JP7474225B2 - 金属材料のミクロ組織の損傷挙動評価方法 - Google Patents
金属材料のミクロ組織の損傷挙動評価方法 Download PDFInfo
- Publication number
- JP7474225B2 JP7474225B2 JP2021107010A JP2021107010A JP7474225B2 JP 7474225 B2 JP7474225 B2 JP 7474225B2 JP 2021107010 A JP2021107010 A JP 2021107010A JP 2021107010 A JP2021107010 A JP 2021107010A JP 7474225 B2 JP7474225 B2 JP 7474225B2
- Authority
- JP
- Japan
- Prior art keywords
- microstructure
- strain
- stress
- damage
- plastic strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007769 metal material Substances 0.000 title claims description 100
- 238000011156 evaluation Methods 0.000 title description 26
- 238000004458 analytical method Methods 0.000 claims description 144
- 238000000034 method Methods 0.000 claims description 98
- 239000000463 material Substances 0.000 claims description 74
- 239000000470 constituent Substances 0.000 claims description 35
- 238000009826 distribution Methods 0.000 claims description 35
- 238000012360 testing method Methods 0.000 claims description 30
- 230000010354 integration Effects 0.000 claims description 17
- 230000008569 process Effects 0.000 description 54
- 238000009864 tensile test Methods 0.000 description 45
- 230000006399 behavior Effects 0.000 description 36
- 229910000734 martensite Inorganic materials 0.000 description 35
- 229910000859 α-Fe Inorganic materials 0.000 description 24
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 238000001000 micrograph Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
コンピュータを用いて金属材料のミクロ組織の損傷挙動を評価する方法であって、コンピュータが、
前記金属材料のミクロ組織画像を取得するステップ1と、
前記ミクロ組織画像を複数の要素に分割し、有限要素法(FEM)によって前記ミクロ組織画像を模擬したFEM解析モデルを作成するステップ2と、
前記FEM解析モデルのパラメータとして前記金属材料の材料特性を取得するステップ3と、
境界条件として、前記FEM解析モデルの各要素に付与する、前記金属材料の破断までに生じる応力若しくはひずみ、または前記応力若しくは前記ひずみの履歴を設定するステップ4と、
前記境界条件でFEM解析を実行し、前記各要素の相当塑性ひずみと応力三軸度を出力するステップ5と、
前記FEM解析において前記FEM解析モデルに与えた応力またはひずみ別に、出力された前記各要素の相当塑性ひずみと応力三軸度の分布を求めるステップ6と、
前記相当塑性ひずみと前記応力三軸度の分布から、ミクロ組織の損傷挙動を評価するステップ7と
を実行する、金属材料のミクロ組織の損傷挙動評価方法である。
前記ステップ4は、各要素の積分点に付与する、前記応力若しくは前記ひずみ、または前記応力若しくは前記ひずみの前記履歴を設定し、
前記ステップ5は、各要素の積分点における前記相当塑性ひずみと応力三軸度を出力する、態様1に記載の金属材料のミクロ組織の損傷挙動評価方法である。
前記金属材料は、2種類以上の構成相を有し、
前記ステップ5~7を構成相ごとに実施する、態様1または2に記載の金属材料のミクロ組織の損傷挙動評価方法である。
予め用意された、前記2種類以上の構成相それぞれの応力-ひずみ曲線を、前記ステップ3にて前記材料特性として取得することを含む、態様3に記載の金属材料のミクロ組織の損傷挙動評価方法である。
前記ステップ7で、予め定められた手順に従って損傷クライテリアを決定し、決定された前記損傷クライテリアを用いてミクロ組織の損傷有無を判断する、態様1から4のいずれか一項に記載の金属材料のミクロ組織の損傷挙動評価方法である。
前記損傷クライテリアの決定を、
前記金属材料からなる試験片を用意し、該試験片に、連続的にひずみを付与しながら、該試験片の同一視野のミクロ組織画像を複数取得するステップ11と、
前記複数のミクロ組織画像から、マイクロボイド発生位置と、マイクロボイド発生時の塑性ひずみ量を決定するステップ12と、
前記ミクロ組織画像を複数の要素に分割した、前記ミクロ組織画像を模擬したFEM解析モデルを作成するステップ13と、
前記FEM解析モデルのパラメータとして前記金属材料の材料特性を取得するステップ14と、
境界条件として、前記FEM解析モデルの各要素に付与する、ひずみ量を設定するステップ15と、
前記境界条件でFEM解析を実行し、前記マイクロボイド発生時の各塑性ひずみ量における前記各要素の相当塑性ひずみと応力三軸度を出力するステップ16と、
出力された前記各要素の相当塑性ひずみと応力三軸度のデータの中から、前記マイクロボイド発生位置における相当塑性ひずみと応力三軸度のデータを抽出するステップ17と、
抽出された各位置の相当塑性ひずみと応力三軸度の分布を求めるステップ18と、
前記分布において、マイクロボイドが発生する相当塑性ひずみと応力三軸度の関係から、損傷クライテリアを決定するステップ19と
を含む工程で行う、態様5に記載の金属材料のミクロ組織の損傷挙動評価方法である。
前記金属材料は、2種類以上の構成相を有し、
前記損傷クライテリアの決定でのステップ17~19を構成相ごとに実施する、請求項6に記載の金属材料のミクロ組織の損傷挙動評価方法である。
まず図2のステップ1(S1)の通り、金属材料のミクロ組織画像を取得する。
図2のステップ2(S2)の通り、制御部20は、モデル作成処理21にて、FEM解析に使用するFEM解析モデルとしてメッシュモデルを作成する。当該解析モデルは、例えば、金属材料の取得したミクロ組織画像を用いてイメージベースモデリングにより作成できる。モデル作成方法の一例を図3に記載する。図3Aは取得されたミクロ組織画像を示す。制御部20は、このようなミクロ組織画像の画素の濃度または輝度に対して所定の閾値を設定し、任意の画素位置の濃度等が当該閾値を超えるか否かによって当該画素位置の値を設定する二値化処理を行うことで二値画像を作成する。図3Bは、図3Aのミクロ組織画像から作成された二値画像である。これにより、マルテンサイト相を抽出し、それ以外の相と分離することができる。
図2のステップ3(S3)の通り、制御部20は、パラメータ設定処理22により、FEM解析を行うために二相鋼を構成する各相に関する各材料の特性を取得し、パラメータとして設定する。ここで、取得する材料特性とは、例えば、フェライト相とマルテンサイト相それぞれのヤング率、降伏応力および耐力、加工硬化指数並びに結晶方位などである。また、制御部20は、金属材料を構成する各材料に関する応力-ひずみ曲線(本実施形態においては、フェライトに関する応力-ひずみ曲線とマルテンサイトに関する応力-ひずみ曲線)をそれぞれ材料特性として取得する。これにより、制御部20が解析処理23にて、後述するFEM解析を行った際、FEM解析モデルに与える応力またはひずみに対して、当該モデルを構成する各相の形状および特性に基づいて、各積分点に与えられる応力またはひずみが算出される。金属材料を構成する各材料に関する応力-ひずみ曲線は、例えば、当該材料で構成されている試験片に対して引張試験を行うことで、取得することができる。
図2のステップ4(S4)の通り、制御部20は、パラメータ設定処理22により、FEM解析モデルに与える境界条件を設定する。当該境界条件は、金属材料を構成する構造体が破壊されるまでに実際に材料に生じると考えられる応力またはひずみの履歴を与える。当該応力またはひずみの履歴は、構造体の構造解析によりあらかじめ推定することができる。また、実際に構造物から、例えばひずみゲージを用いることで計測してもよいし、任意の条件を設定してもよい。境界条件は、応力またはひずみの履歴に限定されず、例えば、応力またはひずみを与えてもよい。この場合、制御部20はパラメータ設定処理22により、当該境界条件に基づいて所定の増加幅で、FEM解析を行うためのパラメータを設定する。
図2のステップ5(S5)の通り、制御部20は、解析処理23により、作成したFEM解析モデルを用いてFEM解析を実行する。FEM解析では、作成したFEM解析モデルに対して境界条件として設定した応力またはひずみの履歴を与えることで、金属材料に応力またはひずみが加えられた際にどのように変形するかシミュレーションにより解析することができる。解析により、FEM解析モデルの各要素に与えた応力またはひずみ別に、FEM解析モデルの各要素における「応力三軸度」および「相当塑性ひずみ」を算出し、出力することができる。FEM解析モデルの各要素には、解析時の積分を行うための積分点が予め設定されている。「応力三軸度」および「相当塑性ひずみ」は、積分点に与えられたに与えた応力またはひずみ別に算出される。なお、FEM解析モデルの各要素の積分点以外に、例えば積分点について算出された解から計算される要素解または節点解を用いて「応力三軸度」および「相当塑性ひずみ」を算出してもよい。
図2のステップ6(S6)の通り、制御部20は、例えばグラフ作成処理等の分布作成処理24により、相当塑性ひずみと応力三軸度の分布を求めることができる。具体的に例えば、相当塑性ひずみと応力三軸度のグラフを作成する。詳細には、前記境界条件として設定した応力またはひずみ別に、出力された前記各位置の相当塑性ひずみと応力三軸度を、これらを軸とするグラフにプロットする。また、制御部20は、算出された相当塑性ひずみと応力三軸度を所定の時間刻みごとに(例えば、FEM解析において1回の解析あたりに進める時間間隔ごとに)当該グラフにプロットしてもよい。前記グラフは、例えば縦軸を相当塑性ひずみ、横軸を応力三軸度とすることができる。後記の実施例では、全ての積分点の相当塑性ひずみと応力三軸度をプロットしているが、これに限られず、前記位置として、前記モデルにおける一部の積分点の、相当塑性ひずみと応力三軸度をプロットしてもよい。
図2のステップ7(S7)の通り、前記相当塑性ひずみと応力三軸度の分布から、ミクロ組織の損傷挙動を評価する。評価方法の一例として、前記境界条件として設定した応力またはひずみ別に、前記プロット点の分布形態を観察することが挙げられる。または、前記境界条件として設定した応力またはひずみの異なる、プロット点の2以上の分布を対比することによって、変形過程すなわち塑性ひずみ(εmicro)量の変化に伴うプロット点の推移を観察し、マイクロボイド発生挙動の評価に用いることができる。本実施形態によれば、従来技術の様に複雑な連続体損傷モデルを用いる必要がなく、金属材料のマイクロボイド発生挙動を簡便に評価することが可能となる。
図4のステップ11(S11)の通り、撮影部12は、塑性変形中の複数のミクロ組織画像を取得する。詳細には、金属材料からなる試験片を用意し、該試験片に、連続的にひずみを付与しながら、該試験片の同一視野のミクロ組織画像を複数取得する。
前記ひずみを付与する方法は特に限定されず、連続的にひずみを付与できればよい。前記方法として、例えば引張試験が挙げられ、例えば一軸方向の引張試験を行うことが挙げられる。上記引張試験を行う場合、後述する実施例に記載の通り、所定の塑性ひずみ量になるまで試験片を引っ張り、引張試験機から試験片を取り外して顕微鏡観察し、再度、試験片を引張試験機に設置して引っ張ることを繰り返し行う、準連続ミクロ組織観察-引張試験が挙げられる。しかしこれに限定されず、種々の塑性ひずみ量を付与時の複数枚のミクロ組織画像を取得できればよい。例えば非特許文献3に示されたようなミクロ組織観察と引張試験の方法等を採用してもよい。
図4のステップ12(S12)の通り、前記複数のミクロ組織画像から、マイクロボイド発生位置と、マイクロボイド発生時の塑性ひずみ量(εmicro)を把握する。マイクロボイドが発生した位置の確認は、前記ミクロ組織画像において目視でまたは画像解析で行うことができる。マイクロボイド発生位置は、金属材料を構成する構成相が2種類以上である場合、いずれの構成相で発生したかも把握する。例えば、ミクロ組織画像に、マイクロボイド発生位置と、マイクロボイド発生時の金属材料に付与した塑性ひずみ量(εmicro)を記録することが挙げられる。
図4のステップ13(S13)の通り、制御部20は、モデル作成処理21により、FEM解析に使用するFEM解析モデルとして、メッシュモデルを作成する。FEM解析モデルは、上述のステップ2と同様の方法で作成することができる。
図4のステップ14(S14)の通り、制御部20は、パラメータ設定処理22により、ステップ11で試験した金属材料を構成する各材料の特性を取得する。ここで、取得する材料特性とは、ステップ3で記載しているように、例えば、構成する材料それぞれのヤング率、降伏応力および耐力、加工硬化指数、結晶方位、並びに応力-ひずみ曲線などである。
図4のステップ15(S15)の通り、制御部20は、パラメータ設定処理22により、FEM解析モデルに与える境界条件を設定する。当該境界条件は、上記のステップ4と同様、金属材料を構成する構造体が破壊されるまでに実際に材料に生じると考えられる応力またはひずみ量の履歴を与える。
図4のステップ16(S16)の通り、制御部20は、解析処理23により、作成したFEM解析モデルを用いてFEM解析を実行する。上記のステップ5と同様、作成したFEM解析モデルに対して境界条件として設定した応力またはひずみの履歴を与えることで、金属材料に応力またはひずみが加えられた際にどのように変形するかシミュレーションにより解析することができる。解析により、FEM解析モデルに与えた応力またはひずみ別に、FEM解析モデルの各位置における応力三軸度および相当塑性ひずみを算出し、出力することができる。
図4のステップ17(S17)の通り、制御部20は、解析処理23により、出力された前記各位置の相当塑性ひずみと応力三軸度のデータの中から、マイクロボイド発生位置における相当塑性ひずみと応力三軸度のデータを抽出する。当該抽出データは、ステップ12にて記録した当該マイクロボイドが発生した際の塑性ひずみεmicroを、FEM解析モデルに与えてどのように変形するか解析することで算出した値を抽出する。したがって、マイクロボイドが発生した際の塑性ひずみεmicroに対応した相当塑性ひずみおよび応力三軸度のデータを抽出することができる。
図4のステップ18(S18)の通り、制御部20は、例えばグラフ作成処理等の分布作成処理24により、抽出された前記各位置の相当塑性ひずみと応力三軸度の分布を求める。具体的に例えば、これらを軸とするグラフにプロットする。該分布を求めることで、対象の構成相における、マイクロボイドが発生する、相当塑性ひずみと応力三軸度の関係(相当塑性ひずみと応力三軸度の組み合わせ値)が明らかになる。分布としてグラフを作成する場合、前記グラフは、例えば縦軸を相当塑性ひずみ(εeqP)、横軸を応力三軸度(η)とすることができる。
図4のステップ19(S19)の通り、前記グラフ等の分布において、マイクロボイドが発生する相当塑性ひずみと応力三軸度の関係から、損傷クライテリアを決定する。本決定方法の分布の一例によれば、マイクロボイドが発生する、相当塑性ひずみと応力三軸度の組み合わせ値がプロット点としてグラフに示される。また前述のとおり、相当塑性ひずみと応力三軸度が大きいほど損傷が生じやすい傾向にある。言い換えると、相当塑性ひずみと応力三軸度の小さい領域はマイクロボイドが生じにくいといえる。よって、損傷クライテリアは、上記マイクロボイドの生じにくい領域と、マイクロボイドが発生した上記プロット点の集合域との境界線として示される。前記プロット点は、多ければ多いほど精度が高まることから、例えば3点以上、更には5点以上示すことが好ましい。制御部20が、分布作成処理24により、プロットされた結果から、損傷クライテリアをグラフ上に表示してもよい。代替的に、制御部20は、分布作成処理24により、FEM解析においてFEM解析モデルに与えた応力またはひずみ別に、出力された各要素の相当塑性ひずみと応力三軸度とから、損傷クライテリアをグラフ上に表示してもよい。
材料1として、C:0.063質量%、Si:0.50質量%、およびMn:1.46質量%(実績)を含む鋼を溶製し、インゴットを得てから鍛造し、熱処理を施して、マルテンサイトとフェライトの二相鋼を用意した。また材料2として、硬質相であるマルテンサイトの面積分率が材料1とは異なる、マルテンサイトとフェライトの二相鋼を用意した。上記材料1と材料2を用いて、下記の手順によりミクロ組織の損傷挙動の評価を行った。
上記各材料を、顕微鏡観察面がおおよそ10mm×10mm程度のサイズに切り出し、ナイタールでエッチングしてから、走査型電子顕微鏡にて倍率1000倍で顕微鏡写真を撮影し、ミクロ組織の画像を取得した。材料1の顕微鏡写真を図5A、材料2の顕微鏡写真を図5Bに示す。図5Aにおいて、白色部分は硬質相Qであるマルテンサイト相を示し、グレー部分は軟質相Rであるフェライト相を示す。また、図5Bにおいて、薄いグレー部分は硬質相Qであるマルテンサイト相を示し、濃いグレー部分は軟質相Rであるフェライト相を示す。図5Aおよび図5Bにおいて、該顕微鏡写真の画像解析を行ったところ、硬質相Qであるマルテンサイトの面積分率は、材料1では約15%であり、材料2では約50%であった。
次に、評価システム1の制御部20にモデル作成処理21を実行させて、FEM解析に使用するFEM解析モデルとして上記材料1と材料2それぞれのミクロ組織の画像を模したメッシュモデルを作成した。FEM解析モデルは、上述のステップ2と同様の方法で作成され得る。本実施例では、ステップ2に記載したFEM解析モデルと同様、メッシュモデルは、4節点アイソパラメトリック要素を設定して、総要素数が40,279、総節点数が40,507の2Dモデルで作成されている。制御部20にモデル作成処理21を実行させることで、当該2Dモデルに対して、画像の奥行き方向へ1層分拡張し、8節点アイソパラメトリック要素により総要素数が40,279、総節点数が81,014の3Dモデルを作成する。その後、制御部20に解析処理23を実行させて、当該3Dモデルを用いてFEM解析を行わせた。
金属材料を構成する材料であるフェライトおよびマルテンサイトの特性を取得して制御部20のパラメータ設定処理22として入力し、FEM解析モデルにおけるフェライトに対応する領域およびマルテンサイトに対応する領域のパラメータとして設定した。ここで、取得した材料特性とは、ステップ3で記載しているように、例えば、フェライトとマルテンサイトそれぞれのヤング率、降伏応力および耐力、加工硬化指数並びに結晶方位などである。また、金属材料を構成するフェライトとマルテンサイトそれぞれに関する応力-ひずみ曲線を取得し、材料特性として制御部20に設定した。それらの応力-ひずみ曲線は、フェライトで構成されている単相鋼とマルテンサイトで構成されている単相鋼それぞれに対して引張試験を行い、取得した。
次に、各FEM解析モデルに与える境界条件を制御部20に設定した。当該境界条件は、上記のステップ4と同様、金属材料を構成する構造体が破壊されるまでに実際に材料に生じると考えられるひずみ量の履歴を与えた。本実施例では、後述するように一軸方向の引張試験により引張試験片に対してひずみを生じさせる。したがって、FEM解析モデルに与える境界条件として、引張試験における引っ張り方向に対応する方向をx軸(図5Aおよび図5Bにおける左右方向)、x軸に直交する方向をyおよびz軸(それぞれ図5Aおよび図5Bにおける上下方向および奥行き方向)とすると、εx=-νεy=-νεzとなるようにひずみ増分を与えた。ここで、εxはx軸方向のひずみ増分、εyはy軸方向のひずみ増分、εzは、z軸方向のひずみ増分である。また、νは、ポアソン比である。本実施例では、ν=0.5として設定した。したがって、各軸の方向のひずみ増分は、x軸方向:y軸方向:z軸方向=1:-0.5:-0.5となるように設定した。
次に、制御部20に解析処理23を実行させて、作成したFEM解析モデルを用いてFEM解析を実行させる。FEM解析では、上記のような境界条件で設定された塑性ひずみがFEM解析モデルに与えられた際、解析モデルがどのように変形するかシミュレーションにより解析することができる。それにより、解析モデルでの各位置における変位を算出し、応力三軸度および相当塑性ひずみを算出し、出力することができる。本実施例では、各位置として、FEM解析モデルの各要素の積分点における値を用いた。上記FEM解析は、境界条件として設定する塑性ひずみを変更することで、任意の塑性ひずみに対する解析を行うことができる。
制御部20に分布作成処理24を実行させて、上記計算結果から得られた、ミクロ組織内の各位置、すなわち全積分点の応力三軸度と相当塑性ひずみの値を、境界条件として与えたひずみ値ごとに、縦軸を相当塑性ひずみ(εeqP)、横軸を応力三軸度(η)とするグラフにプロットさせた。上記プロットしたグラフとして、x軸方向の塑性ひずみが5%のときの材料1と材料2の軟質相のグラフをそれぞれ図6Aと図6B、x軸方向の塑性ひずみが5%のときの材料1と材料2の硬質相のグラフをそれぞれ図7Aと図7B、x軸方向の塑性ひずみが20%のときの材料1と材料2の軟質相のグラフをそれぞれ図8Aと図8B、x軸方向の塑性ひずみが20%のときの材料1と材料2の硬質相の2軸グラフをそれぞれ図9Aと図9Bに示す。
上記ひずみ量別、構成相別に、材料1(硬質相が少ないミクロ組織)と材料2(硬質相が多いミクロ組織)を比較した。その結果、材料1と材料2の、軟質相と硬質相の両方において、同じひずみを与えたときに、材料2の方が、応力三軸度も相当塑性ひずみもより高い値を示す傾向にあることがわかる。またこの傾向は、ひずみ5%よりもひずみ20%の方がより顕著であることがわかる。前述のとおり、相当塑性ひずみと応力三軸度が大きいほど損傷が生じやすくなる傾向にあることから、応力三軸度と相当塑性ひずみが材料1よりも高い値を示す材料2は、材料1よりも、より早くミクロ組織内の微視的な損傷が生じやすいことがこれらのグラフの対比から判断できる。
下記手順に沿って損傷クライテリアを決定した。
引張試験途中の複数の段階でミクロ組織観察を行って、引張試験中の応力/ひずみと、該応力/ひずみを受けて変形したミクロ組織の撮影を行った。
詳細には、図10に示す形状の引張試験片を用意した。前記引張試験片はマルテンサイト面積率が13.7%である材料で作製した。そして、該引張試験片の一方の平面をミクロ観察用に鏡面研磨し(ナイタールエッチング有り)、他方の平面にビデオ伸び計用のシールを貼付し、上記した応力/ひずみ付与部11の一例である図11の準連続ミクロ組織観察-引張試験装置70の側面図の通り、(引張)試験片71を、チャック72で固定し、ビデオ伸び計用のシール73を貼付した面側にビデオカメラ74を配置した。そしてビデオカメラで撮影しながら引張試験を行った。引張試験の試験条件は、室温環境下、クロスヘッド変位速度1mm/minとした。(引張)試験片71のシール73貼付面とは反対側の面には、ミクロ組織観察用の研磨面75を有している。
上記ミクロ観察結果の一部を図14A~図14Cに示す。図14Aは、非ひずみ時、すなわち前記図13の〔1〕の黒丸の時点のミクロ組織写真、図14Bは、前記図13の〔2〕の黒丸の時点であって、引張試験による引張方向と同一の軸方向(すなわち、x軸方向)に関する塑性ひずみ(ミクロ組織写真に表示された金属材料の組織形状等をもとに視野の変形量から推定した、ミクロ組織写真に表示されている所定領域のひずみ値)εmicroが17.1%(ビデオ伸び計用のシールの変位量から推定した公称ひずみεnominalが13.3%)時のミクロ組織写真、図14Cは、前記図13の〔3〕の黒丸の時点であって、塑性ひずみεmicroが35.5%(公称ひずみεnominalが18.2%)時のミクロ組織写真である。図14A~図14Cに示す破線で囲われた領域は、上記所定領域を表しており、横方向(x軸方向)に伸び、縦方向(y軸方向)に縮んでいることが分かる。この準連続ミクロ組織観察-引張試験では、マクロひずみ量であるx軸方向の塑性ひずみ量(εmicro)、当該塑性ひずみ量でのマイクロボイド発生位置、マイクロボイド発生起点となった構成相の種類を評価項目とした。
FEM解析を行うために、制御部20にモデル作成処理21を実行させて、上記と同様の方法にてFEM解析モデルを作成した。当該モデルは、図14Aにて点線で囲われた領域を用いてイメージベースモデリングにより作成されている。試験片のマルテンサイト相の面積分率は13.7%であるため、マルテンサイト相に相当する領域の体積分率が13.7%であるFEM解析モデルを作成した。また、金属材料を構成する材料であるフェライトおよびマルテンサイトの特性をパラメータとして制御部20に設定した。
制御部20に分布作成処理24を実行させて、出力された前記各位置の相当塑性ひずみと応力三軸度のデータの中から、マイクロボイド発生位置における相当塑性ひずみと応力三軸度のデータを抽出した。当該抽出データは、当該マイクロボイドが発生した際の塑性ひずみεmicroをFEM解析モデルに与えて算出した値を抽出している。そして各位置が対応する構成相別に、抽出された前記各位置の相当塑性ひずみと応力三軸度を、縦軸を相当塑性ひずみ(εeqP)、横軸を応力三軸度(η)としたグラフにプロットし、各構成相において、マイクロボイドが発生する相当塑性ひずみと応力三軸度の関係を求めた。その結果を、フェライト相については図21、マルテンサイト相については図22に示す。上記図21および図22から、相当塑性ひずみと応力三軸度の値が、ひずみの増加により、早期に高くなる、すなわちグラフ上で早期にグラフ右上に推移するほど、マイクロボイドが早期に発生すると言える。
図21、図22のそれぞれにおいて、プロット点の領域と、相当塑性ひずみと応力三軸度が小さくなるグラフの左斜め下方向の領域との境界線として、反比例型の近似曲線を算出した。該近似曲線は、各構成相での損傷が発生する閾値曲線であり、該曲線よりも上は損傷が生じる領域であることを示す。
FEM解析で得られた、各構成相の応力三軸度と相当塑性ひずみの関係を、上記求めた損傷クライテリアで判断することによって、各構成相の損傷挙動をより明確に判断することができる。詳細には、前記図6、図7、図8および図9のいずれにおいても、材料1よりも材料2のほうがグラフ右上のプロット点が多かった。このことから、材料2のほうが早期にマイクロボイドが発生すると考えられ、材料2のほうが破断特性は劣ると推察される。
10 試験部
11 応力/ひずみ付与部
12 撮影部
20 制御部
21 モデル作成処理
22 パラメータ設定処理
23 解析処理
24 分布作成処理
30 記憶部
40 表示部
50 入力部
60 出力部
70 準連続ミクロ組織観察-引張試験装置
71 引張試験片
72 固定用チャック
73 ビデオ伸び計用のシール
74 ビデオカメラ
75 ミクロ組織観察用の研磨面
Claims (7)
- コンピュータを用いて金属材料のミクロ組織の損傷挙動を評価する方法であって、コンピュータが、
前記金属材料のミクロ組織画像を取得するステップ1と、
前記ミクロ組織画像を複数の要素に分割し、有限要素法(FEM)によって前記ミクロ組織画像を模擬したFEM解析モデルを作成するステップ2と、
前記FEM解析モデルのパラメータとして前記金属材料の材料特性を取得するステップ3と、
境界条件として、前記FEM解析モデルの各要素に付与する、前記金属材料の破断までに生じる応力若しくはひずみ、または前記応力若しくは前記ひずみの履歴を設定するステップ4と、
前記境界条件でFEM解析を実行し、前記各要素の相当塑性ひずみと応力三軸度を出力するステップ5と、
前記FEM解析において前記FEM解析モデルに与えた応力またはひずみ別に、出力された前記各要素の相当塑性ひずみと応力三軸度の分布を求めるステップ6と、
前記相当塑性ひずみと前記応力三軸度の分布から、ミクロ組織の損傷挙動を評価するステップ7と
を実行する、金属材料のミクロ組織の損傷挙動評価方法。 - 前記ステップ4は、各要素の積分点に付与する、前記応力若しくは前記ひずみ、または前記応力若しくは前記ひずみの前記履歴を設定し、
前記ステップ5は、各要素の積分点における前記相当塑性ひずみと応力三軸度を出力する、請求項1に記載の金属材料のミクロ組織の損傷挙動評価方法。 - 前記金属材料は、2種類以上の構成相を有し、
前記ステップ5~7を構成相ごとに実施する、請求項1または2に記載の金属材料のミクロ組織の損傷挙動評価方法。 - 予め用意された、前記2種類以上の構成相それぞれの応力-ひずみ曲線を、前記ステップ3にて前記材料特性として取得することを含む、請求項3に記載の金属材料のミクロ組織の損傷挙動評価方法。
- 前記ステップ7で、予め定められた手順に従って損傷クライテリアを決定し、決定された前記損傷クライテリアを用いてミクロ組織の損傷有無を判断する、請求項1から4のいずれか一項に記載の金属材料のミクロ組織の損傷挙動評価方法。
- 前記損傷クライテリアの決定を、
前記金属材料からなる試験片を用意し、該試験片に、連続的にひずみを付与しながら、該試験片の同一視野のミクロ組織画像を複数取得するステップ11と、
前記複数のミクロ組織画像から、マイクロボイド発生位置と、マイクロボイド発生時の塑性ひずみ量を決定するステップ12と、
前記ミクロ組織画像を複数の要素に分割した、前記ミクロ組織画像を模擬したFEM解析モデルを作成するステップ13と、
前記FEM解析モデルのパラメータとして前記金属材料の材料特性を取得するステップ14と、
境界条件として、前記FEM解析モデルの各要素に付与する、ひずみ量を設定するステップ15と、
前記境界条件でFEM解析を実行し、前記マイクロボイド発生時の各塑性ひずみ量における前記各要素の相当塑性ひずみと応力三軸度を出力するステップ16と、
出力された前記各要素の相当塑性ひずみと応力三軸度のデータの中から、前記マイクロボイド発生位置における相当塑性ひずみと応力三軸度のデータを抽出するステップ17と、
抽出された各位置の相当塑性ひずみと応力三軸度の分布を求めるステップ18と、
前記分布において、マイクロボイドが発生する相当塑性ひずみと応力三軸度の関係から、損傷クライテリアを決定するステップ19と
を含む工程で行う、請求項5に記載の金属材料のミクロ組織の損傷挙動評価方法。 - 前記金属材料は、2種類以上の構成相を有し、
前記損傷クライテリアの決定でのステップ17~19を構成相ごとに実施する、請求項6に記載の金属材料のミクロ組織の損傷挙動評価方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021107010A JP7474225B2 (ja) | 2021-06-28 | 2021-06-28 | 金属材料のミクロ組織の損傷挙動評価方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021107010A JP7474225B2 (ja) | 2021-06-28 | 2021-06-28 | 金属材料のミクロ組織の損傷挙動評価方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023005230A JP2023005230A (ja) | 2023-01-18 |
JP7474225B2 true JP7474225B2 (ja) | 2024-04-24 |
Family
ID=85107179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021107010A Active JP7474225B2 (ja) | 2021-06-28 | 2021-06-28 | 金属材料のミクロ組織の損傷挙動評価方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7474225B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117034430B (zh) * | 2023-09-11 | 2024-01-09 | 湘潭大学 | 基于深度学习及数字孪生的闸门健康监测方法、系统及计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070151359A1 (en) | 2005-12-29 | 2007-07-05 | Accellent, Inc. | Method for measuring and calculating tensile elongation of ductile metals |
JP2012104042A (ja) | 2010-11-12 | 2012-05-31 | Kobe Steel Ltd | 均一伸びの予測方法および均一伸びの予測プログラム |
JP2014199529A (ja) | 2013-03-29 | 2014-10-23 | 株式会社Jsol | 部品の破断予測システム及び部品の破断予測プログラム |
JP2015087311A (ja) | 2013-10-31 | 2015-05-07 | 新日鐵住金株式会社 | 材料特性取得方法及び装置、並びにプログラム及び記録媒体 |
-
2021
- 2021-06-28 JP JP2021107010A patent/JP7474225B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070151359A1 (en) | 2005-12-29 | 2007-07-05 | Accellent, Inc. | Method for measuring and calculating tensile elongation of ductile metals |
JP2012104042A (ja) | 2010-11-12 | 2012-05-31 | Kobe Steel Ltd | 均一伸びの予測方法および均一伸びの予測プログラム |
JP2014199529A (ja) | 2013-03-29 | 2014-10-23 | 株式会社Jsol | 部品の破断予測システム及び部品の破断予測プログラム |
JP2015087311A (ja) | 2013-10-31 | 2015-05-07 | 新日鐵住金株式会社 | 材料特性取得方法及び装置、並びにプログラム及び記録媒体 |
Non-Patent Citations (1)
Title |
---|
佐藤健太郎 他,超ハイテン材の破断に対する予測技術の研究,自動車技術会論文集,Vol.45, No.6,日本,2014年11月,1099-1104 |
Also Published As
Publication number | Publication date |
---|---|
JP2023005230A (ja) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heripre et al. | Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials | |
Abbassi et al. | Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests | |
Wan et al. | Microstructure-sensitive fatigue crack nucleation in a polycrystalline Ni superalloy | |
Nicoletto et al. | Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography | |
Boyce et al. | The Sandia Fracture Challenge: blind round robin predictions of ductile tearing | |
Tarigopula et al. | A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis | |
Lievers et al. | Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys | |
Hild et al. | CorreliQ4: A software for finite element displacement field measurements by digital image correlation | |
Olofsson et al. | Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, Digital Image Correlation and finite element simulation | |
Fagerholt et al. | Experimental and numerical investigation of fracture in a cast aluminium alloy | |
Tang et al. | On the inhomogeneous deformation behavior of magnesium alloy beam subjected to bending | |
Richefeu et al. | Toward local identification of cohesive zone models using digital image correlation | |
Zhang et al. | Effect of particle characteristics on deformation of particle reinforced metal matrix composites | |
Khan et al. | Low cycle lifetime assessment of Al2024 alloy | |
Harvey et al. | Complete mechanical characterization of nanocrystalline Al–Mg alloy using nanoindentation | |
Gerke et al. | Experiments and numerical simulation of damage and fracture of the X0-specimen under non-proportional loading paths | |
Xie et al. | A dual-phase crystal plasticity finite-element method for modeling the uniaxial deformation behaviors of thermally aged SAC305 solder | |
JP7474225B2 (ja) | 金属材料のミクロ組織の損傷挙動評価方法 | |
Ye et al. | Experimental and modelling study of fatigue crack initiation in an aluminium beam with a hole under 4-point bending | |
Nowell et al. | Investigation of fatigue crack models by micro-scale measurement of crack tip deformation | |
US11047812B2 (en) | Macrotexture map visualizing texture heterogeneity in polycrystalline parts | |
Ilg et al. | Application of a full-field calibration concept for parameter identification of HS-steel with LS-OPT® | |
JP2009264797A (ja) | 多結晶材料の変形特性予測方法及び装置、並びにプログラム及び記録媒体 | |
Horstemeyer et al. | Numerical, experimental, nondestructive, and image analyses of damage progression in cast A356 aluminum notch tensile bars | |
Farahani et al. | A GTN failure analysis of an AA6061-T6 bi-failure specimen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7474225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |