JP7472438B2 - Imidazole Compounds - Google Patents

Imidazole Compounds Download PDF

Info

Publication number
JP7472438B2
JP7472438B2 JP2019114713A JP2019114713A JP7472438B2 JP 7472438 B2 JP7472438 B2 JP 7472438B2 JP 2019114713 A JP2019114713 A JP 2019114713A JP 2019114713 A JP2019114713 A JP 2019114713A JP 7472438 B2 JP7472438 B2 JP 7472438B2
Authority
JP
Japan
Prior art keywords
compound
group
represented
synthesis
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114713A
Other languages
Japanese (ja)
Other versions
JP2021001129A (en
Inventor
辰弥 山本
豊邦 藤原
佑輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2019114713A priority Critical patent/JP7472438B2/en
Publication of JP2021001129A publication Critical patent/JP2021001129A/en
Priority to JP2023120644A priority patent/JP2023139199A/en
Application granted granted Critical
Publication of JP7472438B2 publication Critical patent/JP7472438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、イミダゾール化合物に関する。 The present invention relates to an imidazole compound.

ヘキサアリールビイミダゾール(HABI)は、光照射により発色し、熱消色を示すフォトクロミック化合物として知られており、調色材料や光記録材料、ホログラム等の表示材料など、様々な分野への応用が検討されている。 Hexaarylbiimidazole (HABI) is known as a photochromic compound that changes color when exposed to light and fades when heated. Its applications in various fields, such as color-matching materials, optical recording materials, and display materials for holograms, are being considered.

HABIは、また、光照射によりトリアリールイミダゾリルラジカルを生成することでも知られており、光重合開始剤としても広く利用されている(例えば、特許文献1~3参照)。また、 HABI is also known to generate triaryl imidazolyl radicals upon irradiation with light, and is widely used as a photopolymerization initiator (see, for example, Patent Documents 1 to 3).

近年では、HABIのフォトクロミズムをトナーに適用する試みがなされており、トナーバインダーとして、トリアリールイミダゾールのイミダゾール環間の結合により架橋された共重合体を用いると、圧力の付与によりガラス転移点を低下させることができるため、低温定着性が発現することなどが提案されている(例えば、特許文献4参照)。 In recent years, attempts have been made to apply the photochromism of HABI to toner, and it has been proposed that if a copolymer crosslinked by bonds between the imidazole rings of triaryl imidazole is used as a toner binder, the glass transition point can be lowered by applying pressure, resulting in low-temperature fixability (see, for example, Patent Document 4).

特開2007-332045号公報JP 2007-332045 A 特開2004-137252号公報JP 2004-137252 A 特開2000-247958号公報JP 2000-247958 A 特開2012-128142号公報JP 2012-128142 A

本発明者らは、樹脂成形体にHABIの可逆的な二量化-開裂反応を適用することが可能か検討する中、従来から知られるイミダゾール化合物では、樹脂合成時の原料への溶解性が十分ではなく、また、樹脂中での二量化-開裂反応の反応性が十分に満足できるものではないことを見出した。本発明は、前記事情に鑑みてなされたものであり、樹脂合成時の原料への溶解性と、樹脂中における二量化-開裂反応の反応性が良好なイミダゾール化合物を提供することを課題とする。 While investigating whether the reversible dimerization-cleavage reaction of HABI can be applied to resin molded bodies, the inventors discovered that conventionally known imidazole compounds do not have sufficient solubility in the raw materials used in resin synthesis, and that the reactivity of the dimerization-cleavage reaction in the resin is not fully satisfactory. The present invention was made in view of the above circumstances, and aims to provide an imidazole compound that has good solubility in the raw materials used in resin synthesis and good reactivity of the dimerization-cleavage reaction in the resin.

本発明のイミダゾール化合物は、式(1)で表される。 The imidazole compound of the present invention is represented by formula (1).

Figure 0007472438000001
[式(1)中、
Ar1は、炭素原子数6~20の芳香族炭化水素基を表す。
Ar2は、炭素原子数6~20の芳香族炭化水素基を表す。
Ar3は、炭素原子数6~20の2価の芳香族炭化水素基を表す。
1は、-O-、-COO-又は-OCO-を表す。
2は、単結合又は-O-を表す。
1は、ポリオキシアルキレン基又は置換基を有していてもよい炭素原子数1~50の2価の炭化水素基を表し、該炭化水素基に含まれる-CH2-は、-O-及び/又は-CO-に置き換わっていてもよい。
a1は、反応性基を表す。]。
Figure 0007472438000001
[In formula (1),
Ar 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
Ar2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
Ar3 represents a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
L1 represents -O-, -COO- or -OCO-.
L2 represents a single bond or --O--.
R 1 represents a polyoxyalkylene group or a divalent hydrocarbon group having 1 to 50 carbon atoms which may have a substituent, and --CH 2 -- contained in the hydrocarbon group may be replaced by --O-- and/or --CO--.
R a1 represents a reactive group.

本発明のイミダゾール化合物は、樹脂合成時の原料への溶解性が良好であるとともに、樹脂中における二量化-開裂反応の反応性が良好である。 The imidazole compound of the present invention has good solubility in the raw materials used in resin synthesis and good reactivity in the dimerization-cleavage reaction in the resin.

図1は、化合物1の1H-NMRスペクトルを表す。FIG. 1 shows the 1 H-NMR spectrum of compound 1. 図2は、化合物1の13C-NMRスペクトルを表す。FIG. 2 shows the 13 C-NMR spectrum of compound 1. 図3は、化合物1のMALDI-MSスペクトルを表す。FIG. 3 shows the MALDI-MS spectrum of compound 1. 図4は、二量体37のMALDI-MSスペクトルを表す。FIG. 4 shows the MALDI-MS spectrum of dimer 37.

以下、「式(x)で表される化合物」を単に「化合物(x)」などという場合がある。また、本発明の化合物には、その互変異性体やそれらの塩も含まれ、以下に例示する各成分、置換基及び官能基は、それぞれ単独で、或いは組み合わせて使用できる。 Hereinafter, the "compound represented by formula (x)" may simply be referred to as "compound (x)". The compounds of the present invention also include their tautomers and salts, and each of the components, substituents, and functional groups exemplified below can be used alone or in combination.

本発明のイミダゾール化合物は、式(1)で表される。本発明のイミダゾール化合物では、イミダゾールの2位に結合した芳香族環に直接反応性基が結合するのではなく、炭化水素基や結合性基を介して結合しているため、樹脂合成時の原料への溶解性が良好であるとともに、樹脂中における二量化-開裂反応の反応性が良好である。 The imidazole compound of the present invention is represented by formula (1). In the imidazole compound of the present invention, the reactive group is not directly bonded to the aromatic ring bonded to the 2-position of the imidazole, but is bonded via a hydrocarbon group or a bonding group, so that the imidazole compound has good solubility in the raw materials during resin synthesis and good reactivity in the dimerization-cleavage reaction in the resin.

Figure 0007472438000002
Figure 0007472438000002

[式(1)中、
Ar1は、炭素原子数6~20の芳香族炭化水素基を表す。
Ar2は、炭素原子数6~20の芳香族炭化水素基を表す。
Ar3は、炭素原子数6~20の2価の芳香族炭化水素基を表す。
1は、-O-、-COO-又は-OCO-を表す。
2は、単結合又は-O-を表す。
1は、ポリオキシアルキレン基又は置換基を有していてもよい炭素原子数1~50の2価の炭化水素基を表し、該炭化水素基に含まれる-CH2-は、-O-及び/又は-CO-に置き換わっていてもよい。
a1は、反応性基を表す。]
[In formula (1),
Ar 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
Ar2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
Ar3 represents a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
L1 represents -O-, -COO- or -OCO-.
L2 represents a single bond or --O--.
R 1 represents a polyoxyalkylene group or a divalent hydrocarbon group having 1 to 50 carbon atoms which may have a substituent, and --CH 2 -- contained in the hydrocarbon group may be replaced by --O-- and/or --CO--.
R a1 represents a reactive group.

本発明の化合物には、その互変異性体やそれらの塩も含まれ、以下に例示する各成分及び官能基は、それぞれ、単独で、或いは組み合わせて使用することができる。 The compounds of the present invention include their tautomers and salts, and each of the components and functional groups exemplified below can be used alone or in combination.

Ar1、Ar2で表される芳香族炭化水素基としては、それぞれ独立に、フェニル基、ナフチル基、アントラセニル基等が挙げられる。 The aromatic hydrocarbon groups represented by Ar 1 and Ar 2 each independently include a phenyl group, a naphthyl group, an anthracenyl group, and the like.

Ar1、Ar2で表される芳香族炭化水素基は、置換基を有していてもよい。前記置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1~10(好ましくは炭素原子数1~5)のアルキル基;フェニル基、ナフチル基等の炭素原子数6~10の芳香族炭化水素基:フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基等が挙げられる。 The aromatic hydrocarbon groups represented by Ar 1 and Ar 2 may have a substituent. Examples of the substituent include alkyl groups having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, and decyl; aromatic hydrocarbon groups having 6 to 10 carbon atoms, such as phenyl and naphthyl; halogen atoms, such as fluorine, chlorine, bromine, and iodine; and hydroxyl groups.

Ar1、Ar2で表される芳香族の炭素原子数(置換基を有する場合、置換基も含めた炭素原子数)は、6~20であり、好ましくは6~10である。 The aromatic groups represented by Ar 1 and Ar 2 each have 6-20 carbon atoms (including the number of carbon atoms of the substituent, if any) and preferably 6-10 carbon atoms.

Ar3で表される芳香族炭化水素基としては、フェニレン基、ナフチレン基、アントラセンジイル基等が挙げられる。 Examples of the aromatic hydrocarbon group represented by Ar3 include a phenylene group, a naphthylene group, and an anthracenediyl group.

Ar3で表される芳香族炭化水素基は、置換基を有していてもよい。前記置換基としては、Ar1、Ar2が有していてもよい置換基として挙げた基と同様の基が挙げられる。 The aromatic hydrocarbon group represented by Ar3 may have a substituent. Examples of the substituent include the same groups as those exemplified as the substituents that Ar1 and Ar2 may have.

Ar3で表される芳香族炭化水素基の炭素原子数(置換基を有する場合、置換基も含めた炭素原子数)は、6~20であり、好ましくは6~10である。 The aromatic hydrocarbon group represented by Ar3 has 6 to 20 carbon atoms (including the carbon atoms of the substituent if it has a substituent) and preferably has 6 to 10 carbon atoms.

1としては、-O-、-COO-又は-OCO-が挙げられ、-O-又は-COO-が好ましい。なお-O-、-COO-、-OCO-は、左側の結合手でAr3に結合しているものとする。 L1 includes -O-, -COO-, and -OCO-, and is preferably -O- or -COO-. In addition, -O-, -COO-, and -OCO- are bonded to Ar3 via the left bond.

2は、単結合又は-O-を表す。 L2 represents a single bond or --O--.

1で表されるポリオキシアルキレン基としては、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等の炭素原子数が2~5のアルキレン基と-O-との組合せを繰り返し単位とする基などが挙げられる。前記繰り返し単位は、好ましくは2~50、より好ましくは2~20、さらに好ましくは2~10である。 Examples of the polyoxyalkylene group represented by R1 include groups having a repeating unit consisting of a combination of an alkylene group having 2 to 5 carbon atoms, such as a polyoxyethylene group, a polyoxypropylene group, or a polyoxybutylene group, and -O-. The number of repeating units is preferably 2 to 50, more preferably 2 to 20, and even more preferably 2 to 10.

1で表される2価の炭化水素基としては、炭素原子数1~50の2価の脂肪族炭化水素基、炭素原子数3~20の2価の脂環式炭化水素基、炭素原子数6~20の2価の芳香族炭化水素基、前記2価の脂肪族炭化水素基、2価の脂環式炭化水素基及び2価の芳香族炭化水素基の2種以上を組み合わせた炭素原子数4~50の基が挙げられる。 Examples of the divalent hydrocarbon group represented by R1 include divalent aliphatic hydrocarbon groups having 1 to 50 carbon atoms, divalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, divalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and groups having 4 to 50 carbon atoms which are a combination of two or more of the above divalent aliphatic hydrocarbon groups, divalent alicyclic hydrocarbon groups, and divalent aromatic hydrocarbon groups.

前記脂肪族炭化水素基としては、飽和又は不飽和の脂肪族炭化水素基が挙げられ、メチレン基、エチレン基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、ヘプタンジイル基、オクタンジイル基、ノナンジイル基、デカンジイル基、ウンデカンジイル基、ドデカンジイル基、トリデカンジイル基、テトラデカンジイル基、ペンタデカンジイル基、ヘキサデカンジイル基、ヘプタデカンジイル基、オクタデカンジイル基、ノナデカンジイル基、エイコサンジイル基等のアルカンジイル基などが好ましい。前記脂肪族炭化水素基は、直鎖状であっても分岐鎖状であってもよい。 The aliphatic hydrocarbon group may be a saturated or unsaturated aliphatic hydrocarbon group, and is preferably an alkanediyl group such as a methylene group, an ethylene group, a propanediyl group, a butanediyl group, a pentanediyl group, a hexanediyl group, a heptanediyl group, an octanediyl group, a nonanediyl group, a decanediyl group, an undecanediyl group, a dodecanediyl group, a tridecanediyl group, a tetradecanediyl group, a pentadecanediyl group, a hexadecanediyl group, a heptadecanediyl group, an octadecanediyl group, a nonadecanediyl group, or an eicosanediyl group. The aliphatic hydrocarbon group may be linear or branched.

1は、前記脂肪族炭化水素基に含まれる1個以上の-CH2-が-O-及び/又は-CO-に置き換わった基であってもよい。また、2個以上の-CH2-が、-O-及び/又は-CO-に置き換わり、エステル結合(-OCO-、-COO-)、カーボネート結合(-OCOO-)を形成していてもよい。-CH2-が-O-及び/又は-CO-に置き換わる個数は、脂肪族炭化水素基中、例えば1個以上、2個以上であってもよく、10個以下、5個以下であってもよい。ただし、隣接する-CH2-が、同時に-O-に置き換わらない基であることが好ましい。 R 1 may be a group in which one or more -CH 2 - contained in the aliphatic hydrocarbon group are replaced with -O- and/or -CO-. Furthermore, two or more -CH 2 - may be replaced with -O- and/or -CO- to form an ester bond (-OCO-, -COO-) or a carbonate bond (-OCOO-). The number of -CH 2 - replaced with -O- and/or -CO- in the aliphatic hydrocarbon group may be, for example, 1 or more, 2 or more, or 10 or less, 5 or less. However, it is preferable that adjacent -CH 2 - are not simultaneously replaced with -O-.

前記脂肪族炭化水素基には、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Ra2で表される基などが結合していてもよい。 The aliphatic hydrocarbon group may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a hydroxy group; a group represented by --R.sup.2 - L.sup.3 - R.sup.a2 ; or the like.

前記脂肪族炭化水素基の炭素原子数は、好ましくは1~50、より好ましくは1~20、さらに好ましくは1~10である。 The number of carbon atoms in the aliphatic hydrocarbon group is preferably 1 to 50, more preferably 1 to 20, and even more preferably 1 to 10.

前記脂環式炭化水素基としては、飽和又は不飽和の脂環式炭化水素基が挙げられ、シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、シクロオクタンジイル基、シクロノナンジイル基、シクロデカンジイル基等の単環の脂環式炭化水素基;ビシクロ[1.1.0]ブタンジイル基、トリシクロ[2.2.1.0]ヘプタンジイル基、ビシクロ[3.2.1]オクタンジイル基、ビシクロ[2.2.2.]オクタンジイル基、アダマンタンジイル基、ビシクロ[4.3.2]ウンデカンジイル基、トリシクロ[5.3.1.1]ドデカンジイル基等の多環の脂環式炭化水素基などが好ましい。 Examples of the alicyclic hydrocarbon group include saturated or unsaturated alicyclic hydrocarbon groups, and preferred are monocyclic alicyclic hydrocarbon groups such as cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, cyclohexanediyl group, cyclooctanediyl group, cyclononanediyl group, and cyclodecanediyl group; and polycyclic alicyclic hydrocarbon groups such as bicyclo[1.1.0]butanediyl group, tricyclo[2.2.1.0]heptanediyl group, bicyclo[3.2.1]octanediyl group, bicyclo[2.2.2.]octanediyl group, adamantanediyl group, bicyclo[4.3.2]undecanediyl group, and tricyclo[5.3.1.1]dodecanediyl group.

前記脂環式炭化水素基には、置換基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1~10(好ましくは炭素原子数1~5)のアルキル基;フェニル基、ナフチル基等の炭素原子数6~10の芳香族炭化水素基:フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-Raで表される基などが結合していてもよい。 The alicyclic hydrocarbon group may have bonded thereto, as a substituent, an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, or decyl group; an aromatic hydrocarbon group having 6 to 10 carbon atoms, such as a phenyl group or naphthyl group; a halogen atom, such as a fluorine atom, chlorine atom, bromine atom, or iodine atom; a hydroxy group; or a group represented by -R 2 -R a .

前記脂環式炭化水素基には、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Ra2で表される基などが結合していてもよい。 The alicyclic hydrocarbon group may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a hydroxy group; a group represented by --R.sup.2 - L.sup.3 - R.sup.a2 ; or the like.

前記脂環式炭化水素基の炭素原子数(置換基を有する場合、置換基も含めた炭素原子数)は、好ましくは3~50、より好ましくは5~20、さらに好ましくは3~10である。 The number of carbon atoms in the alicyclic hydrocarbon group (including the number of carbon atoms of the substituent if the group has a substituent) is preferably 3 to 50, more preferably 5 to 20, and even more preferably 3 to 10.

前記芳香族炭化水素基は、単環であっても多環であってもよく、フェニレン基、ナフチレン基、アントラセンジイル基、フルオレンジイル基等が挙げられる。 The aromatic hydrocarbon group may be monocyclic or polycyclic, and examples thereof include a phenylene group, a naphthylene group, an anthracenediyl group, and a fluorenediyl group.

前記芳香族炭化水素基には、置換基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1~10(好ましくは炭素原子数1~5)のアルキル基;フェニル基、ナフチル基等の炭素原子数6~10の芳香族炭化水素基:フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基等;-R2-Raで表される基などが結合していてもよい。 The aromatic hydrocarbon group may have bonded thereto, as a substituent, an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, or decyl group; an aromatic hydrocarbon group having 6 to 10 carbon atoms, such as a phenyl group or naphthyl group; a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a hydroxy group; or a group represented by -R 2 -R a .

前記芳香族炭化水素基には、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Raで表される基などが結合していてもよい。 The aromatic hydrocarbon group may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a hydroxy group; or a group represented by --R.sup.2 - L.sup.3 - R.sup.a .

芳香族炭化水素基の炭素原子数(置換基を有する場合、置換委も含めた炭素原子数)は、好ましくは6~50、より好ましくは6~20、さらに好ましくは6~10である。 The number of carbon atoms in the aromatic hydrocarbon group (including the number of carbon atoms of the substituent if it has a substituent) is preferably 6 to 50, more preferably 6 to 20, and even more preferably 6 to 10.

前記2価の脂肪族炭化水素基、2価の脂環式炭化水素基、2価の芳香族炭化水素基の2種以上を組み合わせた基としては、脂肪族炭化水素基と脂環式炭化水素基とを組み合わせた2価の基、又は、脂肪族炭化水素基と芳香族炭化水素基とを組み合わせた2価の基が好ましい。 As the group that combines two or more of the divalent aliphatic hydrocarbon group, the divalent alicyclic hydrocarbon group, and the divalent aromatic hydrocarbon group, a divalent group that combines an aliphatic hydrocarbon group and an alicyclic hydrocarbon group, or a divalent group that combines an aliphatic hydrocarbon group and an aromatic hydrocarbon group, is preferred.

前記脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基の2種以上を組み合わせた基の炭素原子数は、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10である。 The number of carbon atoms in the group that combines two or more of the aliphatic hydrocarbon group, alicyclic hydrocarbon group, and aromatic hydrocarbon group is preferably 4 to 50, more preferably 4 to 20, and even more preferably 4 to 10.

1で表される炭化水素基が置換基として有していてもよい-R2-L3-Ra2で表される基において、R2は、ポリオキシアルキレン基又は炭素原子数1~50の2価の炭化水素基を表し、該炭化水素基に含まれる-CH2-は、-O-及び/又は-CO-に置き換わっていてもよく、該炭化水素基に含まれる水素原子は、ヒドロキシ基に置換されていてもよい。L3は、単結合又は-O-を表す。Ra2は、反応性基を表す。 In the group represented by -R 2 -L 3 -R a2 which the hydrocarbon group represented by R 1 may have as a substituent, R 2 represents a polyoxyalkylene group or a divalent hydrocarbon group having 1 to 50 carbon atoms, -CH 2 - contained in the hydrocarbon group may be replaced by -O- and/or -CO-, and a hydrogen atom contained in the hydrocarbon group may be substituted by a hydroxy group. L 3 represents a single bond or -O-. R a2 represents a reactive group.

2で表されるポリオキシアルキレン基としては、R1で表されるポリオキシアルキレン基として例示した基と同様の基が挙げられる。 Examples of the polyoxyalkylene group represented by R2 include the same groups as those exemplified as the polyoxyalkylene group represented by R1 .

2で表される炭化水素基(該炭化水素基に含まれる-CH2-が、-O-及び/又は―CO-に置き換わっている基も含む)としては、R1で表される炭化水素基として例示した基と同様の基が挙げられる。 Examples of the hydrocarbon group represented by R2 (including groups in which the --CH2-- contained in the hydrocarbon group is replaced by --O-- and/or --CO--) include the same groups as those exemplified as the hydrocarbon group represented by R1 .

2で表される炭化水素基が有していてもよい置換基としては、ヒドロキシ基が挙げられる。 The substituent that the hydrocarbon group represented by R2 may have includes a hydroxy group.

3は、単結合又は-O-を表す。 L3 represents a single bond or --O--.

a1、Ra2で表される反応性基としては、重縮合反応により、ポリマー主鎖を形成しうる基が挙げられ、具体的には、ビニル基、(メタ)アクリロイル基、(メタ)アリル基等のエチレン性二重結合を含む基;オキセタニル基等の環状エーテルを含む基などが挙げられる。前記環状エーテルを含む基は、置換基として、メチル基、エチル基、プロピル基等の炭素原子数1~5の脂肪族炭化水素基を有していてもよい。なかでも、Ra1、Ra2で表される反応性基としては、ビニル基、(メタ)アクリロイル基、置換基を有していてもよいオキセタニル基が好ましい。 Examples of the reactive groups represented by R a1 and R a2 include groups capable of forming a polymer main chain by a polycondensation reaction, and specific examples thereof include groups containing an ethylenic double bond such as a vinyl group, a (meth)acryloyl group, or a (meth)allyl group; and groups containing a cyclic ether such as an oxetanyl group. The group containing a cyclic ether may have an aliphatic hydrocarbon group having 1 to 5 carbon atoms as a substituent, such as a methyl group, an ethyl group, or a propyl group. Of these, examples of the reactive groups represented by R a1 and R a2 are preferably a vinyl group, a (meth)acryloyl group, or an oxetanyl group which may have a substituent.

前記化合物(1)としては、例えば、以下の式(1-1)~(1-68)で表される化合物等が挙げられる。式中、nは、2~10の整数を表す。 Examples of the compound (1) include compounds represented by the following formulas (1-1) to (1-68), where n is an integer from 2 to 10.

Figure 0007472438000003
Figure 0007472438000003

Figure 0007472438000004
Figure 0007472438000004

Figure 0007472438000005
Figure 0007472438000005

Figure 0007472438000006
Figure 0007472438000006

Figure 0007472438000007
Figure 0007472438000007

前記化合物(1)の製造方法の概要は、例えば、以下のスキームで表される。すなわち、本発明の化合物(1)は、
ルート1:化合物(a-1)と化合物(b)とを反応させて化合物(c)を得て(工程1)、化合物(d)及び化合物(e)を反応させることによって製造することができ(工程2)、
ルート2:化合物(a-2)と化合物(d)及び化合物(e)を反応させて(工程3)、化合物(g-1)又は化合物(g-2)を反応させることによって製造することもでき(工程4)、
ルート3:化合物(a-1)と化合物(h)とを反応させて化合物(i)を得て(工程5)、化合物(i)のエステル結合を加水分解して化合物(j)を得て(工程6)、化合物(d)及び化合物(e)を反応させて化合物(k)を得た後(工程7)、さらに化合物(l)を反応させることによって製造することもできる。
The outline of the method for producing the compound (1) is, for example, represented by the following scheme.
Route 1: Compound (a-1) is reacted with compound (b) to obtain compound (c) (step 1), and compound (d) and compound (e) are reacted to produce compound (c) (step 2).
Route 2: It can also be produced by reacting compound (a-2) with compound (d) and compound (e) (step 3), and then reacting compound (g-1) or compound (g-2) (step 4),
Route 3: Compound (a-1) can also be produced by reacting compound (h) with compound (a-1) to obtain compound (i) (step 5), hydrolyzing the ester bond of compound (i) to obtain compound (j) (step 6), reacting compound (d) with compound (e) to obtain compound (k) (step 7), and then further reacting with compound (l).

Figure 0007472438000008
Figure 0007472438000008

[上記スキーム中、
Ar1、Ar2、Ar3、L1、L2、R1、Ra1は、上記と同義である。
1は、酸素原子を含む複素環基を表す。
3は、ポリオキシアルキレン基又は炭素原子数1~47の炭化水素基を表し、該炭化水素基に含まれる-CH2-は、-O-及び/又は-CO-に置き換わっていてもよい。
4は、炭素原子数1~5の脂肪族炭化水素基を表す。
1、X2は、それぞれ独立に、ハロゲン原子を表す。]
[In the above scheme,
Ar1 , Ar2 , Ar3 , L1 , L2 , R1 and R a1 are as defined above.
A 1 represents a heterocyclic group containing an oxygen atom.
R 3 represents a polyoxyalkylene group or a hydrocarbon group having 1 to 47 carbon atoms, and --CH 2 -- contained in the hydrocarbon group may be replaced by --O-- and/or --CO--.
R 4 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
X 1 and X 2 each independently represent a halogen atom.

1で表される酸素原子を含む複素環基は、単環であっても多環であってもよく、多環の場合、複数の単環の複素環基が共有結合により結合されたものであってもよく、橋かけ環であってもよい。前記A1で表される酸素原子を含む複素環基としては、オキシラニル基、オキセタニル基等の環状エーテル基;エポキシシクロヘキシル基、エポキシシクロペンチル基等のエポキシシクロアルキル基などが挙げられる。 The heterocyclic group containing an oxygen atom represented by A 1 may be a monocyclic or polycyclic group, and in the case of a polycyclic group, a plurality of monocyclic heterocyclic groups may be bonded by a covalent bond, or may be a bridged ring. Examples of the heterocyclic group containing an oxygen atom represented by A 1 include cyclic ether groups such as oxiranyl group and oxetanyl group; epoxycycloalkyl groups such as epoxycyclohexyl group and epoxycyclopentyl group, etc.

3で表されるオキシアルキレン基としては、R1で表されるポリオキシアルキレン基と同様の基が挙げられ、オキシアルキレンの繰り返し単位は、好ましくは2~49、より好ましくは2~19、さらに好ましくは2~9である。 The oxyalkylene group represented by R 3 may be the same as the polyoxyalkylene group represented by R 1 , and the number of repeating units of the oxyalkylene is preferably 2 to 49, more preferably 2 to 19, and even more preferably 2 to 9.

3で表される炭化水素基としては、R1で表される炭化水素基として説明した基のうち、炭素原子数が1~47である基が挙げられる。R3で表される脂肪族炭化水素基は、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Ra2で表される基などが結合していてもよい。R3で表される脂肪族炭化水素基の炭素原子数は、好ましくは1~47、より好ましくは1~17、さらに好ましくは1~7である。 Examples of the hydrocarbon group represented by R3 include groups having 1 to 47 carbon atoms among the groups explained as the hydrocarbon group represented by R1 . The aliphatic hydrocarbon group represented by R3 may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a hydroxy group; or a group represented by -R2 - L3 - Ra2 . The number of carbon atoms in the aliphatic hydrocarbon group represented by R3 is preferably 1 to 47, more preferably 1 to 17, and even more preferably 1 to 7.

3で表される前記脂環式炭化水素基には、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Ra2で表される基などが結合していてもよい。R3で表される脂環式炭化水素基の炭素原子数は、好ましくは3~47、より好ましくは3~17、さらに好ましくは3~7である。 The alicyclic hydrocarbon group represented by R3 may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a hydroxy group; a group represented by -R2 - L3 - Ra2 , etc. The number of carbon atoms in the alicyclic hydrocarbon group represented by R3 is preferably 3 to 47, more preferably 3 to 17, and even more preferably 3 to 7.

3で表される芳香族炭化水素基には、置換基として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;-R2-L3-Ra2で表される基などが結合していてもよい。R3で表される芳香族炭化水素基の炭素原子数は、好ましくは6~47、より好ましくは6~20、さらに好ましくは6~10である。 The aromatic hydrocarbon group represented by R3 may have bonded thereto, as a substituent, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, a group represented by -R2 - L3 - Ra2 , etc. The aromatic hydrocarbon group represented by R3 preferably has 6 to 47 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 10 carbon atoms.

3で表される脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基の2種以上を組み合わせた基の炭素原子数は、好ましくは4~47、より好ましくは4~17、さらに好ましくは4~7である。 The number of carbon atoms in the group consisting of two or more of aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, and aromatic hydrocarbon groups represented by R3 is preferably 4 to 47, more preferably 4 to 17, and even more preferably 4 to 7.

4で表される脂肪族炭化水素基としては、メチル基、エチル基、ブチル基、ペンチル基が挙げられる。R4で表される脂肪族炭化水素基の炭素原子数は、好ましくは1~5、より好ましくは1~3である。 Examples of the aliphatic hydrocarbon group represented by R4 include a methyl group, an ethyl group, a butyl group, and a pentyl group. The number of carbon atoms in the aliphatic hydrocarbon group represented by R4 is preferably 1 to 5, and more preferably 1 to 3.

1、X2で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、塩素原子が好ましい。 Examples of the halogen atom represented by X 1 or X 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, with a chlorine atom being preferred.

以下、各工程について説明する。 Each step is explained below.

工程1、5について
工程1、5では、化合物(a-2)と、化合物(b)又は化合物(h)とを反応させることにより、化合物(c)又は化合物(i)を得ることができる。
Regarding steps 1 and 5: In steps 1 and 5, compound (a-2) is reacted with compound (b) or compound (h) to obtain compound (c) or compound (i).

前記反応時、トリフェニルホスフィン等の第3級有機リン化合物と、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等のアゾジカルボン酸エステルとを触媒として共存させる。 During the reaction, a tertiary organic phosphorus compound such as triphenylphosphine and an azodicarboxylate ester such as diethyl azodicarboxylate or diisopropyl azodicarboxylate are present as catalysts.

反応溶剤としては、テトラヒドロフラン等のエーテル溶剤を用いることができる。 An ether solvent such as tetrahydrofuran can be used as the reaction solvent.

工程2、3、7について
工程2、3、7では、化合物(a-2)、化合物(c)又は化合物(j)と、化合物(d)と、化合物(e)とを反応させることにより、イミダゾール環を形成し、それぞれ、化合物(f)、化合物(1)又は化合物(k)を得ることができる。
Regarding steps 2, 3, and 7: In steps 2, 3, and 7, compound (a-2), compound (c), or compound (j) is reacted with compound (d) and compound (e) to form an imidazole ring, thereby obtaining compound (f), compound (1), or compound (k), respectively.

前記反応時、1,4-ジアザビシクロ[2.2.2]オクタン等の触媒を共存させる。 During the reaction, a catalyst such as 1,4-diazabicyclo[2.2.2]octane is present.

反応溶剤としては、工程2、7では、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール溶剤を用いることができ、工程3では、氷酢酸等を用いることができる。 As the reaction solvent, in steps 2 and 7, alcohol solvents such as methanol, ethanol, isopropyl alcohol, and butanol can be used, and in step 3, glacial acetic acid, etc. can be used.

工程4について
工程4では、化合物(f)と、化合物(g-1)又は化合物(g-2)とを反応させることにより、化合物(f)のカルボキシ基と化合物(g-1)の水酸基、又は、化合物(f)のカルボキシ基と化合物(g-2)の環状エーテルとが反応し、化合物(1)を得ることができる。
Regarding step 4: In step 4, compound (f) is reacted with compound (g-1) or compound (g-2) to react a carboxy group of compound (f) with a hydroxyl group of compound (g-1), or a carboxy group of compound (f) with a cyclic ether of compound (g-2), thereby obtaining compound (1).

前記反応時、触媒を共存させる。化合物(g-1)と反応させる場合は、トリフェニルホスフィン等の第3級有機リン化合物と、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等のアゾジカルボン酸エステルとを触媒として用いる。反応溶剤としては、ジメチルホルムアミド、ジメチルアセトアミド等のアミド溶剤を用いることができる。 During the reaction, a catalyst is allowed to coexist. When reacting with compound (g-1), a tertiary organic phosphorus compound such as triphenylphosphine and an azodicarboxylate ester such as diethyl azodicarboxylate or diisopropyl azodicarboxylate are used as catalysts. As the reaction solvent, an amide solvent such as dimethylformamide or dimethylacetamide can be used.

また、化合物(g-2)と反応させる場合は、テトラブチルアンモニウムクロリド等の触媒を用いることができる。反応溶剤としては、ジメチルホルムアミド等のアミド溶剤を用いることができる。 When reacting with compound (g-2), a catalyst such as tetrabutylammonium chloride can be used. As the reaction solvent, an amide solvent such as dimethylformamide can be used.

工程6について
工程6では、化合物(i)のエステル結合を加水分解することにより、化合物(j)を得ることができる。
Regarding Step 6: In step 6, compound (j) can be obtained by hydrolyzing the ester bond of compound (i).

前記反応時、水酸化カリウム等のアルカリ触媒を共存させてもよい。反応溶剤としては、エタノール等のアルコール溶剤を用いることができる。 During the reaction, an alkaline catalyst such as potassium hydroxide may be present. An alcohol solvent such as ethanol may be used as the reaction solvent.

工程8について
工程8では、化合物(k)と化合物(l)とを反応させることで、化合物(1)を得ることができる。
Regarding Step 8: In step 8, compound (k) is reacted with compound (l) to obtain compound (1).

前記反応時、トリエタノールアミン等のアミン触媒を用いることができる。反応溶剤としては、テトラヒドロフラン等のエーテル溶剤を用いることができる。 During the reaction, an amine catalyst such as triethanolamine can be used. As the reaction solvent, an ether solvent such as tetrahydrofuran can be used.

本発明のイミダゾール化合物は、樹脂合成時の原料への溶解性と、樹脂中における二量化-開裂反応の反応性が良好であり、樹脂へのフォトクロミック性付与剤、ラジカル重合開始剤、フォトクロミック色素等として有用である。 The imidazole compound of the present invention has good solubility in the raw materials used in resin synthesis and good reactivity in the dimerization-cleavage reaction in the resin, making it useful as a photochromic agent for resins, a radical polymerization initiator, a photochromic dye, etc.

以下、実施例を挙げて本発明をより具体的に説明する。本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described in more detail below with reference to examples. The present invention is not limited to the following examples, and can of course be modified as appropriate within the scope of the above and below-mentioned aims, and all such modifications are within the technical scope of the present invention.

合成例1:化合物Aの合成 Synthesis Example 1: Synthesis of Compound A

Figure 0007472438000009
Figure 0007472438000009

攪拌装置、温度計及び還流冷却管を取り付けた100mLの四つ口フラスコに、4-ヒドロキシブチルアクリレート(4HBA〔商品名〕、大阪有機化学社製)を14.17g(98.26mmol)、テトラヒドロフラン(THF)140g、トリフェニルホスフィン(Ph3P)25.77g(98.26mmol)、4-ヒドロキシベンズアルデヒド10.00g(81.89mmol)を入れ攪拌した。薄黄色透明溶液であった。続いて、氷浴下、テトラヒドロフラン20gに希釈したアゾジカルボン酸ジイソプロピル(DIAD)19.87g(98.26mmol)を30分かけ、滴下した。橙色透明の反応溶液を、室温で10時間攪拌した。反応溶液にヘキサンを加え、トリフェニルホスフィン等の副生成物を析出除去した後、クロロホルムで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた赤色粘稠液体をカラムクロマトグラフィー(展開溶媒として、n-ヘキサン:酢酸エチル=80:20)にて精製し、目的物である化合物Aを13.62g、収率67.0%で得た。 14.17g (98.26mmol) of 4-hydroxybutyl acrylate (4HBA [trade name], manufactured by Osaka Organic Chemical Industry Co., Ltd.), 140g of tetrahydrofuran (THF), 25.77g (98.26mmol) of triphenylphosphine (Ph3P), and 10.00g (81.89mmol) of 4-hydroxybenzaldehyde were added to a 100mL four-neck flask equipped with a stirrer, thermometer, and reflux condenser and stirred. A pale yellow transparent solution was obtained. Next, 19.87g (98.26mmol) of diisopropyl azodicarboxylate (DIAD) diluted in 20g of tetrahydrofuran was added dropwise over 30 minutes in an ice bath. The orange transparent reaction solution was stirred at room temperature for 10 hours. Hexane was added to the reaction solution, and by-products such as triphenylphosphine were precipitated and removed, followed by extraction with chloroform, washing with water and saturated saline, and drying with magnesium sulfate. The solvent was removed using an evaporator, and the resulting red viscous liquid was purified by column chromatography (developing solvent: n-hexane:ethyl acetate = 80:20) to obtain 13.62 g of the target compound A in a yield of 67.0%.

実施例1:化合物1の合成 Example 1: Synthesis of Compound 1

Figure 0007472438000010
Figure 0007472438000010

攪拌装置、温度計及び還流冷却管を取り付けた100mLの四つ口フラスコに、化合物Aを4.87g(19.62mmol)、メタノール(MeOH)15g、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)0.00154g(0.137mmol)、ベンジル4.948g(23.54mmol)、酢酸アンモニウム(NH4OAc)3.629g(47.08mmol)メトキノン1500ppm、BHT500ppmを入れ、上から窒素ガスをブロー、液中から空気をバブリングし65℃24時間攪拌した。徐々に赤褐色溶液になり、数時間後に、壁に黄色の固体が析出した。室温付近まで冷却後、酢酸エチルで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた赤色粘稠液体をカラムクロマトグラフィー(展開溶媒として、n-ヘキサン:酢酸エチル=80:20)にて精製し、目的化合物1を3.31g、収率38.5%で得た。 In a 100mL four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser, 4.87g (19.62mmol) of compound A, 15g of methanol (MeOH), 0.00154g (0.137mmol) of 1,4-diazabicyclo[2.2.2]octane (DABCO), 4.948g (23.54mmol) of benzil, 3.629g (47.08mmol) of ammonium acetate (NH 4 OAc), 1500ppm of methoquinone, and 500ppm of BHT were placed, and nitrogen gas was blown from above, air was bubbled through the liquid, and the mixture was stirred at 65°C for 24 hours. The mixture gradually became a reddish brown solution, and after several hours, a yellow solid precipitated on the wall. After cooling to around room temperature, the mixture was extracted with ethyl acetate, washed with water and saturated saline, and then dried over magnesium sulfate. The solvent was removed by distillation using an evaporator, and the resulting red viscous liquid was purified by column chromatography (developing solvent: n-hexane:ethyl acetate=80:20) to obtain 3.31 g of target compound 1 in a yield of 38.5%.

〔構造の同定方法〕
生成物(ロフィン化合物)の構造同定は、下記条件にて測定したH-NMR、13C-NMR、MALDI-MSにて行った。1H-NMRスペクトルを図1に、13C-NMRスペクトルを図2に、MALDI-MSスペクトルを図3に示す。
[Method of identifying structure]
The structure of the product (lophine compound) was identified by 1 H-NMR, 13 C-NMR, and MALDI-MS measured under the following conditions. The 1 H-NMR spectrum is shown in FIG. 1, the 13 C-NMR spectrum in FIG. 2, and the MALDI-MS spectrum in FIG.

H-NMRはJEOL RESONANCE製「JNM-ECM400S」を用い、下記条件により測定した。 1 H-NMR was measured using a JEOL RESONANCE "JNM-ECM400S" under the following conditions.

磁場強度:400MHz
積算回数:16回
溶媒:重水素化クロロホルム
試料濃度:2mg/0.5ml
Magnetic field strength: 400MHz
Number of times of accumulation: 16 Solvent: Deuterated chloroform Sample concentration: 2 mg/0.5 ml

13C-NMRはJEOL RESONANCE製「JNM-ECM400S」を用い、下記条件により測定した。 13 C-NMR was measured using a JEOL RESONANCE "JNM-ECM400S" under the following conditions.

磁場強度:100MHz
積算回数:1000回
溶媒:重水素化クロロホルム
試料濃度:2mg/0.5ml
Magnetic field strength: 100MHz
Number of times of accumulation: 1000 Solvent: Deuterated chloroform Sample concentration: 2 mg/0.5 ml

MALDI-MSは島津製作所/KRATOS製「AXIMA-QIT」を用い、下記条件により測定した。
装置名:AXIMA-QIT
メーカー:島津製作所製
The MALDI-MS was performed using Shimadzu Corporation/KRATOS "AXIMA-QIT" under the following conditions.
Device name: AXIMA-QIT
Manufacturer: Shimadzu Corporation

測定範囲:m/z=50.00~2000.00
変化率:25.6mA/min
最終電流値:40mA
カソード電圧:-10kV
・測定モード
m/z ~300:extraLow
300~750:Low
750~:Mid
Measurement range: m / z = 50.00 to 2000.00
Rate of change: 25.6mA/min
Final current value: 40mA
Cathode voltage: -10 kV
Measurement mode m/z ~300: extraLow
300-750: Low
750~:Mid

合成例2:化合物Bの合成 Synthesis Example 2: Synthesis of Compound B

Figure 0007472438000011
Figure 0007472438000011

4-ヒドロキシブチルアクリレートの代わりに、ヒドロキシエチルアクリレート(HEA〔商品名〕、大阪有機化学社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Bを12.11g、収率67.15%で得た。 The same procedure as in Synthesis Example 1 was carried out except that hydroxyethyl acrylate (HEA [product name], manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 12.11 g of compound B represented by the above structural formula was obtained in a yield of 67.15%.

実施例2:化合物2の合成 Example 2: Synthesis of compound 2

Figure 0007472438000012
Figure 0007472438000012

化合物Aの代わりに、化合物Bを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物2を3.92g、収率42.1%で得た。 The same procedure as in Example 1 was carried out except that compound B was used instead of compound A, and 3.92 g of target compound 2 represented by the above structural formula was obtained in a yield of 42.1%.

合成例3:化合物Cの合成 Synthesis Example 3: Synthesis of Compound C

Figure 0007472438000013
Figure 0007472438000013

4-ヒドロキシブチルアクリレートの代わりに、メタクリル酸2-ヒドロキシエチル(HEMA〔商品名〕、日本触媒社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Cを13.83g、収率72.1%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 2-hydroxyethyl methacrylate (HEMA [trade name], manufactured by Nippon Shokubai Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 13.83 g of compound C represented by the above structural formula was obtained in a yield of 72.1%.

実施例3:化合物3の合成 Example 3: Synthesis of compound 3

Figure 0007472438000014
Figure 0007472438000014

化合物Aの代わりに、化合物Cを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物3を4.02g、収率44.4%で得た。 The same procedure as in Example 1 was carried out except that compound C was used instead of compound A, and 4.02 g of target compound 3 represented by the above structural formula was obtained in a yield of 44.4%.

合成例4:化合物Dの合成 Synthesis Example 4: Synthesis of Compound D

Figure 0007472438000015
Figure 0007472438000015

4-ヒドロキシブチルアクリレートの代わりに、アクリル酸2-ヒドロキシプロピル(HPA〔商品名〕、日本触媒社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Dを11.11g、収率57.9%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 2-hydroxypropyl acrylate (HPA [product name], manufactured by Nippon Shokubai Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 11.11 g of compound D represented by the above structural formula was obtained in a yield of 57.9%.

実施例4:化合物4の合成 Example 4: Synthesis of compound 4

Figure 0007472438000016
Figure 0007472438000016

化合物Aの代わりに、化合物Dを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物4を2.90g、収率32.0%で得た。 The same procedure as in Example 1 was carried out except that compound D was used instead of compound A, and 2.90 g of target compound 4 represented by the above structural formula was obtained in a yield of 32.0%.

合成例5:化合物Eの合成 Synthesis Example 5: Synthesis of Compound E

Figure 0007472438000017
Figure 0007472438000017

4-ヒドロキシブチルアクリレートの代わりに、2-ヒドロキシブチルアクリレート(ライトアクリレートHOB-A〔商品名〕、共栄社化学社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Eを11.36g、収率55.9%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 2-hydroxybutyl acrylate (Light Acrylate HOB-A [product name], manufactured by Kyoeisha Chemical Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 11.36 g of compound E represented by the above structural formula was obtained in a yield of 55.9%.

実施例5:化合物5の合成 Example 5: Synthesis of compound 5

Figure 0007472438000018
Figure 0007472438000018

化合物Aの代わりに、化合物Eを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物5を1.99g、収率22.5%で得た。 The procedure was carried out in the same manner as in Example 1, except that compound E was used instead of compound A, and 1.99 g of target compound 5 represented by the above structural formula was obtained in a yield of 22.5%.

合成例6:化合物Fの合成 Synthesis Example 6: Synthesis of Compound F

Figure 0007472438000019
Figure 0007472438000019

4-ヒドロキシブチルアクリレートの代わりに、ジエチレングリコールモノアクリレートを用いた以外は合成例1と同様に行い、上記構造式で表される化合物Fを15.57g、収率72.0%で得た。 The same procedure as in Synthesis Example 1 was carried out except that diethylene glycol monoacrylate was used instead of 4-hydroxybutyl acrylate, and 15.57 g of compound F represented by the above structural formula was obtained in a yield of 72.0%.

実施例6:化合物6の合成 Example 6: Synthesis of compound 6

Figure 0007472438000020
Figure 0007472438000020

化合物Aの代わりに、化合物Fを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物6を2.67g、収率31.0%で得た。 The same procedure as in Example 1 was carried out except that compound F was used instead of compound A, and 2.67 g of target compound 6 represented by the above structural formula was obtained in a yield of 31.0%.

合成例7:化合物Gの合成 Synthesis Example 7: Synthesis of Compound G

Figure 0007472438000021
Figure 0007472438000021

4-ヒドロキシブチルアクリレートの代わりに、ポリプロピレングリコール-モノアクリレート(ブレンマーAP-400〔商品名〕、日油社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Gを30.29g、収率70.5%で得た。 The same procedure as in Synthesis Example 1 was carried out except that polypropylene glycol monoacrylate (Blenmer AP-400 [product name], manufactured by NOF Corp.) was used instead of 4-hydroxybutyl acrylate, and 30.29 g of compound G represented by the above structural formula was obtained in a yield of 70.5%.

実施例7:化合物7の合成 Example 7: Synthesis of compound 7

Figure 0007472438000022
Figure 0007472438000022

化合物Aの代わりに、化合物Gを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物7を2.86g、収率28.6%で得た。 The procedure was carried out in the same manner as in Example 1, except that compound G was used instead of compound A, and 2.86 g of target compound 7 represented by the above structural formula was obtained in a yield of 28.6%.

合成例8:化合物Hの合成 Synthesis Example 8: Synthesis of Compound H

Figure 0007472438000023
Figure 0007472438000023

4-ヒドロキシブチルアクリレートの代わりに、ペンタエリトリトールトリアクリレートを用いた以外は合成例1と同様に行い、上記構造式で表される化合物Hを14.20g、収率43.1%で得た。 The same procedure as in Synthesis Example 1 was carried out except that pentaerythritol triacrylate was used instead of 4-hydroxybutyl acrylate, and 14.20 g of compound H represented by the above structural formula was obtained in a yield of 43.1%.

実施例8:化合物8の合成 Example 8: Synthesis of compound 8

Figure 0007472438000024
Figure 0007472438000024

化合物Aの代わりに、化合物Hを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物8を1.444g、収率9.81%で得た。 The procedure was carried out in the same manner as in Example 1, except that compound H was used instead of compound A, and 1.444 g of the target compound 8 represented by the above structural formula was obtained in a yield of 9.81%.

合成例9:化合物Iの合成 Synthesis Example 9: Synthesis of Compound I

Figure 0007472438000025
Figure 0007472438000025

4-ヒドロキシブチルアクリレートの代わりに、グリセリンジメタクリレート(701〔商品名〕、新中村化学社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Iを14.18g、収率52.1%で得た。 The same procedure as in Synthesis Example 1 was carried out except that glycerin dimethacrylate (701 [product name], manufactured by Shin-Nakamura Chemical Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 14.18 g of compound I represented by the above structural formula was obtained in a yield of 52.1%.

(実施例9) (Example 9)

Figure 0007472438000026
Figure 0007472438000026

化合物Aの代わりに、化合物Iを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物9を2.14g、収率13.6%で得た。 The procedure of Example 1 was repeated except that compound I was used instead of compound A, and 2.14 g of target compound 9 represented by the above structural formula was obtained in a yield of 13.6%.

合成例10:化合物Jの合成 Synthesis Example 10: Synthesis of Compound J

Figure 0007472438000027
Figure 0007472438000027

攪拌装置、温度計及び還流冷却管を取り付けた500mLの四つ口フラスコに、テレフタルアルデヒド酸を17.85g(118.91mmol)、氷酢酸285g、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)0.0934g(0.832mmol)、ベンジル25.00g(118.91mmol)、酢酸アンモニウム27.50g(356.75mmol)を入れ、105℃6時間攪拌した。室温付近まで冷却後、氷水に添加し、得られた固体を濾取、クロロホルムで洗浄し、目的化合物Jを38.45g、収率95.0%で得た。 17.85 g (118.91 mmol) of terephthalaldehyde acid, 285 g of glacial acetic acid, 0.0934 g (0.832 mmol) of 1,4-diazabicyclo[2.2.2]octane (DABCO), 25.00 g (118.91 mmol) of benzil, and 27.50 g (356.75 mmol) of ammonium acetate were placed in a 500 mL four-neck flask equipped with a stirrer, thermometer, and reflux condenser, and stirred at 105°C for 6 hours. After cooling to near room temperature, the mixture was added to ice water, and the resulting solid was filtered and washed with chloroform to obtain 38.45 g of the target compound J in a yield of 95.0%.

実施例10 Example 10

Figure 0007472438000028
Figure 0007472438000028

攪拌装置、温度計及び還流冷却管を取り付けた200mLの四つ口フラスコに、化合物Jを15.00g(44.07mmol)、ジメチルホルムアミド(DMF)90g、テトラブチルアンモニウムクロリド(TBACl)0.3184g(1.146mmol)、グリシジルメタクリレート(GMA)6.62g(44.07mmol)、メトキノン1500ppm、BHT500ppmを入れ、上から窒素ガスをブロー、液中から空気をバブリングし85℃40時間攪拌した。室温付近まで冷却後、酢酸エチルで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:酢酸エチル=90:10)にて精製し、室温付近まで冷却後、氷水に添加し、得られた固体を濾取、クロロホルムで洗浄し、目的化合物10を12.5g、収率58.8%で得た。 15.00 g (44.07 mmol) of compound J, 90 g of dimethylformamide (DMF), 0.3184 g (1.146 mmol) of tetrabutylammonium chloride (TBACl), 6.62 g (44.07 mmol) of glycidyl methacrylate (GMA), 1500 ppm of methoquinone, and 500 ppm of BHT were placed in a 200 mL four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser, and nitrogen gas was blown from above to bubble air through the liquid and the mixture was stirred at 85°C for 40 hours. After cooling to near room temperature, the mixture was extracted with ethyl acetate, washed with water and saturated saline, and then dried over magnesium sulfate. The solvent was removed using an evaporator, and the resulting red viscous liquid was purified by column chromatography (developing solvent: n-hexane:ethyl acetate = 90:10), cooled to near room temperature, and then added to ice water. The resulting solid was filtered and washed with chloroform to obtain 12.5 g of the target compound 10 in a yield of 58.8%.

実施例11:化合物11の合成 Example 11: Synthesis of compound 11

Figure 0007472438000029
Figure 0007472438000029

GMAの代わりに、サイクロマーM-100(ダイセル化学社製)を用いた以外は実施例10と同様に行い、上記構造式で表される目的化合物11を11.52g、収率48.7%で得た。 The same procedure as in Example 10 was carried out except that Cyclomer M-100 (manufactured by Daicel Chemical Industries, Ltd.) was used instead of GMA, and 11.52 g of the target compound 11 represented by the above structural formula was obtained in a yield of 48.7%.

実施例12:化合物12の合成 Example 12: Synthesis of compound 12

Figure 0007472438000030
Figure 0007472438000030

攪拌装置、温度計及び還流冷却管を取り付けた100mLの四つ口フラスコに、化合物Jを5.00g(14.689mmol)、4HBA2.54g(17.63mmol)、トリフェニルホスフィン4.62g(17.63mmol)、DMF15.66gを入れ攪拌した。薄黄色透明溶液であった。続いて、氷浴下、DMF3.56gに希釈したアゾジカルボン酸ジイソプロピル3.56g(17.63mmol)を30分かけ、滴下した。橙色透明の反応溶液を、室温で10時間攪拌した。反応溶液をドライアップし、クロロホルムとヘキサンを加え、トリフェニルホスフィン等の副生成物を析出除去した後、クロロホルムで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:酢酸エチル=80:20)にて精製し、目的化合物12を5.24g、収率76.44%で得た。 5.00 g (14.689 mmol) of compound J, 2.54 g (17.63 mmol) of 4HBA, 4.62 g (17.63 mmol) of triphenylphosphine, and 15.66 g of DMF were added to a 100 mL four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser, and stirred. A pale yellow transparent solution was obtained. Next, 3.56 g (17.63 mmol) of diisopropyl azodicarboxylate diluted in 3.56 g of DMF was added dropwise over 30 minutes in an ice bath. The orange transparent reaction solution was stirred at room temperature for 10 hours. The reaction solution was dried up, chloroform and hexane were added, and by-products such as triphenylphosphine were precipitated and removed, followed by extraction with chloroform, washing with water and saturated saline, and drying with magnesium sulfate. The solvent was removed using an evaporator, and the resulting red viscous liquid was purified by column chromatography (developing solvent: n-hexane:ethyl acetate = 80:20) to obtain 5.24 g of the target compound 12 in a yield of 76.44%.

実施例13:化合物13の合成 Example 13: Synthesis of compound 13

Figure 0007472438000031
Figure 0007472438000031

4HBAの代わりに、HEAを用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物13を5.16g、収率80.12%で得た。 The procedure was carried out in the same manner as in Example 12, except that HEA was used instead of 4HBA, and 5.16 g of the target compound 13 represented by the above structural formula was obtained in a yield of 80.12%.

実施例14:化合物14の合成 Example 14: Synthesis of compound 14

Figure 0007472438000032
Figure 0007472438000032

4HBAの代わりに、HEMAを用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物14を5.38g、収率81.01%で得た。 The procedure was carried out in the same manner as in Example 12, except that HEMA was used instead of 4HBA, and 5.38 g of the target compound 14 represented by the above structural formula was obtained in a yield of 81.01%.

実施例15:化合物15の合成 Example 15: Synthesis of compound 15

Figure 0007472438000033
Figure 0007472438000033

4HBAの代わりに、HPAを用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物15を4.38g、収率65.97%で得た。 The procedure was carried out in the same manner as in Example 12, except that HPA was used instead of 4HBA, and 4.38 g of the target compound 15 represented by the above structural formula was obtained in a yield of 65.97%.

実施例16:化合物16の合成 Example 16: Synthesis of compound 16

Figure 0007472438000034
Figure 0007472438000034

4HBAの代わりに、ライトエステルHOP(共栄社化学)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物16を3.95g、収率57.65%で得た。 The same procedure as in Example 12 was carried out except that Light Ester HOP (Kyoeisha Chemical) was used instead of 4HBA, and 3.95 g of the target compound 16 represented by the above structural formula was obtained in a yield of 57.65%.

実施例17:化合物17の合成 Example 17: Synthesis of compound 17

Figure 0007472438000035
Figure 0007472438000035

4HBAの代わりに、ライトエステルHOBA(共栄社化学)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物17を3.86g、収率56.32%で得た。 The same procedure as in Example 12 was carried out except that light ester HOBA (Kyoeisha Chemical) was used instead of 4HBA, and 3.86 g of the target compound 17 represented by the above structural formula was obtained in a yield of 56.32%.

実施例18:化合物18の合成 Example 18: Synthesis of compound 18

Figure 0007472438000036
Figure 0007472438000036

4HBAの代わりに、ライトエステルHOBA(共栄社化学)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物18を3.91g、収率55.42%で得た。 The same procedure as in Example 12 was carried out except that light ester HOBA (Kyoeisha Chemical) was used instead of 4HBA, and 3.91 g of the target compound 18 represented by the above structural formula was obtained in a yield of 55.42%.

実施例19:化合物19の合成 Example 19: Synthesis of compound 19

Figure 0007472438000037
Figure 0007472438000037

4HBAの代わりに、ブレンマーAE-90U(日油)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物19を6.99g、収率72.19%で得た。 The same procedure as in Example 12 was carried out except that Blenmar AE-90U (NOF Corp.) was used instead of 4HBA, and 6.99 g of the target compound 19 represented by the above structural formula was obtained in a yield of 72.19%.

実施例20:化合物20の合成 Example 20: Synthesis of compound 20

Figure 0007472438000038
Figure 0007472438000038

4HBAの代わりに、ブレンマーPE-90(日油)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物20を5.26g、収率53.21%で得た。 The same procedure as in Example 12 was carried out except that Blenmar PE-90 (NOF Corp.) was used instead of 4HBA, and 5.26 g of the target compound 20 represented by the above structural formula was obtained in a yield of 53.21%.

実施例21:化合物21の合成 Example 21: Synthesis of compound 21

Figure 0007472438000039
Figure 0007472438000039

4HBAの代わりに、ブレンマーAP-200(日油)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物21を7.46g、収率68.32%で得た。 The same procedure as in Example 12 was carried out except that Blenmar AP-200 (NOF Corp.) was used instead of 4HBA, and 7.46 g of the target compound 21 represented by the above structural formula was obtained in a yield of 68.32%.

実施例22:化合物22の合成 Example 22: Synthesis of compound 22

Figure 0007472438000040
Figure 0007472438000040

4HBAの代わりに、ブレンマーPP-500(日油)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物22を4.68g、収率42.10%で得た。 The same procedure as in Example 12 was carried out except that Blenmar PP-500 (NOF Corp.) was used instead of 4HBA, and 4.68 g of the target compound 22 represented by the above structural formula was obtained in a yield of 42.10%.

実施例23:化合物23の合成 Example 23: Synthesis of compound 23

Figure 0007472438000041
Figure 0007472438000041

4HBAの代わりに、サートマーSR-495(サートマー)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物23を1.50g、収率44.87%で得た。 The same procedure as in Example 12 was carried out except that Sartomer SR-495 (Sartomer) was used instead of 4HBA, and 1.50 g of the target compound 23 represented by the above structural formula was obtained in a yield of 44.87%.

実施例24:化合物24の合成 Example 24: Synthesis of compound 24

Figure 0007472438000042
Figure 0007472438000042

4HBAの代わりに、アロニックスM-305(東亞合成)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物24を1.39g、収率38.98%で得た。 The same procedure as in Example 12 was carried out except that Aronix M-305 (Toagosei) was used instead of 4HBA, and 1.39 g of the target compound 24 represented by the above structural formula was obtained in a yield of 38.98%.

実施例25 Example 25

Figure 0007472438000043
Figure 0007472438000043

4HBAの代わりに、NKエステル701A(新中村化学)を用いた以外は実施例12と同様に行い、上記構造式で表される目的物25を1.62g、収率50.19%で得た。 The same procedure as in Example 12 was carried out except that NK Ester 701A (Shin-Nakamura Chemical) was used instead of 4HBA, and 1.62 g of the target product 25 represented by the above structural formula was obtained in a yield of 50.19%.

合成例11:化合物Kの合成 Synthesis Example 11: Synthesis of Compound K

Figure 0007472438000044
Figure 0007472438000044

4-ヒドロキシブチルアクリレートの代わりに、4-ヒドロキシブチルビニルエーテル(HBVE)〔商品名〕、丸善石油化学社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Kを13.08g、収率72.5%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 4-hydroxybutyl vinyl ether (HBVE) (product name, manufactured by Maruzen Petrochemical Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 13.08 g of compound K represented by the above structural formula was obtained in a yield of 72.5%.

実施例26:化合物26の合成 Example 26: Synthesis of compound 26

Figure 0007472438000045
Figure 0007472438000045

化合物Aの代わりに、化合物Kを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物26を2.81g、収率30.2%で得た。 The procedure of Example 1 was repeated except that compound K was used instead of compound A, and 2.81 g of target compound 26 represented by the above structural formula was obtained in a yield of 30.2%.

合成例12:化合物Lの合成 Synthesis Example 12: Synthesis of Compound L

Figure 0007472438000046
Figure 0007472438000046

4-ヒドロキシブチルアクリレートの代わりに、2-ヒドロキシエチルビニルエーテル(HEVE)〔商品名〕、丸善石油化学社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Lを11.47g、収率72.9%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 2-hydroxyethyl vinyl ether (HEVE) (product name, manufactured by Maruzen Petrochemical Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 11.47 g of compound L represented by the above structural formula was obtained in a yield of 72.9%.

実施例27:化合物27の合成 Example 27: Synthesis of compound 27

Figure 0007472438000047
Figure 0007472438000047

化合物Aの代わりに、化合物Lを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物27を2.96g、収率29.8%で得た。 The procedure was carried out in the same manner as in Example 1, except that compound L was used instead of compound A, and 2.96 g of target compound 27 represented by the above structural formula was obtained in a yield of 29.8%.

合成例13:化合物Mの合成 Synthesis Example 13: Synthesis of Compound M

Figure 0007472438000048
Figure 0007472438000048

4-ヒドロキシブチルアクリレートの代わりに、3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコール)(アロンオキセタンOXT-101(OXA)〔商品名〕、東亜合成社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Mを12.64g、収率70.1%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 3-ethyl-3-hydroxymethyloxetane (oxetane alcohol) (Aron Oxetane OXT-101 (OXA) [product name], manufactured by Toa Gosei Co., Ltd.) was used instead of 4-hydroxybutyl acrylate, and 12.64 g of compound M represented by the above structural formula was obtained in a yield of 70.1%.

実施例28:化合物28の合成 Example 28: Synthesis of compound 28

Figure 0007472438000049
Figure 0007472438000049

化合物Aの代わりに、化合物Mを用いた以外は実施例1と同様に行い、上記構造式で表される目的物28を11.85g、収率63.6%で得た。 The same procedure as in Example 1 was carried out except that compound M was used instead of compound A, and 11.85 g of target compound 28 represented by the above structural formula was obtained in a yield of 63.6%.

合成例14:化合物Nの合成 Synthesis Example 14: Synthesis of Compound N

Figure 0007472438000050
Figure 0007472438000050

4-ヒドロキシブチルアクリレートの代わりに、3-エチル-3-(4-ヒドロキシブチルオキシメチル)オキセタン(ETERNACOLL(登録商標)HBOX〔商品名〕、宇部興産社製)を用いた以外は合成例1と同様に行い、上記構造式で表される化合物Nを9.56g、収率79.9%で得た。 The same procedure as in Synthesis Example 1 was carried out except that 3-ethyl-3-(4-hydroxybutyloxymethyl)oxetane (ETERNACOLL (registered trademark) HBOX [product name], manufactured by Ube Industries, Ltd.) was used instead of 4-hydroxybutyl acrylate, and 9.56 g of compound N represented by the above structural formula was obtained in a yield of 79.9%.

実施例29:化合物29の合成 Example 29: Synthesis of compound 29

Figure 0007472438000051
Figure 0007472438000051

化合物Aの代わりに、化合物Nを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物29を5.55g、収率67.3%で得た。 The same procedure as in Example 1 was carried out except that compound N was used instead of compound A, and 5.55 g of target compound 29 represented by the above structural formula was obtained in a yield of 67.3%.

実施例30:化合物30の合成 Example 30: Synthesis of compound 30

Figure 0007472438000052
Figure 0007472438000052

4HBAの代わりに、4-ヒドロキシブチルビニルエーテル(HBVE)〔商品名〕、丸善石油化学社製)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物30を5.01g、収率77.7%gで得た。 The same procedure as in Example 12 was carried out except that 4-hydroxybutyl vinyl ether (HBVE) (product name, manufactured by Maruzen Petrochemical Co., Ltd.) was used instead of 4HBA, and 5.01 g of the target compound 30 represented by the above structural formula was obtained in a yield of 77.7% g.

実施例31:化合物31の合成 Example 31: Synthesis of compound 31

Figure 0007472438000053
Figure 0007472438000053

4HBAの代わりに、2-ヒドロキシエチルビニルエーテル(HEVE)〔商品名〕、丸善石油化学社製)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物31を4.55g、収率75.4%で得た。 The same procedure as in Example 12 was carried out except that 2-hydroxyethyl vinyl ether (HEVE) (product name, manufactured by Maruzen Petrochemical Co., Ltd.) was used instead of 4HBA, and 4.55 g of the target compound 31 represented by the above structural formula was obtained in a yield of 75.4%.

実施例32:化合物32の合成 Example 32: Synthesis of compound 32

Figure 0007472438000054
Figure 0007472438000054

4HBAの代わりに、3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコール)(アロンオキセタンOXT-101(OXA)〔商品名〕、東亜合成社製)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物32を4.59g、収率71.29%で得た。 The same procedure as in Example 12 was carried out except that 3-ethyl-3-hydroxymethyloxetane (oxetane alcohol) (Aron Oxetane OXT-101 (OXA) [product name], manufactured by Toa Gosei Co., Ltd.) was used instead of 4HBA, and 4.59 g of the target compound 32 represented by the above structural formula was obtained in a yield of 71.29%.

実施例33:化合物32の合成 Example 33: Synthesis of compound 32

Figure 0007472438000055
Figure 0007472438000055

4HBAの代わりに、3-エチル-3-(4-ヒドロキシブチルオキシメチル)オキセタン(ETERNACOLL(登録商標)HBOX〔商品名〕、宇部興産社製)を用いた以外は実施例12と同様に行い、上記構造式で表される目的化合物33を5.24g、収率69.85%で得た。 The same procedure as in Example 12 was carried out except that 3-ethyl-3-(4-hydroxybutyloxymethyl)oxetane (ETERNACOLL (registered trademark) HBOX [product name], manufactured by Ube Industries, Ltd.) was used instead of 4HBA, and 5.24 g of the target compound 33 represented by the above structural formula was obtained in a yield of 69.85%.

合成例15 Synthesis Example 15

Figure 0007472438000056
Figure 0007472438000056

攪拌装置、温度計及び還流冷却管を取り付けた500mLの四つ口フラスコに、4-ヒドロキシベンズアルデヒド7.00g(57.32mmol)、DMF150g、炭酸カリウム9.00g(65.12mmol)を添加し、90℃で撹拌した。次いで、4-クロロブチルアセテート7.90g(49.38mmol)を30分かけ、滴下した。滴下終了後、4時間90℃で反応させた後、室温に冷却し、2Lのビーカーに移し、そこに水250gを加えた。ジエチルエーテルで抽出を行い、10%水酸化カリウム水溶液100gで洗浄し、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、目的化合物Оを9.03g、収率66.7%で得た。 7.00g (57.32mmol) of 4-hydroxybenzaldehyde, 150g of DMF, and 9.00g (65.12mmol) of potassium carbonate were added to a 500mL four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was stirred at 90°C. Then, 7.90g (49.38mmol) of 4-chlorobutyl acetate was added dropwise over 30 minutes. After the addition was completed, the mixture was reacted at 90°C for 4 hours, cooled to room temperature, transferred to a 2L beaker, and 250g of water was added thereto. Extraction was performed with diethyl ether, washed with 100g of 10% potassium hydroxide aqueous solution, washed with saturated saline, and then dried with magnesium sulfate. The solvent was removed with an evaporator, and 9.03g of the target compound O was obtained in a yield of 66.7%.

化合物О4.00g(16.93mmol)を200mlナスフラスコに入れ、エタノール(EtOH)100g、水酸化カリウム3.00g(53.47mmol)を入れ、4時間加熱還流させた。反応終了後、室温に冷却し、10%塩酸で中和し、ジエチルエーテルで抽出、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:酢酸エチル=60:40)にて精製し、目的物である化合物Pを2.11g、収率64.2%で得た。 4.00 g (16.93 mmol) of compound O was placed in a 200 ml eggplant flask, 100 g of ethanol (EtOH) and 3.00 g (53.47 mmol) of potassium hydroxide were added, and the mixture was heated to reflux for 4 hours. After the reaction was completed, the mixture was cooled to room temperature, neutralized with 10% hydrochloric acid, extracted with diethyl ether, washed with saturated saline, and then dried over magnesium sulfate. The solvent was removed using an evaporator, and the resulting viscous liquid was purified by column chromatography (developing solvent: n-hexane:ethyl acetate = 60:40) to obtain 2.11 g of the target compound P in a yield of 64.2%.

合成例16:化合物Qの合成 Synthesis Example 16: Synthesis of Compound Q

Figure 0007472438000057
Figure 0007472438000057

化合物Aの代わりに、化合物Pを用いた以外は実施例1と同様に行い、上記構造式で表される目的化合物Qを2.93g、収率70.1%で得た。 The procedure was carried out in the same manner as in Example 1, except that compound P was used instead of compound A, and 2.93 g of the target compound Q represented by the above structural formula was obtained in a yield of 70.1%.

実施例34:化合物34の合成 Example 34: Synthesis of compound 34

Figure 0007472438000058
Figure 0007472438000058

攪拌装置、温度計及び還流冷却管を取り付けた100mLの四つ口フラスコに、Q2.00g(5.20mmol)、無水THF40g、トリエチルアミン(TEA)1.00g(9.88mmol)を加え撹拌した。氷浴下、シリンジでゆっくり塩化アクリロイル1.10g(10.52mmol)を添加した。添加終了後、室温で16時間反応させた。反応終了後、クロロホルムで抽出、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、得られた粘稠液体をカラムクロマトグラフィー(展開溶媒:クロロホルム:酢酸エチル=90:10)にて精製し、目的物である化合物34を1.76g、収率74.7%で得た。 2.00g (5.20mmol) of Q, 40g of anhydrous THF, and 1.00g (9.88mmol) of triethylamine (TEA) were added to a 100mL four-neck flask equipped with a stirrer, thermometer, and reflux condenser, and the mixture was stirred. 1.10g (10.52mmol) of acryloyl chloride was slowly added with a syringe in an ice bath. After the addition was completed, the mixture was allowed to react at room temperature for 16 hours. After the reaction was completed, the mixture was extracted with chloroform, washed with saturated saline, and then dried with magnesium sulfate. The solvent was removed with an evaporator, and the resulting viscous liquid was purified by column chromatography (developing solvent: chloroform: ethyl acetate = 90:10) to obtain 1.76g of the target compound 34 in a yield of 74.7%.

合成例16:化合物Rの合成 Synthesis Example 16: Synthesis of Compound R

Figure 0007472438000059
Figure 0007472438000059

4-ヒドロキシブチルアクリレートの代わりに、エチレングリコールモノアリルエーテルを用いた以外は合成例1と同様に行い、上記構造式で表される化合物Rを11.94g、収率70.7%で得た。 The same procedure as in Synthesis Example 1 was carried out except that ethylene glycol monoallyl ether was used instead of 4-hydroxybutyl acrylate, and 11.94 g of compound R represented by the above structural formula was obtained in a yield of 70.7%.

実施例15:化合物35の合成 Example 15: Synthesis of compound 35

Figure 0007472438000060
Figure 0007472438000060

化合物Aの代わりに、化合物Rを用いた以外は実施例1と同様に行い、上記構造式で表される目的物35を2.29g、収率25.4%で得た。 The same procedure as in Example 1 was carried out except that compound R was used instead of compound A, and 2.29 g of target compound 35 represented by the above structural formula was obtained in a yield of 25.4%.

実施例36:化合物36の合成 Example 36: Synthesis of compound 36

Figure 0007472438000061
Figure 0007472438000061

4HBAの代わりに、エチレングリコールモノアリルエーテルを用いた以外は実施例12と同様に行い、上記構造式で表される目的物36を4.54g、収率72.8%で得た。 The same procedure as in Example 12 was carried out except that ethylene glycol monoallyl ether was used instead of 4HBA, and 4.54 g of the target product 36 represented by the above structural formula was obtained in a yield of 72.8%.

実施例37:二量体の調製 Example 37: Preparation of dimers

Figure 0007472438000062
Figure 0007472438000062

攪拌装置、温度計を取り付けた200mLの3つ口フラスコに、化合物1を0.50g(1.14mmol)、酢酸エチル10g、ノルマルヘキサン30g、イオン交換水30gを入れ、撹拌させた。ついで、氷浴下、水酸化カリウム1.00g(17.82mmol)を入れた。そこに、フェリシアン化カリウム0.400g(1.21mmol)を少量ずつ加えた。加えた直後は、オレンジ、すぐに青色となった。室温下激しく撹拌させ、溶液の色が青色透明から、黄色透明溶液になった時点で反応を終了した。 0.50 g (1.14 mmol) of compound 1, 10 g of ethyl acetate, 30 g of normal hexane, and 30 g of ion-exchanged water were placed in a 200 mL three-neck flask equipped with a stirrer and thermometer, and stirred. Next, 1.00 g (17.82 mmol) of potassium hydroxide was added in an ice bath. 0.400 g (1.21 mmol) of potassium ferricyanide was added in small amounts. Immediately after addition, the solution was orange, and then quickly turned blue. The solution was stirred vigorously at room temperature, and the reaction was terminated when the solution changed from a transparent blue to a transparent yellow solution.

混合物を、分液ロートへ移し、水槽が着色しなくなるまで洗浄した。溶媒をドライアップし、目的の二量体37を0.9376g、収率94.00%で得た。 The mixture was transferred to a separatory funnel and washed until the water tank was no longer colored. The solvent was dried up to obtain 0.9376 g of the desired dimer 37 in a yield of 94.00%.

生成物について、MALDI-MS測定を行い、化合物1の二量体37が得られていることを確認した。二量体37のMALDI-MSスペクトルを図4に示す。 MALDI-MS measurement was performed on the product, and it was confirmed that dimer 37 of compound 1 was obtained. The MALDI-MS spectrum of dimer 37 is shown in Figure 4.

同様の操作を2~36の物質でも行ない、二量体38~72を得た。 The same procedure was carried out with substances 2 to 36 to obtain dimers 38 to 72.

本発明のイミダゾール化合物は、樹脂合成時の原料への溶解性と、樹脂中における二量化-開裂反応の反応性が良好であり、樹脂へのフォトクロミック性付与剤、ラジカル重合開始剤、フォトクロミック色素等として有用である。 The imidazole compound of the present invention has good solubility in the raw materials used in resin synthesis and good reactivity in the dimerization-cleavage reaction in the resin, making it useful as a photochromic agent for resins, a radical polymerization initiator, a photochromic dye, etc.

Claims (2)

式(1)で表されるイミダゾール化合物であって、
下記式(1-45)~(1-56)で表されるイミダゾール化合物
Figure 0007472438000063
[式(1)中、
Ar、フェニル基を表す。
Ar、フェニル基を表す。
Ar、2価のフェニレン基を表す。
は、-O-、又は-COO-を表す。
は、単結合又は-O-を表す。
は、置換基を有していてもよい炭素原子数1~50の2価の炭化水素基を表す。
a1は、ビニル基を表す。]
An imidazole compound represented by formula (1) :
Imidazole compounds represented by the following formulas (1-45) to (1-56) .
Figure 0007472438000063
[In formula (1),
Ar 1 represents a phenyl group.
Ar2 represents a phenyl group.
Ar3 represents a divalent phenylene group.
L1 represents —O— or —COO—.
L2 represents a single bond or --O--.
R 1 represents a divalent hydrocarbon group having 1 to 50 carbon atoms which may have a substituent.
R a1 represents a vinyl group.
請求項1記載のイミダゾール化合物の二量体。 A dimer of the imidazole compound according to claim 1 .
JP2019114713A 2019-06-20 2019-06-20 Imidazole Compounds Active JP7472438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019114713A JP7472438B2 (en) 2019-06-20 2019-06-20 Imidazole Compounds
JP2023120644A JP2023139199A (en) 2019-06-20 2023-07-25 imidazole compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114713A JP7472438B2 (en) 2019-06-20 2019-06-20 Imidazole Compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023120644A Division JP2023139199A (en) 2019-06-20 2023-07-25 imidazole compound

Publications (2)

Publication Number Publication Date
JP2021001129A JP2021001129A (en) 2021-01-07
JP7472438B2 true JP7472438B2 (en) 2024-04-23

Family

ID=73994810

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019114713A Active JP7472438B2 (en) 2019-06-20 2019-06-20 Imidazole Compounds
JP2023120644A Pending JP2023139199A (en) 2019-06-20 2023-07-25 imidazole compound

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023120644A Pending JP2023139199A (en) 2019-06-20 2023-07-25 imidazole compound

Country Status (1)

Country Link
JP (2) JP7472438B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094803A (en) 2006-10-16 2008-04-24 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its laminate
JP2011022569A (en) 2009-06-18 2011-02-03 Konica Minolta Business Technologies Inc Toner
CN101982476A (en) 2010-10-29 2011-03-02 湘潭大学 Vinyl polymer with absorbancy-temperature response characteristic
WO2011070942A1 (en) 2009-12-11 2011-06-16 三菱瓦斯化学株式会社 Photochromic material
JP2012093486A (en) 2010-10-26 2012-05-17 Konica Minolta Business Technologies Inc Toner, method for manufacturing toner, and method for forming image
WO2018047681A1 (en) 2016-09-07 2018-03-15 学校法人東京理科大学 Novel compound, composition, photochromic material, and photo-interfacial property-controlling agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558645A (en) * 1968-07-08 1971-01-26 Sandoz Ag 2-(4-(4',5-diphenyl - 2 - imidazolyl)-phenoxy) lower aliphatic monocarboxylic acids
SE7601713L (en) * 1975-03-03 1976-09-06 Merck & Co Inc NEW, SUBSTITUTED IMIDAZOLES
JPH01117867A (en) * 1987-10-30 1989-05-10 Fujirebio Inc Imidazole derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094803A (en) 2006-10-16 2008-04-24 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its laminate
JP2011022569A (en) 2009-06-18 2011-02-03 Konica Minolta Business Technologies Inc Toner
WO2011070942A1 (en) 2009-12-11 2011-06-16 三菱瓦斯化学株式会社 Photochromic material
JP2012093486A (en) 2010-10-26 2012-05-17 Konica Minolta Business Technologies Inc Toner, method for manufacturing toner, and method for forming image
CN101982476A (en) 2010-10-29 2011-03-02 湘潭大学 Vinyl polymer with absorbancy-temperature response characteristic
WO2018047681A1 (en) 2016-09-07 2018-03-15 学校法人東京理科大学 Novel compound, composition, photochromic material, and photo-interfacial property-controlling agent

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Chakraborty, Mithun et al,Amberlite IR 120H+ Catalyzed N-C/C-N Coupled Cyclization Strategy to Give Imidazoles: Design and Fabrication of Organic Nanomaterial with AFM Imaging,ChemistrySelect,2017年,2(1),,241-245
Marzouk, Adel A. et al,New Method for Synthesis of Multi-substituted Imidazoles,Journal of Heterocyclic Chemistry,2018年,55(7),,1775-1782
STN Interntional, file CHEMCATS,26 Mar 2001 CAS Registry No. 328961-86-0、328961-87-1
Verstraeten, F. et al,Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals,Chemical Communications (Cambridge, United Kingdom) ,2016年,52(55),,8608-8611
Zhang, Ying et al,An ESIPT fluorescent dye based on HBI with high quantum yield and large Stokes shift for selective detection of Cys,Journal of Materials Chemistry B: Materials for Biology and Medicine,2014年,2(26),,4159-4166

Also Published As

Publication number Publication date
JP2021001129A (en) 2021-01-07
JP2023139199A (en) 2023-10-03

Similar Documents

Publication Publication Date Title
CN102712815B (en) Visible light absorbers for ophthalmic lens materials
US7939682B2 (en) Fluorine-containing adamantane derivative, fluorine-containing adamantane derivative having polymerizable group, and resin composition containing same
US11078180B2 (en) Cured product, optical member, lens, compound, and curable composition
JP6955581B2 (en) Lens Adhesives, Bonded Lenses, and Imaging Modules
KR20050021910A (en) High refractive index, uv-curable monomers and coating compositions prepared therefrom
JP6117653B2 (en) Multifunctional (meth) acrylate with fluorene skeleton
EP3137930B1 (en) Bicarbazole compound, photo-curable composition, cured produc thereof, curable composition for plastic lens, and plastic lens
JP7472438B2 (en) Imidazole Compounds
US20200231715A1 (en) Amide and imide photoinitiators
US20210214321A1 (en) Novel reactive benzotriazole uv absorber and use thereof
JP6741149B2 (en) Sulfonic acid, carboxylic acid or their salts
US10072113B2 (en) Composition, curable composition, production method therefor, and cured product
KR20140103447A (en) Benzylidene phthalimide monomer, method for preparing the same, polymer comprising the same, photoalignment film comprising the same and retardation film comprising the same
TW201546042A (en) (meth)acrylic acid ester compound and production method therefor
JP2007131780A (en) 2,3-(bis)arylthio-1,4-naphthalenediol di(2'-alkyl)acrylate compounds, method for producing the same, polymer obtained from the di(2'-alkyl)acrylate compounds and polymer for optical part
JP2009280546A (en) New di(meth)acrylate compound having 9,10-ethanoanthracene skeleton, and method for producing the same
JP5679328B2 (en) 9,10-2 substituted [(meth) acryloyloxy] -1,2,3,4-tetrahydro-1,4-methanoanthracene compound, production method and polymer thereof
JP2010275234A (en) Novel epoxy acrylate compound having anthracene dimer skeleton, and method for manufacturing the same
JP2005255671A (en) (meth)acryloyl group-containing oxetane compound and method for producing the same
TWI332952B (en)
KR20160117723A (en) Curable compound with high refractive index, adhesive composition for optical member comprising the same and composition for optical sheet comprising the same
JP6815603B2 (en) Dinaftthiophene derivative and its manufacturing method
KR101737195B1 (en) Curable compound with high refractive index, adhesive composition for optical member comprising the same and composition for optical sheet comprising the same
US20230265058A1 (en) Carboxylic acid or carboxylic acid ester compound having fused-ring structure, method for producing the same, and use of compound
CN111065691A (en) Dye compound having polymerizable group and polymer containing the same as monomer unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150