JP2021123507A - Highly durable back-filling grout material - Google Patents
Highly durable back-filling grout material Download PDFInfo
- Publication number
- JP2021123507A JP2021123507A JP2020015631A JP2020015631A JP2021123507A JP 2021123507 A JP2021123507 A JP 2021123507A JP 2020015631 A JP2020015631 A JP 2020015631A JP 2020015631 A JP2020015631 A JP 2020015631A JP 2021123507 A JP2021123507 A JP 2021123507A
- Authority
- JP
- Japan
- Prior art keywords
- grout
- grout material
- fiber
- backfill
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011440 grout Substances 0.000 title claims abstract description 186
- 239000000463 material Substances 0.000 title claims abstract description 146
- 238000011049 filling Methods 0.000 title abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 143
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000012360 testing method Methods 0.000 claims abstract description 54
- 238000004898 kneading Methods 0.000 claims abstract description 23
- 230000036571 hydration Effects 0.000 claims abstract description 3
- 238000006703 hydration reaction Methods 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 33
- 229920005989 resin Polymers 0.000 claims description 31
- 239000011347 resin Substances 0.000 claims description 31
- 239000004568 cement Substances 0.000 claims description 30
- 230000004520 agglutination Effects 0.000 claims description 20
- 239000004567 concrete Substances 0.000 claims description 19
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 238000005345 coagulation Methods 0.000 claims description 12
- 230000015271 coagulation Effects 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 229920006231 aramid fiber Polymers 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000002776 aggregation Effects 0.000 abstract description 5
- 238000004220 aggregation Methods 0.000 abstract description 3
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 238000010998 test method Methods 0.000 description 14
- 238000007580 dry-mixing Methods 0.000 description 13
- 238000002156 mixing Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000011068 loading method Methods 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- -1 isocyanate compound Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011210 fiber-reinforced concrete Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052920 inorganic sulfate Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Road Paving Structures (AREA)
- Road Repair (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、コンクリート舗装版下の隙間に導入される裏込めグラウトについて、繰返し荷重による粉状化に対する耐久性が高く、材齢2時間の初期強度に優れた裏込めグラウト材に関する。 The present invention relates to a backfill grout material that is introduced into a gap under a concrete pavement plate and has high durability against powdering due to repeated loading and excellent initial strength at a material age of 2 hours.
プレキャストRC舗装版やプレキャストPC舗装版などのコンクリート舗装版の施工において、通常、舗装版を設置するには水平方向のレベル調整を行うために舗装版と路盤上面との間にスペーサー等が設置され、路盤上面と舗装版下面の間に約1mm〜30mm程度の隙間が形成される。この隙間には裏込めグラウトが注入され、コンクリート舗装版の自重や交通の走行により発生する荷重を均一に路盤に伝達する構造が形成される。 In the construction of concrete pavement slabs such as precast RC pavement slabs and precast PC pavement slabs, spacers are usually installed between the pavement slab and the upper surface of the roadbed in order to adjust the level in the horizontal direction in order to install the pavement slab. , A gap of about 1 mm to 30 mm is formed between the upper surface of the roadbed and the lower surface of the pavement slab. A backfill grout is injected into this gap to form a structure that uniformly transmits the weight of the concrete pavement slab and the load generated by the running of traffic to the roadbed.
また、軟弱地盤上に構築されるコンクリート舗装版は、コンクリート舗装版の自重や経年の荷重により地盤が圧密されるため、コンクリート舗装版が僅かに沈下することが知られている。沈下した舗装表面の高さを元に戻すために、コンクリート舗装版を持ち上げて不陸調整し、その下面と路盤との間にできた空隙に裏込めグラウトが注入されることもある。 Further, it is known that the concrete pavement slab constructed on the soft ground is slightly subsided because the ground is compacted by the weight of the concrete pavement slab and the load over time. In order to restore the height of the subsided pavement surface, the concrete pavement slab may be lifted and adjusted for non-landing, and backfill grout may be injected into the gap created between the lower surface and the roadbed.
このようなコンクリート舗装工事において、空港エプロン等の施設の舗装では、工事に時間的制約を受けるために迅速な施工が要求され、それに対応できるように裏込めグラウトにも速硬性が要求される。また、交通荷重による繰返し疲労による粉状化に対する抵抗性も求められる。 In such concrete pavement work, in the pavement of facilities such as airport aprons, quick construction is required because the construction is time-constrained, and quick hardness is also required for the backfill grout so as to cope with it. In addition, resistance to powdering due to repeated fatigue due to traffic load is also required.
裏込めグラウト材として、特開平8−290951号公報(特許文献1)には、セメント、カルシウムアルミネート、石膏、およびアルミナドロスを主成分とした裏込めグラウト材が記載されている。この裏込めグラウト材は、カルシウムアルミネートおよび石膏によって初期強度の発現を早め、アルミナドロスによって長期強度の抑制と容積減少の低減を図っている。 As the backfill grout material, Japanese Patent Application Laid-Open No. 8-290951 (Patent Document 1) describes a backfill grout material containing cement, calcium aluminate, gypsum, and alumina dross as main components. In this backfill grout material, calcium aluminate and gypsum accelerate the development of initial strength, and alumina dross suppresses long-term strength and reduces volume reduction.
しかし、特許文献1の裏込めグラウト材は、速硬性を有するものの、繰返し荷重による粉状化に対する抵抗性は十分ではなかった。そこで、特開2011−144103号公報(特許第5311584号:特許文献2)に記載されているように、疲労耐久性を高めた裏込めグラウト材が開発されている。この裏込めグラウト材は、セメントおよび速硬材を主成分にし、無機または有機の短繊維を配合したものであり、速硬材を配合して初期強度の発現を早めると共に短繊維を配合して繰返し荷重による粉状化に対する抵抗性を高めている。 However, although the backfill grout material of Patent Document 1 has quick hardening properties, it does not have sufficient resistance to powdering due to repeated loading. Therefore, as described in Japanese Patent Application Laid-Open No. 2011-144103 (Patent No. 5311584: Patent Document 2), a backfill grout material having improved fatigue durability has been developed. This backfill grout material is mainly composed of cement and fast-hardening material and is blended with inorganic or organic short fibers. The fast-hardening material is blended to accelerate the development of initial strength and short fibers are blended. Increases resistance to powdering due to repeated loading.
特許文献2の裏込めグラウト材は、短繊維を配合して耐粉状化性を高めているが、一方で速硬性を得るために多量の速硬材が配合されている。具体的には、セメントに対して25質量%〜40質量%に及ぶ多量の速硬材が配合されている。しかし、速硬材の量が多いと、繰返し荷重に対する耐粉状化性が低下する傾向がある。一方、速硬材の量が少なく硬化までの時間が長すぎると、材料分離を生じやすくなり、短繊維がグラウト上面に偏って十分な疲労耐久性が得られない。そこで、速硬材の含有量を1〜6質量%にして適度な流動性とゲル化までの時間を確保した裏込めグラウト材が提案されている(特開2019−11233号公報:特許文献3)。しかし、この裏込めグラウト材は材齢2時間の圧縮強度が低い。
The backfill grout material of
また、鉱物質粉末フィラーを配合したグラウト材(特許第3372012号:特許文献4)、アルミノ珪酸カルシウムや石膏等を配合したグラウト組成物(特開2004−210557号公報:特許文献5)が知られているが、何れも耐久性が低い。 Further, a grout material containing a mineral powder filler (Patent No. 3372012: Patent Document 4) and a grout composition containing calcium aluminosilicate, gypsum, etc. (Japanese Patent Laid-Open No. 2004-210557: Patent Document 5) are known. However, the durability is low in both cases.
一方、セメント補強用繊維材料として、玄武岩繊維を樹脂で集束した補強用短繊維が知られており(特開2012−56780号公報)、また、多数の単繊維を束ねた繊維集束体をイソシアネート化合物樹脂で固め、表面をエポキシ樹脂で処理した補強用繊維材料が知られている(国際公開2016−117435号公報)。しかし、これらの補強用繊維材料は単繊維を束ねて樹脂で固めたものであるので、グラウトに配合したときに、該繊維材料が単繊維に分散せず集合体としてグラウト中に存在するので補強効果が十分ではない場合がある。 On the other hand, as a fiber material for reinforcing cement, short reinforcing fibers in which genbuiwa fibers are bundled with a resin are known (Japanese Patent Laid-Open No. 2012-56780), and a fiber bundle in which a large number of single fibers are bundled is an isocyanate compound. A reinforcing fiber material that is hardened with a resin and whose surface is treated with an epoxy resin is known (International Publication No. 2016-117435). However, since these reinforcing fiber materials are made by bundling single fibers and hardening them with a resin, when they are blended in the grout, the fiber materials are not dispersed in the single fibers and are present in the grout as an aggregate, so that they are reinforced. The effect may not be sufficient.
本発明の裏込めグラウト材は、従来の上記問題を解消したものであり、該グラウトに配合する繊維の種類と配合量を検討し、また特許文献3の裏込めグラウト材について、材齢2時間の初期強度を高めると共に十分な長期強度を有し、繰返し荷重に対する疲労耐久性に優れた裏込めグラウトを提供する。なお、本発明において、水を加えない粉体のものを裏込めグラウト材と云い、水を加えて練り混ぜ硬化するまでの液体状態のものを含め、水和硬化した状態のものを裏込めグラウトと云い、本発明の裏込めグラウト材によって形成された裏込めグラウトを本発明の裏込めグラウトと云う。
また、水を除いた繊維およびセメント等の材料を混合してグラウト材を製造することを乾式混合といい、粉体のグラウト材に水を加え練り混ぜグラウトを製造する工程を練り混ぜという。
The backfill grout material of the present invention solves the above-mentioned conventional problems, and the type and amount of fibers to be blended in the grout are examined, and the backfill grout material of Patent Document 3 has a material age of 2 hours. Provides a backfill grout that enhances the initial strength of the grout, has sufficient long-term strength, and has excellent fatigue durability against repeated loads. In addition, in this invention, the powder which does not add water is called a backfill grout, and the backfill grout which is hydrated and hardened including the liquid state until water is added and kneaded and hardened is called a backfill grout. The backfill grout formed by the backfill grout material of the present invention is referred to as the backfill grout of the present invention.
Further, the production of grout material by mixing materials such as fibers and cement excluding water is called dry mixing, and the process of adding water to powdered grout material and kneading to produce grout is called kneading.
本発明は、以下の構成からなる裏込めグラウト材等に関する。
〔1〕セメントを主成分とし、速硬材、繊維、減水剤、および凝結調整剤を含むコンクリート舗装版用裏込めグラウト材であって、上記繊維は乾式混合前においては集束状態を保ち乾式混合後には単繊維に解繊する解離性の集束繊維であることを特徴とする高耐久性裏込めグラウト材。
〔2〕上記繊維が、該グラウト材と水を練り混ぜてグラウトにしたときの練り混ぜ開始2分後の凝集率が20%以下である解離性の集束繊維である上記[1]に記載する高耐久性裏込めグラウト材。
〔3〕上記解離性の集束繊維の含有量がグラウトに対して0.05体積%以上〜0.40体積%未満である上記[1]〜上記[2]に記載する高耐久性裏込めグラウト材。
〔4〕上記解離性の集束繊維の含有量がグラウトに対して0.05体積%以上〜0.40体積%未満であって、繊維長6mm以上の集束繊維の含有量が0.1体積%未満である上記[1]〜上記[3]に記載する高耐久性裏込めグラウト材。
〔5〕上記解離性の集束繊維がアラミド繊維である上記[1]〜上記[4]の何れかに記載する高耐久性裏込めグラウト材。
〔6〕上記速硬材の含有量が該セメントに対して8質量%以上〜40質量%以下である上記[1]〜上記[5]の何れかに記載する高耐久性裏込めグラウト材。
〔7〕再乳化粉末樹脂を含み、該再乳化粉末樹脂の含有量が該裏込めグラウト材の内割で3.0質量%以上〜6.0質量%以下である上記[1]〜上記[6]の何れかに記載する高耐久性裏込めグラウト材。
〔8〕上記再乳化粉末樹脂がアクリル系再乳化粉末樹脂である上記[7]に記載する高耐久性裏込めグラウト材。
〔9〕上記減水剤の含有量が上記セメントに対して0.05質量%以上〜1.0質量%以下、上記凝結調整剤の含有量が上記セメントに対して0.0〜3.0質量%以下である上記[1]〜上記[8]の何れかに記載する高耐久性裏込めグラウト材。
〔10〕上記グラウト材を水グラウト材比(W/B)35〜65%で練り混ぜたグラウトのJA漏斗流下試験の流下時間が30秒以下であり、水和硬化後のグラウトの材齢2時間の圧縮強度が2N/mm2以上であることを特徴とする上記[1]〜上記[9]の何れかに記載する高耐久性裏込めグラウト材。
〔11〕上記[1]〜上記[10]の何れかに記載する上記裏込めグラウト材によって形成された材齢7日の圧縮強度が20N/mm2以上であることを特徴とする高耐久性裏込めグラウト。
The present invention relates to a backfill grout material or the like having the following constitution.
[1] A backfill grout material for concrete pavement slabs containing cement as a main component and containing a quick-hardening material, fibers, a water reducing agent, and a coagulation adjusting agent. A highly durable backfill grout material characterized by being a dissociable focused fiber that later defibrate into a single fiber.
[2] The above-mentioned fiber is a dissociative focusing fiber having an agglutination rate of 20% or less 2 minutes after the start of kneading when the grout material and water are kneaded to form a grout. Highly durable backfill grout material.
[3] The highly durable backfill grout according to the above [1] to the above [2], wherein the content of the dissociative focused fibers is 0.05% by volume or more and less than 0.40% by volume with respect to the grout. Material.
[4] The content of the dissociative focused fibers is 0.05% by volume or more and less than 0.40% by volume with respect to the grout, and the content of the focused fibers having a fiber length of 6 mm or more is 0.1% by volume. The highly durable backfilling grout material according to the above [1] to the above [3], which is less than the above.
[5] The highly durable backfill grout material according to any one of the above [1] to the above [4], wherein the dissociative focusing fiber is an aramid fiber.
[6] The highly durable backfill grout material according to any one of the above [1] to [5], wherein the content of the fast-hardening material is 8% by mass or more and 40% by mass or less with respect to the cement.
[7] The above [1] to the above [7], which contains a re-emulsified powder resin, and the content of the re-emulsified powder resin is 3.0% by mass or more and 6.0% by mass or less in the internal division of the backfill grout material. Highly durable backfill grout material according to any one of 6].
[8] The highly durable backfill grout material according to the above [7], wherein the re-emulsified powder resin is an acrylic re-emulsified powder resin.
[9] The content of the water reducing agent is 0.05% by mass or more and 1.0% by mass or less with respect to the cement, and the content of the coagulation adjusting agent is 0.00 to 3.0% by mass with respect to the cement. The highly durable backfill grout material according to any one of the above [1] to the above [8], which is less than or equal to%.
[10] The flow time of the JA grouting flow test of the grout obtained by kneading the above grout material at a water grout material ratio (W / B) of 35 to 65% is 30 seconds or less, and the grout material age after hydration hardening 2 The highly durable backfill grout material according to any one of the above [1] to the above [9], which has a compressive strength of 2 N / mm 2 or more over time.
[11] High durability characterized by having a compressive strength of 20 N / mm 2 or more at 7 days of age formed by the backfill grout material according to any one of the above [1] to [10]. Backfill grout.
〔具体的な説明〕
本発明の裏込めグラウト材(以下、グラウト材と云う)は、セメントを主成分とし、速硬材、繊維、減水剤、および凝結調整剤を含むコンクリート舗装版用裏込めグラウト材であって、上記集束繊維は乾式混合によって単繊維に解繊する解離性の集束繊維であることを特徴とする高耐久性裏込めグラウト材である。
[Specific explanation]
The backfill grout material of the present invention (hereinafter referred to as a grout material) is a backfill grout material for concrete pavement slabs containing cement as a main component, a fast-hardening material, fibers, a water reducing agent, and a coagulation adjusting agent. The focused fiber is a highly durable backfill grout material characterized by being a dissociable focused fiber that is defibrated into a single fiber by dry mixing.
本発明のグラウト材はセメントを主成分とする。セメントは普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、高炉セメント、フライアッシュセメント、または白色セメントなどを使用することができる。 The grout material of the present invention contains cement as a main component. As the cement, ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, blast furnace cement, fly ash cement, white cement and the like can be used.
本発明のグラウト材は速硬材を含む。速硬材は、C12A7などのカルシウムアルミネート粉砕物(ブレーン比表面積4000〜6000cm2/g)と無水石膏(ブレーン比表面積5000〜12000cm2/g)の混合物、超速硬セメント、アルミナセメントなどを用いることができる。カルシウムアルミネート粉砕物と無水石膏の混合物からなる速硬材は、カルシウムアルミネート粉砕物と無水石膏が概ね40:60〜60:40質量比含まれている。市販品としては、例えば三菱マテリアル社製のコーカエーススーパー(商品名)などを用いることができる。 The grout lumber of the present invention includes a fast-hardening lumber. Fast hardwood is a mixture of C 12 A 7 calcium aluminate ground product, such as (Blaine specific surface area 4000~6000cm 2 / g) and anhydrite (Blaine specific surface area 5000~12000cm 2 / g), ultra rapid setting cement, alumina cement Etc. can be used. The fast-hardening material composed of a mixture of pulverized calcium aluminate and anhydrous gypsum contains approximately 40:60 to 60:40 mass ratio of pulverized calcium aluminate and anhydrous gypsum. As a commercially available product, for example, Coca Ace Super (trade name) manufactured by Mitsubishi Materials Corporation can be used.
速硬材の含有量は、セメントに対して8質量%以上〜40質量%以下が好ましい。速硬材の含有量が上記範囲であることによって、グラウトの材齢2時間の圧縮強度を2N/mm2以上に高めることができる。速硬材の含有量が8質量%未満では材齢2時間の圧縮強度を上記強度に高めるのが難しい。一方、速硬材の含有量が40質量%を超えると原料のコストが高くなるので好ましくない。 The content of the quick-hardening material is preferably 8% by mass or more and 40% by mass or less with respect to the cement. When the content of the fast-hardening material is in the above range, the compressive strength of the grout for 2 hours can be increased to 2 N / mm 2 or more. If the content of the fast-hardening material is less than 8% by mass, it is difficult to increase the compressive strength at 2 hours of age to the above strength. On the other hand, if the content of the quick-hardening material exceeds 40% by mass, the cost of the raw material increases, which is not preferable.
本発明のグラウト材は繊維を含み、該繊維は解離性の集束繊維である。集束繊維とは複数の単繊維が一体化された繊維の集束体であって、解離性の集束繊維とはセメント等との乾式混合後には単繊維に解繊する集束繊維であり、さらにグラウト材を水と練り混ぜたときに凝集し難い性質を有する集束繊維を云う。具体的には、例えば、練り混ぜ2分後の凝集率Sが20%以下の集束繊維である。 The grout material of the present invention contains fibers, which are dissociative focused fibers. The focused fiber is a bundle of fibers in which a plurality of single fibers are integrated, and the dissociative focused fiber is a focused fiber that is defibrated into a single fiber after dry mixing with cement or the like, and further, a grout material. Is a focused fiber having a property of being hard to aggregate when kneaded with water. Specifically, for example, it is a focused fiber having an agglutination rate S of 20% or less after 2 minutes of kneading.
上記凝集率Sとは、配合した繊維の全量に対する練り混ぜ時に生じる凝集物量の質量比であり、例えば、次式[1]によって表される。なお、本発明において凝集物とは、篩の開き目4mmの篩上残留物である。
凝集率S=(G/M)×100 ・・・[1]
(Mは配合した繊維の全質量、Gは凝集物質量)
The agglutination rate S is a mass ratio of the amount of agglutination generated during kneading to the total amount of the blended fibers, and is represented by, for example, the following formula [1]. In the present invention, the agglomerate is a residue on the sieve having a sieve opening of 4 mm.
Agglutination rate S = (G / M) × 100 ・ ・ ・ [1]
(M is the total mass of the blended fiber, G is the amount of agglutinating substance)
解離性の集束繊維は、樹脂などの結着剤によって固めたものではなく、複数の単繊維の間に水や油を含ませて束にした状態で乾燥し、分子間力などによって一体化したものである。油は例えばストレートシリコンオイル、変性シリコンオイルなどが用いられる。油の含有率(含油率)は繊維に対して1.0質量%以上〜5.0質量%以下が好ましい。 Dissociative focused fibers are not hardened with a binder such as resin, but are dried in a bundle with water or oil soaked between a plurality of single fibers, and integrated by intermolecular force or the like. It is a thing. As the oil, for example, straight silicone oil, modified silicone oil and the like are used. The oil content (oil content) is preferably 1.0% by mass or more and 5.0% by mass or less with respect to the fiber.
油で処理した集束繊維は、グラウト材の乾式混合後に単繊維に解繊するが、繊維表面が撥水性を有するので、水を加えた練り混ぜの際に、この撥水性によって水の存在下で繊維どうしが絡み合うことなく、グラウト中に分散する性質を有する。このため、練り混ぜ時に凝集(ダマ)を生じ難く、凝集率Sが小さい。一方、油で処理されていない集束繊維は、油の代わりに水を含むので親水性が良く、練り混ぜ時に凝集物を生じやすく、凝集率Sが大きい。本発明で用いる集束繊維は、主に油処理された集束繊維であり、練り混ぜ時に凝集し難いので凝集率が小さい。 The focused fibers treated with oil are defibrated into single fibers after dry mixing of grout material, but since the fiber surface has water repellency, this water repellency causes water repellency in the presence of water during kneading with water. It has the property of dispersing fibers in the grout without being entangled with each other. Therefore, agglutination (lump) is unlikely to occur during kneading, and the agglutination rate S is small. On the other hand, the focused fibers that have not been treated with oil have good hydrophilicity because they contain water instead of oil, easily form agglutinates during kneading, and have a large agglutination rate S. The focusing fiber used in the present invention is mainly an oil-treated focusing fiber, and has a small agglutination rate because it is difficult to agglutinate during kneading.
このように、本発明において用いる解離性の集束繊維は、乾式混合時には集束状態を保つので凝集し難く、さらに水を加えた練り混ぜ時にも、油の撥水性などによって凝集を生じ難く、例えば、凝集率Sが20%以下の集束繊維である。なお、本発明で用いる解離性の集束繊維は凝集率Sが20%以下であれば油処理されたものに限らない。 As described above, the dissociative focusing fibers used in the present invention are difficult to agglutinate because they maintain a focused state during dry mixing, and are less likely to agglutinate due to the water repellency of oil even when kneading with water, for example. It is a focused fiber having an agglutination rate S of 20% or less. The dissociative focused fibers used in the present invention are not limited to those treated with oil as long as the agglutination rate S is 20% or less.
上記解離性の集束繊維は、例えば、繊維径が約10〜約30μmの単繊維を約300〜約1200本を束にして一体化したものである。集束繊維の一体化した形状は平板状でもよく、また棒状でもよい。このような解離性の集束繊維を含むことによって、該集束繊維が単繊維に解繊してグラウト中にダマを形成し難いのでグラウトの強度が増し疲労耐久性が向上する。 The dissociative focused fiber is, for example, a bundle of about 300 to about 1200 single fibers having a fiber diameter of about 10 to about 30 μm and integrated. The integrated shape of the focusing fibers may be a flat plate shape or a rod shape. By including such dissociative focused fibers, the focused fibers are less likely to be defibrated into single fibers to form lumps in the grout, so that the strength of the grout is increased and the fatigue durability is improved.
上記解離性の集束繊維は繊維長2〜4mmの短繊維が好ましい。適度な長さの単繊維を集束して集束繊維にした後に2〜4mmの繊維長に切断すればよい。繊維長2〜4mmの集束繊維を用いることによって、グラウトの練り混ぜ時に繊維のダマが少なくフレッシュグラウトの流動性も良好に保たれる。 The dissociative focused fiber is preferably a short fiber having a fiber length of 2 to 4 mm. A single fiber having an appropriate length may be focused to form a focused fiber, and then cut to a fiber length of 2 to 4 mm. By using the focused fibers having a fiber length of 2 to 4 mm, there is little lumps in the fibers when the grout is kneaded, and the fluidity of the fresh grout is kept good.
上記解離性の集束繊維の含有量は、グラウトに対して0.05体積%以上〜0.40体積%未満が良く、0.15体積%以上〜0.25体積%以下がより好ましい。該集束繊維の含有量が0.05体積%より少ないと補強効果が不十分になり、0.40体積%を上回るとフレッシュグラウトの流動性が低下するので好ましくない。さらに、該集束繊維は繊維長2〜4mmの短繊維が良く、繊維長6mm以上の繊維量は0.1体積%未満が好ましい。繊維長6mm以上の繊維は繊維長が長いので凝集し易く、グラウトを2分間練り混ぜた後の上記凝集率Sが20%を上回る場合があり、この繊維長6mm以上の繊維量が0.1体積%より多いと流動性が低下するので、好ましくない。 The content of the dissociative focused fibers is preferably 0.05% by volume or more and less than 0.40% by volume, and more preferably 0.15% by volume or more and 0.25% by volume or less with respect to the grout. If the content of the focused fibers is less than 0.05% by volume, the reinforcing effect becomes insufficient, and if it exceeds 0.40% by volume, the fluidity of the fresh grout decreases, which is not preferable. Further, the focused fiber is preferably a short fiber having a fiber length of 2 to 4 mm, and the amount of the fiber having a fiber length of 6 mm or more is preferably less than 0.1% by volume. Fibers with a fiber length of 6 mm or more tend to aggregate because the fiber length is long, and the aggregation rate S after kneading the grout for 2 minutes may exceed 20%, and the amount of fibers having a fiber length of 6 mm or more is 0.1. If it is more than% by volume, the fluidity is lowered, which is not preferable.
上記解離性の集束繊維の材質は、ポリアミド繊維(商品名アラミド繊維)、ポリビニルアルコール繊維(商品名ビニロン繊維)、または炭素繊維などを用いることができる。このうちアラミド繊維は引張強度が350kg/mm2と高いため、少量でグラウトの疲労耐久性を高めることができるので好ましい。 As the material of the dissociable focusing fiber, polyamide fiber (trade name: aramid fiber), polyvinyl alcohol fiber (trade name: vinylon fiber), carbon fiber or the like can be used. Of these, aramid fiber is preferable because it has a high tensile strength of 350 kg / mm 2 and can increase the fatigue durability of grout with a small amount.
本発明のグラウト材は、再乳化粉末樹脂を含有することができる。再乳化粉末樹脂は、ゴムラテックスおよび樹脂エマルションに安定剤などを加えて乾燥した再乳化可能な粉末状樹脂であり、日本産業規格(JIS A 6203)に定められている。再乳化粉末樹脂としては、例えば、アクリル系、アクリル−ベオバ系、EVA(エチレン・酢酸ビニル共重合体)系、SBR(スチレン・ブタジエンゴム)系などが知られている。グラウトの疲労耐久性をより高めるにはアクリル系が好ましい。 The grout material of the present invention can contain a re-emulsified powder resin. The re-emulsified powder resin is a powdered resin that can be re-emulsified by adding a stabilizer or the like to a rubber latex or a resin emulsion, and is defined in the Japanese Industrial Standards (JIS A 6203). As the re-emulsified powder resin, for example, acrylic type, acrylic-beova type, EVA (ethylene / vinyl acetate copolymer) type, SBR (styrene / butadiene rubber) type and the like are known. An acrylic type is preferable to further enhance the fatigue durability of grout.
再乳化粉末樹脂を含有することによって、速硬材を多くしてもグラウトの疲労耐久性を高めることができる。具体的には、本発明のグラウト材は、速硬材の含有量8質量%以上〜40質量%以下と共に、再乳化粉末樹脂をグラウト材の内割で3.0〜6.0質量%含有することによって、フレッシュグラウトについてJA漏斗流下時間が30秒以下の流動性を保ち、グラウトの疲労耐久性を高めることができる。再乳化粉末樹脂の含有量が3.0質量%未満では上記効果が乏しく、6.0質量%を超えると練り混ぜの際に水分が不足して流動性が悪くなる。 By containing the re-emulsified powder resin, the fatigue durability of the grout can be enhanced even if the amount of the quick-hardening material is increased. Specifically, the grout material of the present invention contains a fast-hardening material content of 8% by mass or more and 40% by mass or less, and a re-emulsified powder resin in an amount of 3.0 to 6.0% by mass in the grout material. By doing so, it is possible to maintain the fluidity of the JA funnel flow time of 30 seconds or less for the fresh grout and enhance the fatigue durability of the grout. If the content of the re-emulsified powder resin is less than 3.0% by mass, the above effect is poor, and if it exceeds 6.0% by mass, water is insufficient at the time of kneading and the fluidity is deteriorated.
なお、特許文献3の裏込めグラウト材では、再乳化粉末樹脂の含有量はセメントの0.5〜8質量%が好ましいことが示されているが、この裏込めグラウト材の速硬材含有量はセメントに対して1〜6質量%に限定されており、しかも、その実施例での速硬材の量は3質量%であって、再乳化粉末樹脂の量は2質量%である。従って、セメントに対して8〜40質量%の速硬材に対して、再乳化粉末樹脂を上記含有量用いたときの効果を特許文献3から窺い知ることは全くできない。 In the backfill grout material of Patent Document 3, it is shown that the content of the re-emulsified powder resin is preferably 0.5 to 8% by mass of the cement, but the content of the fast-hardening material of this backfill grout material is Is limited to 1 to 6% by mass with respect to cement, and the amount of the quick-hardening material in the embodiment is 3% by mass, and the amount of the re-emulsified powder resin is 2% by mass. Therefore, it is not possible to know from Patent Document 3 the effect of using the re-emulsified powder resin in the above-mentioned content on a fast-hardened lumber of 8 to 40% by mass with respect to cement.
本発明のグラウト材は水中不分離剤を含むことができる。水中不分離剤としては、MC(メチルセルロース)、HPMC(ヒドロキシプロピルメチルセルロース)、HEMC(ヒドロキシエチルメチルセルロース)、HMPポリマー(変性アクリルアミドモノマー)、グアーガム誘導体(ヒドロキシプロピルグアー)などを使用することができる。 The grout material of the present invention can contain an inseparable agent in water. As the inseparable agent in water, MC (methyl cellulose), HPMC (hydroxypropyl methyl cellulose), HEMC (hydroxyethyl methyl cellulose), HMP polymer (modified acrylamide monomer), guar gum derivative (hydroxypropyl guar) and the like can be used.
本発明のグラウト材は減水剤を含む。所定量の減水剤を含むことによって、フレッシュグラウトの流動性が改善され、自然流下によってコンクリート舗装版下の隙間へ注入することが可能となる。減水剤の含有量はセメントに対して0.05〜1.0質量%が好ましい。減水剤の含有量が0.05質量%未満では減水剤の効果が乏しく、1.0質量%を超えるとグラウトの流動性が過剰となって材料分離を生じ、繊維がグラウトの上面に浮いてくることがある。減水剤としては市販品のポリカルボン酸塩系高性能減水剤(商品名メルフラックス等)などを用いることができる。 The grout material of the present invention contains a water reducing agent. By including a predetermined amount of water reducing agent, the fluidity of the fresh grout is improved, and it becomes possible to inject it into the gap under the concrete pavement plate by natural flow. The content of the water reducing agent is preferably 0.05 to 1.0% by mass with respect to the cement. If the content of the water reducing agent is less than 0.05% by mass, the effect of the water reducing agent is poor, and if it exceeds 1.0% by mass, the fluidity of the grout becomes excessive and material separation occurs, and the fibers float on the upper surface of the grout. May come. As the water reducing agent, a commercially available polycarboxylic acid salt-based high-performance water reducing agent (trade name: Melflux, etc.) can be used.
本発明のグラウト材は凝結調整剤を含む。凝結調整剤としては、無機炭酸塩、無機硫酸塩、オキシカルボン酸、オキシカルボン酸塩などを用いることができる。凝結調整剤を含有することによって、ゲル化までの適度な時間(凝結開始までの時間)を確保して施工時の良好な流動性を維持すると共に、上記時間経過後はゲル化の進行によってブリーディングの発生を抑え、またグラウトの粘性が高まることによってグラウト中の短繊維の分離が抑制されて短繊維の分散性が向上する。 The grout material of the present invention contains a coagulation modifier. As the coagulation adjusting agent, an inorganic carbonate, an inorganic sulfate, an oxycarboxylic acid, an oxycarboxylic acid salt and the like can be used. By containing the coagulation adjuster, an appropriate time until gelation (time until the start of coagulation) is secured to maintain good fluidity during construction, and after the above time elapses, bleeding is caused by the progress of gelation. By suppressing the generation of short fibers and increasing the viscosity of the grout, the separation of short fibers in the grout is suppressed and the dispersibility of the short fibers is improved.
凝結調整剤の含有量はセメントに対して0.0〜3.0質量%が好ましい。凝結調整剤の含有量が3.0質量%を超えると、凝結開始までの時間が長すぎて短繊維がグラウト表面に偏在する材料分離を生じやすくなる。 The content of the coagulation adjuster is preferably 0.0 to 3.0% by mass with respect to the cement. If the content of the coagulation adjuster exceeds 3.0% by mass, the time until the start of coagulation is too long, and the short fibers are likely to be unevenly distributed on the grout surface to cause material separation.
本発明のグラウト材は無機フィラーを含有してもよい。無機フィラーとしては道路用普通炭酸カルシウム粉末、フライアッシュ、シリカフューム等を用いることができる。このうち道路用普通炭酸カルシウム粉末やフライアッシュ等が好ましく、道路用普通炭酸カルシウム等が特に好ましい。 The grout material of the present invention may contain an inorganic filler. As the inorganic filler, ordinary calcium carbonate powder for roads, fly ash, silica fume and the like can be used. Of these, ordinary calcium carbonate powder for roads, fly ash and the like are preferable, and ordinary calcium carbonate for roads and the like are particularly preferable.
本発明のグラウト材は、これに水を加えて混練したときに、水グラウト材比(W/B)35〜65%で練り混ぜたグラウトにおいて、コンクリート標準示方書(規準編)(JSCE F-531-2018「PCグラウトの流動性試験方法(案)」[土木学会])に規定されるJA漏斗流下試験の流下時間が30秒以下の流動性を有する。なお、以下の説明においてJA漏斗流下試験とは土木学会による上記規格に基づくJA漏斗流下試験である。流下時間が30秒を超えると流動性が低いため、コンクリート舗装版下の空隙に良好に注入し難くなる。なお、水グラウト材比(W/B)が35%未満では所要の流動性を得ることができず、JA漏斗試験の流下時間は概ね35秒を超える。一方、水グラウト材比(W/B)が65%を超えるとブリーディングを抑制することが難しくなる。 The grout material of the present invention is a concrete standard specification (standard edition) (JSCE F-) in a grout mixed with a water grout material ratio (W / B) of 35 to 65% when water is added to the grout material. 531-2018 "PC grout fluidity test method (draft)" [JSCE]) has a fluidity of 30 seconds or less in the JA funnel flow test. In the following description, the JA funnel flow test is a JA funnel flow test based on the above standards by the Japan Society of Civil Engineers. If the flow time exceeds 30 seconds, the fluidity is low, and it becomes difficult to satisfactorily inject into the voids under the concrete pavement slab. If the water grout material ratio (W / B) is less than 35%, the required fluidity cannot be obtained, and the flow time of the JA funnel test generally exceeds 35 seconds. On the other hand, when the water grout material ratio (W / B) exceeds 65%, it becomes difficult to suppress bleeding.
本発明のグラウト材からなるグラウトは、材齢7日以上の長期強度に優れており、繰返し荷重に対して高い耐粉状化性を有しており、疲労耐久性に優れている。具体的には、材齢7日以上の圧縮強度は20N/mm2以上である。 The grout made of the grout material of the present invention is excellent in long-term strength of a material age of 7 days or more, has high powder-forming resistance to repeated loads, and is excellent in fatigue durability. Specifically, the compressive strength of a material age of 7 days or more is 20 N / mm 2 or more.
グラウトの疲労耐久性は、水浸ホイールトラッキング試験方法(舗装調査・試験法便覧(社団法人日本道路協会編(平成31年)))に規定されたホイールトラッキング試験等より評価することができる。疲労耐久性は、グラウト下面に発生するひずみを直接測定し、また、実構造物でグラウトに発生するひずみを3次元有限要素解析により計算し、この計算値を用いて、コンクリート標準示方書 設計編(2017年制定)[土木学会]に示されるコンクリートの疲労強度式に準じて評価することができる。 The fatigue durability of grout can be evaluated from the wheel tracking test specified in the water immersion wheel tracking test method (Pavement Survey / Test Method Handbook (edited by Japan Road Association (2019))). For fatigue durability, the strain generated on the lower surface of the grout is directly measured, and the strain generated on the grout in the actual structure is calculated by three-dimensional finite element analysis, and this calculated value is used to design the concrete standard specification. (Established in 2017) It can be evaluated according to the fatigue strength formula of concrete shown in [Civil Engineering Society].
本発明のグラウト材は解離性の集束繊維を含むことによって、フレッシュグラウトの良好な流動性を維持しつつ、グラウトの高い初期強度を有している。該集束繊維は乾式混合時には凝集を生じ難く、均一に分散する。一方、集束されていない繊維を用いると、乾式混合(プレミックス)時にダマになりやすく、均一に分散させることができない。また、解離性の集束繊維は、油処理されたものは、表面が撥水性を有するので水の存在下で、この撥水性によって繊維どうしが絡むことなく分散し、グラウト中に均一に分散する。このためグラウトの疲労耐久性を高めることができる。 The grout material of the present invention has a high initial strength of grout while maintaining good fluidity of fresh grout by containing dissociative focused fibers. The focused fibers are less likely to agglomerate during dry mixing and are uniformly dispersed. On the other hand, if unfocused fibers are used, they tend to be lumpy during dry mixing (premix) and cannot be uniformly dispersed. Further, since the surface of the dissociative focused fibers that has been treated with oil has water repellency, the fibers are dispersed without being entangled with each other in the presence of water due to the water repellency, and are uniformly dispersed in the grout. Therefore, the fatigue durability of grout can be improved.
本発明のグラウトは材齢2時間の圧縮強度が2N/mm2以上である。従って、施工後に短時間での供用が求められる環境下での使用に適する。例えば、空港施設でのエプロンなどの舗装補修では、施工後数時間程度の短時間で供用できることが必要になるが、本発明のグラウト材はこのような短時間での供用が可能になる。 The grout of the present invention has a compressive strength of 2 N / mm 2 or more at a material age of 2 hours. Therefore, it is suitable for use in an environment where service is required in a short time after construction. For example, in pavement repair such as an apron at an airport facility, it is necessary to be able to operate in a short time of about several hours after construction, and the grout material of the present invention can be used in such a short time.
本発明の再乳化粉末樹脂を含むグラウト材は、速硬材の含有量を多くして材齢2時間の初期強度を高める場合に、繰返し荷重に対する疲労耐久性を高めている。 The grout material containing the re-emulsified powder resin of the present invention enhances fatigue durability against repeated loads when the content of the quick-hardening material is increased to increase the initial strength at a material age of 2 hours.
さらに、本発明のグラウト材は流動性が良く、水グラウト材比(W/B)35〜65%において練り混ぜたグラウトの、JA漏斗試験の流下時間が30秒以下である。このため、例えば、0.4m×4.5m×隙間5mmのコンクリート舗装版の裏側に自然流下で充填することができる。さらに、荷重に対する変位の追随性が良好である。 Further, the grout material of the present invention has good fluidity, and the flow time of the grout mixed at a water grout material ratio (W / B) of 35 to 65% is 30 seconds or less in the JA funnel test. Therefore, for example, the back side of a concrete pavement slab having a size of 0.4 m × 4.5 m × a gap of 5 mm can be filled by natural flow. Further, the displacement followability with respect to the load is good.
本発明のグラウトは、具体的には、例えば、上記WT試験(ホイールトラッキング試験)において、厚さ5mmの載荷版(ポリカーボネイト版)を用いた条件下で、2000回の繰返し荷重でのひび割れ密度は0.002%程度であり、従来のグラウト材よりも、ひび割れ密度が格段に小さく、繰返し荷重に対して高い疲労耐久性を有している。 Specifically, for example, in the above-mentioned WT test (wheel tracking test), the grout of the present invention has a crack density under a repeated load of 2000 times under the condition of using a loading plate (polycarbonate plate) having a thickness of 5 mm. It is about 0.002%, has a much smaller crack density than the conventional grout material, and has high fatigue durability against repeated loads.
さらに、本発明のグラウトは材齢7日の圧縮強度が20N/mm2以上であり、十分な長期強度を有しており、さらに繰返し荷重に対して高い疲労耐久性を有しているので、航空機や大型車両による繰返し荷重を受けても、疲労による粉状化を生じ難い。従って、航空機や大型車両が出入りする空港や港湾施設等のコンテナヤードなどの舗装版の裏込めグラウトとして好適に用いることができる。 Further, the grout of the present invention has a compressive strength of 20 N / mm 2 or more at 7 days of age, has sufficient long-term strength, and has high fatigue durability against repeated loads. Even if it is repeatedly loaded by an aircraft or a large vehicle, it is unlikely to become powdery due to fatigue. Therefore, it can be suitably used as a backfill grout for paved slabs such as container yards of airports and port facilities where aircraft and large vehicles enter and exit.
以下、本発明の実施例を比較例と共に示す。表1に使用材料を示す。表2にベースグラウト材の配合比を示す。 Hereinafter, examples of the present invention will be shown together with comparative examples. Table 1 shows the materials used. Table 2 shows the blending ratio of the base grout material.
〔実施例1〕
表2に示す配合比のベースグラウト材に、表1に示す集束繊維A(表面油処理:含油率2質量%、含水率0質量%)を該グラウトに対して繊維添加率が0.20体積%になるように配合して乾式混合し、粉状のグラウト材を製造した。乾式混合終了後、網目の開き4mmの篩に粉状のグラウト材を載せて凝集物G1を回収し、上記式[1]によって凝集率(S1)を求めた。
次に、水グラウト材比50%になるように水を加えて2分間練り混ぜた。練り混ぜ終了後に網目の開き4mmの篩にスラリー状のグラウトを通じて凝集物G2を回収し、上記式[1]によって凝集率(S2)を求めた。また、JA漏斗試験の流下時間を測定した。この結果を表3に示した(本発明試料)。
[Example 1]
Focused fiber A (surface oil treatment:
Next, water was added so that the ratio of the water grout material was 50%, and the mixture was kneaded for 2 minutes. After the kneading was completed, the agglomerates G2 were collected through a slurry-like grout on a sieve having a mesh opening of 4 mm, and the agglutination rate (S 2 ) was determined by the above formula [1]. In addition, the flow time of the JA funnel test was measured. The results are shown in Table 3 (sample of the present invention).
一方、比較試料1として、アラミド単繊維を含水させて一体化した繊維体(集束繊維、、表面油処理なし、含水率5%)を用い、これを上記ベースグラウト材に、該グラウトに対して繊維添加率が0.20体積%になるように配合し、本発明試料と同様にして乾式混合終了後の凝集率(S1)を求めた。また、水を加えて水グラウト材比50%でグラウト材を練り混ぜ、練り混ぜ開始2分間後の凝集率(S2)およびJA漏斗流下時間を求めた。この結果を表3に示した(比較試料1)。
また、比較試料2として、バラのアラミド単繊維を用い、これを上記ベースグラウト材に該グラウトに対して繊維添加率が0.20体積%となるように配合し、本発明試料と同様にして乾式混合後の凝集率(S1)、練り混ぜ開始2分間後の凝集率(S2)およびJA漏斗流下時間を求めた。この結果を表3に示した(比較試料2)。
On the other hand, as the comparative sample 1, a fibrous body (focused fiber, no surface oil treatment,
Further, as the
表3に示すように、本発明試料は、乾式混合後の凝集率(S1)および練り混ぜ後の凝集率(S2)の何れも、比較試料1、2よりも格段に小さく、繊維のダマが生じ難く、グラウト中に単繊維がよく分散されている。そのため、良好な流動性を有しており、JA漏斗流下時間は20秒以下である。
一方、比較試料1は、含水状態の集束繊維であり、表面を油処理していないので、繊維体が水に接すると親水性が良いため、練り混ぜ直後から単繊維どうしが絡み合ってダマ(凝集体)が形成される。このため、練り混ぜ後の凝集率(S2)が36%と高く、JA漏斗流下時間も20秒を超える。
また、比較試料2のアラミド単繊維を用いた場合、乾式混合後の凝集率(S1)と練り混ぜ後の凝集率(S2)は本発明試料および比較試料1の何れに比べても大幅に高い。また、流下試験では途中で流路が閉塞している。
As shown in Table 3, in the sample of the present invention, both the agglutination rate (S 1 ) after dry mixing and the agglutination rate (S 2 ) after kneading are much smaller than those of
On the other hand, Comparative Sample 1 is a focused fiber in a water-containing state, and since the surface is not oil-treated, the fibers have good hydrophilicity when they come into contact with water. Aggregate) is formed. Therefore, the agglutination rate (S 2 ) after kneading is as high as 36%, and the JA funnel flow time also exceeds 20 seconds.
Further, when the aramid single fiber of the
〔実施例2〕
表2に示す配合比のベースグラウトに、表1に示す集束繊維Aを、表4に示す繊維量を配合して乾式混合し、プレミックスの粉体グラウト材を調製した。これに水を加え、水グラウト材比50%で2分間練り混ぜてグラウトを調製した。このグラウトについて、フレッシュ性状を目視観察し、以下の試験を行った。これらの結果を表4に示した。
試験方法
JA漏斗流下試験:コンクリート標準示方書(規準編)(JSCE F-531-2018「PCグラウトの流動性試験方法(案)」[土木学会])に規定されるJA漏斗流下試験。
圧縮強度:JSCE-G505-2018「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準拠。
引張強度:JIS A 1113:2018「コンクリートの割裂引張強度試験方法」に準拠。
曲げ強度:JIS R 5201:2015「セメントの物理試験方法」に準拠。
破壊エネルギー:規格(JSCE-G552「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法」)に準じて行った。破壊エネルギーは試験開始時から破断点のあいだの荷重−たわみ線図で囲まれる面積に基づいて算出。本実施例においては、変位5mmまでの荷重−たわみ線図で囲まれる面積に基づいて算出した。
試験結果
グラウトのフレッシュ性状は、繊維量0.25体積%までは良好であるが、繊維量が0.40体積%になるとファイバーボールが多く、グラウトのフレッシュ性状が劣化した。繊維量0.05体積%〜0.25体積%では流下時間が20秒以下であって流動性が良く、引張強度、曲げ強度、破壊エネルギーが向上する。繊維量0.15体積%〜0.25体積%では引張強度および曲げ強度が高い。従って、グラウトに配合される集束繊維Aの繊維量は0.05体積%以上〜0.40体積%未満が良く、0.15体積%〜0.25体積%が好ましい。
[Example 2]
The focused fibers A shown in Table 1 were mixed with the base grout having the blending ratio shown in Table 2 in a dry manner by blending the fiber amounts shown in Table 4 to prepare a premixed powder grout material. Water was added to this, and the grout was prepared by kneading at a water grout material ratio of 50% for 2 minutes. The fresh properties of this grout were visually observed and the following tests were conducted. These results are shown in Table 4.
Test method JA funnel flow test: JA funnel flow test specified in the concrete standard specification (standards) (JSCE F-531-2018 "PC grout fluidity test method (draft)" [JSCE]).
Compressive strength: Compliant with JSCE-G505-2018 "Compressive strength test method for mortar or cement paste using cylindrical specimen".
Tensile strength: Compliant with JIS A 1113: 2018 "Split tensile strength test method for concrete".
Bending strength: Compliant with JIS R 5201: 2015 "Physical test method for cement".
Fracture energy: Performed according to the standard (JSCE-G552 "Bending strength and bending toughness test method of steel fiber reinforced concrete"). The fracture energy is calculated based on the area surrounded by the load-deflection diagram between the break points from the start of the test. In this embodiment, the calculation was made based on the area surrounded by the load-deflection diagram up to a displacement of 5 mm.
Test Results The fresh properties of the grout were good up to a fiber content of 0.25% by volume, but when the fiber content was 0.40% by volume, there were many fiber balls and the fresh properties of the grout deteriorated. When the fiber content is 0.05% by volume to 0.25% by volume, the flow time is 20 seconds or less, the fluidity is good, and the tensile strength, bending strength, and fracture energy are improved. When the fiber content is 0.15% by volume to 0.25% by volume, the tensile strength and the bending strength are high. Therefore, the amount of the focused fiber A blended in the grout is preferably 0.05% by volume or more and less than 0.40% by volume, preferably 0.15% by volume to 0.25% by volume.
〔実施例3〕
表2に示す配合のベースグラウト材に、表5に示す配合量の再乳化粉末樹脂を加えた。また、集束繊維Aをグラウトに対して0.05体積%加え、水グラウト材比50%で練り混ぜ、グラウト(試料A1〜A5)を調製した。この試料(A1〜A5)について、JA漏斗流下試験を規格(JSCE-F531-2018)に準拠して行った。また、圧縮強度試験を行い、静弾性係数を測定した。
圧縮強度試験は、φ5×10cmの試験体を使用し、規格(JSCE-G505-2018:土木学会基準「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法(案)」)に準拠し、材齢2時間および7日の圧縮強度を測定した。
静弾性係数は、φ5×10cmの試験体を使用し、規格(JIS A 1149:2017「コンクリートの静弾性係数試験方法」に準じて材齢7日の静弾性係数を測定した。
この結果を表6に示す。
[Example 3]
The re-emulsified powder resin in the blending amount shown in Table 5 was added to the base grout material having the blending shown in Table 2. Further, the focused fiber A was added in an amount of 0.05% by volume based on the grout and kneaded at a ratio of the water grout material to 50% to prepare grout (samples A1 to A5). The JA funnel flow test was performed on these samples (A1 to A5) in accordance with the standard (JSCE-F531-2018). In addition, a compressive strength test was conducted to measure the static elastic modulus.
The compressive strength test uses a φ5 x 10 cm test piece and complies with the standard (JSCE-G505-2018: Civil Engineering Society standard "Compressive strength test method for mortar or cement paste using a columnar specimen (draft)"). , 2 hours and 7 days of compressive strength were measured.
For the static elastic modulus, a test piece of φ5 × 10 cm was used, and the static elastic modulus of 7 days of age was measured according to the standard (JIS A 1149: 2017 “Concrete static elastic modulus test method””.
The results are shown in Table 6.
表6に示すように、再乳化粉末樹脂の配合量が3〜5質量%の範囲では練混ぜ状態が良好であり、6質量%になると水とやや馴染み難いが、流下時間および材齢2時間の圧縮強度は良好である。一方、再乳化粉末樹脂の配合量が7質量%になると、均一に練混ぜるまでの時間が掛かる。従って、再乳化粉末樹脂の含有量はグラウト材の内割りで3〜6質量%が好ましい。また、本発明の試料A2〜A4は何れも材齢2時間の圧縮強度が4N/mm2以上であり、目標強度2N/mm2を上回っている。 As shown in Table 6, when the blending amount of the re-emulsified powder resin is in the range of 3 to 5% by mass, the kneaded state is good, and when it is 6% by mass, it is a little difficult to be compatible with water, but the flow time and the age of the material are 2 hours. The compressive strength of is good. On the other hand, when the blending amount of the re-emulsified powder resin is 7% by mass, it takes time to knead uniformly. Therefore, the content of the re-emulsified powder resin is preferably 3 to 6% by mass based on the internal division of the grout material. Further, all of the samples A2 to A4 of the present invention have a compressive strength of 4 N / mm 2 or more at a material age of 2 hours, which exceeds the target strength of 2 N / mm 2.
〔実施例4〕
表2のベースグラウト材に、表7に示す配合量の再乳化粉末樹脂と、集束繊維A(3mm)、集束繊維B(6mm)を加え、表7に示す水グラウト材比で練り混ぜ、グラウト(試料B1〜B6)を調製した。この試料(B1〜B6)について、JA漏斗流下試験を規格(JSCE-F531-2018)に準拠して行った。さらに充填性試験、破壊エネルギー試験を行った。
充填性試験は、幅400mm、長さ4500mm、隙間5mmの試験装置にグラウトを水頭差1000mmの自然流下で充填し、充填開始から先端までグラウトが届く時間を計測した。破壊エネルギー試験は、20×100×400mmの試験体を用い、万能試験機によって破壊エネルギーを測定した。
JA漏斗流下試験および充填性試験の結果を表7に示す。破壊エネルギー試験の結果を図1に示す。
[Example 4]
To the base grout material of Table 2, the re-emulsified powder resin of the blending amount shown in Table 7, the focusing fiber A (3 mm) and the focusing fiber B (6 mm) are added, and the mixture is kneaded with the water grout material ratio shown in Table 7 to grout. (Samples B1 to B6) were prepared. The JA funnel flow test was performed on these samples (B1 to B6) in accordance with the standard (JSCE-F531-2018). Furthermore, a filling property test and a fracture energy test were performed.
In the filling property test, a test device having a width of 400 mm, a length of 4500 mm, and a gap of 5 mm was filled with grout under a natural flow having a head difference of 1000 mm, and the time required for the grout to reach the tip from the start of filling was measured. In the destructive energy test, a test piece of 20 × 100 × 400 mm was used, and the destructive energy was measured by a universal testing machine.
The results of the JA funnel flow test and the filling property test are shown in Table 7. The results of the destructive energy test are shown in FIG.
表7に示すように、再乳化粉末樹脂を含むグラウト材において、集束繊維A(3mm)を0.25体積%含有する試料B3は、漏斗の流下時間が25秒であり、良好な流動性を示しており充填時間も短い。一方、集束繊維B(6mm)を0.15体積%含む試料B4は流下試験の漏斗が閉塞し、集束繊維B(6mm)を0.1体積%含む試料B5は充填性試験の途中で注入不可になる。一方、試料B6に示すように、繊維量の合計が0.1体積%であって、集束繊維B(6mm)の含有量が0.05体積%であれば、適度な流動性を示し、自然流下で充填することができる。従って、集束繊維の合計含有量は0.05〜0.25体積%であって、繊維長6mm以上の繊維量は0.1体積%未満が好ましい。 As shown in Table 7, in the grout material containing the re-emulsified powder resin, the sample B3 containing 0.25% by volume of the focused fiber A (3 mm) had a funnel flow time of 25 seconds and had good fluidity. It is shown and the filling time is short. On the other hand, the funnel of the flow test was blocked in the sample B4 containing 0.15% by volume of the focusing fiber B (6mm), and the sample B5 containing 0.1% by volume of the focusing fiber B (6mm) could not be injected during the filling property test. become. On the other hand, as shown in sample B6, when the total amount of fibers is 0.1% by volume and the content of the focused fibers B (6 mm) is 0.05% by volume, an appropriate fluidity is exhibited and it is natural. It can be filled in the flow. Therefore, the total content of the focused fibers is preferably 0.05 to 0.25% by volume, and the amount of fibers having a fiber length of 6 mm or more is preferably less than 0.1% by volume.
また、図1のグラフに示すように、集束繊維Aを含むことによって荷重に対する変位が大きく、変位追随性が高くなる(試料B2)。さらに上記再乳化粉末樹脂を含むことによって荷重に対する変位(変位追随性)はさらに大きく良好になる(試料B3)。 Further, as shown in the graph of FIG. 1, by including the focusing fiber A, the displacement with respect to the load is large and the displacement followability is high (Sample B2). Further, by including the re-emulsified powder resin, the displacement (displacement followability) with respect to the load becomes larger and better (Sample B3).
〔実施例5〕
表7の試料B1、B2、B3についてホイールトラッキング試験を行った。
ホイールトラッキング試験(WT試験)は、水浸ホイールトラッキング試験方法(舗装調査・試験法便覧(社団法人日本道路協会編(平成19年6月)))に準拠して行った。試験条件を表8に示す。試験方法の概要を図2、図3に示す。図示するように、模擬路盤材(発泡スチロール)10の上面に試験体(裏込めグラウト)11を載せて拘束版12で押さえ、その上側に載荷版(ポリカーボネイト版:厚さ5mm)13を設置し、載荷版13の上側から走行ホイール14を押し当て、表8に示す走行回数を往復動させ、グラウトが破損する回数を測定した。WT試験の試験条件を表9に示す。
[Example 5]
Wheel tracking tests were performed on the samples B1, B2, and B3 in Table 7.
The wheel tracking test (WT test) was conducted in accordance with the flooded wheel tracking test method (Pavement Survey / Test Method Handbook (edited by Japan Road Association (June 2007))). The test conditions are shown in Table 8. The outline of the test method is shown in FIGS. 2 and 3. As shown in the figure, a test body (backfill grout) 11 is placed on the upper surface of the simulated roadbed material (Styrofoam) 10 and pressed by a
試料B1はWT試験1500回で破壊したので試験を打ち切った。繊維の多い試料B2、B3はWT試験2000回においても破壊が認めらなかった。WT試験2000回後の板の状態は、試料B2のひび割れ密度が0.009%であるのに対して、試料B3のひび割れ密度は0.002%であり、本発明の試料B3はWT試験における疲労耐久性に対する抵抗性が格段に高いことが示された。なお、載荷版5mmの試験で2000回の結果は、特許文献3の載荷版10mmの試験では概ね2万回の結果に相当すると考えられる。
Sample B1 was destroyed in 1500 WT tests, so the test was discontinued. No destruction was observed in the fibers-rich samples B2 and B3 even in 2000 WT tests. In the state of the plate after 2000 times of the WT test, the crack density of the sample B2 is 0.009%, whereas the crack density of the sample B3 is 0.002%, and the sample B3 of the present invention is in the WT test. It was shown that the resistance to fatigue durability was remarkably high. It is considered that the result of 2000 times in the test of the loaded
10−模擬路盤材(発泡スチロール)、11−試験体(裏込めグラウト)、
12−拘束板12、13−載荷版(ポリカーボネイト版)、14−走行ホイール
10-Simulated roadbed material (Styrofoam), 11-Test specimen (Backfill grout),
12-
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020015631A JP7473754B2 (en) | 2020-01-31 | 2020-01-31 | Highly durable backfill grout material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020015631A JP7473754B2 (en) | 2020-01-31 | 2020-01-31 | Highly durable backfill grout material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021123507A true JP2021123507A (en) | 2021-08-30 |
JP7473754B2 JP7473754B2 (en) | 2024-04-24 |
Family
ID=77459994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020015631A Active JP7473754B2 (en) | 2020-01-31 | 2020-01-31 | Highly durable backfill grout material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7473754B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH072554A (en) * | 1993-06-16 | 1995-01-06 | Daiwabo Co Ltd | Bundled fiber for reinforcing cement |
JPH10183473A (en) * | 1996-12-19 | 1998-07-14 | Kuraray Co Ltd | Bundled yarn |
JP2004210557A (en) * | 2002-12-27 | 2004-07-29 | Taiheiyo Material Kk | Grout composition |
JP2004360136A (en) * | 2003-06-06 | 2004-12-24 | Unitika Ltd | Staple fiber for reinforcement having excellent loosening property |
JP2005015236A (en) * | 2003-06-23 | 2005-01-20 | Teijin Techno Products Ltd | Aramid short fiber for reinforcing concrete |
JP2008050214A (en) * | 2006-08-25 | 2008-03-06 | Denki Kagaku Kogyo Kk | Cement composition and method of repair using it |
JP2008120612A (en) * | 2006-11-09 | 2008-05-29 | Denki Kagaku Kogyo Kk | Grout composition, grout mortar and grout construction method |
JP2008120611A (en) * | 2006-11-09 | 2008-05-29 | Denki Kagaku Kogyo Kk | Grout composition, grout mortar and grout construction method |
JP2011144103A (en) * | 2009-12-16 | 2011-07-28 | Port & Airport Research Institute | Backfilling grouting material for concrete paving slab |
CN106186864A (en) * | 2016-07-08 | 2016-12-07 | 华北水利水电大学 | A kind of Novel polypropylene fiber concrete and preparation method thereof |
WO2017171009A1 (en) * | 2016-03-31 | 2017-10-05 | 三菱マテリアル株式会社 | Rapid-hardening mortar composition |
JP2019011233A (en) * | 2017-06-29 | 2019-01-24 | 国立研究開発法人 海上・港湾・航空技術研究所 | High pulverization resistant backfill grout and backfill grout material thereof |
-
2020
- 2020-01-31 JP JP2020015631A patent/JP7473754B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH072554A (en) * | 1993-06-16 | 1995-01-06 | Daiwabo Co Ltd | Bundled fiber for reinforcing cement |
JPH10183473A (en) * | 1996-12-19 | 1998-07-14 | Kuraray Co Ltd | Bundled yarn |
JP2004210557A (en) * | 2002-12-27 | 2004-07-29 | Taiheiyo Material Kk | Grout composition |
JP2004360136A (en) * | 2003-06-06 | 2004-12-24 | Unitika Ltd | Staple fiber for reinforcement having excellent loosening property |
JP2005015236A (en) * | 2003-06-23 | 2005-01-20 | Teijin Techno Products Ltd | Aramid short fiber for reinforcing concrete |
JP2008050214A (en) * | 2006-08-25 | 2008-03-06 | Denki Kagaku Kogyo Kk | Cement composition and method of repair using it |
JP2008120612A (en) * | 2006-11-09 | 2008-05-29 | Denki Kagaku Kogyo Kk | Grout composition, grout mortar and grout construction method |
JP2008120611A (en) * | 2006-11-09 | 2008-05-29 | Denki Kagaku Kogyo Kk | Grout composition, grout mortar and grout construction method |
JP2011144103A (en) * | 2009-12-16 | 2011-07-28 | Port & Airport Research Institute | Backfilling grouting material for concrete paving slab |
WO2017171009A1 (en) * | 2016-03-31 | 2017-10-05 | 三菱マテリアル株式会社 | Rapid-hardening mortar composition |
CN106186864A (en) * | 2016-07-08 | 2016-12-07 | 华北水利水电大学 | A kind of Novel polypropylene fiber concrete and preparation method thereof |
JP2019011233A (en) * | 2017-06-29 | 2019-01-24 | 国立研究開発法人 海上・港湾・航空技術研究所 | High pulverization resistant backfill grout and backfill grout material thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7473754B2 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kazemi et al. | Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods | |
Kafodya et al. | Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil | |
Gesoğlu et al. | Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash | |
Coo et al. | Effect of sand, fly ash, and coarse aggregate gradation on preplaced aggregate concrete studied through factorial design | |
Papayianni et al. | Experimental study on the performance of lime-based grouts used in consolidating historic masonries | |
Voigt et al. | Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement | |
Fragata et al. | Air lime mortars: the influence of calcareous aggregate and filler addition | |
Yüksel et al. | Influence of water/powder ratio and powder type on alkali–silica reactivity and transport properties of self-consolidating concrete | |
Sideris et al. | Production of durable self-compacting concrete using ladle furnace slag (LFS) as filler material | |
Mohamad et al. | Fresh state and mechanical properties of self compacting concrete incorporating high volume fly ash | |
CN105236863A (en) | Expansive type high-fluidity cement-base pavement slip-casting reinforcing material and preparation method thereof | |
CN114149229B (en) | Ultrahigh-performance concrete for suspended tunnel pipe section and preparation method thereof | |
Tian et al. | Experimental study on the mechanical performance of grouted specimen with composite ultrafine cement grouts | |
O'Looney et al. | A study of the functionality of hydrated lime as an admixture | |
Sridhar et al. | Study on mechanical properties of hybrid fiber reinforced engineered cementitious composites | |
Jin et al. | Insights into factors influencing coal gangue-filled backfill cemented by self-consolidating alkali-activated slag grouts | |
Belagraa et al. | Study of the physico-mechanical properties of a recycled concrete incorporating admixtures by the means of NDT methods | |
JP7054109B2 (en) | Highly powder-resistant backfill grout and its backfill grout material | |
Ashteyat et al. | Production of self-compacting concrete using Jordanian oil shale ash | |
Chompoorat et al. | Engineering properties of controlled low-strength material (CLSM) as an alternative fill material | |
JP2021123507A (en) | Highly durable back-filling grout material | |
Ampera et al. | Recent experiences with cement and lime-stabilization of local typical poor cohesive soil | |
Bakar et al. | Effect of Rice-Husk as Replacement Cement on Mechanical Properties Concrete | |
CN115536342A (en) | Tension-compression high-ductility fiber concrete and preparation method thereof | |
JP2011088793A (en) | Grout material reinforcing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20220628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220628 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231208 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20231216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20231216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20240220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7473754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |