JP7473754B2 - Highly durable backfill grout material - Google Patents

Highly durable backfill grout material Download PDF

Info

Publication number
JP7473754B2
JP7473754B2 JP2020015631A JP2020015631A JP7473754B2 JP 7473754 B2 JP7473754 B2 JP 7473754B2 JP 2020015631 A JP2020015631 A JP 2020015631A JP 2020015631 A JP2020015631 A JP 2020015631A JP 7473754 B2 JP7473754 B2 JP 7473754B2
Authority
JP
Japan
Prior art keywords
grout
fibers
grout material
mass
highly durable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020015631A
Other languages
Japanese (ja)
Other versions
JP2021123507A (en
Inventor
田原英男
高原幸之助
木元大輔
太 伊豆
勤 福手
孝弘 西田
克敏 諸橋
美子 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2020015631A priority Critical patent/JP7473754B2/en
Publication of JP2021123507A publication Critical patent/JP2021123507A/en
Application granted granted Critical
Publication of JP7473754B2 publication Critical patent/JP7473754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Road Repair (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、コンクリート舗装版下の隙間に導入される裏込めグラウトについて、繰返し荷重による粉状化に対する耐久性が高く、材齢2時間の初期強度に優れた裏込めグラウト材に関する。 This invention relates to a backfill grout material that is introduced into gaps under concrete pavement slabs and has high resistance to powdering due to repeated loads and excellent initial strength at two hours.

プレキャストRC舗装版やプレキャストPC舗装版などのコンクリート舗装版の施工において、通常、舗装版を設置するには水平方向のレベル調整を行うために舗装版と路盤上面との間にスペーサー等が設置され、路盤上面と舗装版下面の間に約1mm~30mm程度の隙間が形成される。この隙間には裏込めグラウトが注入され、コンクリート舗装版の自重や交通の走行により発生する荷重を均一に路盤に伝達する構造が形成される。 When constructing concrete pavement slabs such as precast RC pavement slabs and precast PC pavement slabs, spacers are usually placed between the pavement slab and the top surface of the roadbed to adjust the horizontal level when installing the pavement slab, leaving a gap of about 1 to 30 mm between the top surface of the roadbed and the bottom surface of the pavement slab. Backfill grout is injected into this gap, creating a structure that evenly transfers the weight of the concrete pavement slab and the load generated by traffic movement to the roadbed.

また、軟弱地盤上に構築されるコンクリート舗装版は、コンクリート舗装版の自重や経年の荷重により地盤が圧密されるため、コンクリート舗装版が僅かに沈下することが知られている。沈下した舗装表面の高さを元に戻すために、コンクリート舗装版を持ち上げて不陸調整し、その下面と路盤との間にできた空隙に裏込めグラウトが注入されることもある。 It is also known that concrete pavement slabs constructed on soft ground tend to sink slightly as the ground is consolidated due to the concrete pavement slab's own weight and loads over time. In order to return the sunken pavement surface to its original height, the concrete pavement slab is sometimes lifted to level the unevenness, and backfill grout is injected into the gap that has formed between its underside and the roadbed.

このようなコンクリート舗装工事において、空港エプロン等の施設の舗装では、工事に時間的制約を受けるために迅速な施工が要求され、それに対応できるように裏込めグラウトにも速硬性が要求される。また、交通荷重による繰返し疲労による粉状化に対する抵抗性も求められる。 In concrete pavement construction such as that for airport aprons and other facilities, rapid construction is required due to time constraints, and the backfill grout must also harden quickly to meet this requirement. It must also be resistant to pulverization due to repeated fatigue caused by traffic loads.

裏込めグラウト材として、特開平8-290951号公報(特許文献1)には、セメント、カルシウムアルミネート、石膏、およびアルミナドロスを主成分とした裏込めグラウト材が記載されている。この裏込めグラウト材は、カルシウムアルミネートおよび石膏によって初期強度の発現を早め、アルミナドロスによって長期強度の抑制と容積減少の低減を図っている。 As a backfill grout material, JP 8-290951 A (Patent Document 1) describes a backfill grout material whose main components are cement, calcium aluminate, gypsum, and alumina dross. This backfill grout material uses calcium aluminate and gypsum to accelerate the development of initial strength, and alumina dross to suppress long-term strength and reduce volume loss.

しかし、特許文献1の裏込めグラウト材は、速硬性を有するものの、繰返し荷重による粉状化に対する抵抗性は十分ではなかった。そこで、特開2011-144103号公報(特許第5311584号:特許文献2)に記載されているように、疲労耐久性を高めた裏込めグラウト材が開発されている。この裏込めグラウト材は、セメントおよび速硬材を主成分にし、無機または有機の短繊維を配合したものであり、速硬材を配合して初期強度の発現を早めると共に短繊維を配合して繰返し荷重による粉状化に対する抵抗性を高めている。 However, although the backfilling grout material in Patent Document 1 has fast hardening properties, it does not have sufficient resistance to pulverization due to repeated loads. Therefore, as described in JP 2011-144103 A (Patent No. 5311584: Patent Document 2), a backfilling grout material with improved fatigue durability has been developed. This backfilling grout material is made mainly of cement and a fast hardening material, and is mixed with inorganic or organic short fibers. The fast hardening material is mixed in to hasten the development of initial strength, and the short fibers are mixed in to increase resistance to pulverization due to repeated loads.

特許文献2の裏込めグラウト材は、短繊維を配合して耐粉状化性を高めているが、一方で速硬性を得るために多量の速硬材が配合されている。具体的には、セメントに対して25質量%~40質量%に及ぶ多量の速硬材が配合されている。しかし、速硬材の量が多いと、繰返し荷重に対する耐粉状化性が低下する傾向がある。一方、速硬材の量が少なく硬化までの時間が長すぎると、材料分離を生じやすくなり、短繊維がグラウト上面に偏って十分な疲労耐久性が得られない。そこで、速硬材の含有量を1~6質量%にして適度な流動性とゲル化までの時間を確保した裏込めグラウト材が提案されている(特開2019-11233号公報:特許文献3)。しかし、この裏込めグラウト材は材齢2時間の圧縮強度が低い。 The backfilling grout material of Patent Document 2 is formulated with short fibers to improve resistance to powdering, but at the same time, a large amount of fast-hardening material is formulated to obtain rapid hardening. Specifically, a large amount of fast-hardening material is formulated, ranging from 25% to 40% by mass relative to the cement. However, if the amount of fast-hardening material is large, resistance to powdering against repeated loads tends to decrease. On the other hand, if the amount of fast-hardening material is small and the time until hardening is too long, material separation is likely to occur, and the short fibers are biased to the upper surface of the grout, making it difficult to obtain sufficient fatigue durability. Therefore, a backfilling grout material has been proposed in which the content of fast-hardening material is set to 1 to 6% by mass to ensure appropriate fluidity and time until gelation (JP Patent Publication 2019-11233: Patent Document 3). However, this backfilling grout material has low compressive strength at 2 hours of age.

また、鉱物質粉末フィラーを配合したグラウト材(特許第3372012号:特許文献4)、アルミノ珪酸カルシウムや石膏等を配合したグラウト組成物(特開2004-210557号公報:特許文献5)が知られているが、何れも耐久性が低い。 In addition, grout materials containing mineral powder fillers (Patent No. 3372012: Patent Document 4) and grout compositions containing calcium aluminosilicate, gypsum, etc. (JP Patent Publication No. 2004-210557: Patent Document 5) are known, but both have low durability.

一方、セメント補強用繊維材料として、玄武岩繊維を樹脂で集束した補強用短繊維が知られており(特開2012-56780号公報)、また、多数の単繊維を束ねた繊維集束体をイソシアネート化合物樹脂で固め、表面をエポキシ樹脂で処理した補強用繊維材料が知られている(国際公開2016-117435号公報)。しかし、これらの補強用繊維材料は単繊維を束ねて樹脂で固めたものであるので、グラウトに配合したときに、該繊維材料が単繊維に分散せず集合体としてグラウト中に存在するので補強効果が十分ではない場合がある。 On the other hand, as a fiber material for reinforcing cement, a reinforcing short fiber made of basalt fibers bundled with resin is known (JP Patent Publication No. 2012-56780), and a reinforcing fiber material is also known in which a fiber bundle of many single fibers is bound together and solidified with an isocyanate compound resin, and the surface is treated with an epoxy resin (WO Publication No. 2016-117435). However, because these reinforcing fiber materials are made by bundling single fibers and solidifying them with resin, when they are mixed into grout, the fiber material does not disperse into the single fibers but exists in the grout as an aggregate, which may result in insufficient reinforcing effect.

特開平8-290951号公報Japanese Patent Application Laid-Open No. 8-290951 特開2011-144103号公報(特許第5311584号公報)JP 2011-144103 A (Patent No. 5311584 A) 特開2019-11233号公報JP 2019-11233 A 特許第3372012号公報Japanese Patent No. 3372012 特開2004-210557号公報JP 2004-210557 A 特開2012-56780号公報JP 2012-56780 A 国際公開2016-117435号公報International Publication No. 2016-117435

本発明の裏込めグラウト材は、従来の上記問題を解消したものであり、該グラウトに配合する繊維の種類と配合量を検討し、また特許文献3の裏込めグラウト材について、材齢2時間の初期強度を高めると共に十分な長期強度を有し、繰返し荷重に対する疲労耐久性に優れた裏込めグラウトを提供する。なお、本発明において、水を加えない粉体のものを裏込めグラウト材と云い、水を加えて練り混ぜ硬化するまでの液体状態のものを含め、水和硬化した状態のものを裏込めグラウトと云い、本発明の裏込めグラウト材によって形成された裏込めグラウトを本発明の裏込めグラウトと云う。
また、水を除いた繊維およびセメント等の材料を混合してグラウト材を製造することを乾式混合といい、粉体のグラウト材に水を加え練り混ぜグラウトを製造する工程を練り混ぜという。
The backfilling grout material of the present invention has solved the above-mentioned problems of the conventional art, and the type and amount of fiber to be mixed in the grout have been examined, and a backfilling grout having an improved initial strength at 2 hours and sufficient long-term strength and excellent fatigue resistance against repeated loads is provided for the backfilling grout material of Patent Document 3. In the present invention, a powdered material to which no water has been added is referred to as a backfilling grout material, and a hydrated and hardened state is referred to as a backfilling grout, including a liquid state in which water is added, mixed, and hardened, and a backfilling grout formed by the backfilling grout material of the present invention is referred to as the backfilling grout of the present invention.
In addition, the process of producing grout by mixing materials such as fiber and cement excluding water is called dry mixing, while the process of producing grout by adding water to powdered grout material and kneading it is called kneading.

本発明は、以下の構成からなる裏込めグラウト材等に関する。
〔1〕セメントを主成分とし、速硬材、繊維、減水剤、および凝結調整剤を含むコンクリート舗装版用裏込めグラウト材であって、上記繊維は乾式混合前においては集束状態を保ち乾式混合後には単繊維に解繊する解離性の集束繊維であり、該集束繊維はストレートシリコンオイルまたは変性シリコンオイルの油で一体化され、該油の含有率は該繊維に対して1.0質量%以上~5.0質量%以下であって、該繊維表面が該油による撥水性を有し、該グラウト材と水を練り混ぜてグラウトにしたときに、該撥水性によって該繊維がグラウト中に分散し、練り混ぜ開始2分後の該集束繊維の凝集率が20%以下であることを特徴とする高耐久性裏込めグラウト材。
〔2〕上記集束繊維は、繊維径10~30μmの単繊維を300~1200本を束にして一本化した、繊維長2~4mmの短繊維である上記[1]に記載する高耐久性裏込めグラウト材。
〔3〕上記解離性の集束繊維の含有量がグラウトに対して0.05体積%以上~0.40体積%未満である上記[1]または上記[2]の何れかに記載する高耐久性裏込めグラウト材。
〔4〕上記解離性の集束繊維がアラミド繊維である上記[1]~上記[3]の何れかに記載する高耐久性裏込めグラウト材。
〔5〕上記速硬材の含有率が該セメントに対して8質量%以上~40質量%以下である上記[1]~上記[4]の何れかに記載する高耐久性裏込めグラウト材。
〔6〕再乳化粉末樹脂を含み、該再乳化粉末樹脂の含有量が該裏込めグラウト材の内割で3.0質量%以上~6.0質量%以下である上記[1]~上記[5]の何れかに記載する高耐久性裏込めグラウト材。
〔7〕上記再乳化粉末樹脂がアクリル系再乳化粉末樹脂である上記[6]に記載する高耐久性裏込めグラウト材。
〔8〕上記減水剤の含有量が上記セメントに対して0.05質量%以上~1.0質量%以下、上記凝結調整剤の含有量が上記セメントに対して0.0~3.0質量%以下である上記[1]~上記[7]の何れかに記載する高耐久性裏込めグラウト材。
〔9〕上記グラウト材を水グラウト材比(W/B)35~65%で練り混ぜたグラウトのJA漏斗流下試験の流下時間が30秒以下であり、水和硬化後のグラウトの材齢2時間の圧縮強度が2N/mm2 以上であることを特徴とする上記[1]~上記[8]の何れかに記載する高耐久性裏込めグラウト材。
〔10〕上記[1]~上記[9]の何れかに記載する上記裏込めグラウト材によって形成された材齢7日の圧縮強度が20N/mm以上であることを特徴とする高耐久性裏込めグラウト。
The present invention relates to a backfilling grout material having the following configuration.
[1] A backfill grout material for concrete pavement slabs, which is mainly composed of cement and contains a rapid hardening material, fibers, a water reducing agent, and a setting modifier, wherein the fibers are dissociable bundled fibers that maintain a bundled state before dry mixing and disintegrate into single fibers after dry mixing, the bundled fibers are bound together with straight silicone oil or modified silicone oil, the oil content is 1.0% by mass or more and 5.0% by mass or less with respect to the fibers, the fiber surface has water repellency due to the oil, and when the grout material is mixed with water to make grout, the water repellency causes the fibers to disperse in the grout, and the aggregation rate of the bundled fibers 2 minutes after the start of mixing is 20% or less. This highly durable backfill grout material is characterized in that
[2] The highly durable backfilling grout material described in [1] above, in which the bundled fibers are short fibers having a fiber length of 2 to 4 mm, each of which is made by bundling 300 to 1,200 single fibers having a fiber diameter of 10 to 30 μm into one bundle.
[3] A highly durable backfilling grout material according to either [1] or [2] above, in which the content of the dissociable bundled fibers is 0.05% by volume or more and less than 0.40% by volume of the grout.
[4] A highly durable backfilling grout material according to any one of [1] to [3] above, wherein the dissociable bundled fibers are aramid fibers.
[5] A highly durable backfilling grout material according to any one of [1] to [4], wherein the content of the fast-hardening agent is 8% by mass or more and 40% by mass or less relative to the cement.
[6] A highly durable backfilling grout material according to any one of [1] to [5] above, which contains a re-emulsified powdered resin and has a content of the re-emulsified powdered resin of 3.0% by mass or more and 6.0% by mass or less in terms of the total weight of the backfilling grout material.
[7] The highly durable backfilling grout material according to the above [6], wherein the re-emulsified powdered resin is an acrylic re-emulsified powdered resin.
[8] A highly durable backfilling grout material according to any one of [1] to [7] above, wherein the content of the water reducing agent is 0.05% by mass or more and 1.0% by mass or less relative to the cement, and the content of the setting regulator is 0.0 to 3.0% by mass or less relative to the cement.
[9] A highly durable backfill grout material according to any one of [1] to [8] above, characterized in that the flow time of a grout mixed with the grout material at a water to water ratio (W/B) of 35 to 65% in a JA funnel flow test is 30 seconds or less, and the compressive strength of the grout after hydration and hardening at 2 hours is 2 N/mm2 or more .
[10] A highly durable backfilling grout formed by the backfilling grout material described in any one of [1] to [9] above, characterized in that the compressive strength at 7 days of age is 20 N / mm 2 or more.

〔具体的な説明〕
本発明の裏込めグラウト材(以下、グラウト材と云う)は、セメントを主成分とし、速硬材、繊維、減水剤、および凝結調整剤を含むコンクリート舗装版用裏込めグラウト材であって、上記繊維は乾式混合前においては集束状態を保ち乾式混合後には単繊維に解繊する解離性の集束繊維であり、該集束繊維はストレートシリコンオイルまたは変性シリコンオイルの油で一体化され、該油の含有率は該繊維に対して1.0質量%以上~5.0質量%以下であって、該繊維表面が該油による撥水性を有し、該グラウト材と水を練り混ぜてグラウトにしたときに、該撥水性によって該繊維がグラウト中に分散し、練り混ぜ開始2分後の該集束繊維の凝集率が20%以下であることを特徴とする高耐久性裏込めグラウト材であり、好ましくは、上記集束繊維は、繊維径10~30μmの単繊維を300~1200本を束にして一本化した、繊維長2~4mmの短繊維である高耐久性裏込めグラウト材である。
[Specific explanation]
The backfilling grout material of the present invention (hereinafter referred to as grout material) is a backfilling grout material for concrete pavement slabs that contains cement as a main component and includes a rapid hardening agent, fibers, a water reducing agent, and a setting regulator, and the fibers are detachable bundled fibers that maintain a bundled state before dry mixing and defibrate into single fibers after dry mixing, and the bundled fibers are integrated with straight silicone oil or modified silicone oil, and the content of the oil is 1.0% by mass or more and 5.0% by mass or less based on the fibers. The highly durable backfilling grout material is characterized in that the fiber surface has water repellency due to the oil, and when the grout material is mixed with water to form a grout , the fibers are dispersed in the grout due to the water repellency, and the aggregation rate of the bundled fibers 2 minutes after the start of mixing is 20% or less. Preferably, the bundled fibers are short fibers with a fiber length of 2 to 4 mm, which are formed by bundling 300 to 1,200 single fibers with a fiber diameter of 10 to 30 μm into one bundle.

本発明のグラウト材はセメントを主成分とする。セメントは普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、高炉セメント、フライアッシュセメント、または白色セメントなどを使用することができる。 The grout material of the present invention is mainly composed of cement. The cement may be ordinary Portland cement, high-early-strength Portland cement, moderate-heat Portland cement, blast-furnace cement, fly ash cement, or white cement.

本発明のグラウト材は速硬材を含む。速硬材は、C12などのカルシウムアルミネート粉砕物(ブレーン比表面積4000~6000cm/g)と無水石膏(ブレーン比表面積5000~12000cm/g)の混合物、超速硬セメント、アルミナセメントなどを用いることができる。カルシウムアルミネート粉砕物と無水石膏の混合物からなる速硬材は、カルシウムアルミネート粉砕物と無水石膏が概ね40:60~60:40質量比含まれている。市販品としては、例えば三菱マテリアル社製のコーカエーススーパー(商品名)などを用いることができる。 The grout material of the present invention includes a rapid hardening material. The rapid hardening material may be a mixture of calcium aluminate pulverized material such as C12A7 (Blaine specific surface area 4000-6000 cm2 /g) and anhydrous gypsum (Blaine specific surface area 5000-12000 cm2 /g), ultra rapid hardening cement, alumina cement, or the like. The rapid hardening material consisting of a mixture of calcium aluminate pulverized material and anhydrous gypsum contains calcium aluminate pulverized material and anhydrous gypsum in a mass ratio of about 40:60 to 60:40. As a commercially available product, for example, Coke Ace Super (product name) manufactured by Mitsubishi Materials Corporation may be used.

速硬材の含有量は、セメントに対して8質量%以上~40質量%以下が好ましい。速硬材の含有量が上記範囲であることによって、グラウトの材齢2時間の圧縮強度を2N/mm以上に高めることができる。速硬材の含有量が8質量%未満では材齢2時間の圧縮強度を上記強度に高めるのが難しい。一方、速硬材の含有量が40質量%を超えると原料のコストが高くなるので好ましくない。 The content of the fast-hardening additive is preferably 8% by mass or more and 40% by mass or less relative to the cement. By having the content of the fast-hardening additive in the above range, the 2-hour compressive strength of the grout can be increased to 2 N/mm2 or more. If the content of the fast-hardening additive is less than 8% by mass, it is difficult to increase the 2-hour compressive strength to the above-mentioned level. On the other hand, if the content of the fast-hardening additive exceeds 40% by mass, the cost of the raw material increases, which is not preferable.

本発明のグラウト材は繊維を含み、該繊維は解離性の集束繊維である。集束繊維とは複数の単繊維が一体化された繊維の集束体であって、解離性の集束繊維とはセメント等との乾式混合後には単繊維に解繊する集束繊維であり、さらにグラウト材を水と練り混ぜたときに凝集し難い性質を有する集束繊維を云う。具体的には、例えば、練り混ぜ2分後の凝集率Sが20%以下の集束繊維である。 The grout material of the present invention contains fibers, which are detachable bundled fibers. A bundled fiber is a fiber bundle in which multiple single fibers are integrated, and a detachable bundled fiber is a bundled fiber that breaks down into single fibers after dry mixing with cement or the like, and further refers to a bundled fiber that has the property of being difficult to agglomerate when the grout material is mixed with water. Specifically, for example, the bundled fiber has an agglomeration rate S of 20% or less two minutes after mixing.

上記凝集率Sとは、配合した繊維の全量に対する練り混ぜ時に生じる凝集物量の質量比であり、例えば、次式[1]によって表される。なお、本発明において凝集物とは、篩の開き目4mmの篩上残留物である。
凝集率S=(G/M)×100 ・・・[1]
(Mは配合した繊維の全質量、Gは凝集物質量)
The agglomeration rate S is the mass ratio of the amount of agglomerates generated during kneading to the total amount of blended fibers, and is expressed, for example, by the following formula [1]. In the present invention, the agglomerates refer to residues on a sieve with an opening of 4 mm.
Coagulation rate S = (G/M) x 100... [1]
(M is the total mass of the blended fibers, and G is the amount of aggregated material)

解離性の集束繊維は、樹脂などの結着剤によって固めたものではなく、複数の単繊維の間に水や油を含ませて束にした状態で乾燥し、分子間力などによって一体化したものである。油は例えばストレートシリコンオイル、変性シリコンオイルなどが用いられる。油の含有率(含油率)は繊維に対して1.0質量%以上~5.0質量%以下が好ましい。 Dissociable bundled fibers are not solidified with a binder such as resin, but are made by soaking multiple single fibers in water or oil between them, bundling them, drying them, and holding them together through intermolecular forces. For example, straight silicone oil or modified silicone oil is used. The oil content (oil content) is preferably 1.0% to 5.0% by mass of the fiber.

油で処理した集束繊維は、グラウト材の乾式混合後に単繊維に解繊するが、繊維表面が撥水性を有するので、水を加えた練り混ぜの際に、この撥水性によって水の存在下で繊維どうしが絡み合うことなく、グラウト中に分散する性質を有する。このため、練り混ぜ時に凝集(ダマ)を生じ難く、凝集率Sが小さい。一方、油で処理されていない集束繊維は、油の代わりに水を含むので親水性が良く、練り混ぜ時に凝集物を生じやすく、凝集率Sが大きい。本発明で用いる集束繊維は、主に油処理された集束繊維であり、練り混ぜ時に凝集し難いので凝集率が小さい。 The oil-treated bundled fibers are defibrated into single fibers after dry mixing of the grout material, but because the fiber surface is water-repellent, when water is added and mixed, this water-repellent property allows the fibers to disperse in the grout without entangling with each other in the presence of water. For this reason, they are less likely to form clumps (lumps) when mixed, and the cohesion rate S is small. On the other hand, bundled fibers that are not oil-treated contain water instead of oil, so they are hydrophilic and are more likely to form clumps when mixed, and the cohesion rate S is large. The bundled fibers used in this invention are mainly oil-treated bundled fibers, which are less likely to form clumps when mixed, and therefore have a low cohesion rate.

このように、本発明において用いる解離性の集束繊維は、乾式混合時には集束状態を保つので凝集し難く、さらに水を加えた練り混ぜ時には、油の撥水性などによって凝集を生じ難く、凝集率Sが20%以下であり、該グラウト材と水を練り混ぜてグラウトにしたときに、該撥水性によって該繊維がグラウト中に均一に分散する。


In this way, the dissociable bundled fibers used in the present invention maintain their bundled state during dry mixing and are therefore less likely to agglomerate, and when mixed with water, they are less likely to agglomerate due to the water repellency of the oil, etc., and have an agglomeration rate S of 20% or less.When the grout material is mixed with water to make grout, the water repellency allows the fibers to be uniformly dispersed in the grout.


上記解離性の集束繊維は、例えば、繊維径が約10~約30μmの単繊維を約300~約1200本を束にして一体化したものである。集束繊維の一体化した形状は平板状でもよく、また棒状でもよい。このような解離性の集束繊維を含むことによって、該集束繊維が単繊維に解繊してグラウト中にダマを形成し難いのでグラウトの強度が増し疲労耐久性が向上する。 The above-mentioned dissociable bundled fibers are, for example, bundles of about 300 to about 1200 single fibers with a fiber diameter of about 10 to about 30 μm. The integrated shape of the bundled fibers may be flat or rod-like. By including such dissociable bundled fibers, the bundled fibers are less likely to break down into single fibers and form lumps in the grout, increasing the strength of the grout and improving fatigue resistance.

上記解離性の集束繊維は繊維長2~4mmの短繊維が好ましい。適度な長さの単繊維を集束して集束繊維にした後に2~4mmの繊維長に切断すればよい。繊維長2~4mmの集束繊維を用いることによって、グラウトの練り混ぜ時に繊維のダマが少なくフレッシュグラウトの流動性も良好に保たれる。 The above-mentioned dissociable bundled fibers are preferably short fibers with a fiber length of 2 to 4 mm. Single fibers of an appropriate length are bundled to form bundled fibers, which are then cut to a fiber length of 2 to 4 mm. By using bundled fibers with a fiber length of 2 to 4 mm, there are fewer lumps of fibers when the grout is mixed, and the fluidity of the fresh grout is well maintained.

上記解離性の集束繊維の含有量は、グラウトに対して0.05体積%以上~0.40体積%未満が良く、0.15体積%以上~0.25体積%以下がより好ましい。該集束繊維の含有量が0.05体積%より少ないと補強効果が不十分になり、0.40体積%を上回るとフレッシュグラウトの流動性が低下するので好ましくない。さらに、該集束繊維は繊維長2~4mmの短繊維が良く、繊維長6mm以上の繊維量は0.1体積%未満が好ましい。繊維長6mm以上の繊維は繊維長が長いので凝集し易く、グラウトを2分間練り混ぜた後の上記凝集率Sが20%を上回る場合があり、この繊維長6mm以上の繊維量が0.1体積%より多いと流動性が低下するので、好ましくない。 The content of the dissociable bundled fibers is preferably 0.05% to less than 0.40% by volume relative to the grout, and more preferably 0.15% to 0.25% by volume. If the content of the bundled fibers is less than 0.05% by volume, the reinforcing effect is insufficient, and if it exceeds 0.40% by volume, the fluidity of the fresh grout decreases, which is not preferable. Furthermore, the bundled fibers are preferably short fibers with a fiber length of 2 to 4 mm, and the amount of fibers with a fiber length of 6 mm or more is preferably less than 0.1% by volume. Fibers with a fiber length of 6 mm or more are prone to agglomeration due to their long fiber length, and the agglomeration rate S after the grout is mixed for 2 minutes may exceed 20%, and if the amount of fibers with a fiber length of 6 mm or more is more than 0.1% by volume, the fluidity decreases, which is not preferable.

上記解離性の集束繊維の材質は、ポリアミド繊維(商品名アラミド繊維)、ポリビニルアルコール繊維(商品名ビニロン繊維)、または炭素繊維などを用いることができる。このうちアラミド繊維は引張強度が350kg/mmと高いため、少量でグラウトの疲労耐久性を高めることができるので好ましい。 The material of the detachable bundled fibers may be polyamide fiber (trade name: aramid fiber), polyvinyl alcohol fiber (trade name: vinylon fiber), carbon fiber, etc. Among these, aramid fiber is preferred because it has a high tensile strength of 350 kg/ mm2 and can increase the fatigue durability of the grout with a small amount.

本発明のグラウト材は、再乳化粉末樹脂を含有することができる。再乳化粉末樹脂は、ゴムラテックスおよび樹脂エマルションに安定剤などを加えて乾燥した再乳化可能な粉末状樹脂であり、日本産業規格(JIS A 6203)に定められている。再乳化粉末樹脂としては、例えば、アクリル系、アクリル-ベオバ系、EVA(エチレン・酢酸ビニル共重合体)系、SBR(スチレン・ブタジエンゴム)系などが知られている。グラウトの疲労耐久性をより高めるにはアクリル系が好ましい。 The grout material of the present invention can contain re-emulsified powdered resin. Re-emulsified powdered resin is a re-emulsifiable powdered resin obtained by adding stabilizers to rubber latex and resin emulsion and drying them, and is specified in the Japanese Industrial Standards (JIS A 6203). Known examples of re-emulsified powdered resins include acrylic, acrylic-veova, EVA (ethylene-vinyl acetate copolymer) and SBR (styrene-butadiene rubber). Acrylic resins are preferred to further increase the fatigue durability of the grout.

再乳化粉末樹脂を含有することによって、速硬材を多くしてもグラウトの疲労耐久性を高めることができる。具体的には、本発明のグラウト材は、速硬材の含有量8質量%以上~40質量%以下と共に、再乳化粉末樹脂をグラウト材の内割で3.0~6.0質量%含有することによって、フレッシュグラウトについてJA漏斗流下時間が30秒以下の流動性を保ち、グラウトの疲労耐久性を高めることができる。再乳化粉末樹脂の含有量が3.0質量%未満では上記効果が乏しく、6.0質量%を超えると練り混ぜの際に水分が不足して流動性が悪くなる。 By including re-emulsified powdered resin, the fatigue durability of the grout can be increased even if the fast-hardening agent is increased. Specifically, the grout material of the present invention contains 8% to 40% by mass of fast-hardening agent and 3.0 to 6.0% by mass of re-emulsified powdered resin, thereby maintaining the fluidity of the fresh grout so that the JA funnel flow time is 30 seconds or less, and increasing the fatigue durability of the grout. If the content of re-emulsified powdered resin is less than 3.0% by mass, the above effect is poor, and if it exceeds 6.0% by mass, there will be a lack of water during mixing, resulting in poor fluidity.

なお、特許文献3の裏込めグラウト材では、再乳化粉末樹脂の含有量はセメントの0.5~8質量%が好ましいことが示されているが、この裏込めグラウト材の速硬材含有量はセメントに対して1~6質量%に限定されており、しかも、その実施例での速硬材の量は3質量%であって、再乳化粉末樹脂の量は2質量%である。従って、セメントに対して8~40質量%の速硬材に対して、再乳化粉末樹脂を上記含有量用いたときの効果を特許文献3から窺い知ることは全くできない。 In addition, in the backfilling grout material of Patent Document 3, it is indicated that the content of re-emulsified powdered resin is preferably 0.5 to 8 mass% of the cement, but the content of the fast-hardening agent in this backfilling grout material is limited to 1 to 6 mass% relative to the cement, and moreover, the amount of the fast-hardening agent in the examples is 3 mass%, and the amount of the re-emulsified powdered resin is 2 mass%. Therefore, it is not possible to infer from Patent Document 3 the effect of using the above amount of re-emulsified powdered resin for a fast-hardening agent of 8 to 40 mass% relative to the cement.

本発明のグラウト材は水中不分離剤を含むことができる。水中不分離剤としては、MC(メチルセルロース)、HPMC(ヒドロキシプロピルメチルセルロース)、HEMC(ヒドロキシエチルメチルセルロース)、HMPポリマー(変性アクリルアミドモノマー)、グアーガム誘導体(ヒドロキシプロピルグアー)などを使用することができる。 The grout material of the present invention may contain an underwater non-separating agent. Examples of underwater non-separating agents that may be used include MC (methyl cellulose), HPMC (hydroxypropyl methyl cellulose), HEMC (hydroxyethyl methyl cellulose), HMP polymer (modified acrylamide monomer), and guar gum derivatives (hydroxypropyl guar).

本発明のグラウト材は減水剤を含む。所定量の減水剤を含むことによって、フレッシュグラウトの流動性が改善され、自然流下によってコンクリート舗装版下の隙間へ注入することが可能となる。減水剤の含有量はセメントに対して0.05~1.0質量%が好ましい。減水剤の含有量が0.05質量%未満では減水剤の効果が乏しく、1.0質量%を超えるとグラウトの流動性が過剰となって材料分離を生じ、繊維がグラウトの上面に浮いてくることがある。減水剤としては市販品のポリカルボン酸塩系高性能減水剤(商品名メルフラックス等)などを用いることができる。 The grout material of the present invention contains a water reducing agent. By including a specified amount of water reducing agent, the fluidity of the fresh grout is improved, making it possible to inject it into gaps under the concrete pavement slab by gravity. The content of the water reducing agent is preferably 0.05 to 1.0% by mass relative to the cement. If the content of the water reducing agent is less than 0.05% by mass, the effect of the water reducing agent is poor, and if it exceeds 1.0% by mass, the fluidity of the grout becomes excessive, causing material separation and fibers to float to the top surface of the grout. As the water reducing agent, a commercially available polycarboxylate-based high-performance water reducing agent (product name Melflux, etc.) can be used.

本発明のグラウト材は凝結調整剤を含む。凝結調整剤としては、無機炭酸塩、無機硫酸塩、オキシカルボン酸、オキシカルボン酸塩などを用いることができる。凝結調整剤を含有することによって、ゲル化までの適度な時間(凝結開始までの時間)を確保して施工時の良好な流動性を維持すると共に、上記時間経過後はゲル化の進行によってブリーディングの発生を抑え、またグラウトの粘性が高まることによってグラウト中の短繊維の分離が抑制されて短繊維の分散性が向上する。 The grout material of the present invention contains a setting regulator. Examples of setting regulators that can be used include inorganic carbonates, inorganic sulfates, oxycarboxylic acids, and oxycarboxylates. By including a setting regulator, an appropriate time until gelation (time until setting begins) is ensured, maintaining good fluidity during application, and after the above-mentioned time has elapsed, the occurrence of bleeding is suppressed as gelation progresses, and the viscosity of the grout is increased, suppressing the separation of short fibers in the grout and improving the dispersion of the short fibers.

凝結調整剤の含有量はセメントに対して0.0~3.0質量%が好ましい。凝結調整剤の含有量が3.0質量%を超えると、凝結開始までの時間が長すぎて短繊維がグラウト表面に偏在する材料分離を生じやすくなる。 The content of the set regulator is preferably 0.0 to 3.0% by mass relative to the cement. If the content of the set regulator exceeds 3.0% by mass, the time until setting begins is too long, and short fibers are more likely to be unevenly distributed on the grout surface, resulting in material separation.

本発明のグラウト材は無機フィラーを含有してもよい。無機フィラーとしては道路用普通炭酸カルシウム粉末、フライアッシュ、シリカフューム等を用いることができる。このうち道路用普通炭酸カルシウム粉末やフライアッシュ等が好ましく、道路用普通炭酸カルシウム等が特に好ましい。 The grout material of the present invention may contain an inorganic filler. Examples of inorganic fillers that can be used include ordinary calcium carbonate powder for roads, fly ash, and silica fume. Of these, ordinary calcium carbonate powder for roads and fly ash are preferred, and ordinary calcium carbonate for roads is particularly preferred.

本発明のグラウト材は、これに水を加えて混練したときに、水グラウト材比(W/B)35~65%で練り混ぜたグラウトにおいて、コンクリート標準示方書(規準編)(JSCE F-531-2018「PCグラウトの流動性試験方法(案)」[土木学会])に規定されるJA漏斗流下試験の流下時間が30秒以下の流動性を有する。なお、以下の説明においてJA漏斗流下試験とは土木学会による上記規格に基づくJA漏斗流下試験である。流下時間が30秒を超えると流動性が低いため、コンクリート舗装版下の空隙に良好に注入し難くなる。なお、水グラウト材比(W/B)が35%未満では所要の流動性を得ることができず、JA漏斗試験の流下時間は概ね35秒を超える。一方、水グラウト材比(W/B)が65%を超えるとブリーディングを抑制することが難しくなる。 When the grout material of the present invention is mixed with water, the grout mixed at a water/grout ratio (W/B) of 35 to 65% has a flowability of 30 seconds or less in the JA funnel flow test specified in the Standard Specifications for Concrete (Standards Edition) (JSCE F-531-2018 "Test Method for Flowability of PC Grout (Draft)" [JSCE]). In the following explanation, the JA funnel flow test is a JA funnel flow test based on the above standard by the JSCE. If the flow time exceeds 30 seconds, the flow is low, making it difficult to inject well into the voids under the concrete pavement slab. If the water/grout ratio (W/B) is less than 35%, the required flowability cannot be obtained, and the flow time in the JA funnel test generally exceeds 35 seconds. On the other hand, if the water/grout ratio (W/B) exceeds 65%, it becomes difficult to suppress bleeding.

本発明のグラウト材からなるグラウトは、材齢7日以上の長期強度に優れており、繰返し荷重に対して高い耐粉状化性を有しており、疲労耐久性に優れている。長期強度について、具体的には、材齢7日以上の圧縮強度は20N/mm以上である。
The grout made of the grout material of the present invention has excellent long-term strength at an age of 7 days or more, has high resistance to powdering under repeated load, and is excellent in fatigue durability. Specifically, the long-term strength is 20 N/ mm2 or more at an age of 7 days or more.

グラウトの疲労耐久性は、水浸ホイールトラッキング試験方法(舗装調査・試験法便覧(社団法人日本道路協会編(平成31年)))に規定されたホイールトラッキング試験等より評価することができる。疲労耐久性は、グラウト下面に発生するひずみを直接測定し、また、実構造物でグラウトに発生するひずみを3次元有限要素解析により計算し、この計算値を用いて、コンクリート標準示方書 設計編(2017年制定)[土木学会]に示されるコンクリートの疲労強度式に準じて評価することができる。 The fatigue durability of grout can be evaluated by a wheel tracking test specified in the Water Immersion Wheel Tracking Test Method (Pavement Survey and Test Method Handbook (Japan Road Association, 2019)). Fatigue durability can be evaluated by directly measuring the strain generated on the underside of the grout and calculating the strain generated in the grout in an actual structure using 3D finite element analysis, and using these calculated values, in accordance with the fatigue strength formula for concrete shown in the Standard Specifications for Concrete, Design Edition (established in 2017) [Japan Society of Civil Engineers].

本発明のグラウト材は解離性の集束繊維を含むことによって、フレッシュグラウトの良好な流動性を維持しつつ、グラウトの高い初期強度を有している。該集束繊維は乾式混合時には凝集を生じ難く、均一に分散する。一方、集束されていない繊維を用いると、乾式混合(プレミックス)時にダマになりやすく、均一に分散させることができない。また、解離性の集束繊維は、油処理されたものは、表面が撥水性を有するので水の存在下で、この撥水性によって繊維どうしが絡むことなく分散し、グラウト中に均一に分散する。このためグラウトの疲労耐久性を高めることができる。 The grout material of the present invention contains dissociable bundled fibers, which allows the grout to have high initial strength while maintaining the good fluidity of fresh grout. The bundled fibers are less likely to aggregate during dry mixing and disperse uniformly. On the other hand, if unbundled fibers are used, they tend to form lumps during dry mixing (premix) and cannot be dispersed uniformly. In addition, dissociable bundled fibers that have been treated with oil have a water-repellent surface, so in the presence of water, this water-repellent property allows the fibers to disperse without entangling with each other, and they are uniformly dispersed in the grout. This allows the fatigue durability of the grout to be improved.

本発明のグラウトは材齢2時間の圧縮強度が2N/mm以上である。従って、施工後に短時間での供用が求められる環境下での使用に適する。例えば、空港施設でのエプロンなどの舗装補修では、施工後数時間程度の短時間で供用できることが必要になるが、本発明のグラウト材はこのような短時間での供用が可能になる。 The grout of the present invention has a compressive strength of 2 N/mm2 or more at 2 hours. Therefore, it is suitable for use in environments where it is required to be in service in a short time after construction. For example, in the repair of pavement such as an apron at an airport facility, it is necessary to be able to be in service in a short time of about several hours after construction, and the grout material of the present invention makes it possible to be in service in such a short time.

本発明の再乳化粉末樹脂を含むグラウト材は、速硬材の含有量を多くして材齢2時間の初期強度を高める場合に、繰返し荷重に対する疲労耐久性を高めている。 The grout material containing the re-emulsified powdered resin of the present invention has improved fatigue durability against repeated loads when the content of fast-hardening additive is increased to increase the initial strength at two hours of age.

さらに、本発明のグラウト材は流動性が良く、水グラウト材比(W/B)35~65%において練り混ぜたグラウトの、JA漏斗試験の流下時間が30秒以下である。このため、例えば、0.4m×4.5m×隙間5mmのコンクリート舗装版の裏側に自然流下で充填することができる。さらに、荷重に対する変位の追随性が良好である。 Furthermore, the grout material of the present invention has good fluidity, and the flow time of the grout mixed at a water-to-grout ratio (W/B) of 35 to 65% in the JA funnel test is 30 seconds or less. Therefore, for example, it can be filled under gravity flow into the back side of a concrete pavement slab measuring 0.4 m x 4.5 m x 5 mm gap. Furthermore, it has good displacement response to load.

本発明のグラウトは、具体的には、例えば、上記WT試験(ホイールトラッキング試験)において、厚さ5mmの載荷版(ポリカーボネイト版)を用いた条件下で、2000回の繰返し荷重でのひび割れ密度は0.002%程度であり、従来のグラウト材よりも、ひび割れ密度が格段に小さく、繰返し荷重に対して高い疲労耐久性を有している。 Specifically, for example, in the above-mentioned WT test (wheel tracking test), the grout of the present invention has a crack density of about 0.002% after 2000 repeated loads under conditions using a 5 mm thick loading plate (polycarbonate plate), which is significantly smaller than the crack density of conventional grout materials and has high fatigue durability against repeated loads.

さらに、本発明のグラウトは材齢7日の圧縮強度が20N/mm以上であり、十分な長期強度を有しており、さらに繰返し荷重に対して高い疲労耐久性を有しているので、航空機や大型車両による繰返し荷重を受けても、疲労による粉状化を生じ難い。従って、航空機や大型車両が出入りする空港や港湾施設等のコンテナヤードなどの舗装版の裏込めグラウトとして好適に用いることができる。 Furthermore, the grout of the present invention has a compressive strength of 20 N/mm2 or more at 7 days, and has sufficient long-term strength. Furthermore, it has high fatigue resistance against repeated loads, so it is unlikely to pulverize due to fatigue even when subjected to repeated loads from aircraft or large vehicles. Therefore, it can be suitably used as a backfill grout for pavement slabs in container yards at airports and port facilities where aircraft and large vehicles enter and exit.

破壊エネルギー試験結果を示すグラフGraph showing fracture energy test results WT試験の側面説明図Side view of WT test WT試験の平面説明図Plan view of WT test

以下、本発明の実施例を比較例と共に示す。表1に使用材料を示す。表2にベースグラウト材の配合比を示す。 Below, examples of the present invention are shown together with comparative examples. Table 1 shows the materials used. Table 2 shows the mix ratio of the base grout material.

Figure 0007473754000001
Figure 0007473754000001

Figure 0007473754000002
Figure 0007473754000002

〔実施例1〕
表2に示す配合比のベースグラウト材に、表1に示す集束繊維A(表面油処理:含油率2質量%、含水率0質量%)を該グラウトに対して繊維添加率が0.20体積%になるように配合して乾式混合し、粉状のグラウト材を製造した。乾式混合終了後、網目の開き4mmの篩に粉状のグラウト材を載せて凝集物G1を回収し、上記式[1]によって凝集率(S)を求めた。
次に、水グラウト材比50%になるように水を加えて2分間練り混ぜた。練り混ぜ終了後に網目の開き4mmの篩にスラリー状のグラウトを通じて凝集物G2を回収し、上記式[1]によって凝集率(S)を求めた。また、JA漏斗試験の流下時間を測定した。この結果を表3に示した(本発明試料)。
Example 1
A powdered grout material was produced by dry mixing the base grout material having the composition shown in Table 2 with the bundled fiber A shown in Table 1 (surface oil treatment: oil content 2% by mass, water content 0% by mass) so that the fiber addition rate relative to the grout was 0.20% by volume. After completion of the dry mixing, the powdered grout material was placed on a sieve with a mesh opening of 4 mm to recover the aggregate G1, and the aggregation rate ( S1 ) was calculated by the above formula [1].
Next, water was added so that the water to grout ratio was 50%, and the mixture was mixed for 2 minutes. After mixing, the slurry grout was passed through a sieve with a mesh opening of 4 mm to recover the aggregate G2, and the aggregation rate ( S2 ) was calculated using the above formula [1]. The flow time of the JA funnel test was also measured. The results are shown in Table 3 (sample of the present invention).

一方、比較試料1として、アラミド単繊維を含水させて一体化した繊維体(集束繊維、、表面油処理なし、含水率5%)を用い、これを上記ベースグラウト材に、該グラウトに対して繊維添加率が0.20体積%になるように配合し、本発明試料と同様にして乾式混合終了後の凝集率(S)を求めた。また、水を加えて水グラウト材比50%でグラウト材を練り混ぜ、練り混ぜ開始2分間後の凝集率(S)およびJA漏斗流下時間を求めた。この結果を表3に示した(比較試料1)。
また、比較試料2として、バラのアラミド単繊維を用い、これを上記ベースグラウト材に該グラウトに対して繊維添加率が0.20体積%となるように配合し、本発明試料と同様にして乾式混合後の凝集率(S)、練り混ぜ開始2分間後の凝集率(S)およびJA漏斗流下時間を求めた。この結果を表3に示した(比較試料2)。
On the other hand, as comparative sample 1, a fibrous body (bundled fiber, no surface oil treatment, moisture content 5%) was used in which aramid single fibers were absorbed and integrated, and this was mixed with the above-mentioned base grout material so that the fiber addition rate relative to the grout was 0.20 volume %, and the cohesion rate (S 1 ) after completion of dry mixing was determined in the same manner as in the present invention sample. In addition, water was added to mix the grout material at a water-to-grout material ratio of 50%, and the cohesion rate (S 2 ) and JA funnel flow time 2 minutes after the start of mixing were determined. The results are shown in Table 3 (comparative sample 1).
As comparative sample 2, loose aramid monofilaments were used and mixed with the above-mentioned base grout material so that the fiber addition rate relative to the grout was 0.20 volume %, and the cohesion rate after dry mixing (S 1 ), the cohesion rate 2 minutes after the start of mixing (S 2 ), and the JA funnel flow time were determined in the same manner as for the samples of the present invention. The results are shown in Table 3 (comparative sample 2).

表3に示すように、本発明試料は、乾式混合後の凝集率(S)および練り混ぜ後の凝集率(S)の何れも、比較試料1、2よりも格段に小さく、繊維のダマが生じ難く、グラウト中に単繊維がよく分散されている。そのため、良好な流動性を有しており、JA漏斗流下時間は20秒以下である。
一方、比較試料1は、含水状態の集束繊維であり、表面を油処理していないので、繊維体が水に接すると親水性が良いため、練り混ぜ直後から単繊維どうしが絡み合ってダマ(凝集体)が形成される。このため、練り混ぜ後の凝集率(S)が36%と高く、JA漏斗流下時間も20秒を超える。
また、比較試料2のアラミド単繊維を用いた場合、乾式混合後の凝集率(S)と練り混ぜ後の凝集率(S)は本発明試料および比較試料1の何れに比べても大幅に高い。また、流下試験では途中で流路が閉塞している。
As shown in Table 3, the cohesion rate after dry mixing ( S1 ) and the cohesion rate after kneading ( S2 ) of the sample of the present invention are significantly smaller than those of the comparative samples 1 and 2, fiber lumps are unlikely to occur, and the single fibers are well dispersed in the grout. Therefore, it has good fluidity and the JA funnel flow time is 20 seconds or less.
On the other hand, Comparative Sample 1 is a water-absorbed bundle of fibers, and the surface is not oil-treated, so that when the fiber body comes into contact with water, it has good hydrophilicity, and the single fibers entangle with each other and form lumps (aggregates) immediately after mixing. As a result, the aggregation rate ( S2 ) after mixing is high at 36%, and the JA funnel flow time exceeds 20 seconds.
In addition, when the aramid single fiber of Comparative Sample 2 is used, the coagulation rate after dry mixing (S 1 ) and the coagulation rate after kneading (S 2 ) are significantly higher than those of both the present invention sample and Comparative Sample 1. In addition, in the flow test, the flow path was blocked midway.

Figure 0007473754000003
Figure 0007473754000003

〔実施例2〕
表2に示す配合比のベースグラウトに、表1に示す集束繊維Aを、表4に示す繊維量を配合して乾式混合し、プレミックスの粉体グラウト材を調製した。これに水を加え、水グラウト材比50%で2分間練り混ぜてグラウトを調製した。このグラウトについて、フレッシュ性状を目視観察し、以下の試験を行った。これらの結果を表4に示した。
試験方法
JA漏斗流下試験:コンクリート標準示方書(規準編)(JSCE F-531-2018「PCグラウトの流動性試験方法(案)」[土木学会])に規定されるJA漏斗流下試験。
圧縮強度:JSCE-G505-2018「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準拠。
引張強度:JIS A 1113:2018「コンクリートの割裂引張強度試験方法」に準拠。
曲げ強度:JIS R 5201:2015「セメントの物理試験方法」に準拠。
破壊エネルギー:規格(JSCE-G552「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法」)に準じて行った。破壊エネルギーは試験開始時から破断点のあいだの荷重-たわみ線図で囲まれる面積に基づいて算出。本実施例においては、変位5mmまでの荷重-たわみ線図で囲まれる面積に基づいて算出した。
試験結果
グラウトのフレッシュ性状は、繊維量0.25体積%までは良好であるが、繊維量が0.40体積%になるとファイバーボールが多く、グラウトのフレッシュ性状が劣化した。繊維量0.05体積%~0.25体積%では流下時間が20秒以下であって流動性が良く、引張強度、曲げ強度、破壊エネルギーが向上する。繊維量0.15体積%~0.25体積%では引張強度および曲げ強度が高い。従って、グラウトに配合される集束繊維Aの繊維量は0.05体積%以上~0.40体積%未満が良く、0.15体積%~0.25体積%が好ましい。
Example 2
A premixed powder grout material was prepared by dry mixing the bundled fiber A shown in Table 1 with the base grout of the mix ratio shown in Table 2 in the amount of fiber shown in Table 4. Water was added to this and the grout was kneaded for 2 minutes at a water to grout ratio of 50% to prepare grout. The fresh properties of this grout were visually observed and the following tests were performed. The results are shown in Table 4.
Test method
JA funnel flow test: The JA funnel flow test specified in the Standard Specifications for Concrete (Criteria) (JSCE F-531-2018 "Test method for fluidity of PC grout (draft)" [Japan Society of Civil Engineers]).
Compressive strength: Compliant with JSCE-G505-2018 "Test method for compressive strength of mortar or cement paste using cylindrical specimens."
Tensile strength: Complies with JIS A 1113:2018 "Test method for splitting tensile strength of concrete."
Bending strength: Complies with JIS R 5201:2015 "Physical testing methods for cement."
Fracture energy: The test was performed according to the standard (JSCE-G552 "Test method for bending strength and bending toughness of steel fiber reinforced concrete"). The fracture energy was calculated based on the area enclosed by the load-deflection diagram from the start of the test to the breaking point. In this example, the calculation was based on the area enclosed by the load-deflection diagram up to a displacement of 5 mm.
Test results
The fresh properties of the grout are good up to a fiber content of 0.25% by volume, but when the fiber content reaches 0.40% by volume, there are many fiber balls and the fresh properties of the grout deteriorate. When the fiber content is 0.05% to 0.25% by volume, the flow time is 20 seconds or less, the fluidity is good, and the tensile strength, bending strength, and breaking energy are improved. When the fiber content is 0.15% to 0.25% by volume, the tensile strength and bending strength are high. Therefore, the fiber content of bundled fiber A mixed into the grout should be 0.05% to less than 0.40% by volume, and 0.15% to 0.25% by volume is preferable.

Figure 0007473754000004
Figure 0007473754000004

〔実施例3〕
表2に示す配合のベースグラウト材に、表5に示す配合量の再乳化粉末樹脂を加えた。また、集束繊維Aをグラウトに対して0.05体積%加え、水グラウト材比50%で練り混ぜ、グラウト(試料A1~A5)を調製した。この試料(A1~A5)について、JA漏斗流下試験を規格(JSCE-F531-2018)に準拠して行った。また、圧縮強度試験を行い、静弾性係数を測定した。
圧縮強度試験は、φ5×10cmの試験体を使用し、規格(JSCE-G505-2018:土木学会基準「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法(案)」)に準拠し、材齢2時間および7日の圧縮強度を測定した。
静弾性係数は、φ5×10cmの試験体を使用し、規格(JIS A 1149:2017「コンクリートの静弾性係数試験方法」に準じて材齢7日の静弾性係数を測定した。
この結果を表6に示す。
Example 3
The re-emulsified powder resin in the amount shown in Table 5 was added to the base grout material with the composition shown in Table 2. In addition, 0.05% by volume of bundled fiber A was added to the grout, and the grout material was mixed with a water-grout ratio of 50% to prepare grouts (samples A1 to A5). For these samples (A1 to A5), a JA funnel flow test was performed in accordance with the standard (JSCE-F531-2018). In addition, a compressive strength test was performed to measure the static elastic modulus.
The compressive strength tests were conducted using specimens measuring φ5 x 10 cm, in accordance with the standard (JSCE-G505-2018: Japan Society of Civil Engineers standard "Compressive strength test method for mortar or cement paste using cylindrical specimens (draft)"), and the compressive strength was measured at ages of 2 hours and 7 days.
The static elastic modulus was measured using a φ5 × 10 cm test piece at 7 days of age in accordance with the standard (JIS A 1149: 2017 "Test method for static elastic modulus of concrete".
The results are shown in Table 6.

表6に示すように、再乳化粉末樹脂の配合量が3~5質量%の範囲では練混ぜ状態が良好であり、6質量%になると水とやや馴染み難いが、流下時間および材齢2時間の圧縮強度は良好である。一方、再乳化粉末樹脂の配合量が7質量%になると、均一に練混ぜるまでの時間が掛かる。従って、再乳化粉末樹脂の含有量はグラウト材の内割りで3~6質量%が好ましい。また、本発明の試料A2~A4は何れも材齢2時間の圧縮強度が4N/mm以上であり、目標強度2N/mmを上回っている。 As shown in Table 6, when the amount of re-emulsified powdered resin is in the range of 3 to 5 mass%, the mixing state is good, and when it is 6 mass%, it is not very compatible with water, but the flow time and compressive strength at 2 hours are good. On the other hand, when the amount of re-emulsified powdered resin is 7 mass%, it takes time to mix uniformly. Therefore, the content of re-emulsified powdered resin is preferably 3 to 6 mass% in terms of the ratio of the grout material. In addition, the compressive strength at 2 hours for all of samples A2 to A4 of the present invention is 4 N/mm2 or more, exceeding the target strength of 2 N/mm2.

Figure 0007473754000005
Figure 0007473754000005

Figure 0007473754000006
Figure 0007473754000006

〔実施例4〕
表2のベースグラウト材に、表7に示す配合量の再乳化粉末樹脂と、集束繊維A(3mm)、集束繊維B(6mm)を加え、表7に示す水グラウト材比で練り混ぜ、グラウト(試料B1~B6)を調製した。この試料(B1~B6)について、JA漏斗流下試験を規格(JSCE-F531-2018)に準拠して行った。さらに充填性試験、破壊エネルギー試験を行った。
充填性試験は、幅400mm、長さ4500mm、隙間5mmの試験装置にグラウトを水頭差1000mmの自然流下で充填し、充填開始から先端までグラウトが届く時間を計測した。破壊エネルギー試験は、20×100×400mmの試験体を用い、万能試験機によって破壊エネルギーを測定した。
JA漏斗流下試験および充填性試験の結果を表7に示す。破壊エネルギー試験の結果を図1に示す。
Example 4
The re-emulsified powder resin, bundle fiber A (3 mm), and bundle fiber B (6 mm) were added to the base grout material in Table 2 in the amounts shown in Table 7, and mixed at the water-grout material ratio shown in Table 7 to prepare grouts (samples B1 to B6). For these samples (B1 to B6), a JA funnel flow test was performed in accordance with the standard (JSCE-F531-2018). In addition, a filling test and a fracture energy test were performed.
In the filling test, grout was filled into a test device with a width of 400 mm, a length of 4500 mm, and a gap of 5 mm under natural flow with a head difference of 1000 mm, and the time it took for the grout to reach the tip from the start of filling was measured. In the fracture energy test, a 20 x 100 x 400 mm test piece was used, and the fracture energy was measured with a universal testing machine.
The results of the JA funnel flow test and the packability test are shown in Table 7. The results of the fracture energy test are shown in Figure 1.

表7に示すように、再乳化粉末樹脂を含むグラウト材において、集束繊維A(3mm)を0.25体積%含有する試料B3は、漏斗の流下時間が25秒であり、良好な流動性を示しており充填時間も短い。一方、集束繊維B(6mm)を0.15体積%含む試料B4は流下試験の漏斗が閉塞し、集束繊維B(6mm)を0.1体積%含む試料B5は充填性試験の途中で注入不可になる。一方、試料B6に示すように、繊維量の合計が0.1体積%であって、集束繊維B(6mm)の含有量が0.05体積%であれば、適度な流動性を示し、自然流下で充填することができる。従って、集束繊維の合計含有量は0.05~0.25体積%であって、繊維長6mm以上の繊維量は0.1体積%未満が好ましい。 As shown in Table 7, in the grout material containing re-emulsified powder resin, sample B3 containing 0.25% by volume of bundled fiber A (3 mm) has a funnel flow time of 25 seconds, indicating good fluidity and a short filling time. On the other hand, sample B4 containing 0.15% by volume of bundled fiber B (6 mm) clogged the funnel in the flow test, and sample B5 containing 0.1% by volume of bundled fiber B (6 mm) became impossible to inject during the filling test. On the other hand, as shown in sample B6, if the total fiber amount is 0.1% by volume and the content of bundled fiber B (6 mm) is 0.05% by volume, it shows moderate fluidity and can be filled under natural flow. Therefore, it is preferable that the total content of bundled fiber is 0.05 to 0.25% by volume, and the amount of fiber with a fiber length of 6 mm or more is less than 0.1% by volume.

また、図1のグラフに示すように、集束繊維Aを含むことによって荷重に対する変位が大きく、変位追随性が高くなる(試料B2)。さらに上記再乳化粉末樹脂を含むことによって荷重に対する変位(変位追随性)はさらに大きく良好になる(試料B3)。 As shown in the graph in Figure 1, the inclusion of bundled fiber A results in a large displacement relative to the load, and high displacement tracking (sample B2). Furthermore, the inclusion of the re-emulsified powdered resin results in an even larger and better displacement relative to the load (displacement tracking) (sample B3).

Figure 0007473754000007
Figure 0007473754000007

〔実施例5〕
表7の試料B1、B2、B3についてホイールトラッキング試験を行った。
ホイールトラッキング試験(WT試験)は、水浸ホイールトラッキング試験方法(舗装調査・試験法便覧(社団法人日本道路協会編(平成19年6月)))に準拠して行った。試験条件を表8に示す。試験方法の概要を図2、図3に示す。図示するように、模擬路盤材(発泡スチロール)10の上面に試験体(裏込めグラウト)11を載せて拘束版12で押さえ、その上側に載荷版(ポリカーボネイト版:厚さ5mm)13を設置し、載荷版13の上側から走行ホイール14を押し当て、表8に示す走行回数を往復動させ、グラウトが破損する回数を測定した。WT試験の試験条件を表9に示す。
Example 5
Samples B1, B2, and B3 in Table 7 were subjected to a wheel tracking test.
The wheel tracking test (WT test) was conducted in accordance with the water-immersed wheel tracking test method (Pavement Survey and Test Method Handbook (Japan Road Association, June 2007)). The test conditions are shown in Table 8. The test method is outlined in Figs. 2 and 3. As shown in the figure, a test specimen (backfill grout) 11 was placed on the top surface of a simulated roadbed material (expanded polystyrene) 10 and held down with a restraining plate 12, a loading plate (polycarbonate plate: 5 mm thick) 13 was placed on top of it, and a running wheel 14 was pressed against the top of the loading plate 13, which was then reciprocated the number of times shown in Table 8, and the number of times the grout was damaged was measured. The test conditions for the WT test are shown in Table 9.

試料B1はWT試験1500回で破壊したので試験を打ち切った。繊維の多い試料B2、B3はWT試験2000回においても破壊が認めらなかった。WT試験2000回後の板の状態は、試料B2のひび割れ密度が0.009%であるのに対して、試料B3のひび割れ密度は0.002%であり、本発明の試料B3はWT試験における疲労耐久性に対する抵抗性が格段に高いことが示された。なお、載荷版5mmの試験で2000回の結果は、特許文献3の載荷版10mmの試験では概ね2万回の結果に相当すると考えられる。 Sample B1 broke after 1500 WT tests, so the test was terminated. Samples B2 and B3, which contain a large amount of fiber, did not break even after 2000 WT tests. After 2000 WT tests, the crack density of the plate was 0.009% for sample B2, while that of sample B3 was 0.002%, indicating that sample B3 of the present invention has significantly higher resistance to fatigue durability in WT tests. The results of 2000 tests with a 5mm load plate are thought to be roughly equivalent to the results of 20,000 tests with a 10mm load plate in Patent Document 3.

Figure 0007473754000008
Figure 0007473754000008

Figure 0007473754000009
Figure 0007473754000009

10-模擬路盤材(発泡スチロール)、11-試験体(裏込めグラウト)、
12-拘束板12、13-載荷版(ポリカーボネイト版)、14-走行ホイール
10-simulated roadbed material (polystyrene foam), 11-test specimen (backfill grout),
12-restraint plate 12, 13-loading plate (polycarbonate plate), 14-running wheel

Claims (10)

セメントを主成分とし、速硬材、繊維、減水剤、および凝結調整剤を含むコンクリート舗装版用裏込めグラウト材であって、上記繊維は乾式混合前においては集束状態を保ち乾式混合後には単繊維に解繊する解離性の集束繊維であり、該集束繊維はストレートシリコンオイルまたは変性シリコンオイルの油で一体化され、該油の含有率は該繊維に対して1.0質量%以上~5.0質量%以下であって、該繊維表面が該油による撥水性を有し、該グラウト材と水を練り混ぜてグラウトにしたときに、該撥水性によって該繊維がグラウト中に分散し、練り混ぜ開始2分後の該集束繊維の凝集率が20%以下であることを特徴とする高耐久性裏込めグラウト材。 A backfilling grout material for concrete pavement slabs, which is mainly composed of cement and contains a rapid hardening material, fibers, a water reducing agent, and a setting regulator, wherein the fibers are dissociable bundled fibers that maintain a bundled state before dry mixing and disintegrate into single fibers after dry mixing, the bundled fibers are integrated with straight silicone oil or modified silicone oil, the oil content is 1.0% by mass or more and 5.0% by mass or less with respect to the fibers, the fiber surfaces have water repellency due to the oil, and when the grout material is mixed with water to make grout, the fibers are dispersed in the grout due to the water repellency, and the aggregation rate of the bundled fibers 2 minutes after the start of mixing is 20% or less. This highly durable backfilling grout material is characterized in that 上記集束繊維は、繊維径10~30μmの単繊維を300~1200本を束にして一本化した、繊維長2~4mmの短繊維である請求項1に記載する高耐久性裏込めグラウト材。 The highly durable backfill grout material described in claim 1 is a short fiber with a fiber length of 2 to 4 mm, which is made by bundling 300 to 1,200 single fibers with a fiber diameter of 10 to 30 μm into one bundle. 上記解離性の集束繊維の含有量がグラウトに対して0.05体積%以上~0.40体積%未満である請求項1または請求項2の何れかに記載する高耐久性裏込めグラウト材。 A highly durable backfill grout material as described in claim 1 or claim 2, in which the content of the dissociable bundled fibers is 0.05% by volume or more and less than 0.40% by volume of the grout. 上記解離性の集束繊維がアラミド繊維である請求項1~請求項3の何れかに記載する高耐久性裏込めグラウト材。 A highly durable backfill grout material according to any one of claims 1 to 3, in which the dissociable bundled fibers are aramid fibers. 上記速硬材の含有率が該セメントに対して8質量%以上~40質量%以下である請求項1~請求項4の何れかに記載する高耐久性裏込めグラウト材。The highly durable backfilling grout material according to any one of claims 1 to 4, wherein the content of the fast-hardening material is 8% by mass or more and 40% by mass or less with respect to the cement. 再乳化粉末樹脂を含み、該再乳化粉末樹脂の含有量が該裏込めグラウト材の内割で3.0質量%以上~6.0質量%以下である請求項1~請求項5の何れかに記載する高耐久性裏込めグラウト材。 A highly durable backfill grout material according to any one of claims 1 to 5, which contains a re-emulsified powdered resin, and the content of the re-emulsified powdered resin in the backfill grout material is 3.0% by mass or more and 6.0% by mass or less. 上記再乳化粉末樹脂がアクリル系再乳化粉末樹脂である請求項6に記載する高耐久性裏込めグラウト材。 A highly durable backfill grout material as described in claim 6, wherein the re-emulsified powdered resin is an acrylic re-emulsified powdered resin. 上記減水剤の含有量が上記セメントに対して0.05質量%以上~1.0質量%以下、上記凝結調整剤の含有量が上記セメントに対して0.0~3.0質量%以下である請求項1~請求項7の何れかに記載する高耐久性裏込めグラウト材。 A highly durable backfill grout material according to any one of claims 1 to 7, in which the content of the water reducing agent is 0.05% by mass or more and 1.0% by mass or less relative to the cement, and the content of the setting regulator is 0.0% to 3.0% by mass or less relative to the cement. 上記グラウト材を水グラウト材比(W/B)35~65%で練り混ぜたグラウトのJA漏斗流下試験の流下時間が30秒以下であり、水和硬化後のグラウトの材齢2時間の圧縮強度が2N/mm以上であることを特徴とする請求項1~請求項8の何れかに記載する高耐久性裏込めグラウト材。 A highly durable backfilling grout material according to any one of claims 1 to 8, characterized in that the flow time of a grout mixed with the grout material at a water/grout ratio (W/B) of 35 to 65 % in a JA funnel flow test is 30 seconds or less, and the compressive strength of the grout after hydration and hardening at 2 hours is 2 N/mm2 or more. 請求項1~請求項9の何れかに記載する上記裏込めグラウト材によって形成された材齢7日の圧縮強度が20N/mm以上であることを特徴とする高耐久性裏込めグラウト。
A highly durable backfilling grout formed by the backfilling grout material according to any one of claims 1 to 9, characterized in that the compressive strength at 7 days of age is 20 N/ mm2 or more.
JP2020015631A 2020-01-31 2020-01-31 Highly durable backfill grout material Active JP7473754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020015631A JP7473754B2 (en) 2020-01-31 2020-01-31 Highly durable backfill grout material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020015631A JP7473754B2 (en) 2020-01-31 2020-01-31 Highly durable backfill grout material

Publications (2)

Publication Number Publication Date
JP2021123507A JP2021123507A (en) 2021-08-30
JP7473754B2 true JP7473754B2 (en) 2024-04-24

Family

ID=77459994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020015631A Active JP7473754B2 (en) 2020-01-31 2020-01-31 Highly durable backfill grout material

Country Status (1)

Country Link
JP (1) JP7473754B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210557A (en) 2002-12-27 2004-07-29 Taiheiyo Material Kk Grout composition
JP2004360136A (en) 2003-06-06 2004-12-24 Unitika Ltd Staple fiber for reinforcement having excellent loosening property
JP2005015236A (en) 2003-06-23 2005-01-20 Teijin Techno Products Ltd Aramid short fiber for reinforcing concrete
JP2008050214A (en) 2006-08-25 2008-03-06 Denki Kagaku Kogyo Kk Cement composition and method of repair using it
JP2008120611A (en) 2006-11-09 2008-05-29 Denki Kagaku Kogyo Kk Grout composition, grout mortar and grout construction method
JP2008120612A (en) 2006-11-09 2008-05-29 Denki Kagaku Kogyo Kk Grout composition, grout mortar and grout construction method
JP2011144103A (en) 2009-12-16 2011-07-28 Port & Airport Research Institute Backfilling grouting material for concrete paving slab
CN106186864A (en) 2016-07-08 2016-12-07 华北水利水电大学 A kind of Novel polypropylene fiber concrete and preparation method thereof
WO2017171009A1 (en) 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening mortar composition
JP2019011233A (en) 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210557A (en) 2002-12-27 2004-07-29 Taiheiyo Material Kk Grout composition
JP2004360136A (en) 2003-06-06 2004-12-24 Unitika Ltd Staple fiber for reinforcement having excellent loosening property
JP2005015236A (en) 2003-06-23 2005-01-20 Teijin Techno Products Ltd Aramid short fiber for reinforcing concrete
JP2008050214A (en) 2006-08-25 2008-03-06 Denki Kagaku Kogyo Kk Cement composition and method of repair using it
JP2008120611A (en) 2006-11-09 2008-05-29 Denki Kagaku Kogyo Kk Grout composition, grout mortar and grout construction method
JP2008120612A (en) 2006-11-09 2008-05-29 Denki Kagaku Kogyo Kk Grout composition, grout mortar and grout construction method
JP2011144103A (en) 2009-12-16 2011-07-28 Port & Airport Research Institute Backfilling grouting material for concrete paving slab
WO2017171009A1 (en) 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening mortar composition
CN106186864A (en) 2016-07-08 2016-12-07 华北水利水电大学 A kind of Novel polypropylene fiber concrete and preparation method thereof
JP2019011233A (en) 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof

Also Published As

Publication number Publication date
JP2021123507A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
Revilla-Cuesta et al. Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete
Hilal Hardened properties of self-compacting concrete with different crumb rubber size and content
Anastasiou et al. Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement
CN103866667B (en) Half flexible Supporting Load Pavement paving structure
Uygunoğlu Effect of fiber type and content on bleeding of steel fiber reinforced concrete
Siamardi et al. Evaluation the effect of micro-synthetic fiber on mechanical and freeze-thaw behavior of non-air-entrained roller compacted concrete pavement using response surface methodology
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP7395633B2 (en) polymer cement mortar
Mohamad et al. Fresh state and mechanical properties of self compacting concrete incorporating high volume fly ash
Sridhar et al. Study on mechanical properties of hybrid fiber reinforced engineered cementitious composites
JP5543734B2 (en) Fast curing polymer cement mortar composition for repair and its construction method
JP7054109B2 (en) Highly powder-resistant backfill grout and its backfill grout material
JP7473754B2 (en) Highly durable backfill grout material
Moghadam et al. Effect of water-cement ratio (w/c) on mechanical properties of self-compacting concrete (case study)
Ashteyat et al. Production of self-compacting concrete using Jordanian oil shale ash
JP6203546B2 (en) Polymer cement mortar and method using polymer cement mortar
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
JP5378754B2 (en) Polymer cement composition
CN108501172A (en) Large dosage, which is chopped, synthesizes the forming method of fine fibre concrete
KR100842823B1 (en) A method of mixing design for self-compacting fiber reinforced concrete
CN107216091A (en) A kind of novel bridge expansion joint packing material
JP2011088793A (en) Grout material reinforcing material
JP2012255269A (en) Earthquake-resistant slit material and manufacturing method thereof
JP2016223066A (en) Construction method of concrete floor-like structure
Salman et al. Mechanical Properties of River Sand Mortar

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240220