクロック信号LSI_SCK、第5ピンは上記LSIに対するSPIバスのスレーブ選択信号LSI_SS、第7ピンは上記LSIに対するシリアルデータ信号LSI_MOSI、第11ピンは上記LSIに対するハードウエアリセット信号LSI_RESET、第35ピンは上記LSIから出力されるシリアルデータ信号LSI_MISO、の各端子としてアサインされている。
クロック信号LSI_SCK、シリアルデータ信号LSI_MOSIは、モータ駆動制御のために演出制御基板30から送信されてくる信号である。
シリアルデータ信号LSI_MISOは、このLED接続基板1500から上流の演出制御基板30に送信するシリアルデータである。
第13ピンはクロック信号CLK_P、第15ピンはシリアルデータ信号DATA_Pの各端子としてアサインされている。
第31ピンはロード信号S_IN_LOADの端子としてアサインされている。ロード信号S_IN_LOADはP/S変換に用いる信号である。
クロック信号CLK_P、シリアルデータ信号DATA_Pは、バッファ回路1501を介した後、バッファ回路1502で次の4系統に分岐される。
クロック信号CLK_A、シリアルデータ信号DATA_A
クロック信号CLK_B、シリアルデータ信号DATA_B
クロック信号CLK_C、シリアルデータ信号DATA_C
クロック信号CLK_D、シリアルデータ信号DATA_D
クロック信号CLK_A、シリアルデータ信号DATA_Aは図52のLEDドライバ1510,1511に演出制御のための信号として供給される。
クロック信号CLK_B、シリアルデータ信号DATA_Bは図53,図54のLEDドライバ1520,1521,1522に演出制御のための信号として供給される。
クロック信号CLK_C、シリアルデータ信号DATA_Cは、下流の基板における演出駆動手段に対して送信する演出制御のための信号であり、図50のコネクタCN2Vから下流の基板に送信される。
クロック信号CLK_D、シリアルデータ信号DATA_Dは、下流の基板における演出駆動手段に対して送信する演出制御のための信号であり、コネクタCN3Vから下流の基板に送信される。
図50のコネクタCN1Vの第21ピンはリセット信号RESET_M、第23ピンはクロック信号CLK_M/S、第25ピンはシリアルデータ信号DATA _M、第27ピンはラッチ信号LATCH_Mの各端子としてアサインされている。
リセット信号RESET_M、クロック信号CLK_M/S、シリアルデータ信号DATA _M、ラッチ信号LATCH_Mは、図51のモータドライバ1505で用いられる信号である。なおモータドライバ1505にはクロック信号CLK_M/Sが図50のバッファ回路1503を介してクロック信号CLK_Mとして供給される。
コネクタCN1Vの第37ピンはシリアルデータ信号S_IN_DATAの端子としてアサインされている。
シリアルデータ信号S_IN_DATAは、このLED接続基板1500から演出制御基板30に送信するシリアルデータである。シリアルデータ信号S_IN_DATAの出力のためにクロック信号CLK_M/Sがバッファ回路1503を介してクロック信号S_IN_CLKとしてP/S変換回路1504に供給される。
なお、コネクタCN1V及び他の各コネクタCN2V~CN28Vのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
図50のコネクタCN2Vは、下流の基板に接続されるコネクタである。
コネクタCN2Vの第4ピン、第6ピン、第8ピンはグランドに接続される。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンは5V直流電圧(DC5VB)の端子とされる。
第3ピンはクロック信号CLK(CLK_C)の端子とされる。
第5ピンはシリアルデータ信号DATA(DATA_C)の端子とされる。
第7ピンは下流側からのセンス信号+P0xが入力される端子とされる。
第9ピン、第10ピン、第11ピン、第12ピンはモータ駆動信号MOTxA+、MOTxB-、MOTxA-、MOTxB+の端子とされている。
コネクタCN3Vも下流の基板に接続されるコネクタであり、12V直流電圧(DC12VB)、シリアルデータ信号DATA(DATA_D)、クロック信号CLK(CLK_D)、及びグランドの各端子が設けられている。
図51のコネクタCN4Vは、不図示の可動物のモータに接続される。第3ピンにはモータの電源電圧となる12V直流電圧(MOT12V)が印加される。そしてモータ駆動信号MOT1-/2、MOT1-/1、MOT1-/2、MOT1-1の各端子が設けられている。
コネクタCN6V、CN7V、CN8Vは、それぞれ各種のセンサからセンス信号SENS0、SENS1、SENS2が入力されるコネクタである。
図52又は図53のコネクタCN9V~CN16Vは、下流のLED基板(不図示)に接続されるコネクタである。これらは、それぞれ対応するLED基板に対して発光駆動電流を出力するための端子が設けられている。
図54のコネクタCN17V~CN20Vも、下流のLED基板(不図示)に接続されるコネクタである。これらは、それぞれ対応するLED基板に対して発光駆動電流を出力するための端子が設けられている。
図57のコネクタCN21V~CN25Vは、それぞれ各種のセンサからセンス信号センス信号+P0y、+P0z、+P0u、+P1z、+P1uが入力されるコネクタである。
図56のコネクタCN26V~CN28Vは、それぞれ下流のモータ(不図示)に接続されるコネクタである。
コネクタCN26Vにはモータ駆動信号MOTuA+、MOTuB-、MOTuA-、MOTuB+の各端子が設けられている。
コネクタCN27Vにはモータ駆動信号MOTzB+、MOTzA-、MOTzB-、MOTzA+の各端子が設けられている。
コネクタCN28Vにはモータ駆動信号MOTyB+、MOTyA-、MOTyB-、MOTyA+の各端子が設けられている。
このLED接続基板1500における電源電圧について説明する。
LED接続基板1500には、ICとして、先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファである図50のバッファ回路1501,1502,1503、図57のバッファ回路1540が搭載される。また図50のP/S変換回路1504が搭載される。
これらに対する電源電圧としては、コネクタCN1Vからの5V直流電圧(DC5VB)に基づく5V直流電圧(DC5V)が用いられる。
5V直流電圧(DC5VB)は、コネクタCN1VからヒューズF1Jを介した、コンデンサC3Vの正極側から取り出される。なおP/S変換回路1504は図18のP/S変換回路505と同様のICである。
またLED接続基板1500には、ICとして、図51のモータドライバ1505が搭載され、これに対する電源電圧としては12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)が用いられる。
12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)は図51に示す電源分離/保護回路1551、1552により12V直流電圧(DC12VB)から分離している。
またLED接続基板1500には、ICとして、図55のモータドライバ制御部1530が搭載され、これに対する電源電圧としては、5Vモータ駆動電圧(DC5V)を用いている。
またLED接続基板1500には、ステッピングモータドライバとして、図55のモータドライバ1532及び図56のモータドライバ1533,1534,1535が搭載されている。これらに対する電源電圧としては、35Vモータ駆動電圧(MOT35Vx)(MOT35Vy)(MOT35Vz)(MOT35Vu)、5V直流電圧(DC5V)、電圧VCCx、電圧VCCy、電圧VCCz、電圧VCCuを用いている。
35Vモータ駆動電圧(MOT35Vx)(MOT35Vy)(MOT35Vz)(MOT35Vu)は、図57に示す電源分離/保護回路1553により35V直流電圧(DC35V)から分離している。
電圧VCCx、電圧VCCy、電圧VCCz、電圧VCCuは、それぞれモータドライバ1532、1533、1534、1535の34番端子(内部レギュレータのモニタ端子)から得られる電圧である。
またLED接続基板1500には、ICとして、図52,図53,図54に示すLEDドライバ1510,1511,1520,1521,1522が搭載され、これらに対する電源電圧としては、12V直流電圧(DC12VB)を用いている。
LED接続基板1500における各種信号の流れについて以下説明する。
図50のコネクタCN1Vには、演出制御基板30から、クロック信号LSI_SCK、シリアルデータ信号LSI_MOSI、スレーブ選択信号LSI_SS、ハードウエアリセット信号LSI_RESETが、モータ駆動制御のために演出制御基板30から送信されてくる。
これらの各信号はバッファ回路1501で信号補償された後、チップ抵抗RA1V又はRA2Vを介して、図55のモータドライバ制御部1530に供給される。
モータドライバ制御部1530はクロック信号LSI_SCK、シリアルデータ信号LSI_MOSIに基づいてモータドライバ1532、1533、1534、1535を制御する。
具体的には、モータドライバ制御部1530は、モータドライバ1532に対してX軸出力パルスOUTx、DIRx、P3xを出力する。モータドライバ1532は、これに応じてモータ駆動信号MOTxA+、MOTxB-、MOTxA-、MOTxB+を生成し、図50のコネクタCN2Vに供給する。
またモータドライバ制御部1530は、図56のモータドライバ1533に対してY軸出力パルスOUTy、DIRy、P3y を出力する。
なお図55と図56の間の接続を「c2」「c3」「c4」で示している。
モータドライバ1533は、Y軸出力パルスOUTy、DIRy、P3yに応じてモータ駆動信号MOTyB+、MOTyA-、MOTyB-、MOTyA+を生成し、コネクタCN28Vに供給する。
またモータドライバ制御部1530は、モータドライバ1534に対してZ軸出力パルスOUTz、DIRz、P3z を出力する。モータドライバ1534は、これに応じてモータ駆動信号MOTzB+、MOTzA-、MOTzB-、MOTzA+を生成し、コネクタCN27Vに供給する。
またモータドライバ制御部1530は、モータドライバ1535に対してU軸出力パルスOUTu、DIRu、P3u を出力する。モータドライバ1534は、これに応じてモータ駆動信号MOTuA+、MOTuB-、MOTuA-、MOTuB+を生成し、コネクタCN26Vに供給する。
コネクタCN26V、CN27V、CN28Vは図示しない可動物モータに接続されている。
また図50のコネクタCN2Vは下流の基板に接続され、モータドライバ1532からのモータ駆動信号MOTxA+、MOTxB-、MOTxA-、MOTxB+はその下流の基板を介して図示しない可動物モータに供給される。
従って図55のモータドライバ制御部1530は、クロック信号LSI_SCK、シリアルデータ信号LSI_MOSIに基づいて、それらの可動物モータを駆動する機能を有することになる。
モータドライバ制御部1530には、図50のコネクタCN2Vや、図57のコネクタCN21V~CN25Vから入力される各種のセンサからセンス信号+P0x、+P0y、+P0z、+P0u、+P1z、+P1uがバッファ回路1540を介して入力される。センス信号+P0x、+P0y、+P0z、+P0u、+P1z、+P1uは、各可動体の位置を検出する信号である。
なお、図55と図57の間の接続を「c1」で示している。
モータドライバ制御部1530は、これらのセンス信号+P0x、+P0y、+P0z、+P0u、+P1z、+P1uをシリアルデータ化して、シリアルデータ信号LSI_MISOとして出力する。つまりモータドライバ制御部1530はP/S変換回路としての機能を兼ねている。
モータドライバ制御部1530で得られるシリアルデータ信号LSI_MISOは、図50のバッファ回路1501で信号補償されてコネクタCN1Vに供給される。
なお、図51のコネクタCN6V、CN7V、CN8Vからはセンス信号SENS0、SENS1、SENS2が入力される。これらのセンス信号SENS0、SENS1、SENS2も各可動体の位置を検出する信号である。なお、遊技者の動作を検出するモーションセンサや、遊技球を検出する近接センサの信号としてもよい。
入力されるセンス信号SENS0、SENS1、SENS2は、図50のP/S変換回路1504に入力されてシリアルデータ信号S_IN_DATAに変換される。
このシリアルデータ信号S_IN_DATAはバッファ回路1503で信号補償されてコネクタCN1Vに供給される。
これらのシリアルデータ信号LSI_MISO、シリアルデータ信号S_IN_DATAが、各種センサの検出信号をシリアルデータ化した信号として演出制御基板30に送信されることになる。
コネクタCN1Vから入力されるクロック信号CLK_P、シリアルデータ信号DATA_Pは、バッファ回路1501で信号補償された後、チップ抵抗RA2Vを介して、バッファ回路1502に供給される。上述のようにクロック信号CLK_P、シリアルデータ信号DATA_Pは、バッファ回路1502で信号補償されたうえ4系統に分岐され、そのうちの2系統である、クロック信号CLK_Cとシリアルデータ信号DATA_C、及びクロック信号CLK_Dとシリアルデータ信号DATA_Dは、それぞれコネクタCN2V、CN3Vから下流の基板に送信される。
バッファ回路1502からのクロック信号CLK_A、シリアルデータ信号DATA_Aは、図52のLEDドライバ1510,1511に供給される。
LEDドライバ1511は、クロック信号CLK_A、シリアルデータ信号DATA_Aに基づいて、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR6、LEDG6、LEDB6及び出力端子LEDR8、LEDG8を用いた20系統のLED発光駆動を行う。
これら出力端子のうち、出力端子LEDR1、LEDG1、LEDB1・・・LEDR3、LEDG3、LEDB3は、コネクタCN10Vの第2ピン~第10ピンに接続され、不図示のLED基板における9系統のLED回路に対して発光駆動電流(08-R1、08-G1、08-B1・・・08-R3、08-G3、08-B3)を流す構成とされる。
また出力端子LEDR4、LEDG4、LEDB4・・・LEDR6、LEDG6、LEDB6は、コネクタCN14Vの第2ピン~第10ピンに接続され、不図示のLED基板における9系統のLED回路に対して発光駆動電流(08-R4、08-G4、08-B4・・・08-R6、08-G6、08-B6)を流す構成とされる。
なお、コネクタCN10V、CN14Vの各第1ピンは、下流のLED基板に対して5V直流電圧(DC5V)を供給するピンとされている。
LEDドライバ1510は、クロック信号CLK_A、シリアルデータ信号DATA_Aに基づいて、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDB7を用いて21系統のLED発光駆動を行う。
これら出力端子のうち、出力端子LEDR1、LEDG1、LEDB1・・・LEDR4、LEDG4、LEDB4は、コネクタCN9Vの第2ピン~第13ピンに接続され、不図示のLED基板における12系統のLED回路に対して発光駆動電流(07-R1、07-G1、07-B1・・・07-R4、07-G4、07-B4)を流す構成とされる。
また出力端子LEDR5、LEDG5、LEDB5・・・LEDR7、LEDG7、LEDB7は、コネクタCN13Vの第2ピン~第10ピンに接続される。第11ピン、第12ピンにはLEDドライバ1511の出力端子LEDR8、LEDG8が接続される。これにより不図示のLED基板における11系統のLED回路に対して発光駆動電流(07-R5、07-G5、07-B5・・・07-R7、07-G7、07-B7、及び08-R8、08-G8)を流す構成とされる。
なお、コネクタCN9V、CN13Vの各第1ピンは、下流のLED基板に対して12V直流電圧(DC12VB)を供給するピンとされている。
図50のバッファ回路1502からのクロック信号CLK_B、シリアルデータ信号DATA_Bは図53,図54のLEDドライバ1520,1521,1522に供給される。
LEDドライバ1520は、クロック信号CLK_B、シリアルデータ信号DATA_Bに基づいて、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を用いた24系統のLED発光駆動を行う。
これら出力端子のうち、出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5は、コネクタCN12Vの第2ピン~第16ピンのいずれかに接続され、不図示のLED基板における15系統のLED回路に対して発光駆動電流(09-R1・・・09-B5)を流す構成とされる。
また出力端子LEDR6、LEDG6、LEDB6・・・LEDR8、LEDG8、LEDB8は、コネクタCN16Vの第2ピン~第10ピンに接続され、不図示のLED基板における9系統のLED回路に対して発光駆動電流(09-R6、09-G6、09-B6・・・09-R8、09-G8、09-B8)を流す構成とされる。
なお、コネクタCN12V、CN16Vの各第1ピンは、下流のLED基板に対して12V直流電圧(DC12VB)を供給するピンとされている。コネクタCN16Vの第1ピンにはヒューズF6Vが接続されている。
LEDドライバ1521は、クロック信号CLK_B、シリアルデータ信号DATA_Bに基づいて、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を用いた24系統のLED発光駆動を行う。
これら出力端子のうち、出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5は、コネクタCN11Vの第2ピン~第16ピンのいずれかに接続され、不図示のLED基板における15系統のLED回路に対して発光駆動電流(10-R1・・・10-B5)を流す構成とされる。
また出力端子LEDR6、LEDG6、LEDB6・・・LEDR8、LEDG8、LEDB8は、コネクタCN15Vの第2ピン~第10ピンに接続され、不図示のLED基板における9系統のLED回路に対して発光駆動電流(10-R6、10-G6、10-B6・・・10-R8、10-G8、10-B8)を流す構成とされる。
なお、コネクタCN11V、CN15Vの各第1ピンは、下流のLED基板に対して12V直流電圧(DC12VB)を供給するピンとされている。コネクタCN15Vの第1ピンにはヒューズF5Vが接続されている。
図54のLEDドライバ1522は、クロック信号CLK_B、シリアルデータ信号DATA_Bに基づいて、発光駆動電流の出力端子LEDR1・・・LEDR4、及び出力端子LEDR5・・・LEDR7を用いた17系統のLED発光駆動を行う。
出力端子LEDR1・・・LEDR4は、コネクタCN17Vの第2ピン~第11ピンに接続され、不図示のLED基板における10系統のLED回路に対して発光駆動電流(11-R1・・・11-R4)を流す構成とされる。
また出力端子LEDR5、LEDG5、LEDB5は、コネクタCN19Vの第2ピン~第4ピンに接続され、不図示のLED基板における3系統のLED回路に対して発光駆動電流(11-R5、11-G5、11-B5)を流す構成とされる。
また出力端子LEDR6、LEDG6、LEDB6は、コネクタCN20Vの第2ピン~第4ピンに接続され、不図示のLED基板における3系統のLED回路に対して発光駆動電流(11-R6、11-G6、11-B6)を流す構成とされる。
また出力端子LEDR7は、コネクタCN18Vの第2ピンに接続され、不図示のLED基板における1系統のLED回路に対して発光駆動電流(11-R7)を流す構成とされる。
なお、コネクタCN17V、CN18V、CN19V、CN20Vの各第1ピンは、下流のLED基板に対して12V直流電圧(DC12VB)を供給するピンとされている。
図50のコネクタCN1Vから入力されるリセット信号RESET_M、クロック信号CLK_M/S(クロック信号CLK_M)、シリアルデータ信号DATA _M、ラッチ信号LATCH_Mは、バッファ回路1503で信号補償された後、チップ抵抗RA3Vを介して図51のモータドライバ1505に供給される。
モータドライバ1505は、クロック信号CLK_M、シリアルデータ信号DATA _Mに基づいてモータ駆動信号MOT1-/2、MOT1-/1、MOT1-/2、MOT1-1を生成し、コネクタCN4Vに供給する。コネクタCN4Vは図示しない可動物モータに接続される。
従ってモータドライバ1505はクロック信号CLK_M、シリアルデータ信号DATA _Mに基づいて可動物モータを駆動することになる。
以上の通り、LED接続基板1500は次の構成を有する。
・下流側から入力されるセンス信号SENS0、SENS1、SENS2をP/S変換回路1504でシリアルデータ化し、バッファ回路1503を介してコネクタCN1Vから上流側にシリアルデータ信号S_IN_DATAとして送信する。
・下流側から入力されるセンス信号+P0x、+P0y、+P0z、+P0u、+P1z、+P1uについてバッファ回路1540を介してモータドライバ制御部1530に供給してシリアルデータ化する。そのシリアルデータ信号LSI_MISOを、バッファ回路1501を介してコネクタCN1Vから上流側に送信する。
・演出制御基板30から送信されてくるクロック信号CLK_P(CLK_C、CLK_D)、シリアルデータ信号DATA_P(DATA_C、DATA_D)を、バッファ回路1501,1502を介して下流側に転送する。
・演出制御基板30から送信されてくる、クロック信号CLK_P(CLK_A、CLK_B)、シリアルデータ信号DATA_P(DATA_A、DATA_B)を、LEDドライバ1510,1511,1520,1521,1522に供給し、LED発光駆動を実行する。
・演出制御基板30から送信されてくるクロック信号LSI_SCK、シリアルデータ信号LSI_MOSIをモータドライバ制御部1530に供給し、モータ駆動を実行する。駆動方式はバイポーラ型である。
・演出制御基板30から送信されてくるクロック信号CLK_M、シリアルデータ信号DATA _Mをモータドライバ1505に供給し、モータ駆動信号を生成して下流のモータ/基板に送信する。駆動方式はユニポーラ型である。
モータ駆動方式としてバイポーラ駆動とユニポーラ駆動のものが混在するが、大きな可動体に対してはトルクが高いバイポーラ駆動を採用し、小さな可動体はコストが低いユニポーラ駆動を採用するようことで、適切な駆動力とコストダウンを図っている。
・コネクタCN1Vにより12V直流電圧(DC12VB)、5V直流電圧(DC5VB)、35V直流電圧(DC35V)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)、5V直流電圧(DC5V)を下流側に動作電源電圧として供給している。
なおLED接続基板1500では、以上に言及したものも含めて、図50~図57のとおり、所要箇所に抵抗R1V、R2V・・・、チップ抵抗RA1V、RA2V・・・による抵抗、コンデンサC1V、C2V・・・、ダイオード(ツェナーダイオード、ショットキーバリアダイオードを含む)D1V、D2V・・・、ヒューズF1V、F2V・・・、トランジスタ(FET)Q1V,Q2V・・・、発振器X1V等の電子素子が接続される。また図示の通りタップTP1V、TP2V・・・が設けられ所要箇所との接続に用いられる。
コンデンサC1V、C2V・・・等の一部は、電源ノイズ低減等のために直流5Vや直流12Vの電源ラインとグランドの間に配置されている。
ところで、5V直流電圧(DC5VB)を上流側の基板から受け取らずに、例えば12V直流電圧(DC12VB)を元に5V直流電圧(DC5VB)を生成するようにしてもよい。
[6.3 LED基板1600]

図49に示したLED基板1600の構成を図58に示す。
LED基板1600にはコネクタCN1Wが搭載される。
コネクタCN1Wは、上記のLED接続基板1500の下流の基板(不図示)におけるコネクタとの間を接続する伝送線路の伝送線路端が接続される。
このコネクタCN1Wは“1”~“7”の数字を付したように第1ピンから第7ピンまでの7端子構成であり、端子のアサインは第1ピンから順に、グランド端子、クロック信号CLKの端子、グランド端子、5V直流電圧(DC5V)の端子、シリアルデータ信号DATAの端子、リセット信号RESETの端子、12V直流電圧(DC12VB)の端子となっている。
なお、コネクタCN1Wのハウジングにおける導体点P1,P2は取り付け強度のためにグランドに接続されている。
LED基板1600にはLEDドライバ1601が搭載される。LEDドライバ1601に対する電源電圧として12V直流電圧(DC12VB)が用いられる。12V直流電圧(DC12VB)はコネクタCN1Wの第7ピンから供給される。
LED基板1600における各種信号の流れについて説明する。
上流の基板からコネクタCN1Wに供給されるクロック信号CLK、データ信号DATA、及びリセット信号RESETは、LEDドライバ1601に供給される。
LEDドライバ1601は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5を用いて15系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR5、LEDG5、LEDB5は、発光部1602として形成された15系統のLED回路のそれぞれに接続され、発光駆動電流(20-R1、20-G1、20-B1・・・20-R5、20-G5、20-B5)を流す。
発光部1602の各系統のLED回路は、それぞれ図示のとおり、2つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
以上の通り、LED基板780では次の構成を有する。
・上流から送信されてくるクロック信号CLK、データ信号DATAに基づいてLEDドライバ1601が発光部1602の発光駆動を行う。
・コネクタCN1Wにより12V直流電圧(DC12VB)を受け取り動作電源としている。
なおLED基板1600では、以上に言及したもの以外にも、図58に示すとおり、所要箇所に抵抗R1W、R2W・・・、コンデンサC1W、C2W・・・等の電子素子が接続される。また図示の通りタップTP1W、TP2W・・・が設けられ所要箇所との接続に用いられる。
<7.注目構成の説明>
以下、ここまで説明してきた遊技機1の構成のうちで注目すべき構成について順次説明していく。
[7.1 コネクタ端子と演出駆動手段の端子の関係]

まず各種の基板におけるコネクタ端子と演出駆動手段の端子の関係を説明する。
なお、演出駆動手段とは、発光駆動手段やモータ駆動手段など、演出デバイスを駆動する回路部分を総称している。具体的には、LEDドライバやモータドライバ、或いはこれらを制御するドライバ制御部や、モータ駆動制御のためのS/P変換回路として機能する回路部分を総称している。
そして特に演出駆動手段の「端子」とは、チップ部品(ICチップ)として搭載されているLEDドライバ、モータドライバ、ドライバ制御部、S/P変換回路などとして機能するチップの端子のことである。
実施の形態の遊技機1は次の(構成A1-1)を有する。
(構成A1-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、前記第1の演出駆動手段に対するクロックと演出駆動用制御データを入力する第1のコネクタが設けられた第1基板と、
チップ部品による第2の演出駆動手段と、前記第2の演出駆動手段に対するクロックと演出駆動用制御データを入力する第2のコネクタが設けられた第2基板と、
を備え、
前記第1基板において、
前記第1の演出駆動手段と前記第1のコネクタは基板の同一面に配置されており、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1のコネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2基板において、
前記第2の演出駆動手段と前記第2のコネクタは基板の同一面に配置されており、
前記第2のコネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一であり、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1の演出駆動手段と同一である。
図59にこの第1基板、第2基板の構成を模式的に示している。
なお、以下、各種の構成を模式的に示しているが、各図では主にコネクタと演出駆動手段をブロックで示すとともに、「クロックCK」「データDT」「パターン配線PTH」を示す。
クロックCK、データDTの具体例はそれぞれ述べるが、これらは基板上でコネクタから演出駆動手段に供給されるクロックや演出駆動用制御データを指す。
後述する(構成A1-2)~(構成A9-3)についての構成を模式的に示す各図も同様である。
パターン配線PTHは、コネクタから演出駆動手段にクロックCK及びデータDTを供給するためのパターン配線を指している。
なおコネクタから演出駆動手段の間に、抵抗素子等が介在する場合もあるが、そのような場合に模式図の構成に該当しなくなるものではない。つまりコネクタから演出駆動手段の間に他の素子が介在する場合も、あくまでコネクタと演出駆動手段の間で図示の構成を満たせばよい。より正確にいえば、コネクタと演出駆動手段の間に介在する素子において、クロックCKとデータDTの配線の左右関係が反転しない限り、それらを無視して、以下の構成に該当すると考えることができるものである。
またコネクタと演出駆動手段の間の信号経路に接続されるバッファ回路としてのICチップは、演出駆動手段の一部と考えることもできるが、より狭義の演出駆動手段からは除外する考え方もある。仮にバッファ回路が演出駆動手段に含まれないとしても、バッファ回路がコネクタと演出駆動手段の間に介在する場合において、クロックCKとデータDTの配線の左右関係を反転させない構成である限り、バッファ回路を無視して、以下の構成に該当すると考えることができる。
以上は、後述する(構成A1-2)~(構成A9-3)についても同様に考えられたい。
図59のように第1基板には第1のコネクタと第1の演出駆動手段が搭載されている。
第1のコネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている。図では第1のコネクタと第1の演出駆動手段のブロックを実線で示しているが、これは、図示されている面に配置されていることを示している。
またコネクタや演出駆動手段とするブロックにおける“○”は端子を示している。
第1のコネクタは、第1の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1の演出駆動手段に供給される。上述のようにパターン配線PTHのみで接続される場合に限らず、抵抗素子やチップが介在する場合もある。また、必要に応じてスルーホールを介して一部の配線が基板の他方の面に形成される場合もある。これらのことを、各例で重ねては言及しないが、後述する他の構成例におけるパターン配線PTHについても同様である。
第2基板には第2のコネクタと第2の演出駆動手段が搭載されている。
第2のコネクタと第2の演出駆動手段は、第2基板上の同一面に配置されている。
第2のコネクタは、第2の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第2の演出駆動手段に供給される。
第1の演出駆動手段と第2の演出駆動手段は、クロックCKとデータDTの端子の左右関係が同一のものであるため、同じ長方形で示している。
この場合に、矢印で示す方向DIR1、DIR2、DIR3、DIR4に注目する。
方向DIR1、DIR3は、クロックCKとデータDTの各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向く方向である。
方向DIR2、DIR4は、演出駆動手段におけるクロックCKとデータDTの各入力端子の、パターン配線PTH側からチップ(=その演出駆動手段であるチップ)側を向く方向である。
方向DIR1、DIR2、DIR3、DIR4で見たときの、クロックCKの端子とデータDTの端子の左右関係を図59の下部に示している。
方向DIR1、DIR3で見たときの左右関係とは、
「コネクタにおけるクロックCKとデータDTの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向いてみたときの左右関係」
である。
この図59の例では、図示するように、クロックCKの端子が左で、データDTの端子が右となっている。
なお、方向DIR1、DIR3のような方向で見たときの左右関係とは、次の各例のように表現することもでき、いずれかに該当すればよい。
「コネクタにおけるクロックCKとデータDTの各コネクタ端子の、コネクタ側からパターン配線PTH側をみたときの左右関係」
「コネクタにおけるクロックCKとデータDTの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHが導出されるコネクタ辺の方向を向いてみたときの左右関係」
また、方向DIR2、DIR4で見たときの左右関係とは、
「演出駆動手段におけるクロックCKと演出駆動用制御データDTの各入力端子の、パターン配線PTH側からチップ(=その演出駆動手段のチップ)側をみたときの左右関係」
である。
この図59の例では、図示するように、クロックCKの端子が左で、データDTの端子が右となっている。
なお、方向DIR2、DIR4のような方向で見たときの左右関係とは、次の各例のように表現することもでき、いずれかに該当すればよい。
「演出駆動手段におけるクロックCKとデータDTの各入力端子の、該各入力端子があるチップ側面に正対した状態で見たときの左右関係」
「演出駆動手段におけるクロックCKとデータDTの各入力端子の、該各入力端子へ接続されるパターン配線PTHの導入方向に沿ってチップ側をみたときの左右関係」
これらの方向でいう、コネクタ端子における左右関係と、演出駆動手段の端子における左右関係が同一である場合とは、仮に、基板上の同一面にコネクタと演出駆動手段を、それらの対応する端子同士を向かい合わせる状態に配置し、各端子間を最短距離で結んだ配線をしたと仮定しても、配線の交差(クロス)が生じなくなるような左右関係ということができる。
そして図59の例の場合、方向DIR1、DIR2、DIR3、DIR4で見たときの、クロックCKの端子とデータDTの端子の左右関係は、全て同一となっている。
なお、左右関係が同一とは、クロックCKの端子が左でデータDTの端子が右として同一であってもよいし、クロックCKの端子が右でデータDTの端子が左として同一であってもよい。(構成A1-1)以外の後述する各構成の場合も、この点は同様である。
この図59のような構成が上記の(構成A1-1)に該当する。
この(構成A1-1)に対応する例として次の(具体例1)が想定される。
(具体例1)
・第1基板:LED基板780(図45参照)
・第2基板:LED基板790(図46参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号CLK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第1の演出駆動手段:LEDドライバ782
・第1の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
・第1のコネクタ:コネクタCN1N
・第1のコネクタのクロックのコネクタ端子:第2ピン
・第1のコネクタの演出駆動用制御データのコネクタ端子:第3ピン
・第2の演出駆動手段:LEDドライバ791
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第2の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第2の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
・第2のコネクタ:コネクタCN1X
・第2のコネクタのクロックのコネクタ端子:第2ピン
・第2のコネクタの演出駆動用制御データのコネクタ端子:第3ピン
この(具体例1)において第1基板に相当するLED基板780を図60、図61に示す。
図60は、図45で説明した回路構成を有するLED基板780の表面層の導電体パターンであり、図61は裏面層の導電体パターンである。
なお、図61の裏面層は、図60の表面層側からみた透視図として示しており、左右反転した状態で図示している。
図60、図61において基板上に印刷される部品の識別番号等は図示を省略した。「○○+XX△△」として示した部分は、実際には基板管理番号が表示される。
LED基板780に搭載される複数の発光素子は、図45の発光部783に示すように、カラーLEDチップとしての発光素子LED1~LED12と、単色LEDチップとしての発光素子LED14~LED22である。
図60(表面層)における「pLED1」~「pLED22」は、LED基板780における発光素子LED1~発光素子LED22がそれぞれ配置される位置(接点としてのパッドやランドであり、以下まとめてパッドと呼ぶ)を示している。
また「p782」は、LEDドライバ782が配置される位置(パッド)を示し、「pCN1N」「pCN2N」はコネクタCN1N、CN2Nが配置される位置(パッド)を示している。また「p781」はバッファ回路781が配置される位置(パッド)を示している。
コネクタCN1Nは、図面左上側のパッドが、第1ピン側となる。
コネクタCN2Nは、図面左側のパッドが、第1ピン側となる。
図60,図61に示すように、表面層、裏面層ではベタグランドとしてのグランドパターン784が形成されているとともに、図45の回路構成を実現するパターン配線が形成されている。
なおパターン上に示した多数の小さい円形部分はスルーホール又はビアを表している。銅箔付きのスルーホールビア(層間配線)も含まれる。これらについても説明上「スルーホール」と総称する。
また12V直流電圧(DC12VB)についての電源パターン785が、図60、図61に示すようにコネクタCN1Nの第1ピンの接点(パッド)からスルーホールTH10を介して、主に裏面層において形成されている。
この裏面層の電源パターン785は、はスルーホールTH11により、LEDドライバ782のSVCC端子に接続される。またスルーホールTH12を介してLEDドライバ631のVLED端子に接続される。
LED基板780の場合、バッファ回路781に対する5V直流電圧(DC5V)の供給のために、コネクタCN1Nの第5ピンの接点(パッド)からスルーホールTH15を介して、裏面層に電源パターン786が形成されて、スルーホールTH16により、バッファ回路781に接続される。
ここでコネクタCN1Nについて、図60の左下に第1ピンから第6ピンを拡大して示した。方向DIR1で見た左右関係は、クロック信号CLKの端子(第2ピン)が左で、データ信号DATAの端子(第3ピン)が右となっている。
また「p782」に配置されるLEDドライバ782は、図60の左上に拡大して示した図の方向性(姿勢)で配置される。
「p782」に配置されるLEDドライバ782の平面図を図62に示す。LEDドライバ782は、方形状のチップ部品である。
なお、この例ではほぼ正方形のチップ部品であるがもちろん長方形でもよい。
また、方形のチップ筐体の角部分は図のように面取りがされていることで、厳密に言えば8角形であるが、面取り加工による部分は辺とは考えず、4角形として考えることとされたい。「方形状」とは、面取り部分などの些細な形状は無視して、ほぼ方形であるという意味である。
以上の前提において、LEDドライバ782としてのチップは方形状として4つの辺を備える。各辺を辺sd1、辺sd2、辺sd3、辺sd4とする。辺sd1と辺sd3が互いに対向辺の関係となり、辺sd2と辺sd4が互いに対向辺の関係となる。
図62に示すLEDドライバ631の端子としては、辺sd1に1番端子(VREF)から12番端子(A1)が設けられ、辺sd2に13番端子(A2)から24番端子(LEDG3)が設けられ、辺sd3に25番端子(LEDB3)から36番端子(LEDR6)が設けられ、辺sd4に37番端子(LEDG6)から48番端子(SVCC)が設けられる。
1番端子(VREF)は5Vのレファレンス電圧出力端子である。
2番端子(SCLK)はクロック信号CLKの入力端子である。
3番端子(SDATA)はデータ信号DATAの入力端子である。
4番端子(SDEN)はイネーブル信号入力端子である。
5番端子(CTLSCT)はシリアルバス通信設定端子であるが、1番端子からのレファレンス電圧、つまりHレベルが入力されて所定モードに設定される。
6番端子(OUTSCT)はLED駆動電流の出力方式制御端子であり、本例ではグランド接続されることでLレベルとされ、所定モード、例えば定電流出力に設定される。
7番端子(RESET)はリセット信号RESETの入力端子である。
8番端子(RT1)は基準電流設定のための抵抗接続端子である。本例では抵抗R1Tが接続される。
9番端子及び31番端子(NC)はダミー端子である(内部接続なし)。
10番端子(SGND)はグランド端子である。
11番端子から15番端子(A0~A4)はスレーブアドレスを設定するアドレス端子である。本例では、図75のようにA0、A1、A2がグランドに接続され、A3、A4が5Vのレファレンス電圧に接続されることで、LEDドライバ631のスレーブアドレスは「00011」となる。
16番端子から45番端子まで(30番端子、31番端子を除く)には、LED発光駆動電流の端子(LEDR1~LEDB8)とグランド端子(PGND1~PGND4)が形成される。
46番端子、47番端子はテスト端子とされ、グランド接続される。
上述のように48番端子(SVCC)は動作電源端子であり、30番端子(VLED)はLED駆動出力の保護用端子である。
なお、例えばサイドユニット上LED基板のLEDドライバ631や、LED基板790のLEDドライバ791など、他の基板に搭載されるLEDドライバも図62の同型のチップを用いることができる。
この図62の端子配置を図60に当て嵌めて考えると、LEDドライバ782について方向DIR2で見た左右関係は、クロック信号CLKの端子(2番端子(SCLK端子))が左で、データ信号DATAの端子(2番端子(SCLK端子))が右となっている。
そしてコネクタCN1NとLEDドライバ782の間に、クロック信号CLKのためのクロックパターン配線787が形成され、データ信号DATAのための信号パターン配線788が形成されている。
次に上記(具体例1)において第2基板に相当するLED基板790を図63、図64に示す。図63は、図46で説明した回路構成を有するLED基板790の表面層の導電体パターンであり、図64は裏面層の導電体パターンである。
なお、図64の裏面層は、図63の表面層側からみた透視図として示しており、左右反転した状態で図示している。
図63、図64では基板上に印刷される部品の識別番号等は図示を省略した。「X○+○○○」として示した部分は、実際には基板管理番号が表示される。
LED基板790に搭載される複数の発光素子は、図46の発光部792に示すように、カラーLEDチップとしての発光素子LED1~LED9と、単色LEDチップとしての発光素子LED10~LED17である。
図63(表面層)における「pLED1」~「pLED17」は、LED基板790における発光素子LED1~発光素子LED17がそれぞれ配置される位置(パッド)を示している。また「p791」は、LEDドライバ791が配置される位置(パッド)を示し、「pCN1X」はコネクタCN1Xが配置される位置(パッド)を示している。
図63,図64に示すように、表面層、裏面層ではベタグランドとしてのグランドパターン794が形成されているとともに、図46の回路構成を実現するパターン配線やスルーホールが形成されている。
ここでコネクタCN1Xについて、図63の右側に第1ピンから第4ピンを拡大して示した。方向DIR3で見た左右関係は、クロック信号CLKの端子(第2ピン)が左で、データ信号DATAの端子(第3ピン)が右となっている。
また「p791」に配置されるLEDドライバ791は、図63の右上に拡大して示した図の方向性(姿勢)で配置される。LEDドライバ791の端子配置は図62に示したものである。
従って図62の端子配置を図63に当て嵌めて考えると、LEDドライバ791について方向DIR4で見た左右関係は、クロック信号CLKの端子(2番端子(SCLK端子))が左で、データ信号DATAの端子(3番端子(SDATA端子))が右となっている。
そしてコネクタCN1XとLEDドライバ791の間は、クロック信号CLKのためのクロックパターン配線795が形成され、データ信号DATAのための信号パターン配線796が形成されている。
以上のようなLED基板780,790をみると、次の構成を備えている。
・LED基板780においてコネクタCN1NとLEDドライバ782が基板上の同一面に配置されている。
・LED基板790においてコネクタCN1XとLEDドライバ791が基板上の同一面に配置されている。
・方向DIR1、DIR2、DIR3、DIR4で見たときの、クロック信号CLKの端子とデータ信号DATAの端子の左右関係は、全て同一である。
従って図59の構成に該当するものとなる。
このような図59の構成により、次の効果が得られる。
第1のコネクタと第1の演出駆動手段の間のクロックCKの配線と演出駆動用制御データDTの配線が、コネクタから同一方向に延伸して、互いに交差せずに、演出駆動手段まで連続させることができ、第1基板で配線の効率化、配線長の短縮が可能となる。他の層を経由させないような配線を行いたい場合に有利となる。
具体的には、図60に示されるようにクロックパターン配線787と信号パターン配線788が互いに交差せずに形成され、配線の効率化、配線長の短縮が実現されている。
また第1のコネクタからのクロックCKの配線とデータDTの配線は、同方向に(コネクタ筐体の同じ辺の側から)導出されるようにすることができる。これはクロックCKの配線とデータDTの配線のうちの一方が、反対側から回り込むことで左右関係を調整する配線ではないという意味である。このようなコネクタから逆方向に回り込むような配線も不要となるため。配線の効率化、配線長の短縮に有効である。
そしてこれらにより無駄な配線もしなくてよいため、配線長も短くでき、ノイズ混入の低減も可能である。ノイズ混入を低減することで、演出動作をより安定させることができる。
特に、クロックCKとデータDTは、各時点で直接的に演出駆動手段による演出駆動信号の生成を制御する信号である。従って、少なくとも、このクロックCKとデータDTの組に関して、配線が効率化され、ノイズ混入が低減されることで、演出動作(LED発光やモータによる可動物の動作)の安定化を向上させるという効果が得られる。
なおコネクタと演出駆動手段の間には例えばリセット信号など他の信号配線が行われる場合もあるが、クロックCKとデータDTは、常時、演出動作に直接影響する信号であって、かつ周波数が平均的に最も高くなる信号である。このようなクロックCKとデータDTの配線が少なくとも互いにクロスしないような関係とし、配線の効率化をはかることは、ノイズ影響の低減と安定した演出動作に有効となる。
このクロックCKとデータDTの組に関して配線が効率化されることの利点は、後述する(構成A1-2)~(構成A9-3)でも同様である。
以上の効果は第2基板においても得ることができる。
そして第2の基板でも第1基板と同様の端子の左右関係を採ることで、複数の基板で、コネクタからドライバへの配線を効率化できる。
具体的には、図60に示されるようにクロックパターン配線787と信号パターン配線788が交差せずに形成され、また図63に示されるようにクロックパターン配線795と信号パターン配線796が交差せずに形成されている。
これにより遊技機1内での複数基板の配線効率の向上、ノイズ混入低減、設計効率の向上を実現し、安定した演出動作を促進する。
また第1基板、第2基板としての複数の基板でコネクタのクロックCKとデータDTにアサインするピンの左右関係が共通化されていることで、回路図が書きやすく配線設計が容易となる。これは設計効率が向上するとともに、新規の遊技機開発に有用となる。
また(具体例1)の場合、LED基板780,790として連続して接続される基板間で図59の構成を採ることで、以上の各効果がより発揮しやすいものとなる。互いに接続される基板同士で共通化されることで、回路設計、メンテナンスにも適している。
実施の形態の遊技機1は(構成A1-1)に加えて、次の(構成A1-2)を有する。
(構成A1-2)
遊技機1は、
第3の演出駆動手段に対するクロックと演出駆動用制御データを入力する第3のコネクタが設けられた第3基板を備え、
前記第3のコネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一である。
図65にこの(構成A1-2)における第1基板、第2基板、第3基板を模式的に示している。第1基板、第2基板に関しては図59と同様で、図65は第3基板が加わったものである。
第3基板には第3のコネクタが搭載されている。
第3のコネクタからは、クロックCK及びデータDTについてのパターン配線PTHが導出される。
この図では第3基板において第3の演出駆動手段は記載していないが、次のいずれかである。
・第3の演出駆動手段が第3基板で第3のコネクタと同一面に搭載されている
・第3の演出駆動手段が第3基板で第3のコネクタと異なる面に搭載されている
・第3の演出駆動手段が第3基板より下流の他の基板に搭載されている
方向DIR5は、第3のコネクタについて、クロックCKとデータDTの各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向いた方向である。その場合の左右関係は、この例の場合、クロックCKの端子が左で、データDTの端子が右となっている。
方向DIR1、DIR2、DIR3、DIR4、DIR5で見たときの、クロックCKの端子とデータDTの端子の左右関係を図65の下部に示しているが、クロックCKの端子とデータDTの端子の左右関係は、全て同一となっている。
この図65のような(構成A1-2)に対応する例として、第1基板、第2基板は上記の(具体例1)が想定され、第3基板について次の(具体例2)が想定される。
(具体例2)
・第3基板:サイドユニット上LED基板630(図32参照)
・第3の演出駆動手段に対するクロック(CK):クロック信号CLK
・第3の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第3のコネクタ:コネクタCN1T
・第3のコネクタのクロックのコネクタ端子:第2ピン
・第3のコネクタの演出駆動用制御データのコネクタ端子:第3ピン
この(具体例2)において第3基板に相当するサイドユニット上LED基板630を図66、図67に示す。
図66はサイドユニット上LED基板630の表面層の導電体パターンを示し、図67は裏面層の導電体パターンを示している。
なお、図67の裏面層は、図66の表面層側からみた透視図として示しており、導電体パターンや基板管理番号は、基板裏面を通常視認する状態から左右反転した状態で図示している。図66、図67では基板上に印刷される部品の識別番号等は図示を省略した。「○○+×××△」として示した部分は、実際には基板管理番号が表示される。
図66の表面層、図67の裏面層ではベタグランドとしてのグランドパターン633や図32の回路構成を実現するパターン配線が形成されている。
図66(表面層)における「pLED1」~「pLED10」は、図32の発光素子LED1~発光素子LED10がそれぞれ配置される位置(パッド)を示している。
図67(裏面層)における「p631」は、LEDドライバ631が配置される位置(パッド)を示し、「pCN1T」はコネクタCN1Tが配置される位置(パッド)を示している。
コネクタCN1Tに対するパッドについては、図の上部に拡大して示すように、第1ピン側が図面上で右側のパッド、第6ピン側は左側のパッドになる。
従ってコネクタCN1Tについて、方向DIR5で見た左右関係は、クロック信号CLKの端子(第2ピン)が左で、データ信号DATAの端子(第3ピン)が右となっている。
図67の「p631」に配置されるLEDドライバ631は図62で説明した方形状のチップ部品である。
以上のようなサイドユニット上LED基板630をみると、次の構成を備えている。
・第3の演出駆動手段(LEDドライバ631)に対するクロック信号CLKとデータ信号DATAを入力するコネクタCN1Tを備えている。
コネクタCN1Tについての方向DIR5で見たときの、クロック信号CLKの端子とデータ信号DATAの端子の左右関係は、LED基板780のコネクタCN1N(第1のコネクタ)について方向DIR1でみたときの左右関係と同一である。
従ってLED基板780,790、及びサイドユニット上LED基板630は、図65の(構成A1-2)に該当するものとなる。
このような(構成A1-2)により、各基板のコネクタの端子設定の共通化を促進し、設計効率の向上を促進することができる。
さらに第3基板に相当する基板において、第3の演出駆動手段(例えばLEDドライバ631)におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、第1の演出駆動手段と同一であるようにしてもよい。
図67は、第3の演出駆動手段としてのLEDドライバ631を「p631」に配置する例としており、このLEDドライバ631の各端子を図の上部に拡大して示した。LEDドライバ631は、図62で示したとおりだが、図67は裏面層を表面層側から透視した状態で示しているため、端子配置が図60や図63とは逆転した状態で示される。そしてこの図67の例の場合、パターン配線側からチップ側をみたときの、クロック信号CLKの端子とデータ信号DATAの端子の左右関係は、第1の演出駆動手段である例えばLEDドライバ782とは逆になっている。
これは、配線の効率化にとっては望ましくない例となっている。つまりコネクタCN1Tと、LEDドライバ782が、同一面に配置された状態で、クロック信号CLKの端子とデータ信号DATAの端子の左右関係が逆である。
図ではクロック信号CLKのクロックパターン配線635とデータ信号DATAの信号パターン配線636を示しているが、左右関係が逆であるため、スルーホールを介して、図66に示すように信号パターン配線636の一部は表面層側に形成し、これによって図67の裏面層で左右関係を直している。
そこで、このような場合は、LEDドライバ631をコネクタCN1Tとは別の面、つまり表面層側に配置するようにすればよい。クロックパターン配線635と信号パターン配線636を、スルーホールを介して表面側に至るように形成することで、左右関係を是正できるため、不効率な配線が生じないようにできる。
或いは、LEDドライバ631をコネクタCN1Tと同一面に配置するのであれば、LEDドライバ631として、クロック信号CLKの端子とデータ信号DATAの端子の左右関係が逆の他のチップを採用するということも好適である。
これらの構成を採用することで、複数の基板における配線効率の向上、及びノイズ混入低減、さらには設計効率の向上を促進することができる。つまり(構成A1-1)の効果をより顕著にすることができる。
実施の形態の遊技機1は次の(構成A2-1)を有する。
(構成A2-1)
遊技機1は、
チップ部品による第1の発光駆動手段と、前記第1の発光駆動手段に対するクロックと発光駆動用制御データを入力する第1のコネクタが設けられた第1基板と、
第2の発光駆動手段に対するクロックと発光駆動用制御データを入力する第2のコネクタが設けられた第2基板と、
を備え、
前記第1基板において、
前記第1の発光駆動手段と前記第1のコネクタは基板の同一面に配置されており、
前記第1の発光駆動手段におけるクロックと発光駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1のコネクタにおけるクロックと発光駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2基板において、
前記第2のコネクタにおけるクロックと発光駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一である。
図68にこの第1基板、第2基板の構成を模式的に示している。
第1基板には第1のコネクタと第1の発光駆動手段が搭載されている。
第1のコネクタと第1の発光駆動手段は、第1基板上の同一面に配置されている(それぞれ実線で示している)。
第1のコネクタは、第1の発光駆動手段に対するクロックCKと発光駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1の発光駆動手段に供給される。
第2基板には第2のコネクタが搭載されている。
図では第2基板において第2の発光駆動手段は記載していないが、次のいずれかである。
・第2の発光駆動手段が第2基板で第2のコネクタと同一面に搭載されている
・第2の発光駆動手段が第2基板で第2のコネクタと異なる面に搭載されている
・第2の発光駆動手段が第2基板より下流の他の基板に搭載されている
この場合に、矢印で示す方向DIR11、DIR13は、上述の(構成A1-1)で述べた方向DIR1、DIR3と同様の方向で、クロックCKとデータDTの各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向いてみた方向である。
方向DIR12は、上述の方向DIR2と同様の方向で、発光駆動手段におけるクロックCKとデータDTの各入力端子の、パターン配線PTH側からチップ(=その発光駆動手段であるチップ)側をみたときの方向である。
方向DIR11、DIR12、DIR13で見たときの、クロックCKの端子とデータDTの端子の左右関係を図の下部に示している。
この図68の例では、全て、クロックCKの端子が左で、データDTの端子が右となっており、左右関係は全て同一である。
この図68の(構成A2-1)に対応する例として次の(具体例3)が想定される。
(具体例3)
・第1基板:LED基板780(図45参照)
・第2基板:LED基板790(図46参照)
・第1の発光駆動手段に対するクロック(CK):クロック信号CLK
・第1の発光駆動手段に対する発光駆動用制御データ(DT):データ信号DATA
・第1の発光駆動手段:LEDドライバ782
・第1の発光駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第1の発光駆動手段における発光駆動用制御データの入力端子:3番端子(SDATA端子)
・第1のコネクタ:コネクタCN1N
・第1のコネクタのクロックのコネクタ端子:第2ピン
・第1のコネクタの発光駆動用制御データのコネクタ端子:第3ピン
・第2のコネクタ:コネクタCN1X
・クロック(CK):クロック信号CLK
・発光駆動用制御データ(DT):データ信号DATA
・第2のコネクタのクロックのコネクタ端子:第2ピン
・第2のコネクタの発光駆動用制御データのコネクタ端子:第3ピン
この(具体例3)において第1基板、第2基板に相当するLED基板780、790は図60~図64で説明したとおりである。
なお、図60~図64に示した方向DIR1、DIR2、DIR3は、それぞれこの(構成A2-1)の場合、方向DIR11、DIR12、DIR13に相当する。
するとLED基板780,790は次の構成を備えている。
・LED基板780においてコネクタCN1NとLEDドライバ782が基板上の同一面に配置されている。
・方向DIR11、DIR12、DIR13で見たときの、クロック信号CLKの端子とデータ信号DATAの端子の左右関係は、全て同一である。
従って図68の構成に該当するものとなる。
このような図68の構成により、次の効果が得られる。
第1のコネクタと第1の発光駆動手段の間のクロックCKの配線と発光駆動用制御データDTの配線が、コネクタから同一方向に延伸して、交差せずに、発光駆動手段まで連続させることができ、第1基板で配線の効率化、配線長の短縮が可能となる。
また第1のコネクタからのクロックCKの配線とデータDTの配線は、同方向に(コネクタ筐体の同じ辺の側から)導出されるようにすることができる。従って配線の効率化、配線長の短縮に有効である。
そしてこれらにより無駄な配線もしなくてよいため、ノイズ混入の低減も可能である。ノイズ混入を低減することで演出動作をより安定させることができる。
LEDは遊技機1において各種の場所に配置され、発光駆動手段となるLEDドライバを配置する基板も多数になる。特に高周波ノイズの多い箇所に配置される基板などでは、この技術が採用されることが極めて好適となる。
また第1基板、第2基板としての複数の基板でコネクタのクロックCKとデータDTにアサインするピンの左右関係が共通化されていることで、回路図が書きやすく配線設計が容易となる。このため設計効率が向上され、遊技機開発に有用となる。
また実施の形態の遊技機1は(構成A2-1)に加えて、次の(構成A2-2)を有する。
(構成A2-2)
前記第2基板は、前記第2のコネクタからのパターン配線を介してクロックと発光駆動用制御データを入力する、チップ部品による第2の発光駆動手段を有し、
前記第2基板において、前記第2の発光駆動手段と前記第2のコネクタは基板の同一面に配置されており、
前記第2の発光駆動手段におけるクロックと発光駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1の発光駆動手段と同一である。
図69にこの(構成A2-2)における第1基板、第2基板を模式的に示している。図69は、第1基板に関しては図68と同様で、第2基板に第2の発光駆動手段が示される点が異なる。第2基板において、クロックCKとデータDTは、基板上のパターン配線PTHにより、第2のコネクタから第2の発光駆動手段に供給される。
この図69の構成では、第2基板において、第2の発光駆動手段が第2のコネクタと同一面に配置されている。方向DIR14は、上述の方向DIR4と同じように定義される方向である。
この図69の(構成A2-2)に対応する例としては、上記の(具体例3)に加え、次の(具体例4)が想定される。
(具体例4)
・第2の発光駆動手段:LEDドライバ791
・第2の発光駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第2の発光駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
以上の(具体例3)(具体例4)の第1基板、第2基板に相当するLED基板780、790は図60~図64で説明したとおりである。なお、図63に示した方向DIR4は、図69のDIR14に相当する。
従って第2基板に相当するLED基板790は次の構成を備えている。
・LED基板790においてコネクタCN1XとLEDドライバ791が基板上の同一面に配置されている。
・方向DIR14方向で見たときの、クロック信号CLKの端子とデータ信号DATAの端子の左右関係は方向DIR11で見た場合と同一である。
従って図69の構成に該当するものとなる。
このように第1基板と同様の端子の左右関係を第2の基板でも採り、複数の基板で、コネクタから発光駆動手段への配線を効率化できるようにすることで、遊技機1内での複数基板の配線効率の向上、ノイズ混入低減、設計効率の向上を実現し、安定した発光演出動作を促進できる。
実施の形態の遊技機1は次の(構成A3-1)を有する。
(構成A3-1)
遊技機1は、
チップ部品による第1のモータ駆動手段と、前記第1のモータ駆動手段に対するクロックとモータ駆動用制御データを入力する第1のコネクタが設けられた第1基板と、
第2のモータ駆動手段に対するクロックとモータ駆動用制御データを入力する第2のコネクタが設けられた第2基板と、
を備え、
前記第1基板において、
前記第1のモータ駆動手段と前記第1のコネクタは基板の同一面に配置されており、
前記第1のモータ駆動手段におけるクロックとモータ駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1のコネクタにおけるクロックとモータ駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2基板において、
前記第2のコネクタにおけるクロックとモータ駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一である。
図70にこの第1基板、第2基板の構成を模式的に示している。
第1基板には第1のコネクタと第1のモータ駆動手段が搭載されている。
第1のコネクタと第1のモータ駆動手段は、第1基板上の同一面に配置されている(それぞれ実線で示している)。
第1のコネクタは、第1のモータ駆動手段に対するクロックCKとモータ駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1のモータ駆動手段に供給される。
第2基板には第2のコネクタが搭載されている。
図では第2基板に第2のモータ駆動手段を記載していないが、次のいずれかである。
・第2のモータ駆動手段が第2基板で第2のコネクタと同一面に搭載されている
・第2のモータ駆動手段が第2基板で第2のコネクタと異なる面に搭載されている
・第2のモータ駆動手段が第2基板より下流の他の基板に搭載されている
この場合に、矢印で示す方向DIR21、DIR23は、上述の方向DIR1、DIR3と同様に、クロックCKとデータDTの各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向いてみた方向である。
方向DIR22は、上述の方向DIR2と同様に、モータ駆動手段におけるクロックCKとデータDTの各入力端子の、パターン配線PTH側からチップ(=そのモータ駆動手段であるチップ)側をみたときの方向である。
方向DIR21、DIR22、DIR23で見たときの、クロックCKの端子とデータDTの端子の左右関係を図の下部に示している。
この図70の例では、全て、クロックCKの端子が左で、データDTの端子が右となっており、左右関係は全て同一である。
この図70の(構成A3-1)に対応する例として次の(具体例5)が想定される。
(具体例5)
・第1基板:LED接続基板1500(図50~図57参照)
・第2基板:サイドユニット右上LED基板600(図24~図29参照)
・第1のモータ駆動手段に対するクロック(CK):クロック信号LSI_SCK
・第1のモータ駆動手段に対するモータ駆動用制御データ(DT):シリアルデータ信号LSI_MOSI
・第1のモータ駆動手段:モータドライバ制御部1530(なお信号経路にバッファ回路1501が存在するが、バッファ回路1501の入出力で左右関係は反転しないため、左右関係についてはバッファ回路1501を無視できる)。
を第1のモータ駆動手段と考える。)
・第1のモータ駆動手段におけるクロックの入力端子:5番端子(SCK端子)
・第1のモータ駆動手段のモータ駆動用制御データの入力端子:7番端子(MOSI端子)
・第1のコネクタ:コネクタCN1V(図50参照)
・第1のコネクタのクロックのコネクタ端子:第3ピン
・第1のコネクタのモータ駆動用制御データのコネクタ端子:第7ピン
・第2のコネクタ:コネクタCN1E(図24参照)
・クロック(CK):クロック信号CLK_A(CLK_P)
・モータ駆動用制御データ(DT):データ信号DATA_A(DATA_P)
・第2のコネクタのクロックのコネクタ端子:第10ピン
・第2のコネクタのモータ駆動用制御データのコネクタ端子:第14ピン
この(具体例5)において第1基板に相当するLED接続基板1500における部品配置例を図71、図72に示す。
図71は、図50~図57で説明した回路構成を有するLED接続基板1500の表面層における主な電子部品の配置、図72は裏面層の配置を模式的に示している。なお図72の裏面層は、図71の表面層側からみた透視図として示しており、左右反転した状態で図示している。
LED接続基板1500におけるコネクタCN1V~CN28Vは、全て図71の表面層に配置される。コネクタCN1V~CN28Vが配置される位置(パッドが形成される位置:以下同様)を「pCN1V」~「pCN28V」として示している。
またバッファ回路1501,1502、1503が配置される位置を「p1501」「p1502」「p1503」として示している。
また第1のモータ駆動手段のチップに相当するモータドライバ制御部1530が配置される位置を「p1530」として示している。
またP/S変換回路1504が配置される位置を「p1504」として示している。
またバッファ回路1540が配置される位置を「p1540」として示している。
図72の裏面層においては、モータドライバ1532,1533,1534,1535が配置される位置を「p1532」「p1533」「p1534」「p1535」として示している。
またモータドライバ1505が配置される位置を「p1505」として示している。
またLEDドライバ1510,1511,1520,1521,1522が配置される位置を「p1510」「p1511」「p1520」「p1521」「p1522」として示している。
図71では、コネクタCN1V、モータドライバ制御部1530、バッファ回路1501,1502、1503、P/S変換回路1504、バッファ回路1540における端子番号の一部を示した。これらは、図50~図57に記載した端子番号に相当する。
第1のコネクタに相当するコネクタCN1V(位置pCN1V参照)は、端子が2列構成のコネクタで、図面右下が第1ピン側となる。
第1のモータ駆動手段に相当するモータドライバ制御部1530(位置p1530参照)は、図の下方の辺の端子が左から順に、1番端子~12番端子となる。
また図72では、モータドライバ1505、LEDドライバ1510,1511,1520,1521,1522について、端子番号の一部を示した(位置p1510、p1511、p1520、p1521、p1522参照)。これらも図50~図57に記載した端子番号に相当する。
そして図71に示すように、コネクタCN1Vとモータドライバ制御部1530の間は、バッファ回路1501(位置p1501参照)を介しての配線として、クロック信号CLKのためのクロックパターン配線1561、データ信号DATAのための信号パターン配線1562が形成されている。なお配線経路上のチップ抵抗RA1V等の図示は省略している。
ここで、図71ではコネクタCN1V、モータドライバ制御部1530に対して、図70に示した方向DIR21、DIR22を示した。
図71に示した方向DIR21、DIR22について、図示する端子番号と図50のコネクタCN1Vの端子アサイン、及び図55のモータドライバ制御部1530の端子種別を対応させると、コネクタCN1Vとモータドライバ制御部1530のクロックCKとデータDTの左右関係は、図70に示した方向DIR21、DIR22での左右関係と同じことがわかる。
そしてコネクタCN1Vとモータドライバ制御部1530の間に、図70のパターン配線PTHに相当するクロックパターン配線1561、信号パターン配線1562が形成され、クロック信号LSI_SCKとシリアルデータ信号LSI_MOSIを伝送する。
次に上記(具体例5)において第2基板に相当するサイドユニット右上LED基板600における部品配置例を図73、図74に示す。
図73は、図24~図29で説明した回路構成を有するサイドユニット右上LED基板600の表面層における主な電子部品の配置、図74は裏面層の配置を模式的に示している。なお図74の裏面層は、図73の表面層側からみた透視図として示しており、左右反転した状態で図示している。
サイドユニット右上LED基板600におけるコネクタCN1E~CN7Eは、全て図74の裏面層に配置される。コネクタCN1E~CN7Eが配置される位置(パッドが形成される位置:以下同様)を「pCN1E」~「pCN7E」として示している。
また図73又は図74において、バッファ回路601、604、607が配置される位置を「p601」「p604」「p607」として示している。
またP/S変換回路602,603が配置される位置を「p602」「p603」として示している。
またLEDドライバ605が配置される位置を「p605」として示している。
また後述の第2のモータ駆動手段のチップに相当するS/P変換回路606が配置される位置を「p606」として示している。
またモータドライバ608,609が配置される位置を「p608」「p609」として示している。
図73、図74では、コネクタCN1E、S/P変換回路606(位置p606参照)、バッファ回路601(位置p601参照)における端子番号の一部を示した。これらは、図24~図29に記載した端子番号に相当する。
第2のコネクタに相当するコネクタCN1E(位置pCN1E参照)は、端子が2列構成のコネクタで、図面右上が第1ピン側となる。
S/P変換回路606は、図の左方の辺の端子が下から上に1番端子~12番端子となる。
そしてコネクタCN1EとS/P変換回路606の間は、バッファ回路601を介しての配線として、クロック信号CLK_P(CLK_A)のためのクロックパターン配線681、データ信号DATA_P(DATA_A)のための信号パターン配線682が形成されている。なお配線経路上の抵抗R9E,R12Eその他の素子の図示は省略している。
図74では、図70に示した方向DIR23を示した。図74に示した方向DIR23について、図示する端子番号と図24のコネクタCN1Eの端子アサインを対応させると、コネクタCN1EについてのクロックCKとデータDTの左右関係は、図70に示した方向DIR23の左右関係と同じことがわかる。
従って(具体例5)で挙げたLED接続基板1500と、サイドユニット右上LED基板600は、図70の(構成A3-1)の第1基板と第2基板に該当する。
このような図70の構成により、次の効果が得られる。
第1のコネクタと第1のモータ駆動手段の間のクロックCKの配線とモータ駆動用制御データDTの配線が、コネクタから同一方向に延伸して、交差せずにモータ駆動手段まで連続させることができ、第1基板で配線の効率化、配線長の短縮が可能となる。
また第1のコネクタからのクロックCKの配線とデータDTの配線は、同方向に(コネクタ筐体の同じ辺の側から)導出されるようにすることができる。従って配線の効率化、配線長の短縮に有効である。
そしてこれらにより無駄な配線もしなくてよいため、ノイズ混入の低減も可能である。ノイズ混入を低減することで演出動作をより安定させることができる。
役物などの動作を実行させるモータは動作精度が要求されるため、特に高周波ノイズの多い箇所に配置される基板などでは、モータ動作の安定性のために、この技術が採用されることが極めて好適となる。
また第1基板、第2基板としての複数の基板でコネクタのクロックCKとデータDTにアサインするピンの左右関係が共通化されていることで、回路図が書きやすく配線設計が容易となる。これにより設計効率が向上するとともに、新規の遊技機開発に有用となる。
また実施の形態の遊技機1は(構成A3-1)に加えて、次の(構成A3-2)を有する。
(構成A3-2)
前記第2基板は、前記第2のコネクタからのパターン配線を介してクロックとモータ駆動用制御データを入力する、チップ部品による第2のモータ駆動手段を有し、
前記第2基板において、前記第2のモータ駆動手段と前記第2のコネクタは基板の同一面に配置されており、
前記第2のモータ駆動手段におけるクロックとモータ駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1のモータ駆動手段と同一である。
図76にこの(構成A3-2)における第1基板、第2基板を模式的に示している。
図76では、第1基板に関しては図70と同様で、第2基板に第2のモータ駆動手段が示される点が異なる。第2基板において、クロックCKとデータDTは、基板上のパターン配線PTHにより、第2のコネクタから第2のモータ駆動手段に供給される。
この図76の構成では、第2基板において、第2のモータ駆動手段が第2のコネクタと同一面に配置されている。方向DIR24は、上述の方向DIR4と同様に定義される方向である。
この図76の(構成A3-2)に対応する例としては、上記の(具体例5)に加え、次の(具体例6)が想定される。
(具体例6)
・第2のモータ駆動手段:S/P変換回路606
・第2のモータ駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第2のモータ駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
以上の(具体例5)(具体例6)の第1基板、第2基板に相当するLED接続基板1500と、サイドユニット右上LED基板600における部品配置は、図71~図74で説明したとおりである。なお、図74に示した方向DIR24は、図76のDIR24に相当する。従って第2基板に相当するサイドユニット右上LED基板600は次の構成を備えている。
・サイドユニット右上LED基板600においてコネクタCN1EとS/P変換回路606が基板上の同一面に配置されている。
・方向DIR24方向で見たときの、クロック信号CLK_Aの端子とデータ信号DATA_Aの端子の左右関係は方向DIR22と同一である。そしてコネクタCN1EとS/P変換回路606の間に、図76のようなパターン配線PTHとして、クロック信号CLK_Aとデータ信号DATA_Aのパターン配線(クロックパターン配線681と信号パターン配線682)が形成されている。従って図76の構成に該当する。
このように第1基板と同様の端子の左右関係を第2の基板でも採り、複数の基板で、コネクタからモータ駆動手段への配線を効率化できるようにすることで、遊技機1内での複数基板の配線効率の向上、ノイズ混入低減、設計効率の向上を実現し、安定した役物等の可動物の演出動作を促進できる。
なお図75に、LED接続基板1500の表面層の異なる構成例を示している。
上述の図71では、コネクタCN1Vとモータドライバ制御部1530の間が、バッファ回路1501を介して接続された回路構成の場合の配線例であるが、図75は、コネクタCN1Vとモータドライバ制御部1530の間が、バッファ回路1501を介さないで接続される配線の例である。
図75の例では、コネクタCN1Vの配置方向が図71とは異なるようにされ、図の上方側の左側が第1ピンとなる配置としている。
この場合クロックパターン配線1561、信号パターン配線1562が図示のように形成される。図75には、この場合の方向DIR21、DIR22を示しているが、これも図70や図76の例と左右関係が同一である。つまり(構成A3-1)や(構成A3-2)の第1基板としてこのような例も考えられる。
同様に図74では破線により、コネクタCN1EとS/P変換回路606の間が、バッファ回路601を介さない配線の例として、クロック信号CLK_P(CLK_A)のためのクロックパターン配線681’、データ信号DATA_P(DATA_A)のための信号パターン配線682’が形成されている例を示した。
(構成A3-2)の第2基板としてこのような例も考えられる。
実施の形態の遊技機1は次の(構成A4-1)を有する。
(構成A4-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、前記第1の演出駆動手段に対するクロックと演出駆動用制御データを入力する第1のコネクタが設けられた第1基板と、
チップ部品による第の演出駆動手段と、前記第2の演出駆動手段に対するクロックと演出駆動用制御データを入力する第2のコネクタが設けられた第2基板と、
を備え、
前記第1基板において、
前記第1の演出駆動手段と前記第1のコネクタは基板の同一面に配置されており、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1のコネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2基板において、
前記第2のコネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一であり、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1の演出駆動手段と逆であり、
前記第2の演出駆動手段と前記第2のコネクタは前記第2基板の異なる面に配置されている。
図77にこの第1基板、第2基板の構成を模式的に示している。
第1基板には第1のコネクタと第1の演出駆動手段が搭載されている。
第1のコネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている(図では第1のコネクタと第1の演出駆動手段のブロックを共に実線で示している)。
第1のコネクタは、第1の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1の演出駆動手段に供給される。
第2基板には第2のコネクタと第2の演出駆動手段が搭載されている。
第2のコネクタと第2の演出駆動手段は、第2基板上の異なる面に配置されている。図では第2の演出駆動手段とパターン配線PTHの一部を破線で示し、実線で示す第2のコネクタに対して裏側の面に配置されていることを示している。パターン配線PTHはスルーホールTHを介して両面に形成される。
また、第2の演出駆動手段については、八角形(面取りをした長方形)で示しているが、これは、長方形として示す第1の演出駆動手段とは、クロックCKとデータDTの各端子の左右関係が異なるチップであることを示している。
また第2の演出駆動手段についての端子における「CK」「DT」の文字を鏡面反転させた状態で示している。これは、裏側からみたときに通常に「CK」「DT」と見える状態を表現している。実際にチップに「CK」「DT」という文字が表記されている訳ではないが、図面上、第2の演出駆動手段は第2のコネクタからみて裏側の面に配置されていることを明確に表現する意図である。つまり図示の面から見れば、第1の演出駆動手段と第2の演出駆動手段は「CK」「DT」の左右関係が同様に見えるが、配置面が逆であることで、チップとしては「CK」「DT」の左右関係が逆であることを表現するものである。
第2のコネクタは、第2の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。クロックCKとデータDTは、パターン配線PTHにより第2の演出駆動手段に供給される。
この場合に、矢印で示す方向DIR31、DIR32、DIR33、DIR34でのクロックCKとデータDTの端子の左右関係を図の下部に示している。方向DIR31、DIR32、DIR33、DIR34はそれぞれ上述の方向DIR1、DIR2、DIR3、DIR4と同様に定義される方向である。
なお、方向DIR34は、方向DIR4と同じで定義であるが、この場合、第2の演出駆動手段が第2のコネクタからみて裏側の面に配置されるため、基板の表裏を反対にしたときの視線で考えることになる(この図を印刷した紙面を裏から透かして見るときの視線と考えるとわかりやすい)。従って、方向DIR34で見た左右関係は、図の右下に示すように左がデータDTの端子、右がクロックCKの端子となる。
このような観察の方向性は、本発明でいう左右関係が、パターン配線PTHが形成される面を基準に考えるべきためである。
この図77の場合、方向DIR31、DIR32、DIR33で見たときの左右関係は左がクロックCKの端子、右がデータDTの端子となって同一であるが、方向DIR34で見たときの左右関係は逆になっている。
つまり第2の演出駆動手段とされるチップは、第1の演出駆動手段のチップと、クロックCKとデータDTの各端子の左右関係が逆の構成である。
この図77の(構成A4-1)に対応する例として次の(具体例7)が想定される。
(具体例7)
・第1基板:LED接続基板1500(図50~図57参照)
・第2基板:LED基板1600(図58参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号LSI_SCK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):シリアルデータ信号LSI_MOSI
・第1の演出駆動手段:モータドライバ制御部1530(図55参照)
・第1の演出駆動手段におけるクロックの入力端子:5番端子(SCK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:7番端子(MOSI端子)
・第1のコネクタ:コネクタCN1V
・第1のコネクタのクロックのコネクタ端子:第3ピン
・第1のコネクタの演出駆動用制御データのコネクタ端子:第7ピン
・第2の演出駆動手段:LEDドライバ1601(図58参照)
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第2の演出駆動手段におけるクロックの入力端子:48番端子(SCLK端子)
・第2の演出駆動手段の演出駆動用制御データの入力端子:47番端子(SDATA端子)
・第2のコネクタ:コネクタCN1W
・第2のコネクタのクロックのコネクタ端子:第2ピン
・第2のコネクタの演出駆動用制御データのコネクタ端子:第5ピン
この(具体例7)において第1基板に相当するLED接続基板1500の部品配置等については図71、図72で説明したとおりである。
第2基板に相当するLED基板1600については、図78で表面層における主な電子部品の配置、図79で裏面層における配置を模式的に示している。なお図79の裏面層は、図78の表面層側からみた透視図として示しており、左右反転した状態で図示している。
LED基板1600におけるコネクタCN1Wは、図78の表面層における「pCN1W」の位置に配置される。
表面層には、他に「pLED1」~「pLED10」の位置に、図58の発光部1602におけるLED1~LED10が配置される。
図79の裏面層には。LEDドライバ1601が、「p1601」の位置に配置される。
図78にはコネクタCN1W(位置pCN1W参照)の端子番号の一部を示し、図79にはLEDドライバ1601(位置p1601参照)の端子番号の一部を示している。これらは、図58に記載した端子番号に相当する。
なお、LEDドライバ1601は、例えば図80Aのような端子構成とされている。ここでは端子構成の詳述は避けるが、48番端子がSCLK端子であり、47番端子がSDATA端子である。
図79は表面層側からの透視図で示している関係で、図79に示した端子番号は、図80Bのように鏡面反転した状態(チップの底面側からみた状態)に相当する。
そしてコネクタCN1WとLEDドライバ1601の間は、図79のクロック信号CLKのためのクロックパターン配線1611、データ信号DATAのための信号パターン配線1612が形成されている。これは図78、図79に示したスルーホールTH11,TH12を介してコネクタCN1Wの第2ピンと第5ピンに接続されている。なお配線経路上の抵抗R1W,R2W(図58参照)の図示は省略している。
ここで、図78、図79ではコネクタCN1W、LEDドライバ1601に対して、図77に示した方向DIR33、DIR34を示した。
この図78、図79に示した方向DIR33、DIR34について、図示する端子番号と図58のコネクタCN1Wの端子アサイン、及びLEDドライバ1601の端子構成を対応させると、コネクタCN1WとLEDドライバ1601のクロックCKとデータDTの左右関係は、図77に示した方向DIR33、DIR34での左右関係と同じことがわかる。
そしてコネクタCN1WとLEDドライバ1601の間に、クロック信号SLKとデータ信号DATAのための、クロックパターン配線1611と信号パターン配線1612が、図76のパターン配線PTHに相当するものとして形成されている。
従って(具体例7)で挙げたLED接続基板1500と、LED基板1600は、図77の(構成A4-1)の第1基板、第2基板に該当する。
このような図77の構成により、次の効果が得られる。
第1基板に関しては、上述の(構成A1-1)と同様の効果(配線長の短縮、配線効率向上、ノイズ混入の低減、設計効率の向上等)が得られる。
加えてこの(構成A4-1)の場合は、第1,第2の演出駆動手段として、端子の左右関係が異なるICを用いる場合に好適となる。
第2の演出駆動手段として挙げたLEDドライバ1601はクロックCKとデータDTの端子の左右関係がコネクタCN1Wと逆である。すると上述の(構成A1-1)で挙げた第2基板についての効果が得られない。この場合に、第2の演出駆動手段を第2のコネクタとは別の面に配置する。第2のコネクタと別の面であることで、第2のコネクタからの配線に生ずる左右関係を、スルーホールTHを通った段階で第2の演出駆動手段に適応させることができる。つまり無駄な配線をせずに、左右関係の違いに対処するパターン配線PTHを形成できる。また、第1基板と第2基板で演出駆動手段として異なる種別のICを使う場合でも、コネクタ側のピン配置(クロックCKとデータDTにアサインするピンの左右関係)を第1基板と第2基板で共通化できるメリットを享受できる。
実施の形態の遊技機1は次の(構成A5-1)を有する。
(構成A5-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、
チップ部品による第2の演出駆動手段と、
前記第1の演出駆動手段及び第2の演出駆動手段に対するクロックと演出駆動用制御データを入力するコネクタと、
が設けられた第1基板を備え、
前記第1基板において、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が逆であり、
前記第1の演出駆動手段は前記コネクタと同一面に配置され、
前記第2の演出駆動手段は前記コネクタと異なる面に配置されている。
図81にこの第1基板の構成を模式的に示している。
第1基板にはコネクタと第1の演出駆動手段及び第2の演出駆動手段が搭載されている。
コネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている。図では第1のコネクタと第1の演出駆動手段のブロックを共に実線で示している。
コネクタと第2の演出駆動手段は、第1基板上の異なる面に配置されている。図では第2の演出駆動手段とパターン配線PTHの一部を破線で示し、実線で示すコネクタに対して裏側の面に配置されていることを示している。パターン配線PTHはスルーホールTHを介して両面にわたって形成される。
この図81も、先の図77と同様の意味で、第2の演出駆動手段は形状が異なるもの(八角形)で示し、また「CK」「DT」の文字は鏡面反転させている。
コネクタは、第1、第2の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1の演出駆動手段に供給される。
またクロックCKとデータDTは、パターン配線PTHにより第2の演出駆動手段にも供給される。
この場合に、矢印で示す方向DIR51、DIR52、DIR53でのクロックCKとデータDTの端子の左右関係を図の下部に示している。方向DIR51は上述の方向DIR1と同様に定義される方向であり、方向DIR52、DIR53はそれぞれ上述の方向DIR2と同様に定義される方向である。
なお、方向DIR53は、方向DIR2とは基板の表裏を反転させた状態での視線方向で考える。図77の方向DIR34の説明で述べた理由による。
この場合、方向DIR51、DIR52で見たときの左右関係は同一であるが、方向DIR53で見たときの左右関係は逆になっている。
つまり第2の演出駆動手段は、第1の演出駆動手段のチップと、クロックCKとデータDTの各端子の左右関係が逆の構成である。
この図81のような(構成A5-1)に対応する例として次の(具体例8)が想定される。
(具体例8)
・第1基板:LED接続基板1500(図50~図57参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号LSI_SCK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):シリアルデータ信号LSI_MOSI
・第1の演出駆動手段:モータドライバ制御部1530(図55参照)
・第1の演出駆動手段におけるクロックの入力端子:5番端子(SCK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:7番端子(MOSI端子)
・コネクタ:コネクタCN1V
・コネクタのクロックのコネクタ端子:第3ピン(又は第3ピンと第13ピン)
・コネクタの演出駆動用制御データのコネクタ端子:第7ピン(又は第7ピンと第15ピン)
・第2の演出駆動手段:LEDドライバ1510,1511,1520,1521,1522(図52、図53、図54参照)
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK_A、CLK_B
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA_A、DATA_B
・第2の演出駆動手段におけるクロックの入力端子:48番端子(SCLK端子)
・第2の演出駆動手段の演出駆動用制御データの入力端子:47番端子(SDATA端子)
この(具体例8)において第1基板に相当するLED接続基板1500の各部品の表面層及び裏面層の配置は図71、図72で説明したとおりである。すなわちコネクタCN1V及び第1の演出駆動手段に相当するモータドライバ制御部1530は表面層に配置され、第2の演出駆動手段に相当するLEDドライバ1510,1511,1520,1521,1522は裏面層に配置されている。
コネクタCN1Vの第3ピン、第5ピンと、モータドライバ制御部1530の5番端子(SCK端子)、7番端子(MOSI端子)の接続は例えば図71で説明したようになり、図81の方向DIR51、DIR52のとおりの関係となっている(方向DIR51、DIR52は、図71における方向DIR21、DIR22に相当する)。
第2の演出駆動手段としてLEDドライバ1521を例にして説明する。図72に示すLEDドライバ1521の配置に対して、方向DIR53を示した。図72は透視図であるので、裏面層を上にして考えると、方向DIR53でみたLEDドライバ1521の48番端子(SCLK端子)と47番端子(SDATA端子)としてのクロックCKとデータDTの各端子の左右関係は図81に示したとおりである。
従って、LED接続基板1500は、コネクタCN1V、モータドライバ制御部1530、LEDドライバ1521等が、図81に示した構成に該当することになる。
この構成の場合、上述の(構成A1-1)と同様の効果(配線長の短縮、配線効率向上、ノイズ混入の低減)を得ることに加えて、次の効果がある。
すなわち、第1,第2の演出駆動手段として、クロックCKとデータDTの各端子の左右関係が異なるICを用いる場合に好適である。
第2の演出駆動手段はクロックCKとデータDTの各端子の左右関係がコネクタと逆であるが、コネクタと別の面に配置されることで、コネクタからの配線について、スルーホールを通った段階で左右関係を適応させることができる。従って配線を煩雑化させない。
なお(構成A5-1)としては、以上のLED接続基板1500のように、コネクタには、別個のクロックCK(第3ピンと第13ピン)、データDT(第7ピンと第15ピン)が入力され、別個に第1,第2の演出駆動手段に供給される構成があるが、コネクタに入力された1つのクロックCK、データDTが、分岐して第1,第2の演出駆動手段に供給される構成も想定される。これを次の(構成A5-2)として説明する。
実施の形態の遊技機1は(構成A5-1)に加えて次の(構成A5-2)を有する。
(構成A5-2)
前記コネクタに入力されたクロックは分岐して第1の演出駆動手段と第2の演出駆動手段に供給され、
前記コネクタに入力された演出駆動用制御データは分岐して第1の演出駆動手段と第2の演出駆動手段に供給される。
1つのクロックCK、データDTが、分岐して第1,第2の演出駆動手段に供給される構成の例を図82に示す。
図82は図50~図57のLED接続基板1500の、図50の部分の一部を変型した例としたもので、LED接続基板1500Aとする。なお図51~図57は同一と考えれば良い。
この図82の回路例は、図81のコネクタCN1Vの第3ピンからのクロック信号LSI_SCKと、第7ピンからのシリアルデータ信号LSI_MOSIを、バッファ回路1501で分岐している例である。
クロック信号LSI_SCKはバッファ回路1501のA1端子(2番端子)とA6端子(7番端子)に入力され、Y1端子(18番端子)からモータドライバ制御部1530に対するクロック信号LSI_SCKとして出力されるとともに、Y6端子(13番端子)からクロック信号CLK_Pとして出力される。クロック信号CLK_Pはバッファ回路1502を介してクロック信号CLK_ A、CLK_BとしてLEDドライバ1521等に供給される。
またシリアルデータ信号LSI_MOSIは、バッファ回路1501のA4端子(5番端子)とA7端子(8番端子)に入力され、Y4端子(15番端子)からモータドライバ制御部1530に対するシリアルデータ信号LSI_MOSIとして出力されるとともに、Y7端子(12番端子)からデータ信号DATA_Pとして出力される。データ信号DATA_Pは、バッファ回路1502を介してデータ信号DATA_A、DATA_BとしてLEDドライバ1521等に供給される。
つまり図81のとおり、クロックCKとデータDTが分岐されて表面層の第1の演出駆動手段と裏面層の第2の演出駆動手段に供給されるとともに、第1,第2の演出駆動手段のクロックCKとデータDTの端子の左右関係が逆の構成となっている。
これにより、1系統のクロックCK、データDTが分岐して複数の演出駆動手段に供給される場合であって、第1,第2の演出駆動手段が、クロックCKとデータDTの左右関係が互いに逆のICである場合に、パターン配線を煩雑にさせないという効果がある。
このような構成は、例えばサイドユニット右上LED基板600のように演出駆動手段として、LEDドライバ605とS/P変換回路606を有するような場合にも適用できる。サイドユニット右上LED基板600では、コネクタCN1Eに入力されるクロック信号CLK_P(CLK_A)とデータ信号DATA_P(DATA_A)を分岐してLEDドライバ605とS/P変換回路606に供給する構成である。この場合に、S/P変換回路606としてクロック信号CLK_Aとデータ信号DATA_Aの端子の左右関係が図28とは逆のチップを用いる場合、そのS/P変換回路606を、コネクタCN1Eとは異なる面に配置する。これにより配線を複雑化しないようにすることができる。
実施の形態の遊技機1は次の(構成A6-1)を有する。
(構成A6-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、前記第1の演出駆動手段に対するクロックと演出駆動用制御データを入力する第1の入力コネクタと、クロックと演出駆動用制御データを出力する出力コネクタが設けられた第1基板と、
チップ部品による第2の演出駆動手段と、前記第2の演出駆動手段に対するクロックと演出駆動用制御データを入力する第2の入力コネクタが設けられた第2基板と、
を備え、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1の入力コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
前記出力コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子に接続されるパターン配線側から該各コネクタ端子の方向を向いてみたときの左右関係と、
が同一であり、
前記出力コネクタと前記第2の入力コネクタはクロスケーブルで接続され、
前記第2の入力コネクタの各端子のアサインは、前記第1の入力コネクタの各端子のアサインと逆の順序で設定され、
前記第1基板において、前記第1の演出駆動手段と前記第1の入力コネクタは基板の同一面に配置されており、
前記第2基板において、前記第2の演出駆動手段と前記第2の入力コネクタは基板の異なる面に配置されている。
図83にこの第1基板、第2基板の構成を模式的に示している。
第1基板には第1の入力コネクタと第1の演出駆動手段と出力コネクタが搭載されている。
第1のコネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている(図では第1のコネクタと第1の演出駆動手段のブロックを共に実線で示している)。
第1のコネクタは、第1の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。
クロックCKとデータDTは、基板上のパターン配線PTHにより第1の演出駆動手段に供給される。
第2基板には第2の入力コネクタと第2の演出駆動手段が搭載されている。
第2の入力コネクタと第2の演出駆動手段は、第2基板上の異なる面に配置されている。図では第2の演出駆動手段とパターン配線PTHの一部を破線で示し、実線で示す第2のコネクタに対して裏側の面に配置されていることを示している。パターン配線PTHはスルーホールTHを介して両面に形成される。
この場合の第2の演出駆動手段は、第1の演出駆動手段とはクロックCKとデータDTの端子の左右関係が同一のものであるため、第1の演出駆動手段と同じ長方形で示している。また裏側の面であるため「CK」「DT」の文字は鏡面反転させている。
第2の入力コネクタは、第2の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。クロックCKとデータDTは、パターン配線PTHにより第2の演出駆動手段に供給される。
第2の入力コネクタは、第1基板の出力コネクタと、クロスケーブル2000で接続されている。
この場合、出力コネクタは第1ピンから第4ピンの4端子構成で、例えば第1ピンから順に「電源電圧VC」「クロックCK」「データDT」「グランドGND」にアサインされているとする。
第2の入力コネクタも4端子構成としなるが、クロスケーブル2000で接続されるものであるため、第1ピンから順に、「グランドGND」「データDT」「クロックCK」「電源電圧VC」にアサインされることになる。
矢印で示す方向DIR61、DIR62、DIR63、DIR64、DIR65でのクロックCKとデータDTの端子の左右関係を図の下部に示している。
方向DIR61、DIR62はそれぞれ上述の方向DIR1、DIR2と同様に定義される方向である。方向DIR64、DIR65はそれぞれ上述の方向DIR3、DIR4と同様に定義される方向である。方向DIR65は、図77の方向DIR34の説明で述べた場合と同じく、方向DIR4とチップに対する上下に関しても同じ状態での視線方向で考える。
方向DIR63は出力コネクタの各コネクタ端子に接続されるパターン配線側から、該各コネクタ端子を向く方向である。
この場合、方向DIR61、DIR62、DIR63、DIR65で見たときのクロックCKとデータDTの左右関係は同一であるが、方向DIR64で見たときの左右関係は逆になっている。クロスケーブル2000で接続されるためである。
この図77のような(構成A6-1)に対応する例として次の(具体例9)が想定される。
(具体例9)
・第1基板:LED基板780(図45参照)
・第2基板:LED基板790A(図84参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号CLK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第1の演出駆動手段:LEDドライバ制御部782
・第1の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
・第1の入力コネクタ:コネクタCN1N
・第1の入力コネクタのクロックのコネクタ端子:第2ピン
・第1の入力コネクタの演出駆動用制御データのコネクタ端子:第3ピン
・出力コネクタ:コネクタCN2N
・出力コネクタのクロックのコネクタ端子:第2ピン
・出力コネクタの演出駆動用制御データのコネクタ端子:第3ピン
・第2の演出駆動手段:LEDドライバ791
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第2の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第2の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
・第2の入力コネクタ:コネクタCN1XA
・第2の入力コネクタのクロックのコネクタ端子:第3ピン
・第2の入力コネクタの演出駆動用制御データのコネクタ端子:第2ピン
この(具体例9)において第1基板に相当するLED基板780の回路構成は図45、図60,図61で説明したとおりであり、コネクタCN1N、LEDドライバ制御部782、コネクタCN2Nは同一面に配置されている。
第2基板に相当するLED基板790Aの回路構成を図84に示す。
図84は、図46のLED基板780と電気的接続構成は同一とした。この場合、クロスケーブル2000で接続される例のため、図46のコネクタCN1Xに対して、図84のコネクタCN1XAは、第1ピンから第4ピンの端子アサインの順序が逆になっている。つまり第1ピンから順にグランド端子、データ信号DATAの端子、クロック信号CLKの端子、12V直流電圧(DC12VB)の端子とされる。
また図84のLEDドライバ791と、図46のLEDドライバ791は同一のICであるとしている。
このため、方向DIR64で見た場合と、方向DIR65で見た場合とでは、データ信号DATAの端子とクロック信号CLKの端子の左右関係が図83で示したように、逆になる。
そこで図84の例は、LEDドライバ791がコネクタCN1XAとは別の面に配置されるようにする。例えばコネクタCN1XAが表面層の場合、LEDドライバ791が裏面層に配置されるようにする。もちろんその逆でもよい。
データ信号DATAの端子とクロック信号CLKの端子の左右関係が逆になるため、回路図で示すと、図84では破線CRSとして示す部分のように配線にクロスが生ずる。
この場合に、コネクタCN1XAとLEDドライバ791が異なる面にあるため、図83のようにスルーホールTHを介して配線する段階で、配線の左右関係がLEDドライバ791に適応することになる。
以上の(具体例9)のような(構成A6-1)によれば次の効果がある。
第1基板、第2基板がクロスケーブル2000で接続されることで、第2の入力コネクタのピンアサインが逆にならざるを得ない状況で、同一のIC又は少なくともクロックと演出駆動用データの端子の左右関係が同一のICを第1基板,第2基板で使用する場合に、第1、第2基板で配線の効率化、配線長の短縮、ノイズ混入の低減、設計の容易性を実現できる。
第1基板では、出力コネクタの左右関係も第1入力コネクタと合わせることで、第1基板上での出力までの配線も煩雑化しない。
第2基板では、第2の入力コネクタと第2の演出駆動手段の端子の左右関係が逆になるが、第2の入力コネクタと第2の演出駆動手段を異なる面とし、スルーホール前後で配線を対応させることで配線が煩雑化しない。
遊技機1では、クロスケーブルとなる例えばFFC(フレキシブルフラットケーブル)は、主に可動体への配線に用いられる。可動体内部の基板(第2基板)と、その上流側の基板(第1基板)には、LEDドライバやモータドライバとして、同じICが使用されることが多い。そのような場合に本構成が有効となる。
例えばLED基板780と、LED基板790Aが、可動体役物の可動部を介して接続される場合に、上記構成が有用となる。
なお、第2基板側の第2の演出駆動手段が、クロックCKとデータDTの端子の左右関係が、第1の入力コネクタや第1の演出駆動手段と逆のICである場合も考えられる。
そのような場合は、第2基板において、第2の入力コネクタと、第2の演出駆動手段を同一面に配置するとよい。
そのようにすれば、クロスケーブル2000を用いることで端子アサインの順序が逆になったコネクタCN1XAと、第2の演出駆動手段について、クロックCKとデータDTの端子の方向DIR64、DIR65で見た場合の左右関係が同一になる。
従って同一面でのパターン配線でも複雑化しないようにできる。
実施の形態の遊技機1は次の(構成A7-1)を有する。
(構成A7-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、前記第1の演出駆動手段に対するクロックと演出駆動用制御データと電源電圧とを入力する第1のコネクタが設けられた第1基板と、
第2の演出駆動手段に対するクロックと演出駆動用制御データと電源電圧とを入力する第2のコネクタが設けられた第2基板と、
を備え、
前記第1基板において、
前記第1の演出駆動手段と前記第1のコネクタは基板の同一面に配置されており、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データと電源電圧の各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記第1のコネクタにおけるクロックと演出駆動用制御データと電源電圧の各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2基板において、
前記第2のコネクタにおけるクロックと演出駆動用制御データと電源電圧の各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一である。
図85にこの第1基板、第2基板の構成を模式的に示している。
なお、「電源電圧VC」は演出駆動手段に供給される電源電圧を指す。
第1基板には第1のコネクタと第1の演出駆動手段が搭載されている。
第1のコネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている。
第1のコネクタは、第1の演出駆動手段に対する電源電圧VCとクロックCKと演出駆動用制御データ(データDT)を入力する。
電源電圧VCとクロックCKとデータDTは、基板上のパターン配線PTHにより第1の演出駆動手段に供給される。
第2基板には第2のコネクタが搭載されている。
第2のコネクタは、第2の演出駆動手段に対する電源電圧VCとクロックCKと演出駆動用制御データ(データDT)を入力する。
図では第2基板において第2の演出駆動手段は記載していないが、次のいずれかである。
・第2の演出駆動手段が第2基板で第2のコネクタと同一面に搭載されている
・第2の演出駆動手段が第2基板で第2のコネクタと異なる面に搭載されている
・第2の演出駆動手段が第2基板より下流の他の基板に搭載されている
この場合に、矢印で示す方向DIR71、DIR72、DIR73は、それぞれ上述の方向DIR1、DIR2、DIR3と同様に定義される方向である。
方向DIR71、DIR72、DIR73で見たときの、電源電圧VCの端子、クロックCKの端子とデータDTの端子の左右関係を図85の下部に示している。この例では、いずれも図の左から右に向かって、電源電圧VCの端子、クロックCKの端子、データDTの端子の順となっており、左右関係は全て同一である。
この図85のような(構成A7-1)に対応する例として、次の(具体例10)が想定される。
(具体例10)
・第1基板:LED基板780(図45参照)
・第2基板:LED基板790(図46参照)
・第1の演出駆動手段に対する電源電圧:12V直流電圧(DC12VB)
・第1の演出駆動手段に対するクロック(CK):クロック信号CLK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA
・第1の演出駆動手段:LEDドライバ782
・第1の演出駆動手段における電源電圧の入力端子:48番端子(SVCC端子)
・第1の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
・第1のコネクタ:コネクタCN1N
・第1のコネクタの電源電圧のコネクタ端子:第1ピン
・第1のコネクタのクロックのコネクタ端子:第2ピン
・第1のコネクタの演出駆動用制御データのコネクタ端子:第3ピン
・第2のコネクタ:コネクタCN1X
・第2のコネクタの電源電圧のコネクタ端子:第1ピン
・第2のコネクタのクロックのコネクタ端子:第2ピン
・第2のコネクタの演出駆動用制御データのコネクタ端子:第3ピン
この(具体例10)で第1基板に相当するLED基板780については、図45、図60、図61で説明した。また第2基板に相当するLED基板790については、図46、図63、図64で説明した。LEDドライバ782の端子構成は図62で説明した。
この具体例において方向DIR71、DIR72、DIR73に相当する左右関係は、全て図85に示した例のとおりである。LEDドライバ782においては、48番端子(SVCC端子)が2番端子(SCLK端子)、3番端子(SDATA端子)とはチップの別の辺となるが、左右関係でみれば、図85のとおりとなる。
この構成の場合、上述の(構成A1-1)と同様の効果(配線長の短縮、配線効率向上、ノイズ混入の低減)を得ることができ、加えて電源配線についてもこれらの効果が得られる。
また実施の形態の遊技機1は(構成A7-1)に加えて次の(構成A7-2)を有する。
(構成A7-2)
前記第2基板は、前記第2のコネクタからのパターン配線を介してクロックと演出駆動用制御データを入力する、チップ部品による第2の演出駆動手段を有し、
前記第2基板において、前記第2の演出駆動手段と前記第2のコネクタは基板の同一面に配置されており、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データと電源電圧の各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1の演出駆動手段と同一である。
図86にこの(構成A7-2)における第1基板、第2基板を模式的に示している。
図86は、第1基板に関しては図85と同様で、第2基板に第2の演出駆動手段が示される点が異なる。第2基板において、電源電圧VCとクロックCKとデータDTは、基板上のパターン配線PTHにより、第2のコネクタから第2の演出駆動手段に供給される。
この第2基板において、第2の発光駆動手段は第2のコネクタと同一面に配置されている。方向DIR74は、上述の方向DIR14と同様に定義される方向である。
この図86の(構成A7-2)に対応する例としては、上記の(具体例10)に加え、次の(具体例11)が想定される。
(具体例11)
・第2の演出駆動手段:LEDドライバ791
・第2の演出駆動手段における電源電圧の入力端子:48番端子(SVCC端子)
・第2の演出駆動手段におけるクロックの入力端子:2番端子(SCLK端子)
・第2の演出駆動手段における演出駆動用制御データの入力端子:3番端子(SDATA端子)
なおLEDドライバ791の端子構成は図62で説明したとおりである。
従って第2基板に相当するLED基板790は次の構成を備えている。
・LED基板790においてコネクタCN1XとLEDドライバ791が基板上の同一面に配置されている。
・12V直流電圧(DC12VB)が入力されるSVCC端子、クロック信号CLKの端子、データ信号DATAの端子の左右関係は、図86の方向DIR74として示したとおりである。従って電源電圧VCの端子、クロックCKの端子、データDTの端子についての、方向DIR71、DIR72、DIR73、DIR74における左右関係は、全て同一である。
従って(具体例10)及び(具体例11)の構成は、図86の(構成A7-2)に該当するものとなる。
このように第1基板と同様の端子の左右関係を第2の基板でも採り、複数の基板で、電源電圧配線を含めてコネクタから演出駆動手段への配線を効率化できるようにすることで、遊技機1内での複数基板の配線効率の向上、ノイズ混入低減、設計効率の向上を実現し、安定した演出動作を促進できる。
また実施の形態の遊技機1は(構成A7-1)及び(構成A7-2)に加えて、次の(構成A7-3)を有する。
(構成A7-3)
遊技機1は、
第3の演出駆動手段に対するクロックと演出駆動用制御データと電源電圧を入力する第3のコネクタが設けられた第3基板を備え、
前記第3のコネクタにおけるクロックと演出駆動用制御データと電源電圧の各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係が、前記第1のコネクタと同一である。
図87にこの(構成A7-3)における第1基板、第2基板、第3基板を模式的に示している。第1基板、第2基板に関しては図86と同様で、図87は第3基板が加わったものである。
第3基板には第3のコネクタが搭載されている。
第3のコネクタからは、電源電圧VC、クロックCK、及びデータDTについてのパターン配線PTHが導出される。
この図では第3基板において第3の演出駆動手段は記載していないが、次のいずれかである。
・第3の演出駆動手段が第3基板で第3のコネクタと同一面に搭載されている
・第3の演出駆動手段が第3基板で第3のコネクタと異なる面に搭載されている
・第3の演出駆動手段が第3基板より下流の他の基板に搭載されている
方向DIR75は、上述の方向DIR5と同様に定義される方向である。
方向DIR71、DIR72、DIR73、DIR74、DIR75で見たときの、電源電圧VCの端子、クロックCKの端子、データDTの端子の左右関係を図87の下部に示しているが、それらは全て同一となっている。
この図87のような(構成A7-3)に対応する例として、第1基板、第2基板は上記の(具体例10)(具体例11)が想定され、第3基板について次の(具体例12)が想定される。
(具体例12)
・第3基板:中継基板760(図44参照)
・第3の演出駆動手段に対するクロック(CK):クロック信号CLK_C
・第3の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA_C
・第3のコネクタ:コネクタCN1M
・第3のコネクタの電源電圧のコネクタ端子:第1ピン、第2ピン、第3ピン
・第3のコネクタのクロックのコネクタ端子:第6ピン
・第3のコネクタの演出駆動用制御データのコネクタ端子:第9ピン
なお(具体例12)において第3の演出駆動手段を考えると、例えば図44のコネクタCN2Mに接続される図示しないLED基板のLEDドライバが想定される。
このような(構成A7-3)によれば、複数の基板における配線効率の向上、及びノイズ混入低減、さらには設計効率の向上を促進することができる。つまり(構成A7-1)や(構成A7-2)の効果をより顕著にすることができる。
実施の形態の遊技機1は次の(構成A8-1)を有する。
(構成A8-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、
チップ部品による第2の演出駆動手段と、
前記第1の演出駆動手段に対する第1系統のクロックと演出駆動用制御データを入力するとともに、前記第2の演出駆動手段に対する第2系統のクロックと演出駆動用制御データを入力するコネクタと、
が設けられた第1基板を備え、
前記第1基板において、前記第1の演出駆動手段、前記第2の演出駆動手段、及び前記コネクタは同一面に配置され、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記コネクタにおける前記第1系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記コネクタにおける前記第2系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一である
遊技機。
また実施の形態の遊技機1は(構成A8-1)に加えて、次の(構成A8-2)を有する場合がある。
(構成A8-2)
前記コネクタにおいて、
前記第1系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
前記第2系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一である。
或いはまた実施の形態の遊技機1は(構成A8-1)に加えて、次の(構成A8-3)を有する場合がある。
(構成A8-3)
前記コネクタにおいて、
前記第1系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
前記第2系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が逆である。
図88、図89に(構成A8-1)の第1基板の構成を模式的に示している。
なお図88は(構成A8-1)又は(構成A8-2)に対応する例である。
また図89は(構成A8-1)又は(構成A8-3)に対応する例である。
まず図88において、第1基板にはコネクタと第1の演出駆動手段と、第2の演出駆動手段が搭載されている。コネクタと第1の演出駆動手段と第2の演出駆動手段は、第1基板上の同一面に配置されている。
コネクタは、第1の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。このクロックCKとデータDTは、パターン配線PTH1により第1の演出駆動手段に供給される。
またコネクタは別途、第2の演出駆動手段に対するクロックCKと演出駆動用制御データ(データDT)を入力する。このクロックCKとデータDTは、パターン配線PTH2により第2の演出駆動手段に供給される。
第1の演出駆動手段と第2の演出駆動手段は、クロックCKとデータDTの端子の左右関係が同一のものであるため、同じ長方形で示している。
この場合に、矢印で示す方向DIR81-1及びDIR81-2は、上述の方向DIR1と同様に定義される方向であり、DIR82、DIR83は、方向DIR2と同様に定義される方向である。
方向DIR81-1、DIR81-2、DIR82、DIR83で見たときの、クロックCKの端子とデータDTの端子の左右関係を図88の下部に示している。この例では、いずれも図の左がクロックCKの端子、右がデータDTの端子の並びになっており、左右関係は全て同一である。
つまり
・方向DIR81-1、DIR82でみたときの左右関係が同一
・方向DIR81-2、DIR83でみたときの左右関係が同一
であるため構成A8-1に相当し、加えて、
・方向DIR81-1、DIR81-2でみたときの左右関係が同一
であることで、構成A8-2にも相当する。
次に、図89を説明する。図89は、コネクタと第1の演出駆動手段と第2の演出駆動手段が第1基板上の同一面に配置されているという点で図88と同様の構成である。
但し、図89においては、方向DIR81-1、DIR82で見たときの、クロックCKの端子とデータDTの端子の左右関係は、図の左がクロックCKの端子、右がデータDTの端子の並びになっており、一方、方向DIR81-2、DIR83で見たときの、クロックCKの端子とデータDTの端子の左右関係は、図の左がデータDTの端子、右がクロックCKの端子の並びになっている。
第1の演出駆動手段と第2の演出駆動手段は、クロックCKとデータDTの端子の左右関係が異なるため、第1の演出駆動手段は長方形、第2の演出駆動手段は八角形で示している。
つまり
・方向DIR81-1、DIR82でみたときの左右関係が同一
・方向DIR81-2、DIR83でみたときの左右関係が同一
であるため構成A8-1に相当し、加えて
・方向DIR81-1、DIR81-2でみたときの左右関係が逆である
ということで、構成A8-3にも相当する。
以上の図88、図89の具体例を挙げる。
まず図88の(構成A8-1)又は(構成A8-2)の具体例として次の(具体例13)が想定される。
(具体例13)
・第1基板:LED接続基板1500(図50~図57参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号LSI_SCK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):シリアルデータ信号LSI_MOSI
・第1の演出駆動手段:モータドライバ制御部1530(図55参照)
・第1の演出駆動手段におけるクロックの入力端子:5番端子(SCK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:7番端子(MOSI端子)
・コネクタ:コネクタCN1V
・コネクタの第1系統のクロックのコネクタ端子:第3ピン
・コネクタの第1系統の演出駆動用制御データのコネクタ端子:第7ピン
・第2の演出駆動手段:モータドライバ1505(図50参照。但し配置は図72の例とは異なり表面層に配置される例とする)
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK_M
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA_M
・第2の演出駆動手段におけるクロックの入力端子:13番端子(SCLK端子)
・第2の演出駆動手段における演出駆動用制御データの入力端子:14番端子(SDIN端子)
・コネクタの第2系統のクロックのコネクタ端子:第23ピン
・コネクタの第2系統の演出駆動用制御データのコネクタ端子:第25ピン
図71,図72に示したLED接続基板1500の配置例では、モータドライバ1505は裏面層に配置されるが、この具体例13では、モータドライバ1505が表面層に配置される例とし、それによりコネクタCN1V、モータドライバ制御部1530、モータドライバ1505が共に表面層に配置される例とする。
コネクタCN1Vの第1系統のクロックCKとデータDTのコネクタ端子である第3ピンと第7ピンの、方向DIR83-1でみた左右関係と、モータドライバ制御部1530の5番端子(SCK端子)と7番端子(MOSI端子)の、方向DIR82でみた左右関係は、先に(構成A3-1)の説明で述べた、方向DIR21,DIR22でみた左右関係と同様である。
またコネクタCN1Vの第2系統のクロックCKとデータDTのコネクタ端子である第23ピンと第25ピンの、方向DIR83-2でみた左右関係は、左がクロックCKの端子、右がデータDTの端子となる。
また図51のようにモータドライバ1505はクロック信号CLK_Mを13番端子(SCLK端子)に入力し、データ信号DATA_Mを14番端子(SDIN端子)に入力するため、その端子の方向DIR83で見たときの左右関係は左がクロックCKの端子、右がデータDTの端子となる。
以上から、上記(具体例13)は、図88の構成となっていることが理解される。
この(構成A8-1)の場合、上述の(構成A1-1)と同様の効果(配線長の短縮、配線効率向上、ノイズ混入の低減)を得ることに加えて、次の効果がある。
まず、第1,第2の複数系統のクロックCKとデータDTについて、効率的な配線が実現できることで(構成A1-1)と同様の効果が顕著となる。
また(構成A8-1)の場合、コネクタでは、複数系統のクロックCKとデータDTのピン配置が、それぞれドライバにマッチした状態とされているため、各系統でクロスや大回りを発生させないようにでき、コネクタから各演出駆動手段への配線が効率化できる。これはノイズ混入の低減にも適している。従って複数の演出駆動手段をコネクタと同一面に配置する基板に有効な構成である。
さらに(構成A8-2)は、複数の演出駆動手段としてクロックCKとデータDTの端子が同じ左右関係のものを使う場合に適している。
またコネクタにおいて第1系統、第2系統でピンアサインの左右関係が統一されるため、設計を効率化できるという利点もある。
次に(構成A8-1)又は(構成A8-3)の具体例として(具体例14)を挙げる。なお(具体例14)において、第1基板は同じくLED接続基板1500とし、コネクタはコネクタCN1Vとし、第1の演出駆動手段としてモータドライバ制御部1530を挙げ、第1系統については上記(具体例13)と同様とする。
(具体例14)
・第2の演出駆動手段:LEDドライバ1510,1511,1520,1521,1522(図52,図53,図54参照。但し配置は図72の例とは異なり表面層に配置される例とする)
・第2の演出駆動手段に対するクロック:クロック信号CLK_A、CLK_B
・第2の演出駆動手段に対する演出駆動用制御データ:データ信号DATA_A、DATA_B
・第2の演出駆動手段におけるクロックの入力端子:48番端子(SCLK端子)
・第2の演出駆動手段の演出駆動用制御データの入力端子:47番端子(SDATA端子)
・コネクタ:コネクタCN1V(但し図50とはピンアサインが異なる例とする)
・コネクタの第2系統のクロックのコネクタ端子:第15ピン(図50とは異なる例)
・コネクタの第2系統の演出駆動用制御データのコネクタ端子:第13ピン(図50とは異なる例)
図50は、コネクタCN1Vの第13ピンをクロック信号CLK_P(=CLK_A)、第15ピンをデータ信号DATA_P(=CLK_B)にアサインした例であるが、この(具体例14)では、これを逆にアサインする例とする。つまり第15ピンをクロック信号CLK_P(=CLK_A)、第13ピンをデータ信号DATA_P(=CLK_B)にアサインした例とする。
この場合、図89の方向DIR81-2で見たときに、図示のように左がデータDTのコネクタ端子、右がクロックCKのコネクタ端子となる。
また第2演出駆動手段として図53のLEDドライバ1521を代表にして説明すると、先に(構成A5-1)における(具体例8)で説明したように、48番端子(SCLK端子)と47番端子(SDATA端子)としてのクロックCKとデータDTの各端子の左右関係は、図89の方向DIR83で見たときに、図示のように左がデータDTの端子、右がクロックCKの端子となる。このようなLEDドライバ1521がコネクタCN1Vと同一面に配置されているとする。
すると(具体例14)は、図89の構成となっている。
この(構成A8-3)の場合、上述の(構成A8-1)と同様の効果に加えて、複数の演出駆動手段としてクロック端子とデータ端子の左右関係が逆のものを同一面に配置する場合に、コネクタ側で対応することで、パターン配線の効率化を実現できるという効果が得られる。
なお(具体例14)では、第1系統をモータ用の駆動系、第2系統をLED用の駆動系とした。このように複数の演出駆動手段として、モータ演出駆動手段と発光演出駆動手段を配置する場合にも(構成A8-1)(構成A8-2)(構成A8-3)は好適である。
特にモータ演出駆動手段と発光演出駆動手段とでは、クロックCKとデータDTを別系統とすることで、発光演出と役物等の演出をより多様化できるようにする場合がある。そのような場合に、同一面に配置するモータ演出駆動手段のICと発光演出駆動手段のICとで、クロックCKとデータDTの各端子の左右関係が逆の場合、コネクタ側の第1系統と第2系統のアサインとして、クロックCKとデータDTの各コネクタ端子左右関係を逆にすることで、配線の効率化を実現できるものとなる。
実施の形態の遊技機1は次の(構成A9-1)を有する。
(構成A9-1)
遊技機1は、
チップ部品による第1の演出駆動手段と、
チップ部品による第2の演出駆動手段と、
前記第1の演出駆動手段に対する第1系統のクロックと演出駆動用制御データを入力するとともに、前記第2の演出駆動手段に対する第2系統のクロックと演出駆動用制御データを入力する入力コネクタと、
が設けられた第1基板を備え、
前記第1基板において、
前記第1の演出駆動手段は前記入力コネクタと同一面に配置され、
前記第2の演出駆動手段は前記入力コネクタと異なる面に配置され、
前記第1の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
前記入力コネクタにおける前記第1系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
前記入力コネクタにおける前記第2系統のクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であり、
前記第2の演出駆動手段におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係が、前記第1の演出駆動手段と逆である
遊技機。
図90にこの第1基板の構成を模式的に示している。
第1基板には入力コネクタと第1の演出駆動手段及び第2の演出駆動手段が搭載されている。
入力コネクタと第1の演出駆動手段は、第1基板上の同一面に配置されている(図では第1のコネクタと第1の演出駆動手段のブロックを共に実線で示している)。
入力コネクタと第2の演出駆動手段は、第1基板上の異なる面に配置されている(図では第2の演出駆動手段を破線で示し、実線で示すコネクタに対して裏側の面に配置されていることを示している。
また、第2の演出駆動手段については、長方形として示す第1の演出駆動手段とはクロックCKとデータDTの各端子の左右関係が異なるチップであることを、八角形で示している。また裏側の面であるため第2の演出駆動手段の「CK」「DT」の文字は鏡面反転させている。
入力コネクタは、第1の演出駆動手段に対する、第1系統のクロックCKと演出駆動用制御データ(データDT)を入力する。第1系統のクロックCKとデータDTは、基板上のパターン配線PTH1により第1の演出駆動手段に供給される。
また入力コネクタは、第2の演出駆動手段に対する、第2系統のクロックCKと演出駆動用制御データ(データDT)を入力する。第2系統のクロックCKとデータDTは、基板上のパターン配線PTH2により第2の演出駆動手段に供給される。パターン配線PTH2はスルーホールTHを介して両面にわたって形成される。
この場合に、矢印で示す方向DIR91-1及びDIR91-2は、上述の方向DIR1と同様に定義される方向であり、DIR92、DIR93は、図81で述べた方向DIR52、DIR53と同様に定義される方向である。
方向DIR91-1、DIR91-2、DIR92、DIR93で見たときの、クロックCKの端子とデータDTの端子の左右関係を図90の下部に示している。この例では、方向DIR91-1、DIR91-2、DIR92でみたとき、図の左がクロックCKの端子、右がデータDTの端子の並びになっている。一方、DIR93でみたとき、図の右がクロックCKの端子、左がデータDTの端子の並びになっている。
この図90のような(構成A9-1)に対応する例として次の(具体例15)が想定される。
(具体例15)
・第1基板:LED接続基板1500(図50~図57参照)
・第1の演出駆動手段に対するクロック(CK):クロック信号LSI_SCK
・第1の演出駆動手段に対する演出駆動用制御データ(DT):シリアルデータ信号LSI_MOSI
・第1の演出駆動手段:モータドライバ制御部1530(図55参照)
・第1の演出駆動手段におけるクロックの入力端子:5番端子(SCK端子)
・第1の演出駆動手段における演出駆動用制御データの入力端子:7番端子(MOSI端子)
・入力コネクタ:コネクタCN1V
・入力コネクタの第1系統のクロックのコネクタ端子:第3ピン
・入力コネクタの第1系統の演出駆動用制御データのコネクタ端子:第7ピン
・第2の演出駆動手段:LEDドライバ1510,1511,1520,1521,1522(図52,図53,図54参照)
・第2の演出駆動手段に対するクロック(CK):クロック信号CLK_A、CLK_B
・第2の演出駆動手段に対する演出駆動用制御データ(DT):データ信号DATA_A、DATA_B
・第2の演出駆動手段におけるクロックの入力端子:48番端子(SCLK端子)
・第2の演出駆動手段の演出駆動用制御データの入力端子:47番端子(SDATA端子)
・入力コネクタの第2系統のクロックのコネクタ端子:第13ピン
・入力コネクタの第2系統の演出駆動用制御データのコネクタ端子:第15ピン
これらの各構成要素については、上述の(構成A5-1)で挙げた(具体例8)の説明と重複するため繰り返しの説明は避けるが、(具体例15)は、図90に模式的に示した構成に該当することになる。
この構成の場合、上述の(構成A1-1)と同様の効果(配線長の短縮、配線効率向上、ノイズ混入の低減)を得ることに加えて、次の効果がある。
すなわち(構成A9-1)では、1つの入力コネクタにクロックCKとデータDTの組が複数ある基板で、演出駆動手段のクロックCKとデータDTの各端子の左右関係の左右が逆のとき、コネクタ端子のアサインは同一面である第1の演出駆動手段に合わせる構成を採る。
例えば複数の演出駆動手段として新旧のドライバチップを使用する場合など、入力コネクタの裏側の面に左右関係が逆のドライバチップを配置することで、各系統で配線のクロスや大回りを発生させないようにでき、入力コネクタから各演出駆動手段への配線が効率化できる。ノイズ混入の低減にも適している。
また入力コネクタにおいて第1系統、第2系統でピンアサインの左右関係が統一されるため、設計を効率化できる。
また実施の形態の遊技機1は(構成A9-1)に加えて、次の(構成A9-2)を有する。
(構成A9-2)
前記第1基板は、クロックと演出駆動用制御データを出力する出力コネクタを備え、
前記第1基板において、
前記出力コネクタは前記入力コネクタと同一面に配置され、
前記入力コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
前記出力コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子に接続されるパターン配線側から該各コネクタ端子の方向を向いてみたときの左右関係と、
が同一である。
図91にこの(構成A9-2)における第1基板を模式的に示している。なお出力コネクタを有すること以外は図90と同様の構成である。
図91の出力コネクタは、下流の基板に対してクロックCKとデータDTを送信するためのコネクタである。
方向DIR94は、出力コネクタの各コネクタ端子に接続されるパターン配線側から該各コネクタ端子の方向を向いてみたときの方向であり、その左右関係は、図の下部に示すように左がクロックCKの端子、右がデータDTの端子の並びになっている。つまり方向DIR91-1、DIR91-2、DIR92でみたときの左右関係と同一である。
具体例としては、上記(具体例15)に、出力コネクタに関して次の(具体例16)を加えればよい。
(具体例16)
・出力コネクタ:コネクタCN2V(図50参照)
・出力コネクタのクロックのコネクタ端子:第3ピン
・入力コネクタの演出駆動用制御データのコネクタ端子:第5ピン
コネクタCN2Vの場合、方向DIR94でみたクロック信号CLK_Cとシリアルデータ信号DATA_Cの各端子の左右関係は、図91に示したとおりとなる。
従って(具体例15)(具体例16)の構成を備えるLED接続基板1500は図91の構成を備える。
このような(構成A9-2)によれば、第1基板において出力コネクタまでの配線も含めて、配線の効率化が実現できる。
また実施の形態の遊技機1は(構成A9-1)及び(構成A9-2)に加えて、次の(構成A9-3)を有する。
(構成A9-3)
第3の演出駆動手段に対するクロックと演出駆動用制御データを入力する入力コネクタが設けられた第2基板を備え、
前記第2基板における入力コネクタにおけるクロックと演出駆動用制御データの各コネクタ端子の、該各コネクタ端子側から該各コネクタ端子に接続されるパターン配線の導出方向を向いてみたときの左右関係は、前記第1基板の入力コネクタにおける前記第1系統のクロックと演出駆動用制御データの各コネクタ端子と同一である。
図92にこの(構成A9-3)における第1基板を模式的に示している。なお図92において第1基板の構成は図91と同様である。
第2基板には第3の演出駆動手段に対するクロックCKとデータDTを入力する入力コネクタが搭載されている。この入力コネクタからは、クロックCK及びデータDTについてのパターン配線PTHが導出される。
この図では第2基板において第3の演出駆動手段は記載していないが、次のいずれかである。
・第3の演出駆動手段が第2基板で入力コネクタと同一面に搭載されている
・第3の演出駆動手段が第2基板で入力コネクタと異なる面に搭載されている
・第3の演出駆動手段が第2基板より下流の他の基板に搭載されている
方向DIR95は、第2基板における入力コネクタについて、クロックCKとデータDTの各コネクタ端子側から該各コネクタ端子に接続されるパターン配線PTHの導出方向を向いてみた方向である。その場合の左右関係は、この例ではクロックCKの端子が左で、データDTの端子が右となっている。
方向DIR91-1、DIR91-2、DIR92、DIR93、DIR94、DIR95で見たときの、クロックCKの端子とデータDTの端子の左右関係を図の下部に示しているが、クロックCKの端子とデータDTの端子の左右関係は、方向DIR93でみたときを除いて同一となっている。
この図92のような(構成A9-3)に対応する例として、第1基板は上記の(具体例15)(具体例16)が想定され、加えて第2基板については、次の(具体例17)が想定される。
(具体例17)
・第2基板:LED基板1600(図58参照)
・第2基板の入力コネクタ:コネクタCN1W
・第2基板の入力コネクタにおけるクロックのコネクタ端子:第2ピン
・第2基板の入力コネクタにおける演出駆動用制御データのコネクタ端子:第5ピン
コネクタCN1Wの場合、方向DIR95でみたクロック信号CLKとデータ信号DATAの各端子の左右関係は、図92に示したとおりとなる。
従って(具体例15)(具体例16)(具体例17)の構成を備えるLED接続基板1500及びLED基板1600を有する遊技機1は、図92の構成を備える。
このような(構成A9-3)によれば、第1基板と第2基板で、入力コネクタのクロックCKとデータDTのアサインを共通にすることで、設計を効率化できるという利点がある。
ここまで(構成A1-1)から(構成A9-3)まで説明してきたが、これらの各構成には、さらに以下の(構成A100)(構成A101)(構成A102)(構成A103)をそれぞれ適用することができる。
(構成A100)
上記の(構成A1-1)から(構成A9-3)におけるチップ部品は、表面実装型チップである。
上述の(構成A1-1)から(構成A9-3)では、チップ部品として第1の演出駆動手段、第2の演出駆動手段、第3の演出駆動手段を挙げた。なお演出駆動手段には発光駆動手段やモータ駆動手段も含む。
即ちチップ部品としては、例えば(具体例1)等におけるLEDドライバ782、791である。図62で説明したLEDドライバ782、791は表面実装型チップである。図60の「p782」、図63の「p791」のパッド形状からも表面実装型チップであることがわかる。
モータドライバ制御部1530、S/P変換回路606、LEDドライバ1601、LEDドライバ1510,1511,1520,1521,1522、モータドライバ1505なども演出駆動手段として例示した。これらも表面実装型チップである。
表面実装型ではないディップ部品、すなわちリードを基板の穴(ビア/スルーホール)に通して固定するチップは基板裏側で配線の関係を左右逆にすることで、コネクタと演出駆動手段の端子左右関係が逆の場合に対応できるが、表面実装型のチップの場合、それができない。
つまり演出駆動手段として表面実装型のチップを用いる場合、クロックCKとデータDTの上述した左右関係が、コネクタと演出駆動手段とで逆であると、無駄な配線経路が増え、配線が複雑になってしまう。
この点を鑑みると、第1の演出駆動手段や第2の演出駆動手段などとして表面実装型チップを用いる場合、(構成A1-1)から(構成A9-3)の効果が顕著となることが理解される。
(構成A101)
上記の(構成A1-1)から(構成A9-3)におけるチップ部品は、略方形であって4つの辺に端子が形成されているチップである。
上述のLEDドライバ782、791、モータドライバ制御部1530、S/P変換回路606、LEDドライバ1601、LEDドライバ1510,1511,1520,1521,1522、モータドライバ1505など、演出駆動手段(発光駆動手段、モータ駆動手段)として例示したチップは、略方形であって4つの辺に端子が形成されているチップである。
例えばLEDドライバ782、791は図62で説明したように略方形であって4つの辺に端子が形成されているチップである。またLEDドライバ1601等も図80で説明したように略方形であって4つの辺に端子が形成されているチップである。
方形で4つの辺のそれぞれに端子が形成されているチップの場合、配線を回り込ませるようにしても、コネクタとLEDドライバ間の端子の左右関係が逆の場合に対応できないか、又は困難である。配線を回り込ませて左右関係の逆に対応しようとすると、他の端子への配線を妨害してしまうためである。
換言すれば、4辺に端子が形成されているチップの場合に(構成A1-1)から(構成A9-3)のいずれかのような構成を採用すると、配線を回り込ませて逆の左右関係に対応するということが不要となり、配線効率向上効果が顕著となる。
(構成A102)
上記の(構成A1-1)から(構成A9-3)における第1基板、第2基板、第3基板等は、基板表面及び基板裏面による2層配線の基板である。
例えば(構成A4-1)の第1基板に相当するLED接続基板1500は図71,図72で説明したように基板表面及び基板裏面による2層配線の基板である。第2基板に相当するLED基板1600も図78,図79で説明したように基板表面及び基板裏面による2層配線の基板である。
表面と裏面の2層配線の基板は、内層が設けられた多層配線の基板と比較して安価である。その反面、パターン配線を形成する層が2つしかないため、より効率的なパターン設計が求められる。このような場合に(構成A1-1)から(構成A9-3)の技術は有効であり、また、これによって基板のコスト低下も促進できる。
(構成A103)
上記の(構成A1-1)から(構成A9-3)においてコネクタからのクロックCKとデータDTは、クロックCKとデータDTの左右関係を変更しないバッファ回路を介してと演出駆動手段(発光駆動手段、モータ駆動手段)に供給される。
この場合、バッファ回路はチップ部品であり、左右関係を変更しないということは、
・バッファ回路におけるクロックと演出駆動用制御データの各入力端子の、パターン配線側からチップ側をみたときの左右関係と、
・バッファ回路におけるクロックと演出駆動用制御データの各出力端子の、該各出力端子に接続されるパターン配線の導出方向を向いてみたときの左右関係と、
が同一であるということである。
例えば図50におけるバッファ回路1501、1502、1503等は、このような構成を備えている。そして例えば(構成A3-1)(構成A5-1)等、LED接続基板1500を具体例に挙げた構成では、クロックCKとデータDTがバッファ回路を介して演出駆動手段に供給されている。
このようにすることで、基板上で、クロックCKとデータDTの信号補償が行われ、基板上で安定した信号伝送が実現される。また耐ノイズ性を向上させる。
そして、バッファ回路の入力端子と出力端子で左右関係は変更されないため、(構成A1-1)から(構成A9-3)の構成による効果が得られるものとなる。
[7.2 スレーブアドレス]
実施の形態の遊技機1において、基板に搭載されるチップ部品としての演出駆動手段についてのスレーブアドレスの設定について説明する。
実施の形態の遊技機1は次の(構成B1-1)を有する。
(構成B1-1)
遊技機1は、
略方形とされ、2以上の辺に端子が形成されたチップ部品による同一構成の演出駆動手段を複数個有し、
前記演出駆動手段は、
連続する2つの辺である第1辺から第2辺にわたって連続する端子番号で形成されたX個の端子がスレーブアドレスを設定するアドレス端子とされ、
前記第1辺に(x1)個のアドレス端子が形成され、
前記第2辺に(x2)個のアドレス端子が形成され、
(x1)+(x2)=X、かつ(x1)<(x2)であり、
前記複数個の前記演出駆動手段の全ては、前記第2辺の(x2)個のアドレス端子のうちの少なくとも1つであって、前記複数個の前記演出駆動手段に共通する特定のアドレス端子がLレベルに設定される。但し、X、x1、x2は自然数である。
なお、「同一構成」の複数の演出駆動手段とは、次のいずれかの解釈でよい。
・同一のICチップ(同一の型番のICチップ)による複数の演出駆動手段
・全てが同一のICチップでないとしても、スレーブアドレス設定用の端子の端子数が同じICチップによる複数の演出駆動手段
以上の同一構成の観点でいえば、例えば遊技機1内に「異なる構成」の演出駆動手段(例えばLEDドライバ)が混在することもある。そのような場合、「異なる構成」の演出駆動手段は、(構成B1-1)における「複数の演出駆動手段の『全て』」には含まれない。つまり(構成B1-1)は複数の同一構成の演出駆動手段の構成を規定するものである。
またこの『全て』は、個々がスレーブアドレスを割り振られて区別される演出駆動手段の全てという意味を持つ。従って、必ずしも遊技機1内の全ての演出駆動手段を指すものではない。「前記複数個の前記演出駆動手段の全て」とは、少なくとも、1つの演出制御手段(例えば演出制御基板30)からの1つのチャネルの演出制御信号を受信して演出駆動を行う同一構成の複数の演出駆動手段の全て、という意味である。
以上の「同一構成」や「全て」の意味は、後述する(構成B2-1)(構成B3-1)についても同様である。
スレーブアドレスの設定の例として、LED接続基板1500のLEDドライバ1510,1511,1520,1521,1522(図52、図53、図54)と、LED基板1600のLEDドライバ1601(図58)を挙げる。
LEDドライバ1510,1511,1520,1521,1522,1601の端子配置は図80Aのとおりである。
図80Aにおける端子配置は、辺sdに1番端子(SVCC)から12番端子(A1)が設けられ、辺sdに13番端子(A2)から24番端子(LEDR3)が設けられ、辺sdに25番端子(LEDG3)から36番端子(LEDG6)が設けられ、辺sdに37番端子(LEDB6)から48番端子(SCLK)が設けられる。
1番端子(SVCC)は電源端子である。
2番端子(VREF)は5Vレファレンス電圧の出力端子である。
3番端子(CTLSCT)はシリアル信号制御の設定端子である。
4番端子(CTLSCT)はLED出力方式の設定端子である。
5番端子(RESET)はリセット信号入力端子である。
6番端子(Ilef_B)、7番端子(Ilef_G)、8番端子(Ilef_R)は、B、G、RのLED電流設定のための抵抗接続端子である。
9番端子(SGND)はグランド端子である。
10番端子はテスト端子とされ、グランド接続される。
11番端子から16番端子(A0~A5)はスレーブアドレスを設定するアドレス端子である。この場合、6ビットでスレーブアドレス設定が可能とされる
17番端子から44番端子まで(34番端子を除く)には、LED発光駆動電流の端子(LEDR1~LEDB8)とLED出力用のグランド端子(PGND1~PGND3)が形成される。
34番端子(LVCC)はLED出力端子用保護回路電源の端子である。
45番端子(SDO)はダミー端子である。
46番端子(SDEN)はイネーブル信号の入力端子である。
47番端子(SDATA)はデータ信号DATAの入力端子である。
48番端子(SCLK)はクロック信号CLKの入力端子である。
ここで、11番端子から16番端子(A0~A5)で設定されるLEDドライバ1510,1511,1520,1521,1522,1601のスレーブアドレスは、図52、図53、図54、図58からわかるように、次のとおりである。
なお、11番端子(A0)がLSB(最下位ビット)、16番端子(A5)がMSB(最上位ビット)である。グランドに接続される端子に相当するビットは「0」とされ、5Vのレファレンス電圧のVREF端子(2番端子)に接続される端子に相当するビットは「1」となる。
LEDドライバ1510:000111(図52参照)
LEDドライバ1511:001000(図52参照)
LEDドライバ1520:001001(図53参照)
LEDドライバ1521:001010(図53参照)
LEDドライバ1522:001011(図54参照)
LEDドライバ1601:001100(図58参照)
以上は一例であるが、ここでは図49の遊技盤3側に配置される基板におけるLEDドライバのうちの6個を示した。これ以外にも図示しない基板に搭載されるLEDドライバも存在する。
また、図49の扉6側に配置される基板にも、複数のLEDドライバが搭載される。
図49の演出制御基板30は、シリアルデータ出力チャネルとして、2つのチャネルを用いて遊技盤3側と扉6側にシリアルデータ送信を行う。
遊技盤3側の複数のLEDドライバには、演出制御基板30から伝送線路H50でクロックとシリアルデータ、つまり上述のクロックCKとデータDTが送信される。この遊技盤3側へのシリアルデータ出力チャネルを第1チャネルとする。
扉6側の複数のLEDドライバは、演出制御基板30から伝送線路H6でクロックとシリアルデータ、つまり上述のクロックCKとデータDTが送信される。この扉6側へのシリアルデータ出力チャネルを第2チャネルとする。
なお、以下の説明では、第1チャネル、第2チャネルの各LEDドライバは、スレーブアドレスを6ビットで設定されるドライバIC(例えば図80AのIC)を使用しているものとする。
本実施の形態の遊技機1では、複数のLEDドライバについて、図93に示すようにスレーブアドレスを設定する。
図93では、スレーブアドレスを10進表記、16進表記、及びビット(A5)~ビット(A0)の6ビットの表記で示している。
この例では、10進表記で「0」~「15」を第1チャネルのLEDドライバに割り当てるスレーブアドレスとし、「16」~「31」を第2チャネルのLEDドライバに割り当てるスレーブアドレスとする。「32」~「63」は未使用とする。
これにより、第1チャネル、及び第2チャネルでは、それぞれ16個のLEDドライバについてスレーブアドレスを割り当てることができる。
このようにすると、ビット(A5)を、すべて「0」とできることになる。換言すれば、第1チャネル、第2チャネルにおいて同一構成の全てのLEDドライバについて、16番端子(A5)が「0」にできることになる。
但しこれは、6ビットで設定可能なスレーブアドレスを、単純にビット(A4)~ビット(A0)の5ビットで使用するという意味ではない。
5ビット分で使用するなら、例えばビット(A0)を全て「0」とすることでもよいし、ビット(A1)を全て「0」としてもよい。同様にビット(A2)やビット(A3)でもよい。つまりビット(A5)~ビット(A0)のうちのいずれかの1ビットを用いなくとも、LEDドライバの数に対応してスレーブアドレスを設定できる。
このような事情において(構成B1-1)では、図80Aの端子配置のLEDドライバを使用する場合、全てのLEDドライバで、ビット(A0)又はビット(A1)ではなく、ビット(A5)~(A2)のいずれかを「0」とするという設計方針を採用する。図93は、ビット(A5)を選択した例となる。
以下、LEDドライバ1510,1511,1520,1521,1522,1601、及び図示しない他のLEDドライバを「LEDドライバ1510等」と呼ぶ。
LEDドライバ1510等は、図80Aに示したように、連続する2つの辺である辺sd1から辺sd2にわたって連続する端子番号で形成された6個の端子(11番端子から16番端子(A0端子~A5端子))がスレーブアドレスを設定するアドレス端子とされる。
辺sd1にA0端子、A1端子があり、辺sd2にA2端子~A5端子があるため、(構成B1-1)でいうX、x1、x2は、X=6、x1=2、x2=4である。
そして辺sd2における少なくとも1つであって、LEDドライバ1510等の全てに共通するアドレス端子(例えばA5端子)がLレベルに設定される。
LEDドライバ1510,1511,1520,1521,1522,1601のアドレス端子の接続状態を図94に模式的に示した。
スレーブアドレスでHレベル(「1」)とされるビットの端子には、VREF端子からのリファレンス電圧が印加される。
スレーブアドレスでLレベル(「0」)とされるビットの端子はグランド接続される。
図94では、上述のスレーブアドレス値を実現するための接続状態を示しており、例えば実線はLEDドライバ1510等のチップの実装面におけるパターン配線、破線は、スルーホールを介して接続される、チップ実装面の裏側の面におけるパターン配線を示している。
例えばグランドは、LEDドライバ1510等のチップ実装面のベタグランドなどに配線されるもので、その配線パターンはベタグランドの形状に応じて多様であるし、必ずしも各端子が共通のパターンで接続される必要はなく、ベタグランドに対して短い経路でパターンが形成されればよい。
図94の破線で示すような、スレーブアドレスのHレベル(「1」)を設定するリファレンス電圧についての配線例を示しておく。
LEDドライバ1510等とはスレーブアドレスの端子数が異なるLEDドライバ782、791、631の例ではあるが、以上の図94の破線のようなリファレンス電圧配線が図60,図61のLED基板780、図63,図64のLED基板790、図66,図67のサイドユニット上LED基板630に現れている。
なおこれらLEDドライバ782、791、631は図62に示したように1番端子がVREF端子で、11番端子から15番端子(A0端子~A4端子)がスレーブアドレスを設定するアドレス端子である。
LED基板780の場合、LEDドライバ782の1番端子からリファレンス電圧配線789a(図60)、スルーホールTH50(図60,図61)、リファレンス電圧配線789b(図61)、スルーホールTH51(図61,図60)、リファレンス電圧配線789c(図60)で、スレーブアドレスのHレベル(「1」)が設定される。
LED基板790の場合、LEDドライバ791の1番端子からリファレンス電圧配線799a(図63)、スルーホールTH60(図63,図64)、リファレンス電圧配線799b(図64)、スルーホールTH61(図64,図63)、リファレンス電圧配線799c(図63)で、スレーブアドレスのHレベル(「1」)が設定される。
サイドユニット上LED基板630の場合、LEDドライバ631の1番端子からリファレンス電圧配線639a(図67)、スルーホールTH70(図67,図66)、リファレンス電圧配線639b(図66)、スルーホールTH71(図66,図67)、リファレンス電圧配線639c(図67)で、スレーブアドレスのHレベル(「1」)が設定される。
図94の各LEDドライバ1510等も、以上のLEDドライバ782、791、631の例のように、チップ実装面とその裏側の面におけるパターン配線により、スレーブアドレスが設定される。
そして図94の例では、いずれも、A5端子はグランドに接続される。
このような構成は次のように実現する。
まずX本の端子で例えばXビット(或いは1端子でYビットが設定できるものはX×Yビット)のアドレス設定が可能なところ、(X-1)本の端子でスレーブアドレスを設定する。このためには望ましくは、全チャネル合わせて、LEDドライバ1510等の総数は、(X-1)本の端子でスレーブアドレスを設定可能な数とする。
但し、LEDドライバ1510等の総数を(X-1)以下とするのは、少なくとも1つのシリアルデータ出力チャネルでの総数と考えてもよい。
図93の例は、あくまでもLEDドライバ1510等が、第1チャネルと第2チャネルを合わせて(つまり全チャネル合わせて)32個以内とする場合の一例であるが、それに限られない。
第1チャネルと第2チャネルは、シリアルデータ通信チャネルとしてそれぞれ独立しているため、第1チャネルと第2チャネルの間で同じスレーブアドレスが存在しても問題はない。従って少なくとも1つのチャネルにおいて、LEDドライバ1510等の数が(X-1)本の端子でスレーブアドレスを設定できる数であればよい。
そして(X-1)本の端子でスレーブアドレスを設定する場合、アドレス端子の数が多い方である第2辺(上記例では辺sd2)において、特定の端子(例えばA5端子)をLレベルに設定する。この設定は、少なくとも1つのシリアルデータ出力チャネル内でスレーブアドレスを割り当てる全てのLEDドライバにおいて共通に設定する。図93の例は、さらに第1チャネル、第2チャネルにわたって全てのLEDドライバ1510等に、共通に設定した例となる。
このように端子数の多い方の辺sd2で、1つの共通の端子がLレベルとされるようにスレーブアドレスを設定することで、LEDドライバ1510等の周囲の配線に余裕を持たせることができやすくなる。これによって配線の効率化や配線設計の容易化が実現できる。
スレーブアドレス値及び周辺回路によって、各LEDドライバの周囲の配線は異なるが、少なくともアドレス配線が多い辺sd2側で1つをLレベルに固定することで、配線が容易化されるLEDドライバが発生する確率を高めることができる。
なお(構成B1-1)から後述の(構成B3-3)においていう第1辺と第2辺は辺sd1と辺sd2に限らない。辺sd2と辺sd3の場合もあるし、辺sd3と辺sd4の場合もあるし、辺sd4と辺sd1の場合もある。
また第1辺、第2辺は端子番号の順の並びでいうものではない。第1辺が辺sd2、第2辺が辺sd1に相当する場合もある。
(構成B1-1)で言えば、あくまでも、第1辺、第2辺は連続する辺であって、アドレス端子の端子数が多い方が第2辺となるものである。
また4つの辺に端子が設けられるICチップに限らない。
なお、例えば図11の構成における装飾基板740のLEDドライバ742(図43)、LED基板780のLEDドライバ782(図45)、LED基板790のLEDドライバ791(図46)などでは、スレーブアドレスを5ビットで設定するドライバICチップを用いる例を挙げた。
これらのようなドライバICチップを用いる場合も、複数のLEDドライバに共通する端子をLレベルに設定することで(構成B1-1)の考え方を実現できる。
ところで上記例のLEDドライバ1510等では、全てのLEDドライバで、ビット(A5)~(A2)のいずれかを「0」とするという設計方針を採用すると述べたが、中でも、図93のようにビット(A5)を「0」とすることが最も望ましい。
これは、A5端子が、A5端子~A2端子のうちで、最も隅で、VREF端子から最も遠いことから、これがHレベルとなった場合、リファレンス電圧の配線長が最も長くなってしまうためである。リファレンス電圧の配線長をなるべく短くするという点で、ビット(A5)を「0」として、A5端子が、どのLEDドライバであってもグランド接続されるようにすることが望ましい。
なお、以上の(構成B1-1)の遊技機1における複数の前記演出駆動手段には、第1基板に搭載されるチップ部品によるものと、第2基板に搭載されるチップ部品によるものを含む。
上述のLEDドライバ1510等として挙げたもののうち、LEDドライバ1510,1511,1520,1521,1522は、LED接続基板1500に搭載されるチップ部品で、LEDドライバ1601はLED基板1600に搭載されるチップ部品である。従って第1基板、第2基板として、LED接続基板1500とLED基板1600を挙げることができる。
このように複数の基板における演出駆動手段について、共通に第2辺の1つの端子がLレベルに設定されることで、複数の基板での配線の効率化や配線設計の容易化を促進できる。
実施の形態の遊技機1は次の(構成B2-1)を有する。
(構成B2-1)
遊技機1は、
略方形とされ、2以上の辺に端子が形成されたチップ部品による同一構成の演出駆動手段を複数個有し、
前記演出駆動手段は、連続する2つの辺である第1辺から第2辺にわたる連続する端子番号の複数の端子であってスレーブアドレスを設定するアドレス端子と、前記第1辺に形成されアドレス端子をHレベルに設定する設定電圧端子と、を有して構成され、
前記複数個の前記演出駆動手段の全ては、前記第2辺のアドレス端子のうちの少なくとも1つであって前記複数個の前記演出駆動手段に共通する特定のアドレス端子がLレベルに設定される
なお、この場合の「同一構成」や「全て」の意味は、先に(構成B1-1)の説明で述べたとおりであり、必ずしも遊技機1内の全ての演出駆動手段を指すものではない。
同じく図80AのLEDドライバ1510等で具体例を説明する。
設定電圧端子とは、5Vレファレンス電圧の出力端子であるVREF端子である。
従ってこの場合、第1辺は辺sd1,第2辺は辺sd2となる。
そして上記図93の例によれば、辺sd2のA5端子がLレベルに設定される。
このようにすることで、辺sd2側に至るVREF端子からの配線を容易化しやすい。少なくともA5端子にまで配線することはないためである。このため配線の効率化や配線設計の容易化が実現できる。
特に辺sd2側の端子(ビット)とされることで、割り振られたスレーブアドレス値によっては、辺sd2側にVREF端子の配線を不要とすることも生ずる。従って遊技機1の全体として、スレーブアドレス設定のための配線を容易化できる基板数を増やすことができる。
また実施の形態の遊技機1は(構成B2-1)に加えて、次の(構成B2-2)を有する。
(構成B2-2)
Hレベルに設定するアドレス端子と前記設定電圧端子は、基板上で、演出駆動手段の実装面とは異なる面のパターン配線を介して接続され、
Lレベルに設定するアドレス端子は、前記実装面のグランドに接続される。
図94で説明したように、Lレベルの端子は、LEDドライバ1510等のチップの実装面のベタグランドに接続され、Hレベルの端子は、チップ実装面の裏側の面を用いて配線される。このようにすることで、チップ実装面とは別の面においてHレベル配線を容易化できる。またチップ実装面の配線に余裕を持たせることで、配線の効率化や設計の容易化を実現できる。特に実装面のグランドへのパターン配線長が短くなる構成の場合に好適となる。
また実施の形態の遊技機1は(構成B2-1)に加えて、次の(構成B2-3)を有するようにすることもできる。
(構成B2-3)
Hレベルに設定するアドレス端子と前記設定電圧端子は、基板上で、演出駆動手段の実装面におけるパターン配線で接続され、
Lレベルに設定するアドレス端子は、前記実装面とは異なる面のグランドに接続される。
これは上記の(構成B2-2)とは逆に、Lレベルの端子は、LEDドライバ1510等のチップの実装面の裏側の面のベタグランドに接続され、Hレベルの端子は、チップ実装面を用いて配線されるようにする例である。図94を上述とは逆に、破線をチップ実装面の配線、実線を裏側の面の配線と考えればよい。
例えばチップ実装面とは別の面においてベタグランドが形成される場合には、このような構成を採り、Lレベルとするアドレス端子は、チップ実装面とは別の面でベタグランドに接続することで、実装面の配線に余裕を持たせ、配線の効率化や設計の容易化を実現できる。
実施の形態の遊技機1は次の(構成B3-1)を有する。
(構成B3-1)
遊技機1は、
略方形とされ、2以上の辺に端子が形成されたチップ部品による同一構成の演出駆動手段を複数個有し、
前記演出駆動手段は、
連続する2つの辺である第1辺から第2辺にわたって連続する端子番号で形成された複数の端子がスレーブアドレスを設定するアドレス端子とされ、
アドレス端子をHレベルに設定する設定電圧端子からチップ周囲を辿って前記第1辺におけるいずれかのアドレス端子に最短で到達する第1距離より、前記設定電圧端子からチップ周囲を辿って前記第2辺におけるいずれかのアドレス端子に最短で到達する第2距離の方が長く、
前記複数個の前記演出駆動手段の全ては、前記第2辺のアドレス端子のうちの少なくとも1つであって、前記複数個の前記演出駆動手段に共通する特定のアドレス端子がLレベルに設定される。
なお、この場合の「同一構成」や「全て」の意味も、先に(構成B1-1)の説明で述べたとおりであり、必ずしも遊技機1内の全ての演出駆動手段を指すものではない。
同じく図80AのLEDドライバ1510等で具体例を説明する。
設定電圧端子とは、5Vレファレンス電圧の出力端子であるVREF端子である。
またVREF端子からの距離の関係で、第1辺は辺sd1,第2辺は辺sd2となる。VREF端子からチップ周囲を辿って辺sd1におけるいずれかのアドレス端子に最短で到達する第1距離は、図80Aに示すVREF端子からA0端子までの距離dst1であり、VREF端子からチップ周囲を辿って辺sd2におけるいずれかのアドレス端子に最短で到達する第2距離は、VREF端子からA2端子までの距離dst2であって、dst1<dst2であるためである。
なお、距離dst1、距離dst2は、図80では模式的に示しているが、それぞれVREF端子とA0端子、VREF端子とA2端子の、各端子間に配線パターンを形成したときの最短の配線長と考えるものである。
以上のようにLEDドライバ1510等では辺sd2が(構成B3-1)でいう第2辺となる。そして上記図93の例によれば、辺sd2の端子A5がLレベルに設定される。
このように端子VREFから配線が遠くなる辺sd2のアドレス端子の1つがLレベルとされることで、端子VREF端子とアドレス端子の間の配線を容易化しやすく、配線の効率化や配線設計の容易化が実現できる。
特に辺sd2側の端子(ビット)とされることで、割り振られたスレーブアドレス値によっては、辺sd2側に端子VREFの配線を不要とすることも生ずる。従って遊技機1の全体として、スレーブアドレス設定のための配線を容易化できる基板数を増やすことができる。
また実施の形態の遊技機1は(構成B3-1)に加えて、次の(構成B3-2)を有する場合がある。
(構成B3-2)
Hレベルに設定するアドレス端子と前記設定電圧端子は、基板上で、演出駆動手段の実装面とは異なる面のパターン配線を介して接続され、
Lレベルに設定するアドレス端子は、前記実装面のグランドに接続される
また実施の形態の遊技機1は(構成B3-1)に加えて、次の(構成B3-3)を有するようにすることもできる。
(構成B3-3)
Hレベルに設定するアドレス端子と前記設定電圧端子は、基板上で、演出駆動手段の実装面におけるパターン配線で接続され、
Lレベルに設定するアドレス端子は、前記実装面とは異なる面のグランドに接続される
これら(構成B3-2)(構成B3-3)は、上述の(構成B2-2)(構成B2-3)と同様であり、上述の効果が得られる。
実施の形態の遊技機1は次の(構成B4-1)を有する。
(構成B4-1)
遊技機1は、
演出動作制御のためのシリアルデータを出力するシリアルデータ出力チャネルとして、第1チャネルと第2チャネルを有する演出制御手段と、
前記第1チャネルのシリアルデータに基づいて演出手段の駆動を行う複数の第1の演出駆動手段と、
前記第2チャネルのシリアルデータに基づいて演出手段の駆動を行う複数の第2の演出駆動手段と、
を備え、
前記第1の演出駆動手段及び前記第2の演出駆動手段のそれぞれは、X本以上のアドレス端子でスレーブアドレスが設定されるチップ部品により構成され、
複数の前記第1の演出駆動手段のそれぞれは、前記X本のアドレス端子で設定可能なアドレス値範囲のうちで第1の数値範囲内の値でそれぞれ固有のスレーブアドレスが設定され、
複数の前記第2の演出駆動手段のそれぞれは、前記X本のアドレス端子で設定可能なアドレス値範囲のうちで前記第1の数値範囲とは重複が無い第2の数値範囲内の値でそれぞれ固有のスレーブアドレスが設定されている。但しXは自然数である。
この構成B4-1に相当する(具体例18)は次のとおりである。
(具体例18)
・演出制御手段:演出制御手段30(図49参照)
・複数の第1の演出駆動手段:遊技盤3側の各LEDドライバ
・複数の第2の演出駆動手段:扉6側の各LEDドライバ
・チップ部品:図80AのドライバICチップ
・第1の数値範囲内:図93における「0」~「15」(10進)
・第2の数値範囲内:図93における「16」~「31」(10進)
つまり、演出制御基板30は上述のように複数のシリアルデータ出力チャネルでクロックCK及びデータDTを送信出力する。第1チャネル、第2チャネルという複数チャネルによる並行出力により、多数のLEDドライバ1510等に対して高速制御が可能である。
また第1チャネルに対応するLEDドライバと第2チャネルに対応するLEDドライバでは、異なるシリアルデータ出力チャネルであるため、同じスレーブアドレスが用いられても問題ないところ、図93の例では、スレーブアドレスの重複が、第1チャネルと第2チャネルの間でも生じないようにしている。
このようにすることで、後に、共通チャネルで制御するように設計変更するような場合でも、同じスレーブアドレス設定をそのまま使える。これは、将来的な設計変更を考慮した汎用性確保に好適である。例えば遊技機1において、扉6側の基板を流用して他の機種を開発するような場合などに、設計の効率化をもたらす。
また実施の形態の遊技機1は(構成B4-1)に加えて、次の(構成B4-2)を有する。
(構成B4-2)
遊技機1は、
枠部材と、
前記枠部材に対して開閉可能に設けられた扉部材と、
前記枠部材に対して交換可能に取り付けられた遊技盤と、
を有し、
前記第1チャネルは、前記遊技盤に取り付けられた基板に配置された前記第1の演出駆動手段にシリアルデータを送信するチャネルであり、
前記第2チャネルは、前記扉部材又は前記枠部材に取り付けられた基板に配置された前記第2の演出駆動手段にシリアルデータを送信するチャネルである。
ここまで説明してきたように、第1チャネルは、遊技盤3に取り付けられた基板に配置されたLEDドライバにシリアルデータを送信するチャネルであり、第2チャネルは、扉6に取り付けられた基板に配置されたLEDドライバにシリアルデータを送信するチャネルである。
このように第1チャネル、第2チャネルを遊技盤3側と扉6側に振り分けることで、汎用性を高くすることができる。例えば内枠2と扉6を用い、遊技盤3を取り替えるような場合にも、スレーブアドレスが重複していないため、第2チャネルの設定はそのまま使用できる。
なお第2チャネルは、扉6のLEDドライバに限られない。例えば内枠2にLEDドライバ等の演出駆動手段が設けられる場合、その内枠2のLEDドライバなどは、第2チャネルで対応すればよい。
また実施の形態の遊技機1は(構成B4-1)又は(構成B4-2)に加えて、次の(構成B4-3)を有する。
(構成B4-3)
遊技機1は、
前記X本のアドレス端子で設定可能なアドレス値範囲のうちで、所定のアドレス値以上は、前記第1の数値範囲内にも前記第2の数値範囲にも含まれず、スレーブアドレスとして未使用とされる。
図93の例では、10進表記で「32」~「63」は未使用とされる。
例えば最上位ビットが「1」となる値を未使用としたものである。6ビットであれば「100000」以上のアドレス値範囲である。
このようにすることで、LEDドライバ1510等の6本のアドレス端子(A0)~(A5)において最上位に相当する端子A5を、Lレベルに固定できる。従って上述したようにチップ周囲の配線を効率化できる。
[7.3 チップの不使用端子]
実施の形態の遊技機1において、基板に搭載される各種のチップ部品において不使用端子に関する点を説明する。
実施の形態の遊技機1は次の(構成C1-1)を有する。
(構成C1-1)
遊技機1は、
異なる発光色のN個のLED素子をパッケージ化したLEDチップについて、前記N個のうちの複数のLED素子には発光駆動電流が流れ、少なくとも1つのLED素子には発光駆動電流が流れない回路構成とすることで、一部のLED素子を不使用としたLEDチップを、発光デバイスとして備えた第1基板を有する。但し「N」は3以上の自然数である。
この(構成C1-1)に対応する例として次の(具体例19)が想定される。
(具体例19)
・第1基板:装飾基板820(図48参照)
・LED素子:発光部821におけるLED素子(LED1~LED9)
先に図48で説明したように、装飾基板820の発光部821は、LED1,LED2・・・LED9として破線で囲って示す9個のLEDチップを有し、各LEDチップは、R、G、Bの各色の発光を行うフルカラーLEDチップである。つまりLEDチップは、R発光のレッドLED素子、G発光のグリーンLED素子、B発光のブルーLED素子としての3つのLED素子をパッケージ化したチップである。
そして上述のように、これらのカラーLEDチップは発光演出用の発光デバイスであるが、装飾基板820では、演出の仕様上、赤と緑の2色の発光を行うものとされ、各LEDチップのレッドLED素子とグリーンLED素子には発光駆動電流が流れるが、ブルーLED素子には発光駆動電流が流れない回路構成とされている。
そのためLED1~LED9の各LEDチップは、それぞれ3つのLED素子をパッケージ化したLEDチップであり(上記のN=3)、一部のLED素子を不使用としたLEDチップに相当する。
この場合、通常は赤と緑で単色LEDチップを2個使用するところを1つのフルカラーLEDチップを配置することで、低コスト化を実現できる。
またフルカラーLEDチップにおけるR、G、Bの3つの端子のそれぞれに発光駆動電流の端子を接続するものとすると、コネクタCN1Sの端子数(ピン数)が増え、また上流の基板におけるLEDドライバで使用する発光駆動電流の端子も増える。このため上記のように不使用のブルーLEDには発光駆動電流を供給しないようにする。これによりコネクタ構成やLEDドライバの構成、さらには配線が簡易化され、コストダウンにもなる。また図48のとおりブルーLEDの系統には抵抗が接続されない点もコストダウンに貢献する。
なお、装飾基板820の例では、ブルーLED素子が不使用の場合の例であるが、R、G、Bの3つのLED素子のうちで、レッドLED素子を不使用とする例や、或いはグリーンLED素子を不使用とする例もある。例えば上記のN=3の場合、そのうちの1つのLED素子を不使用とすることで、単色のLEDチップを用いる場合に比べてコストダウン効果を得ることができる。
上記のN=4として4以上のLED素子を備えたLEDチップを用いる場合もある。例えばR、G、B、W(ホワイト)の4つのLED素子を有するLEDチップなどである。その場合に1色、又は2色を不使用とする場合にも有効である。
また実施の形態の遊技機1は(構成C1-1)に加えて、次の(構成C1-2)を有する。
(構成C1-2)
前記第1基板には、前記LEDチップの前記N個のLED素子の全てのアノード端子及びカソード端子に対応するパッドが形成され、
全てのアノード端子及びカソード端子は対応するパッドに半田付けされている。
この(構成C1-2)に対応する例も上記の(具体例19)となる。
装飾基板820の基板上のパターンを図95,図96に示す。図95は図48の回路とされた装飾基板820の表面層、図96は裏面層であり、それぞれ導電体パターンを示している。
なお、図96の裏面層は、図95の表面層側からみた透視図として示しており、左右反転した状態で図示している。
図95、図96においては基板上に印刷される部品の識別番号や基板管理番号も図示した。
「△△+○○XX○」として示した部分は、実際には基板管理番号が表示される。図96は透視図のため左右反転された状態となる。
例えば図95の「LED1」~「LED9」や、図96の「CN1」「R1」~「R6」は印刷された識別番号である(図96では透視図のため左右反転)。これらは図48のカラーLEDチップLED1~LED9、コネクタCN1S、抵抗R1S~R6Sに対応する識別番号である。
各図においてカラーLEDチップLED1~LED9が配置される位置を「pLED1」~「pLED9」、コネクタCN1Sが配置される位置を「pCN1S」、抵抗R1S~R6Sが配置される位置を「pR1S」~「pR6S」としている。
またこれらの各位置で、電子部品の端子が半田付けされる部分(パッドやランド)を、パッドpdとしている。なお、パッドpdのうちで、不使用となる端子(アノード端子やカソード端子)に対して半田付けされるパッドを、特に「pdf」の符号を付している。
パターン上に形成されるスルーホール又はビアについてはスルーホールと総称する。各図のようにスルーホールTH81~TH94が層間配線のために形成されている。
コネクタCN1Sは、図96の右側のパッドpdが、第1ピン側となるように取り付けられる。
第1ピンには配線823、スルーホールTH90,TH91が接続されている。そして図95のようにスルーホールTH90,TH91から、LED4,LED7におけるレッドLED素子のカソード用のパッドpdに接続されている。
図96のようにコネクタCN1Sの第2ピンには配線824が接続され、配線824がスルーホールTH92を介して図95の表面層に続く。そしてLED4,LED7におけるグリーンLED素子のカソード用のパッドpdに接続されている。
図96のようにコネクタCN1Sの第3ピンには配線825が接続され、配線825がスルーホールTH93を介して図95の表面層に続く。そしてLED1におけるレッドLED素子のカソード用のパッドpdに接続されている。
図96のようにコネクタCN1Sの第4ピンには配線826が接続され、配線826がスルーホールTH94を介して図95の表面層に続く。そしてLED1におけるグリーンLED素子のカソード用のパッドpdに接続されている。
コネクタCN1Sの第5ピンから第10ピンは図96の電源配線822に接続される。電源配線822はスルーホールTH87、TH88、TH89、抵抗R1S~R6Sのそれぞれに接続される。
抵抗R1Sの他端側はスルーホールTH86を介してLED3におけるグリーンLED素子のアノード用のパッドpdに接続されている。
抵抗R2Sの他端側はスルーホールTH85を介してLED3におけるレッドLED素子のアノード用のパッドpdに接続されている。
抵抗R3Sの他端側はスルーホールTH84を介してLED6におけるグリーンLED素子のアノード用のパッドpdに接続されている。
抵抗R4Sの他端側はスルーホールTH83を介してLED6におけるレッドLED素子のアノード用のパッドpdに接続されている。
抵抗R5Sの他端側はスルーホールTH82を介してLED9におけるグリーンLED素子のアノード用のパッドpdに接続されている。
抵抗R6Sの他端側はスルーホールTH81を介してLED9におけるレッドLED素子のアノード用のパッドpdに接続されている。
図95に示すように、LED3、LED2、LED1におけるブルーLED素子は直列接続されている。つまりLED3のカソードとLED2のアノードが配線829aで接続され、LED2のカソードとLED1のアノードが配線829bで接続されている。この場合に電流方向にみて先頭となるLED3のアノード用のパッドpdfと、最後のLED1のカソード用のパッドpdfは配線828で接続され、かつスルーホールTH89を介して電源配線822に接続されている。
同様に、LED6、LED5、LED4におけるブルーLED素子は直列接続されており、先頭のLED6のアノード用のパッドpdfと、最後のLED4のカソード用のパッドpdfは配線828で接続され、かつスルーホールTH88介して電源配線822に接続されている。
さらに同様に、LED9、LED8、LED7におけるブルーLED素子は直列接続されており、先頭のLED9のアノード用のパッドpdfと、最後のLED7のカソード用のパッドpdfは配線828で接続され、かつスルーホールTH87介して電源配線822に接続されている。
以上のパターンにより、図48の回路が実現されている。なお図48には、電源配線822、配線823~826,828,829a,829bに対応する部分に符号を付している。
そしてこの装飾基板820では、LED1からLED9とした各LEDチップは、それぞれ3個のLED素子(レッドLED素子、グリーンLED素子、ブルーLED素子)の全てのアノード端子及びカソード端子に対応するパッドpd(pdfを含む)が形成され、全てのアノード端子及びカソード端子は対応するパッドpd(pdfを含む)に半田付けされる。
つまり各LEDチップはブルーLED素子を未使用とするが、そのブルーLED素子のアノード端子とカソード端子に対してもパッドpdfを形成し、半田付けする構成である。
このようにすることで、LED1からLED9の各LEDチップの装飾基板820への取付強度を強化している。
演出上の設計により発光が不要な色がある場合に、カラーLEDチップを搭載すると,未使用とするLED素子が生ずることがある。その場合、未使用のLED素子のアノード端子、カソード端子は、フリーにしておけばよく、半田付けは必要ない。ところが、特に発光演出用の基板は、遊技機の各所の多様な位置に取り付けられ、振動の影響を受けやすい位置となる可能性も大きい。甚だしい場合、LEDチップがガタついたり振動音を発生させたりすることもある。このため未使用のLED素子のアノード端子、カソード端子も含めて対応するパッドpd(pdf)を形成し、半田付けして取付強度を強化することは極めて有用となる。
また実施の形態の遊技機1は(構成C1-1)或いは(構成C1-1)と(構成C1-2)に加えて、次の(構成C1-3)や(構成C1-4)を有する。
(構成C1-3)
前記LEDチップの不使用のLED素子のアノード端子及びカソード端子は、共に電源ラインに接続される回路構成、又は共にグランドに接続される回路構成とされている。
(構成C1-4)
複数の前記LEDチップにおける不使用のLED素子が直列接続され、
直列接続の複数のLED素子のうちの先頭のLED素子のアノード端子と最後のLED素子のカソード端子が、共に電源ラインに接続される回路構成、又は共にグランドに接続される回路構成とされている。
この(構成C1-3)又は(構成C1-4)に対応する例は上記の(具体例19)或いはその変型例となる。
なお、直列接続の複数の不使用のLED素子が設けられる場合は、それぞれのLED素子のアノード端子とカソード端子が、共に電源ラインに接続される回路構成や、又は共にグランドに接続される回路構成でもよいし、直列の先頭のLED素子のアノード端子と直列の最後のLED素子のカソード端子が、共に電源ラインに接続される回路構成や、又は共にグランドに接続される回路構成でもよい。
例えば図48、図95、図96の例の装飾基板820は、複数のLEDチップが直列接続されており、発光駆動電流の方向で先頭の不使用のLED素子のアノードと直列の最後の不使用のLED素子のカソードが電源ラインに接続される構成となっている。
要は、1つのLED素子のアノード端子とカソード端子、又は直列接続の複数のLED素子のうちの先頭のLED素子のアノード端子と最後のLED素子のカソード端子が電源ラインに接続されることで、各LED素子のアノード端子とカソード端子間に電位差を生じさせず、電流が流れない状態とするものである。
或いは1つのLED素子のアノード端子とカソード端子、又は直列接続の複数のLED素子のうちの先頭のLED素子のアノード端子と最後のLED素子のカソード端子がグランドに接続されることで、電流が流れない状態とするものでもよい。
図48、図95、図96に示したように、LED3、LED2、LED1の直列接続において、LED3におけるブルーLED素子のアノード端子と、LED1におけるブルーLED素子のカソード端子は、共に電源ラインである電源配線822に接続される。
LED6、LED5、LED4の直列接続も同様であり、LED9、LED8、LED7の直列接続も同様である。
これにより、全ての不使用のブルーLED素子は、アノード端子とカソード端子が12V直流電圧(DC12VB)により同電位に固定され、電流は流れない。これにより、ノイズによる意図しない電流がながれて発光してしまうことを防止できる。特に電源配線822への接続により、常にアノード端子、カソード端子が共に12V電位に固定されることは、非接続としておくよりも意図しない電流による偽発光の防止に有効である。
なお、表面層を図95に代えて図97のようにする配線例も考えられる。裏面層は図96のままとする。
この図97の例は、LED3、LED2、LED1の直列接続において、配線829a及び配線829bも配線828を介して図96の裏面層の電源配線822に接続するようにしたものである。
すると、LED3のブルーLED素子のアノード端子とカソード端子、LED2のブルーLED素子のアノード端子とカソード端子、LED1のブルーLED素子のアノード端子とカソード端子は、すべて電源ラインに接続されることになる。
LED6、LED5、LED4の直列接続の部分や、LED9、LED8、LED7の直列接続の部分も同様である。
従って全てのLEDチップのブルーLED素子のアノード端子とカソード端子は電源ラインに接続されることになる。
このような構成も、ノイズ電流による偽発光の防止に有効である。
なお図面による例示は省略するが、複数のLEDチップの直列接続ではない場合、例えば1つのカラーLEDチップのアノード端子が12V直流電圧(DC12VB)に接続され、カソード端子が直接(又はコネクタ等を介して間接的に)LEDドライバの発光駆動電流の端子に接続されるような構成の場合は、そのカラーLEDチップの不使用のLED素子のアノード端子とカソード端子が共に電源ラインに接続されるようにする構成が想定される。
以上は、不使用のLED素子のアノード端子とカソード端子が共に電源ラインに接続される例であるが、共にグランドに接続される例も示しておく。
図98は図48の装飾基板820の回路の変形例である。
図98の回路例では、コネクタCN1Sの第5ピンをグランドとした。図示は省略するが、上流側の盤裏下中継基板800、LED接続基板700においても、対応してグランドラインを形成することとする。
そしてLED1からLED9の各LEDチップは、ブルーLED素子について、アノード端子とカソード端子を共にグランドに接続する。
即ちLED3、LED2、LED1の直列接続においては、LED3におけるブルーLED素子のアノード端子と、LED1におけるブルーLED素子のカソード端子は、共にグランド接続される。
LED6、LED5、LED4の直列接続においては、LED6におけるブルーLED素子のアノード端子と、LED4におけるブルーLED素子のカソード端子は、共にグランド接続される。
LED9、LED8、LED7の直列接続においては、LED9におけるブルーLED素子のアノード端子と、LED7におけるブルーLED素子のカソード端子は、共にグランド接続される。
このような構成は、例えば表面層が図95、裏面層が図99のようなパターン形成により実現できる。図95は前述したため、図99を説明する。
図99のコネクタCN1Sの第6ピンから第10ピンは電源配線822に接続される。電源配線822は抵抗R1S~R6Sのそれぞれに接続される。
コネクタCN1Sの第4ピンにはグランド配線827が接続され、グランド配線827がスルーホールTH87、TH88、TH89に接続されている。
図95からわかるように、スルーホールTH87はLED9、LED7間の配線828に接続され、スルーホールTH88はLED6、LED4間の配線828に接続され、スルーホールTH89はLED3、LED1間の配線828に接続される。
従って、図98のように、各直列接続におけるブルーLED素子について、アノード端子とカソード端子が共にグランドに接続される。
これにより、全ての不使用のブルーLED素子は、アノード端子とカソード端子がグランド電位に固定され、電流は流れない。これにより、ノイズによる意図しない電流が流れて発光してしまうことを防止できる。特にグランド接続により、輻射ノイズはグランドに流れて偽発光を生じさせないため、非接続としておくよりも偽発光の防止に有効である。
なお、この場合も、表面層を図95に代えて図97のようにする配線例も考えられる。裏面層は図99のままとする。
上述のとおり図97の例は、LED3、LED2、LED1の直列接続において、配線829a及び配線829bを配線828と接続したものである。従って、この場合は、配線829a、配線829bもグランド配線827に接続されることになる。
すると、LED3のブルーLED素子のアノード端子とカソード端子、LED2のブルーLED素子のアノード端子とカソード端子、LED1のブルーLED素子のアノード端子とカソード端子は、すべてグランド接続されることになる。
LED6、LED5、LED4の直列接続の部分や、LED9、LED8、LED7の直列接続の部分も同様である。
従って全てのLEDチップのブルーLED素子のアノード端子とカソード端子はグランドに接続されることになる。
このような構成も、ノイズ電流による偽発光の防止に有効である。
なお図面による例示は省略するが、複数のLEDチップの直列接続ではない場合、例えば1つのカラーLEDチップのアノード端子が12V直流電圧(DC12VB)に接続され、カソード端子が直接(又はコネクタ等を介して間接的に)LEDドライバの発光駆動電流の端子に接続されるような構成の場合は、そのカラーLEDチップの不使用のLED素子のアノード端子とカソード端子が共にグランドに接続されるようにする構成が想定される。
また、図99では裏面層にグランド配線827を設けた例としたが、例えば裏面層にベタグランドを形成し、図97の各直列接続におけるブルーLED素子について、アノード端子とカソード端子が共にベタグランドに接続されるようにしてもよい。複数のLEDチップの直列接続ではなく1つのカラーLEDチップが用いられる場合も、そのカラーLEDチップの不使用のLED素子のアノード端子とカソード端子が共にベタグランドに接続されるようにしてもよい。
また実施の形態の遊技機1は(構成C1-1)或いは(構成C1-1)と(構成C1-2)に加えて、次の(構成C1-5)を有する。
(構成C1-5)
前記LEDチップの不使用のLED素子のアノード端子及びカソード端子は、共に電気的に未接続となる回路構成とされている。
この(構成C1-5)に対応する例も上記の(具体例19)と同様に装飾基板820とするが、回路構成や配線パターンを変更した例とする。
図100は、上述の図48や図98とはさらに異なる装飾基板820の回路例である。
コネクタCN1Sの端子アサインは図48と同様である。異なる点は、カラーLEDチップであるLED1からLED9において、ブルーLED素子は、全てアノード端子とカソード端子を回路的に未接続とした点である。
この場合の配線パターンとして表面層を図101に、裏面層を図102に示す。なお、基本的に既述の部分は同一符号を付して重複説明を避ける。
図101の例は、図95における配線828,829a,829bが設けられていないものとなっている。
従ってLED1からLED9のブルーLED素子のアノード端子とカソード端子は、回路的には全て未接続である。但し対応するパッドpdfは形成され、ブルーLED素子のアノード端子とカソード端子は、全て半田付けされる。
裏面層は図102のように、コネクタCN1Sの第5ピンから第10ピンは電源配線822に接続され、電源配線822は抵抗R1S~R6Sのそれぞれに接続される。
電源配線822上には、図96のようなスルーホールTH87、TH88、TH89は形成されない。
以上の図101,図102のパターン配線により図100の回路が実現される。
これにより不使用のブルーLED素子は電流が流れず、偽発光は生じない。但し、これらのアノード端子とカソード端子もパッドpdfに半田付けすることで、カラーLEDチップの取付強度を向上させる。
実施の形態の遊技機1は次の(構成C2-1)を有する。
(構成C2-1)
遊技機1は、
抽選結果に基づいて遊技を行う遊技機であって、
遊技動作に係わる電子部品を搭載する第1基板を有し、
前記第1基板に搭載される第1の電子部品は、電気的接続が不要となる不使用端子があり、
前記第1基板には、前記第1の電子部品の前記不使用端子を含めた全ての端子に対応するパッドが形成され、
前記第1の電子部品の全ての端子は対応するパッドに半田付けされている。
この(構成C2-1)に対応する例として次の(具体例20)が想定される。
(具体例20)
・第1基板:前枠LED接続基板500(図15~図20参照)
・第1の電子部品:S/P変換回路(LEDドライバ)509、バッファ回路503、P/S変換回路505、506、モータドライバ510,511
この場合の第1の電子部品に相当する各チップについて、不使用端子は以下のとおりである。
S/P変換回路(LEDドライバ)509:9番端子、31番端子(図19)
バッファ回路502:15番端子(図17)
バッファ回路503:11番端子、13番端子、15番端子、17番端子(図17)
P/S変換回路505:14番端子(図18)
P/S変換回路506:15番端子(図18)
モータドライバ510:15番端子、16番端子(図19)
モータドライバ511:4番端子、15番端子、16番端子(図19)
前枠LED接続基板500としての基板を図103から図108で説明する。
前枠LED接続基板500は、4つの層を有する層構造の基板とされている。
図103は、表面層に配置される電気部品と、電気部品の近辺に印刷された識別情報を示している。
この図103においては、基板上に実際に印刷される識別情報として、コネクタCNに関しての「CN1」「CN2」等、抵抗器に関しての「R1」「R2」等、コンデンサに関して「C1」「C2」等を示しているが、これらの識別情報の語尾に“C”を付したものが、図15から図20に示した各部品の符号に一致するようにしている。
但しICに関しては、印刷される識別情報は「IC1」等とされるが、図15から図20ではこれらはS/P変換回路(LEDドライバ)509、バッファ回路504など数字による符号を付しており、図103に示す識別情報とは対応させていない。
また図104は、表面層に対して裏側となる裏面層に配置される電気部品と、電気部品の近辺に印刷された識別情報を示している。なお、表面層側からみた透視図として示しており、各電気部品や識別情報は左右反転した状態で図示している。
なお図103,図104の斜線部は、パターン形成が禁止される禁止領域を示している。実際に基板上に斜線が付されているわけではない。
図105,図106,図107,図108は、それぞれ表面層からの各層における導電体のパターンを示している。
図105は表面層の配線を形成するパターン、図106は表面層の下層にあたる第1内層の配線を形成するパターン、図107は第1内層の下層にあたる第2内層の配線を形成するパターン、図108は裏面層の配線を形成するパターンを示す。
図105から図108までは、全て表面層の上方から観た場合の方向性で示し、各図を見比べることで、各電気部品とパターンの接続状態がわかるようにしている。
図103に示すように、表面層には、主な電気部品として、コネクタCN1C、CN2C、CN3C、CN4C、CN5C、CN6C、CN7C、CN8C、CN9C、CN10C、バッファ回路504、モータドライバ510、511、S/P変換回路509、電源分離/保護回路521を構成するダイオードD19C、抵抗R34C(識別情報は「R34」)、コンデンサC21C(識別情報は「C21」)等が搭載されている。
基板形状は、正方形に近い方形から一部突出した部分(図面左上)を有する形状とされる。
そしてコネクタCN1C、CN2C、CN3C、CN4C、CN5C、CN6C、CN8C、CN9Cは、図面中、基板の下半分の領域に集められて配置されている。
コネクタCN7C、CN10Cは、図面左上方の突出部分に配置されている。
バッファ回路504はコネクタCN10Cから出力する信号のバッファ処理を行うものであり(図16参照)、コネクタCN10Cの近傍に配置されている。
モータドライバ510、511、電源分離/保護回路521は方形範囲の図面左上方部分に配置されている。
S/P変換回路509は図面右上方部分に配置されている。
また図104に示すように、裏面層には、主な電気部品として、バッファ回路501,502,503,507,508,512,513、P/S変換回路505,506、電源分離/保護回路520を形成するショットキーバリアダイオードD18C、抵抗R27C(識別情報は「R27」)、コンデンサC12C、C13C(識別情報は「C12」「C13」)、チップバリスタ515等が搭載されている。
バッファ回路501,502,503,513、P/S変換回路505は図面中、基板の下方の領域に配置されている。
P/S変換回路506、電源分離/保護回路520は、図面中上下方向の略中央領域に配置されている。なおP/S変換回路506は、P/S変換回路505に近接して配置されている。
バッファ回路507,508,512は図面中、基板の上方の領域に配置されている。
図105は表面層の導電体パターンであり、主に図103に示した部品に対応する配線や、グランドパターン536が形成されている。図示のようにグランドパターン536はベタグランドとされる。
S/P変換回路509が配置される位置を「p509」、モータドライバ510、511が配置される位置を「p510」「p511」として示している。
コネクタCN1C、CN2C、CN3C、CN5C、CN6C、CN7C、CN9C、CN10Cのグランド端子や、バッファ回路504、モータドライバ510、511、S/P変換回路509等のグランド端子はグランドパターン536に接続されている。
なお「○○+XXXX」として示した部分は,実際には基板管理番号が表示される。
図106は第1内層の導電体パターンである。
ここには5V直流電圧(DC5VB)についての電源パターン530が形成される。
また12V系の電源ラインとなる電源パターン531,532,533が形成される。
電源パターン531は12V直流電圧(DC12VB)、電源パターン532は12V直流電圧(DC12VS)、電源パターン533は12Vモータ駆動電圧(MOT12V)の電源ラインである。
図示のように電源パターン530,531、533はベタ電源パターンとされている。
また第1内層には、パターン534,535が形成されている。これらはコネクタCN2CとコネクタCN5Cの間に形成される、右中スピーカの+端子、-端子のアナログ音声信号の配線パターンである。
図107は第2内層の導電体パターンであり、各種配線や、グランドパターン538が形成されている。図示のようにグランドパターン538はベタグランドとされる。
図108は裏面層の導電体パターンであり、主に図104に示した部品に対応する配線や、グランドパターン537が形成されている。グランドパターン537はベタグランドとされる。
バッファ回路501,502,503,507,508,512,513が配置される位置をそれぞれ「p501」「p502」「p503」「p507」「p508」「p512」「p513」として示している。
またP/S変換回路505,506が配置される位置をそれぞれ「p505」「p506」として示している。
バッファ回路501,502,503,507,508,512,513、P/S変換回路505,506等のグランド端子はグランドパターン537に接続されている。
もちろん表面層、裏面層、第2内層のグランドパターン536,537、538は互いにスルーホール(ビア)を介して接続されている。
なお、図105から図108では、パターン上で符号の引き出し線を示すためにパターンが切断されて見える部分が生じているが、あくまで図示の都合であり、符号の引き出し線を表記した部分は、導電体のパターンは連続していることに留意されたい。
ここで、不使用端子を有することになるチップに注目する。
表面層に配置されるS/P変換回路509、モータドライバ510,511、及び裏面層に配置されるバッファ回路502、503、P/S変換回路505、506である。
図105のS/P変換回路509が配置される位置p509の周辺を図109に拡大して示した。
位置p509にはS/P変換回路509の48個の端子に対応してパッドpdが形成されている。S/P変換回路509は、9番端子と31番端子が不使用端子であるが、これらの端子に対してもパッドpdfが形成されていることになる。S/P変換回路509の各端子は、それぞれ対応するパッドpd(pdf)に半田付けされる。
なお図の煩雑化をさけるため、図105,図108では、各パッドに対して「pd」の符号を付すのは省略している。不使用端子に対応するパッドについてのみ「pdf」の符号を付している。
モータドライバ510は図105の位置p510に配置される。モータドライバ510は15番端子、16番端子が不使用端子であり、図示のようにこれらの端子に対応するパッドpdfを含めて全ての端子に対するパッドpdが形成されており、それぞれ半田付けされる。
また位置p511に配置されるモータドライバ511は、4番端子、15番端子、16番端子が不使用端子であり、図示のようにこれらの端子に対応するパッドpdfを含めて全ての端子に対するパッドpdが形成されており、それぞれ半田付けされる。
図108のP/S変換回路506が配置される位置p506の周辺を図110に拡大して示した。
位置p506にはP/S変換回路506の16個の端子に対応してパッドpdが形成されている。P/S変換回路506は、15番端子が不使用端子であるが、この端子に対してもパッドpdfが形成されている。P/S変換回路506の各端子は、それぞれ対応するパッドpd(pdf)に半田付けされる。
図108において位置p505に配置されるP/S変換回路505は、14番端子が不使用端子である。図示のように、この端子に対してもパッドpdfが形成されている。P/S変換回路505の各端子は、それぞれ対応するパッドpd(pdf)に半田付けされる。
図108のバッファ回路503が配置される位置p503の周辺を図111に拡大して示した。
位置p503にはバッファ回路503の20個の端子に対応してパッドpdが形成されている。バッファ回路503は、11番端子、13番端子、15番端子、17番端子が不使用端子であるが、この端子に対してもパッドpdfが形成されている。バッファ回路503の各端子は、それぞれ対応するパッドpd(pdf)に半田付けされる。
図108において位置p502に配置されるバッファ回路502は、15番端子が不使用端子である。図示のように、この端子に対してもパッドpdfが形成されている。バッファ回路502の各端子は、それぞれ対応するパッドpd(pdf)に半田付けされる。
以上のように、前枠LED接続基板500において、S/P変換回路509、バッファ回路502,503、P/S変換回路505、506、モータドライバ510,511は、不使用端子を含めた全ての端子に対応するパッドpd(pdf)が形成され、全ての端子は対応するパッドpd(pdf)に半田付けされている。
従って、これらの電子部品は(構成C2-1)における第1の電子部品に相当する。
これらの電子部品は、フリーにしておけばよい不使用端子まで半田付けすることで、前枠LED接続基板500に対する取付強度が向上されるものとなる。
また、このような(構成C2-1)に相当する例として(具体例21)もある。
(具体例21)
・第1基板:装飾基板820
・第1の電子部品:発光部821におけるカラーLEDチップ(LED1~LED9)
先に(構成C1-2)で説明したように、これらのカラーLEDチップ(LED1~LED9)にも不使用端子として、ブルーLED素子のアノード端子及びカソード端子があるが、それらは対応するパッドpdfに半田付けされる。従って装飾基板820に対するカラーLEDチップの取付強度は向上される。
また同じく(構成C2-1)に相当する例として(具体例22)もある。
(具体例22)
・第1基板:LED基板780(図45、図60、図61)
・第1の電子部品:LEDドライバ782
LEDドライバ782においては、図45,図62からわかるように、9番端子、31番端子が不使用端子となっている。
図60には、この不使用端子に対応するパッドpdfを示した。
即ちLEDドライバ782は、不使用端子も含めて全ての端子は対応するパッドpd(pdf)に半田付けされる。従ってLED基板780に対するLEDドライバ782の取付強度は向上される。
また同じく(構成C2-1)に相当する例として(具体例23)もある。
(具体例23)
・第1基板:LED基板790(図46、図63、図64)
・第1の電子部品:LEDドライバ791
LEDドライバ791においては、図46,図62からわかるように、9番端子、31番端子が不使用端子となっている。
図63には、この不使用端子に対応するパッドpdfを示した。
即ちLEDドライバ791は、不使用端子も含めて全ての端子は対応するパッドpd(pdf)に半田付けされる。従ってLED基板790に対するLEDドライバ791の取付強度は向上される。
実施の形態の遊技機1は、上記の(構成C2-1)に加えて、次の(構成C2-2)を有する。
(構成C2-2)
前記第1基板には、前記第1の電子部品が複数個あり、
前記第1基板には、複数個の前記第1の電子部品の全てについて、前記不使用端子を含めた全ての端子に対応するパッドが形成され、
複数個の前記第1の電子部品の全ての端子は対応するパッドに半田付けされている。
上述した(具体例20)(具体例21)がこの構成に相当する。
(具体例20)においては、前枠LED接続基板500において第1の電子部品に相当するものが、S/P変換回路509、モータドライバ510,511、バッファ回路502,503、P/S変換回路505、506として複数存在する。
(具体例21)においては、装飾基板820において第1の電子部品に相当するものが、カラーLEDチップ(LED1~LED9)として複数存在する。
いずれの場合も、第1の電子部品の全ての端子は対応するパッドに半田付けされている。従って、基板全体として、不使用端子があるチップがあっても、半田付けによりチップの取り付け強度の向上を実現するものとなっている。
実施の形態の遊技機1は次の(構成C3-1)を有する。
(構成C3-1)
遊技機1は、
抽選結果に基づいて遊技を行う遊技機であって、
遊技動作に係わる電子部品を搭載し、可動体に取り付けられる第1基板を有し、
前記第1基板に搭載されるLEDチップ又はLEDドライバチップとしての第1の電子部品は、電気的接続が不要となる不使用端子があり、
前記第1基板には、前記第1の電子部品の前記不使用端子を含めた全ての端子に対応するパッドが形成され、
前記第1の電子部品の全ての端子は対応するパッドに半田付けされている。
上述した(具体例21)(具体例22)(具体例23)がこの構成に相当する。
装飾基板820、LED基板780、LED基板790は、それぞれ上述のように可動体内に配置され、可動体部分のLED発光を行う基板とされている。
そして装飾基板820において第1の電子部品に相当するカラーLEDチップ(LED1~LED9)、LED基板780において第1の電子部品に相当するLEDドライバ782、LED基板790において第1の電子部品に相当するLEDドライバ791は不使用端子がある。
そして上述のように、カラーLEDチップ(LED1~LED9)、LEDドライバ782、LEDドライバ791は、それぞれ不使用端子を含めた全ての端子が対応するパッドpd(pdf)に半田付けされている。
従って発光演出に用いるチップ部品の取り付け強度を向上させることができる。特に可動体に搭載される基板は、可動体の振動の影響を受けやすい。従ってチップの取付強度をアップさせることが極めて望ましいものとなる。
実施の形態の遊技機1は次の(構成C4-1)を有する。
(構成C4-1)
遊技機1は、
抽選結果に基づいて遊技を行う遊技機であって、
遊技動作に係わる電子部品を搭載する第1基板を有し、
前記第1基板に搭載される第1の電子部品は、電気的接続が不要となる不使用端子があり、
前記第1基板には、前記第1の電子部品の前記不使用端子を含めた全ての端子に対応するパッドが形成され、
前記第1の電子部品の全ての端子は対応するパッドに半田付けされており、
前記不使用端子に対応するパッドは、前記不使用端子以外には電気的に接続されていない。
この(構成C4-1)に対応する例として、上述の(具体例20)の前枠LED接続基板500が想定される。
前枠LED接続基板500において第1の電子部品に相当するS/P変換回路(LEDドライバ)509、バッファ回路502,503、P/S変換回路505、506、モータドライバ510,511における不使用端子に対応するパッドpdfはすべて、図105,図108(或いは図109,図110,図111)からわかるように、他の部分(パターンとしての導体)に対して電気的に接続されていない。つまりパッドpdfは、独立した島状の導体部分となっており、各チップの不使用端子に対してのみ半田付けされて電気的に接続される。
これにより、上述のようにICチップの取付強度を向上させつつ、不使用端子を電気的にオープンの状態に保つようにしている。
実施の形態の遊技機1は、上記の(構成C4-1)に加えて、次の(構成C4-2)を有する。
(構成C4-2)
前記不使用端子に対応するパッドは、ベタグランドに近接して形成されている。
図105,図108、或いは図109,図110,図111からわかるように、不使用端子に対応するパッドpdfは、ベタグランドとしてのグランドパターン536,537に近接して形成されている。
なお、ここでいう「近接」とは、例えば次のように定義できる。
図112に示すモデルで説明する。なお、図112は説明のためのモデルで、実寸の比率で拡大したものではない。
例えば、パッドpdfとベタグランドのグランドパターン536(又は537)との最短距離d10が、隣のパッドpdまでの離間距離d11以上で、パッドpdのピッチd12(或るパッドpdの中央から隣のパッドpdの中央までの距離)の2倍以下であれば、近接して形成されているといえる。
つまり、d11≦d10<(2×d12)の場合である。
なお以上は離間距離d11を、適切な絶縁を保つための最低限の距離と考えた場合であるが、パッドpdの離間距離d11より短くても適切な絶縁が保たれるのであれば、パッドpdfとベタグランドの最短距離d10は、離間距離d11より短くてもよい。
従って離間距離d11は条件とせずに、あくまで基板上でパッドpdfとベタグランドが絶縁されているという条件の下で
d10<(2×d12)
が満たされれば、「近接」と考えてよい。
そして前枠LED接続基板500では、このような定義でパッドpdfとベタグランドが近接配置されている。
パッドpdfとベタグランドが近接配置されることで、パッドpdfの周辺に導体パターンが形成されない領域が少ないということになる。これはパッドpdfの周辺で静電気が帯電するエリアが極めて狭いことを意味する。従って基板上の静電気がノイズとしてパッドpdfからチップに混入する確率を減らすことができる。
つまり、チップにおいて電気的にオープンにすべき不使用端子について、他の回路とは絶縁を保ちつつ、ベタグランドに近接させることでノイズ混入を低減できる。
実施の形態の遊技機1は、上記の(構成C4-1)又は(構成C4-2)に加えて、次の(構成C4-3)を有する。
(構成C4-3)
前記第1の電子部品としてのチップの底面に対向する基板面にベタグランドが形成されている。
同じく(具体例20)で説明する。
前枠LED接続基板500におけるバッファ回路502、503、P/S変換回路505、506は、それぞれ第1の電子部品に相当するが、図108に示すようにこれらのチップの底面に対向する基板面にベタグランドが形成されている。
例えば図111の拡大図にも示されるように、バッファ回路503のチップ底面側は、ベタグランドのグランドパターン537が設けられている。
また図110の拡大図のように、P/S変換回路506のチップ底面側は、ベタグランドのグランドパターン537aが設けられている。
このようにチップ底面側にもベタグランドが形成されることで、他のパッドpdからの配線パターンに関わらず、不使用端子に対応するパッドpdfが、チップ側でもベタグランドに近接することができる。これにより静電気によるノイズが、より不使用端子に入りにくくすることができる。
[7.4 その他]
以上、実施の形態を説明してきたが、上記(構成A1-1)から(構成A103)、(構成B1-1)から(構成B4-3)、(構成C1-1)から(構成C4-3)までの各構成例は、各種の組み合わせが可能で、任意に組み合わせることでそれぞれの構成で説明した効果を兼ね備える遊技機1とすることができる。
またそれ以外に実施の形態で説明した構成や動作を組み合わせることも可能である。
また各種例示した具体例は、各構成を実現する一態様にすぎない。特に明示していない具体例も各種考えられる。
上記(構成A1-1)から(構成A9-3)の構成において、(具体例1)~(具体例17)を示したが、各構成においてそれら以外の具体例も想定される。
LEDドライバやモータドライバ、或いはこれらを制御するドライバ制御部や、モータ駆動制御のためのS/P変換回路など、演出駆動手段として機能するチップが搭載された基板や、或いはコネクタCNが搭載された基板で、(構成A1-1)から(構成A9-3)の構成を採ることができる。例えば図11、図49に挙げた各基板は、(構成A1-1)から(構成A9-3)における第1基板、第2基板、第3基板のいずれかに該当する構成を採用することができる。
また上記の(構成B1-1)から(構成B4-3)では、演出駆動手段としてLEDドライバ1510等を例に挙げたが、モータドライバを対象とする場合も、これらの構成を適用できる。
もちろん(具体例18)以外の例も考えられる。
また上記(構成C1-1)から(構成C4-3)の構成において、(具体例19)~(具体例23)を示したが、各構成においてそれら以外の具体例も想定される。
特に(構成C1-1)から(構成C4-3)については、不使用端子のあるチップを搭載する基板において適用することができる。例えば次のとおりである。これらも具体例として想定される。
・サイドユニット右上LED基板600(図24~図29)
LEDドライバ605は9番端子、31番端子が不使用端子である(図27)。
バッファ回路601は15番端子が不使用端子である(図25)。
バッファ回路602は15番端子が不使用端子である(図25)。
バッファ回路603は14番端子が不使用端子である(図25)。
バッファ回路604は11番端子が不使用端子である(図26)。
S/P変換回路606は9番端子、31番端子が不使用端子である(図28)。
モータドライバ608は3番端子が不使用端子である(図28)。
モータドライバ609は16番端子が不使用端子である(図28)。
従って、サイドユニット右上LED基板600では、これらのチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・サイドユニット右下LED基板620(図31)
LEDドライバ621は9番端子、31番端子が不使用端子である。
従って、サイドユニット右下LED基板620では、LEDドライバ621のチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・サイドユニット上LED基板630(図32)
LEDドライバ631は9番端子、31番端子が不使用端子である。
従って、サイドユニット上LED基板630では、LEDドライバ621のチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・ボタンLED基板660(図34,図35)
LEDドライバ661、663はそれぞれ9番端子、31番端子が不使用端子である。
従ってボタンLED基板660では、LEDドライバ662,663のチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・LED接続基板700(図36~図41)
P/S変換回路701,702はそれぞれ14番端子が不使用端子である(図36)。
バッファ回路703、704はそれぞれ11番端子が不使用端子である(図36)。
バッファ回路705、706、707はそれぞれ2番端子が不使用端子である(図39、図40,図41)。
モータドライバ710,711,712,713,714,715は、それぞれ8番端子、10番端子、16番端子が不使用端子である(図37)。
モータドライバ716は8番端子、10番端子、15番端子、16番端子が不使用端子である(図37)。
従って、LED接続基板700では、これらのチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・装飾基板740(図43)
バッファ回路741は2番端子が不使用端子である。
LEDドライバ742は9番端子、31番端子が不使用端子である。
従って、装飾基板740では、バッファ回路741やLEDドライバ742のチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
・中継基板760(図44)
バッファ回路761は11番端子、12番端子が不使用端子である。
従って、中継基板760では、バッファ回路761のチップの不使用端子に対応するパッドpdfを形成し、半田付けすることが考えられる。
もちろんこれらに挙げた基板/チップにおいて、パッドpdfをベタグランドに近接させたり、チップの底面側にもベタグランドを形成したりすることも考えられる。
また実施の形態はパチンコ遊技機で説明したが、いわゆるスロット遊技機のような回胴型遊技機にも本発明は適用できる。
回胴型遊技機の場合も、枠部材と、枠部材に対して開閉可能に設けられた扉部材と、枠部材に対して交換可能に取り付けられた交換部材を有する。
例えば回胴型遊技機では、枠部材に相当する構成としての枠筐体、扉部材に相当する構成としての扉、交換部材に相当する構成としてのリールユニットを有することになる。例えば枠筐体は回胴型遊技機の本体を構成し、リールユニットは枠筐体に対して直接又は板金等を介してネジ止めなどにより取り付けられるため、交換可能である。扉は、枠筐体に対して開閉可能に取り付けられている。
このような回胴型遊技機においても、各構成例で説明したような基板構成、回路構成、コネクタ構成、電源構成、スレーブアドレス設定等を採用できる。
特に(構成C1-1)から(構成C1-5)については、スロット遊技機における回動の停止ボタンにおける発光デバイスに適用することが有効である。
スロット遊技機における停止ボタンは、そのボタン内部やボタンの近辺にLEDが配置され、遊技者に対してボタンが有効(停止操作が有効な状態)であるか否かを示す青色/赤色の発光を行う。
この場合に(構成C1-1)で説明したように、1つの停止ボタンに対して1つのカラーLEDチップを設けるようにする。例えばレッドLED素子、グリーンLED素子、ブルーLED素子をパッケージ化したカラーLEDチップである。
そしてカラーLEDチップにおけるグリーンLED素子のアノード端子、カソード端子は、共に電源ラインに接続する。
或いはグリーンLED素子のアノード端子、カソード端子は共にグランドに接続する。
或いはグリーンLED素子のアノード端子、カソード端子は電気的にオープンとする。
この場合に、カラーLEDチップを配置する基板上には、レッドLED素子及びブルーLED素子のアノード端子とカソード端子に対応するパッドpdとともに、グリーンLED素子のアノード端子、カソード端子に対応するパッドpdfも設け、不使用のグリーンLED素子を含めて、3つのLED素子のアノード端子とカソード端子を、全てパッドpd(pdf)に半田付けする。
以上の構成により、1つの停止ボタンに対して2つの単色LEDチップを用いないことによるコストダウンを実現しつつ、カラーLEDチップの取付強度を向上させる。特にスロット遊技機における停止ボタンは、遊技者の操作による衝撃が大きいため、取付強度の向上は有効である。
またグリーンLED素子のアノード端子とカソード端子を共に電源ラインに接続するか、或いは共にグランド接続することで、グリーンLED素子の偽発光の防止に有効となる。
以上からスロット遊技機においても例えば停止ボタンのLEDチップに関して(構成C1-1)(構成C1-2)(構成C1-3)(構成C1-4)(構成C1-5)を取り得ることが理解される。
また(構成C2-1)(構成C2-2)も同様に取り得る。スロット遊技機の場合、3つの停止ボタンが設けられるため、(構成C2-2)における複数チップとは、各停止ボタンに対応するカラーLEDチップと考えることができる。
またスロット遊技機の停止ボタンのLEDチップの基板において(構成C4-1)(構成C4-2)(構成C4-3)のようなパターン構成(パッドpdやベタグランド)を採ることもできる。
またスロット遊技機において、可動体を備える場合は、その可動体に搭載する基板として、(構成C3-1)の構成を適用できる。
1 遊技機
300 電源基板
400 内枠LED中継基板
500 前枠LED接続基板
550 中継基板
600 サイドユニット右上LED基板
620 サイドユニット右下LED基板
625 LED基板
630 サイドユニット上LED基板
640 ボタンLED接続基板
660 ボタンLED基板
661,663 700 LED接続基板
720 盤裏左中継基板
740 装飾基板
760 中継基板
790 LED基板
800 盤裏下中継基板
820 装飾基板
1500 LED接続基板
1600 LED基板

Claims (1)

  1. 抽選結果に基づいて遊技を行う遊技機であって、
    遊技動作に係わる電子部品を搭載する第1基板を有し、
    前記第1基板に搭載されるICチップである第1の電子部品は、電気的接続が不要となる不使用端子があり、
    前記第1基板には、前記第1の電子部品の前記不使用端子を含めた全ての端子に対応する表面実装用のパッドが形成され、
    前記第1の電子部品の全ての端子は対応するパッドに半田付けされており、
    前記不使用端子に対応するパッドは、前記不使用端子以外には電気的に接続されておらず、ベタグランドとの間の最短距離が前記第1の電子部品の各端子に対応するパッドのピッチの2倍の距離よりも短くなるように前記ベタグランドに近接して形成されている
    遊技機。
JP2021166938A 2021-10-11 2021-10-11 遊技機 Active JP7474730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021166938A JP7474730B2 (ja) 2021-10-11 2021-10-11 遊技機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021166938A JP7474730B2 (ja) 2021-10-11 2021-10-11 遊技機

Publications (2)

Publication Number Publication Date
JP2023057415A JP2023057415A (ja) 2023-04-21
JP7474730B2 true JP7474730B2 (ja) 2024-04-25

Family

ID=86006415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021166938A Active JP7474730B2 (ja) 2021-10-11 2021-10-11 遊技機

Country Status (1)

Country Link
JP (1) JP7474730B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234760A (ja) 2010-04-30 2011-11-24 Fujishoji Co Ltd 遊技機
JP2018082949A (ja) 2016-11-25 2018-05-31 株式会社三共 遊技機
JP2018117853A (ja) 2017-01-25 2018-08-02 株式会社三共 遊技機
JP2019092698A (ja) 2017-11-21 2019-06-20 株式会社三共 遊技機
JP2019187981A (ja) 2018-04-27 2019-10-31 株式会社三共 遊技機
JP2020168127A (ja) 2019-04-02 2020-10-15 株式会社大一商会 遊技機
JP2021083786A (ja) 2019-11-28 2021-06-03 株式会社大一商会 遊技機
JP2021159130A (ja) 2020-03-30 2021-10-11 株式会社藤商事 遊技機
JP2023171480A (ja) 2021-10-11 2023-12-01 株式会社藤商事 遊技機
JP7397039B2 (ja) 2021-10-11 2023-12-12 株式会社藤商事 遊技機
JP7397040B2 (ja) 2021-10-11 2023-12-12 株式会社藤商事 遊技機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234760A (ja) 2010-04-30 2011-11-24 Fujishoji Co Ltd 遊技機
JP2018082949A (ja) 2016-11-25 2018-05-31 株式会社三共 遊技機
JP2018117853A (ja) 2017-01-25 2018-08-02 株式会社三共 遊技機
JP2019092698A (ja) 2017-11-21 2019-06-20 株式会社三共 遊技機
JP2019187981A (ja) 2018-04-27 2019-10-31 株式会社三共 遊技機
JP2020168127A (ja) 2019-04-02 2020-10-15 株式会社大一商会 遊技機
JP2021083786A (ja) 2019-11-28 2021-06-03 株式会社大一商会 遊技機
JP2021159130A (ja) 2020-03-30 2021-10-11 株式会社藤商事 遊技機
JP2023171480A (ja) 2021-10-11 2023-12-01 株式会社藤商事 遊技機
JP7397039B2 (ja) 2021-10-11 2023-12-12 株式会社藤商事 遊技機
JP7397040B2 (ja) 2021-10-11 2023-12-12 株式会社藤商事 遊技機

Also Published As

Publication number Publication date
JP2023057415A (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
JP7469527B2 (ja) 遊技機
JP2023171480A (ja) 遊技機
JP7397039B2 (ja) 遊技機
JP7174904B2 (ja) 遊技機
JP7397040B2 (ja) 遊技機
JP7474730B2 (ja) 遊技機
JP7495381B2 (ja) 遊技機
JP7397032B2 (ja) 遊技機
JP7397034B2 (ja) 遊技機
JP7397033B2 (ja) 遊技機
JP2024028644A (ja) 遊技機
JP2024028645A (ja) 遊技機
JP2023034138A (ja) 遊技機
JP2023034139A (ja) 遊技機
JP2023034137A (ja) 遊技機
JP2023034142A (ja) 遊技機
JP2023034145A (ja) 遊技機
JP2023034149A (ja) 遊技機
JP2023034146A (ja) 遊技機
JP2023034143A (ja) 遊技機
JP7469192B2 (ja) 遊技機
JP7469191B2 (ja) 遊技機
JP7469190B2 (ja) 遊技機
JP7469189B2 (ja) 遊技機
JP7174903B2 (ja) 遊技機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7474730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150