JP7471523B2 - Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, and train abnormality monitoring system - Google Patents

Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, and train abnormality monitoring system Download PDF

Info

Publication number
JP7471523B2
JP7471523B2 JP2023526566A JP2023526566A JP7471523B2 JP 7471523 B2 JP7471523 B2 JP 7471523B2 JP 2023526566 A JP2023526566 A JP 2023526566A JP 2023526566 A JP2023526566 A JP 2023526566A JP 7471523 B2 JP7471523 B2 JP 7471523B2
Authority
JP
Japan
Prior art keywords
rolling bearing
abnormality
detection member
contact
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023526566A
Other languages
Japanese (ja)
Other versions
JPWO2023166567A1 (en
Inventor
淳 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023166567A1 publication Critical patent/JPWO2023166567A1/ja
Priority to JP2023172969A priority Critical patent/JP2024003272A/en
Priority to JP2024035836A priority patent/JP2024072845A/en
Application granted granted Critical
Publication of JP7471523B2 publication Critical patent/JP7471523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本開示は、転がり軸受の異常を診断する転がり軸受の異常診断装置、列車異常診断システム及び転がり軸受の異常診断方法に関するものである。 The present disclosure relates to a rolling bearing abnormality diagnosis device for diagnosing abnormalities in rolling bearings, a train abnormality diagnosis system, and a rolling bearing abnormality diagnosis method.

回転機械で使用される転がり軸受は、長期連続使用によって保持器と転動体とが接触する接触部分に損傷が発生することがある。この損傷が発生した場合、保持器の振れ回りが起こり、さらに損傷が進行すれば軸受の大規模な故障へと繋がるおそれがある。大規模な故障を事前に発見するに、回転機械は一定期間使用した後に、軸受やその他の回転部品について、異常の有無が定期的に検査される。回転部品の異常の有無の検査は相当な時間、工数、コストがかかる問題があった。 Rolling bearings used in rotating machinery can sometimes become damaged at the contact points where the cage and rolling elements come into contact after long periods of continuous use. When this damage occurs, the cage begins to whirl, and if the damage progresses further, it can lead to a major failure of the bearing. To detect major failures before they occur, rotating machinery is regularly inspected for abnormalities in bearings and other rotating parts after a certain period of use. Inspecting rotating parts for abnormalities can be problematic, as it takes a considerable amount of time, effort, and cost.

このため、従来、保持器外周面に径方向に向かって軸受構成部品と異なる材料を使用した複数の凸部を設けることによって、凸部と外輪の接触に起因する振動の検出と潤滑油中の凸部の材料の有無を検出し異常を診断することが行われていた(特許文献1)。For this reason, in the past, multiple protrusions made of a material different from the bearing components were provided radially on the outer peripheral surface of the cage to detect vibrations caused by contact between the protrusions and the outer ring and to detect the presence or absence of the material of the protrusions in the lubricating oil, thereby diagnosing abnormalities (Patent Document 1).

また、保持器外周面と外輪の内周面との間の距離の変化量を検出する非接触式レーザー変位計を用いて、上記距離が予め設定した閾値を越えたとき、保持器が異常であると判断することが開示される(特許文献2)。It is also disclosed that a non-contact laser displacement meter is used to detect the amount of change in the distance between the outer peripheral surface of the cage and the inner peripheral surface of the outer ring, and when the distance exceeds a preset threshold value, it is determined that the cage is abnormal (Patent Document 2).

特開2014-066311号JP 2014-066311 A 特開2014-066622号JP 2014-066622 A

従来は、振動の解析と摩耗粉の分析作業とを行うため時間を要する、非接触式変位計を用いても介在する油や環境により正確な判断ができないという問題があった。 In the past, analyzing vibrations and wear debris required time, and even when using non-contact displacement meters, there was the problem that accurate judgments could not be made due to the presence of oil and the environment.

本開示は、上記のような問題点を解決するためになされたものであり、実稼働状態で迅速性、簡易性、正確性、形状制約、強度面を改善した異常診断装置を得ることを目的としている。 The present disclosure has been made to solve the problems described above, and aims to obtain an abnormality diagnosis device that has improved speed, simplicity, accuracy, shape constraints, and strength under actual operating conditions.

本開示の1つの発明は、外輪と、外輪の内側に設けられた内輪と、外輪と内輪の間に転動自在に設けられた複数の転動体と、転動体が隣接する転動体との間隔を保ちつつ複数の転動体を保持する保持器を備える転がり軸受の異常を検知する転がり軸受の異常検知装置において、外輪の内周面または内輪の外周面に沿って転がり軸受の回転軸方向の一方の第一側の検知部材および第一側の検知部材に電気的絶縁された転がり軸受の回転軸方向の他方の第二側の検知部材と、第一側の検知部材および第二側の検知部材の間の電気的特性を計測した計測情報を出力する計測部とを備え、第一側および第二側の前記検知部材は、保持器が摩耗した際に前記保持器と接触するものである。 One invention disclosed herein is an abnormality detection device for a rolling bearing that detects abnormalities in a rolling bearing comprising an outer ring, an inner ring provided inside the outer ring, a plurality of rolling elements provided between the outer ring and the inner ring so as to be able to roll freely, and a retainer that holds the plurality of rolling elements while maintaining a distance between the rolling elements and adjacent rolling elements, the device comprising a first side detection member on one side in the axial direction of the rolling bearing along the inner surface of the outer ring or the outer surface of the inner ring, and a second side detection member on the other side in the axial direction of the rolling bearing electrically insulated from the first side detection member, and a measurement unit that outputs measurement information obtained by measuring the electrical characteristics between the first side detection member and the second side detection member, and the first and second side detection members come into contact with the retainer when the retainer is worn.

本開示によれば、保持器摩耗が進行し保持器が検知部材と接触し導通することで得られる電気的特性またはこれから求まる接触情報によって、保持器摩耗検知が可能になる。そのため、解析、分析作業を無くなり省時間化ができること、センサー類を設置するための軸受への精密な加工がないため簡素化することができる事、形状制約がなくなる事、強度低下を防ぐことができる事、また、グリースや油の影響受けないため、異常診断の正確性が上がる事、といった従来にない顕著な効果を奏するものである。According to the present disclosure, it is possible to detect cage wear by the electrical characteristics obtained when the cage comes into contact with the detection member and conducts electricity as the cage wear progresses, or by contact information obtained from this. This provides unprecedented and remarkable benefits, such as time savings by eliminating analysis work, simplification because precision machining of the bearing is not required to install sensors, elimination of shape restrictions, prevention of strength reduction, and increased accuracy of abnormality diagnosis because it is not affected by grease or oil.

本開示の実施の形態1の転がり軸受を示す回転軸に垂直な断面での断面図である。1 is a cross-sectional view showing a rolling bearing according to a first embodiment of the present disclosure, taken along a cross section perpendicular to a rotation axis. 本開示の実施の形態1の転がり軸受の回転軸に平行な断面での部分断面図並びにこの図を用いた転がり軸受の異常検知装置および異常診断装置の構成図である。1 is a partial cross-sectional view of a rolling bearing according to a first embodiment of the present disclosure, taken along a cross section parallel to the rotation axis thereof, and a configuration diagram of an abnormality detection device and an abnormality diagnosis device for the rolling bearing using this view. FIG. 本開示の実施の形態1の転がり軸受の保持器の上面図の拡大図である。FIG. 2 is an enlarged top view of a retainer of the rolling bearing according to the first embodiment of the present disclosure. 本開示の実施の形態1の転がり軸受の回転軸に平行な断面での検知部材の部分断面図である。2 is a partial cross-sectional view of a detection member in a cross section parallel to the rotation axis of the rolling bearing according to the first embodiment of the present disclosure. FIG. 本開示の実施の形態1の転がり軸受の異常検知装置の構成図である。1 is a configuration diagram of a rolling bearing abnormality detection device according to a first embodiment of the present disclosure; 本開示の実施の形態1の転がり軸受の異常診断装置の構成図である。1 is a configuration diagram of a rolling bearing abnormality diagnosis device according to a first embodiment of the present disclosure; 本開示の実施の形態1の転がり軸受および異常検知装置を示す回転軸に垂直な断面での断面図である。1 is a cross-sectional view showing a rolling bearing and an abnormality detection device according to a first embodiment of the present disclosure, taken along a cross section perpendicular to a rotation axis. 本開示の実施の形態1の転がり軸受および別の異常検知装置を示す回転軸に垂直な断面での断面図である。1 is a cross-sectional view perpendicular to a rotation axis showing a rolling bearing according to a first embodiment of the present disclosure and another abnormality detection device. 本開示の実施の形態1の転がり軸受および別の異常検知装置を示す回転軸に垂直な断面での断面図である。1 is a cross-sectional view perpendicular to a rotation axis showing a rolling bearing according to a first embodiment of the present disclosure and another abnormality detection device. 本開示の実施の形態2の転がり軸受および異常検知装置を示す回転軸に垂直な断面での断面図である。11 is a cross-sectional view showing a rolling bearing and an abnormality detection device according to a second embodiment of the present disclosure, taken along a cross section perpendicular to a rotation axis. FIG. 本開示の実施の形態2の転がり軸受および別の異常検知装置を示す回転軸に垂直な断面である。11 is a cross section perpendicular to a rotation axis showing a rolling bearing and another abnormality detection device according to a second embodiment of the present disclosure. 本開示の実施の形態3の列車異常監視システムの構成の例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a train abnormality monitoring system according to a third embodiment of the present disclosure. 本開示の実施の形態3の別の列車異常監視システムの構成の例を示す図である。A figure showing an example of the configuration of another train abnormality monitoring system according to embodiment 3 of the present disclosure. 本開示の実施の形態3の別の列車異常監視システムの構成の例を示す図である。A figure showing an example of the configuration of another train abnormality monitoring system according to embodiment 3 of the present disclosure. 本開示の実施の形態3の別の列車異常監視システムの構成の例を示す図である。A figure showing an example of the configuration of another train abnormality monitoring system according to embodiment 3 of the present disclosure.

本開示の実施形態について、図面を参照しながら説明する。ただし、本発明が以下に記載の形態に限定されるものではなく、適宜、組合せ、変更することができる。また、図面は、説明を分かりやすくするため、適宜、簡略化されている。 The embodiments of the present disclosure will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below, and can be combined and modified as appropriate. The drawings have also been simplified as appropriate to make the explanation easier to understand.

実施の形態1.
本実施の形態に係る転がり軸受の異常検知装置、異常診断装置について、図1から6を用いて説明する。
Embodiment 1.
An abnormality detection device and an abnormality diagnosis device for a rolling bearing according to the present embodiment will be described with reference to Figs.

本実施の形態の転がり軸受1の異常検知装置100は、外輪4と、外輪4(固定輪と捉えることもできる)の内側に設けられた内輪7(回転輪と捉えることもできる)と、外輪4と内輪7との間に転動自在に設けられた複数の転動体8と、転動体8が隣接する転動体との間隔を保ちつつ複数の転動体8を保持する保持器9を備える転がり軸受1の異常を検知するものである。ここで、外輪4と内輪7とは、同一の回転軸回りに相対的に回転し、複数の転動体8は、外輪4の内周面2側の外輪軌道面3と、内輪7の外周面5側の内輪軌道面6との間を転がり自転しながら、上記同一の回転軸回りに公転する。The abnormality detection device 100 for the rolling bearing 1 of this embodiment detects abnormalities in the rolling bearing 1, which includes an outer ring 4, an inner ring 7 (which can also be considered as a rotating ring) provided inside the outer ring 4 (which can also be considered as a fixed ring), a plurality of rolling elements 8 provided to be freely rollable between the outer ring 4 and the inner ring 7, and a retainer 9 that holds the plurality of rolling elements 8 while maintaining a distance between the rolling elements 8 and adjacent rolling elements. Here, the outer ring 4 and the inner ring 7 rotate relatively around the same rotation axis, and the plurality of rolling elements 8 revolve around the same rotation axis while rolling and rotating between the outer ring raceway surface 3 on the inner peripheral surface 2 side of the outer ring 4 and the inner ring raceway surface 6 on the outer peripheral surface 5 side of the inner ring 7.

転動体8と接触する外輪4の内周面2が、外輪軌道面3であり、転動体8と接触する内輪7の外周面5が、内輪軌道面6である。以下、上記同一の回転軸を回転軸と呼び、回転軸の軸方向を軸方向、回転軸の中心軸から半径方向を径方向、回転軸回りに回転させたときの回転方向を周方向と呼ぶ。The inner peripheral surface 2 of the outer ring 4 that contacts the rolling elements 8 is the outer ring raceway surface 3, and the outer peripheral surface 5 of the inner ring 7 that contacts the rolling elements 8 is the inner ring raceway surface 6. Hereinafter, the same rotation axis as above will be referred to as the rotation axis, the axial direction of the rotation axis will be referred to as the axial direction, the radial direction from the central axis of the rotation axis will be referred to as the radial direction, and the direction of rotation when rotated around the rotation axis will be referred to as the circumferential direction.

転がり軸受の異常検知装置100は、外輪4の内周面2または内輪7の外周面5に沿って転がり軸受1の回転軸方向の一方の第一側および他方の第二側に電気的絶縁されて設けられる検知部材15と、第一側の検知部材および第二側の前記検知部材の間の電気的特性を計測した計測情報を出力する計測部16とを備える。ここで、第一側および第二側の検知部材は、保持器9が摩耗した際に保持器9と接触するように構成しても良い。なお、検知部材15は、外輪4または内輪7に嵌合するということもできる。 The rolling bearing abnormality detection device 100 includes detection members 15 provided electrically insulated on a first side on one side and a second side on the other side in the rotational axis direction of the rolling bearing 1 along the inner peripheral surface 2 of the outer ring 4 or the outer peripheral surface 5 of the inner ring 7, and a measurement unit 16 that outputs measurement information obtained by measuring an electrical characteristic between the detection member on the first side and the detection member on the second side. Here, the detection members on the first side and the second side may be configured to come into contact with the cage 9 when the cage 9 is worn. It can also be said that the detection member 15 is fitted into the outer ring 4 or the inner ring 7.

図5には、転がり軸受の異常検知装置100の構成図を示す。転がり軸受の異常検知装置100は、検知部材15と、計測部16を備える。転がり軸受の異常検知装置100の第一側および第二側の検知部材は、保持器9が摩耗した際に保持器9と接触する。電気的に絶縁されている検知部材15の第一側および第二側が、保持器と接触すると、電気的に導通するから、第一側の検知部材および第二側の前記検知部材の間の電気的特性を計測する計測部16は、計測した計測情報を出力する。計測部16が出力する計測情報は、検知部材15と保持器とが接触する前と、接触した後とで、変化するから、計測部16が出力する計測情報を受け取る側で、変化を読み取とり、保持器9の摩耗を検知する。 5 shows a configuration diagram of the rolling bearing abnormality detection device 100. The rolling bearing abnormality detection device 100 includes a detection member 15 and a measurement unit 16. The detection members on the first and second sides of the rolling bearing abnormality detection device 100 come into contact with the cage 9 when the cage 9 is worn. When the electrically insulated first and second sides of the detection member 15 come into contact with the cage, they become electrically conductive, and the measurement unit 16, which measures the electrical characteristics between the detection member on the first side and the detection member on the second side, outputs the measured measurement information. The measurement information output by the measurement unit 16 changes before and after the detection member 15 comes into contact with the cage, so the side that receives the measurement information output by the measurement unit 16 reads the change and detects wear of the cage 9.

図6には、転がり軸受の異常診断装置200の構成図を示す。転がり軸受の異常診断装置200は、上記の転がり軸受の異常検知装置100と、診断部19とを備える。
転がり軸受の異常診断装置200は、転がり軸受の異常検知装置100の計測部16が出力する計測情報を受け取り、受け取った計測情報から転がり軸受1の状況を判断する診断部19を備える。
6 shows a configuration diagram of the rolling bearing abnormality diagnosis device 200. The rolling bearing abnormality diagnosis device 200 includes the above-mentioned rolling bearing abnormality detection device 100 and a diagnosis unit 19.
The rolling bearing abnormality diagnostic device 200 includes a diagnostic unit 19 that receives measurement information output by the measurement unit 16 of the rolling bearing abnormality detection device 100 and judges the condition of the rolling bearing 1 from the received measurement information.

図1において、転がり軸受の異常検知装置100、および転がり軸受の異常診断装置200の適用対象の例となる外側と内側が相対的に回転する回転部品について説明する。この例では、回転部品となる転がり軸受1は、円筒ころ軸受1である。図1は、転がり軸受1を回転軸に垂直な断面での断面図を示す。なお、断面は、保持器9の軸方向外側の円環部10の中心をとおる面で断面図を作成している。以下、同様。 In Figure 1, a rotating part in which the outside and inside rotate relatively is described as an example of an application of the rolling bearing abnormality detection device 100 and the rolling bearing abnormality diagnosis device 200. In this example, the rolling bearing 1, which is the rotating part, is a cylindrical roller bearing 1. Figure 1 shows a cross-sectional view of the rolling bearing 1 in a cross section perpendicular to the axis of rotation. Note that the cross-section is created on a plane passing through the center of the annular portion 10 on the axially outer side of the retainer 9. The same applies below.

円筒ころ軸受1は、外輪4と、内輪7と、転動体8となる円筒ころ8と、複数の円筒ころ8を転動自在に保持する保持器9を備える。円筒ころ軸受1の外輪4の内周面2に外輪軌道面3が形成される、内輪7の外周面5に内輪軌道面6が形成される。外輪軌道面3と内輪軌道面6との間に、複数の円筒ころ8が、転動自在に配置される。外輪軌道面3と内輪軌道面6との間は、グリースなどの潤滑油によって内部潤滑される。 Cylindrical roller bearing 1 comprises an outer ring 4, an inner ring 7, cylindrical rollers 8 which serve as rolling elements 8, and a cage 9 which holds the multiple cylindrical rollers 8 so that they can roll freely. An outer ring raceway surface 3 is formed on the inner peripheral surface 2 of the outer ring 4 of cylindrical roller bearing 1, and an inner ring raceway surface 6 is formed on the outer peripheral surface 5 of the inner ring 7. Multiple cylindrical rollers 8 are arranged so that they can roll freely between the outer ring raceway surface 3 and the inner ring raceway surface 6. The space between the outer ring raceway surface 3 and the inner ring raceway surface 6 is internally lubricated with a lubricating oil such as grease.

上記構造によって、円筒ころ軸受1は、外輪4が一方の部品と接続し、内輪7が他方の部品と接続して、外輪4と内輪7が、回転軸回りに相対的に回転可能な軸受となる。図1、2、4では、外輪4側が固定されて、内輪7側が回転する。または、逆に、内輪7側が固定され、外輪4側が回転しても良い。これに限らず、相対的に回転することもできる。内輪7側が固定され固定輪となる例を図7に示す。図7の例は、外輪4が回転輪、内輪7が固定輪となる。 With the above structure, the cylindrical roller bearing 1 has the outer ring 4 connected to one component and the inner ring 7 connected to the other component, and the outer ring 4 and inner ring 7 become a bearing that can rotate relatively around the rotation axis. In Figures 1, 2, and 4, the outer ring 4 side is fixed and the inner ring 7 side rotates. Alternatively, conversely, the inner ring 7 side may be fixed and the outer ring 4 side rotates. This is not limited to this, and they can also rotate relatively. An example in which the inner ring 7 side is fixed and serves as a fixed ring is shown in Figure 7. In the example in Figure 7, the outer ring 4 is a rotating ring and the inner ring 7 is a fixed ring.

保持器9は、回転軸回りに円環状の一対の円環部10と、周方向に所定の間隔で設けられ、一対の円環部10を軸方向に連結する複数(図1の例では16個)の柱部11とを有する。保持器9は、一対の円環部10と複数の柱部11とによって画成される複数のポケット部12(図1では16個)が、円筒ころ8をそれぞれ保持する。The cage 9 has a pair of annular ring portions 10 that are annular around the rotation axis, and a plurality of column portions 11 (16 in the example of FIG. 1) that are arranged at a predetermined interval in the circumferential direction and connect the pair of annular portions 10 in the axial direction. The cage 9 has a plurality of pocket portions 12 (16 in FIG. 1) defined by the pair of annular portions 10 and the plurality of column portions 11, which each hold a cylindrical roller 8.

図3は、保持器9を外周側から内周側に見た拡大図を示す。上下の円環部10と隣接する2つの柱部11の間がポケット部12であり、この空間に転動体8(円筒ころ8)が、収まる。転動体8(円筒ころ8)は、回転軸の径方向は、外輪軌道面3と内輪軌道面6とに対して径方向の動きが規定され周方向に転がる。また、各転動体8(円筒ころ8)は、周方向に隣接する転動体8(円筒ころ8)と接触しないように、保持器9によって保持される。 Figure 3 shows an enlarged view of the retainer 9 viewed from the outer periphery to the inner periphery. Between the upper and lower annular portions 10 and the two adjacent column portions 11 is a pocket portion 12, and the rolling elements 8 (cylindrical rollers 8) fit into this space. The rolling elements 8 (cylindrical rollers 8) roll in the circumferential direction of the rotating shaft, with their radial movement being regulated relative to the outer ring raceway surface 3 and the inner ring raceway surface 6. Furthermore, each rolling element 8 (cylindrical roller 8) is held by the retainer 9 so that it does not come into contact with adjacent rolling elements 8 (cylindrical rollers 8) in the circumferential direction.

保持器9は、転動体8と周方向の同じ向きに回転し、径方向の外輪軌道面3と内輪軌道面6との間、および周方向の転動体8(円筒ころ8)との間は、常に接触するのではなく、余裕がある。保持器9は、転がり軸受1が回転することによって、摩耗することが知られている。摩耗が発生すると、初期より保持器9が径方向または周方向に大きく動くになり、転動体8と衝突して損傷することもある。The cage 9 rotates in the same circumferential direction as the rolling elements 8, and there is a margin between the outer ring raceway surface 3 and the inner ring raceway surface 6 in the radial direction, and between the rolling elements 8 (cylindrical rollers 8) in the circumferential direction, rather than being in constant contact. It is known that the cage 9 wears out as the rolling bearing 1 rotates. When wear occurs, the cage 9 moves significantly in the radial or circumferential direction from the beginning, and may collide with the rolling elements 8 and be damaged.

図1、2において、検知部材15は、軸方向に絶縁された2つの導体であり、いずれも外輪4の内周面2に設けられる。検知部材15は、2導体を絶縁材料で接続して一体としても良いし、2導体が別体となっても良い。 In Figures 1 and 2, the detection member 15 is two conductors insulated in the axial direction, both of which are provided on the inner peripheral surface 2 of the outer ring 4. The detection member 15 may be formed as an integrated unit by connecting the two conductors with an insulating material, or the two conductors may be separate bodies.

例えば、検知部材15は、軸方向の一方側と他方側とに分けて構成することができる。この場合、軸方向の一方側と他方側それぞれの側で、外輪4の内周面2に沿う形状として、外輪4の内周面2に軸方向外側から中心側へ嵌合させて、組み立てることができる。また、検知部材15を箔またはシート状に構成して、外輪4の内周面2に貼り付けるようにしても良い。For example, the detection member 15 can be configured separately on one side and the other side in the axial direction. In this case, the detection member 15 can be configured to have a shape that fits the inner surface 2 of the outer ring 4 on each of the one side and the other side in the axial direction, and assembled by fitting into the inner surface 2 of the outer ring 4 from the outside in the axial direction to the center. The detection member 15 may also be configured in a foil or sheet shape and attached to the inner surface 2 of the outer ring 4.

図7の例は、外輪4が回転輪、内輪7が固定輪となる。この例では、検知部材15は、軸方向に絶縁された2つの導体であり、いずれも内輪7の外周にあたる内輪軌道面6に設けられる。上記と同様に検知部材15は、2つの導体を絶縁材料で接続して一体としても良いし、2導体が別体で、それぞれが外輪4または内輪7に接しても良い。In the example of Figure 7, the outer ring 4 is the rotating ring and the inner ring 7 is the fixed ring. In this example, the detection member 15 is two conductors insulated in the axial direction, both of which are provided on the inner ring raceway surface 6 that corresponds to the outer periphery of the inner ring 7. As above, the detection member 15 may be formed as one unit by connecting the two conductors with an insulating material, or the two conductors may be separate and each may be in contact with the outer ring 4 or the inner ring 7.

図7の例でも、検知部材15は、軸方向の一方側と他方側とに分けて構成することができる。この場合、軸方向の一方側と他方側それぞれの側で、内輪7の外周面5に沿う形状として、内輪7の外周面5に軸方向外側から中心側へ嵌合させて、組み立てることができる。また、検知部材15を箔またはシート状に構成して、内輪7の外周面5に貼り付けるようにしても良い。7, the detection member 15 can also be configured separately on one side and the other side in the axial direction. In this case, the detection member 15 can be configured to have a shape that fits the outer peripheral surface 5 of the inner ring 7 on each of the one side and the other side in the axial direction, and can be assembled by fitting it onto the outer peripheral surface 5 of the inner ring 7 from the outside in the axial direction to the center. The detection member 15 may also be configured in a foil or sheet shape and attached to the outer peripheral surface 5 of the inner ring 7.

検知部材15は、設ける外輪4または内輪7が導体である場合には、検知部材15を外輪4または内輪7と電気的に絶縁する。これには、検知部材15の外輪4または内輪7との接続面に絶縁シートを貼り付けるようにして絶縁しても良いし、検知部材15の外輪4または内輪7との接合面または、外輪4または内輪7の検知部材15の接合面に絶縁材を塗布しても良い。 When the outer ring 4 or inner ring 7 is a conductor, the detection member 15 is electrically insulated from the outer ring 4 or inner ring 7. This can be achieved by attaching an insulating sheet to the connection surface of the detection member 15 with the outer ring 4 or inner ring 7, or by applying an insulating material to the joint surface of the detection member 15 with the outer ring 4 or inner ring 7 or the joint surface of the outer ring 4 or inner ring 7 with the detection member 15.

検知部材15は、外輪4に設ける場合には、外輪4の内周面2に沿うように嵌合する検知部材嵌合部14の他、外輪4の軸方向外側の側面に沿う検知部材側面部13を設けても良い。また、検知部材15を内輪7に設ける場合には、内輪7の外周面5に沿うように嵌合する検知部材嵌合部14の他、内輪7の軸方向外側の側面に沿う検知部材側面部13を設けても良い。検知部材嵌合部14だけでなく、検知部材側面部13を検知部材15に持たせることで、取り付けしやすく、検知部材15の強度を高めることもできる。When the detection member 15 is provided on the outer ring 4, in addition to the detection member fitting portion 14 that fits along the inner peripheral surface 2 of the outer ring 4, a detection member side portion 13 that fits along the axially outer side surface of the outer ring 4 may be provided. When the detection member 15 is provided on the inner ring 7, in addition to the detection member fitting portion 14 that fits along the outer peripheral surface 5 of the inner ring 7, a detection member side portion 13 that fits along the axially outer side surface of the inner ring 7 may be provided. By providing the detection member 15 with not only the detection member fitting portion 14 but also the detection member side portion 13, it is easier to install and the strength of the detection member 15 can also be increased.

検知部材15の軸方向に絶縁された2つの導体は、外輪4または内輪7の周方向の全周に亘って設けられても良いし、周方向の一部に設けられても良い。ただし、検知部材15が存在する周方向の位置では、軸方向の一方側と他方側の両側に検知部材15の導体があることが好ましい。これは、保持器9が摩耗したときに、検知部材15の2つの導体が、同時に保持器9に接触するようにするためである。軸方向に2つの導体が存在すれば、同時に保持器9に接触して、導通が生じることになる。The two axially insulated conductors of the detection member 15 may be provided around the entire circumference of the outer ring 4 or inner ring 7, or may be provided on a portion of the circumference. However, at the circumferential position where the detection member 15 is present, it is preferable that the conductors of the detection member 15 are present on both sides in the axial direction. This is so that when the retainer 9 wears, the two conductors of the detection member 15 come into contact with the retainer 9 at the same time. If there are two conductors in the axial direction, they will come into contact with the retainer 9 at the same time, resulting in electrical continuity.

図8は、検知部材15が、外輪4の内周面2に沿って全周に設けられる例である。外輪4を固定輪とし、内輪7を回転輪とした場合、図8に示すように、固定輪である外輪4には、検知部材側面部13と検知部材嵌合部14とで構成される検知部材15が内周面2に沿って嵌合されている。ここで、検知部材15は、軸方向の一方側と他方側に絶縁された環状の部品となる。検知部材15は、軸方向の一方側と他方側に分かれて別体として構成され、検知部材15の一方側と他方側が、外輪4の内周面2の側面両側(軸方向外側)から軸方向(軸方向の軸受中心向き)に向かって嵌合するようにしても良い。 Figure 8 shows an example in which the detection member 15 is provided all around the inner circumferential surface 2 of the outer ring 4. When the outer ring 4 is a fixed ring and the inner ring 7 is a rotating ring, as shown in Figure 8, the outer ring 4, which is a fixed ring, is fitted with a detection member 15 consisting of a detection member side portion 13 and a detection member fitting portion 14 along the inner circumferential surface 2. Here, the detection member 15 is an annular part insulated on one side and the other side in the axial direction. The detection member 15 may be configured as a separate body divided into one side and the other side in the axial direction, and one side and the other side of the detection member 15 may be fitted from both sides of the side of the inner circumferential surface 2 of the outer ring 4 (outside in the axial direction) toward the axial direction (towards the center of the bearing in the axial direction).

図9は、検知部材15が、内輪7の外周面5に沿って全周に設けられる例である。外輪4を回転輪とし、内輪7を固定輪と場合、図9に示すように、固定輪である内輪7には、検知部材側面部13と検知部材嵌合部14とで構成される検知部材15が外周面5に沿って嵌合されている。ここで、検知部材15は、軸方向の一方側と他方側に絶縁された環状の部品となる。検知部材15は、軸方向の一方側と他方側に分かれて別体として構成され、検知部材15の一方側と他方側が、内輪7の外周面5の側面両側(軸方向外側)から軸方向(軸方向の軸受中心向き)に向かって嵌合するようにしても良い。 Figure 9 shows an example in which the detection member 15 is provided all around the outer circumferential surface 5 of the inner ring 7. When the outer ring 4 is a rotating ring and the inner ring 7 is a fixed ring, as shown in Figure 9, the detection member 15, which is composed of the detection member side portion 13 and the detection member fitting portion 14, is fitted along the outer circumferential surface 5 of the inner ring 7, which is a fixed ring. Here, the detection member 15 is an annular part that is insulated on one side and the other side in the axial direction. The detection member 15 may be configured as a separate body divided into one side and the other side in the axial direction, and one side and the other side of the detection member 15 may be fitted from both sides of the outer circumferential surface 5 of the inner ring 7 (outside in the axial direction) toward the axial direction (towards the center of the bearing in the axial direction).

図8、図9のように検知部材15を外輪4または内輪7の全周に亘って設けることによって、回転方向によらず、保持器9が摩耗したときに、検知部材15の2つの導体が、同時に保持器9に接触することになり、確実に摩耗を検知することができる。 By providing the detection member 15 around the entire circumference of the outer ring 4 or the inner ring 7 as shown in Figures 8 and 9, when the retainer 9 wears, the two conductors of the detection member 15 come into contact with the retainer 9 simultaneously, regardless of the direction of rotation, so that wear can be reliably detected.

検知部材15は、転がり軸受1の回転中心を中心として前記転動体に最も力がかる位置から転動体8が回転する向きに180度回転させた方向までの範囲に少なくとも一部が配置される。または、検知部材15は、転がり軸受1の回転中心を中心として転動体8に最も力がかる位置の方向を0度とすると、180度以上360度未満の範囲に配置される。
検知部材15が、外輪4の周方向の一部に設けられる場合、少なくとも、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置から、外輪4を固定輪とした場合の内輪7の(絶対座標系における転動体8の)回転方向に回転角度を見たときに、内輪7の回転が反時計回りの場合、135°を中心にプラスマイナス90°以上の範囲に設けられると良い。または、内輪7の回転が時計回りの場合、225°を中心にプラスマイナス90°以上の範囲に設けられると良い。いずれの場合も、検知部材15が、周方向180°以上に設けられることになる。言い換えれば、基準の周方向位置から、回転方向に回転角度を見たときに、内輪7の回転が反時計回りの場合、135°を中心に少なくともプラスマイナス90°の範囲に設けられると良い。または、内輪7の回転が時計回りの場合、225°を中心に少なくともプラスマイナス90°の範囲に設けられると良い。さらに具体的には、検知部材15が設けられる範囲は、上記の中心からプラスマイナス90°の範囲より大きくプラスマイナス135°の範囲より小さい、より好ましくは、上記の中心からプラスマイナス90°の範囲より大きくプラスマイナス100°の範囲より小さくしても良い。
At least a part of the detection member 15 is disposed within a range from the position where the rolling element is subjected to the greatest force around the center of rotation of the rolling bearing 1 to a direction rotated 180 degrees in the direction in which the rolling element 8 rotates. Alternatively, the detection member 15 is disposed within a range of 180 degrees or more and less than 360 degrees, assuming that the direction of the position where the rolling element 8 is subjected to the greatest force around the center of rotation of the rolling bearing 1 is 0 degrees.
When the detection member 15 is provided in a part of the circumferential direction of the outer ring 4, at least when the rotation angle is viewed from a reference circumferential position where the maximum load is applied to the rolling element 8 around the rotation axis in the rotation direction of the inner ring 7 (the rolling element 8 in the absolute coordinate system) when the outer ring 4 is a fixed ring, the detection member 15 may be provided in a range of ±90° or more from 135° when the inner ring 7 rotates counterclockwise. Alternatively, when the inner ring 7 rotates clockwise, the detection member 15 may be provided in a range of ±90° or more from 225°. In either case, the detection member 15 is provided in a range of 180° or more in the circumferential direction. In other words, when the rotation angle is viewed from a reference circumferential position in the rotation direction, when the inner ring 7 rotates counterclockwise, the detection member 15 may be provided in a range of at least ±90° from 135°. Alternatively, when the inner ring 7 rotates clockwise, the detection member 15 may be provided in a range of at least ±90° from 225°. More specifically, the range in which the detection member 15 is provided may be greater than the range of plus or minus 90° from the above-mentioned center and smaller than the range of plus or minus 135°, and more preferably, greater than the range of plus or minus 90° from the above-mentioned center and smaller than the range of plus or minus 100°.

ここで、基準位置、基準の周方向位置は、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置である。加減速により基準の周方向位置は厳密には変わるが、回転軸の中心から静止状態での鉛直下向き周方向位置と考えてもよい。Here, the reference position and reference circumferential position are the reference circumferential positions at which the maximum load is applied to the rolling element 8 around the rotation axis. Although the reference circumferential position strictly changes due to acceleration and deceleration, it can be considered as the vertical downward circumferential position from the center of the rotation axis in a stationary state.

また、検知部材15が、内輪7の周方向の一部に設けられる場合、少なくとも、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置から、内輪7を固定輪とした場合の外輪4の(絶対座標系における転動体8の)回転方向に回転角度を見たときに、外輪4の回転が反時計回りの場合、315°を中心にプラスマイナス90°以上の範囲に設けられると良い。または、外輪4の回転が時計回りの場合、45°を中心にプラスマイナス90°以上の範囲に設けられると良い。いずれの場合も、検知部材15が、周方向180°以上に設けられることになる。言い換えれば、基準の周方向位置から、回転方向に回転角度を見たときに、内輪7の回転が反時計回りの場合、315°を中心に少なくともプラスマイナス90°の範囲に設けられると良い。または、外輪4の回転が時計回りの場合、45°を中心に少なくともプラスマイナス90°の範囲に設けられると良い。さらに具体的には、検知部材15が設けられる範囲は、上記の中心からプラスマイナス90°の範囲より大きくプラスマイナス135°の範囲より小さい、より好ましくは、上記の中心からプラスマイナス90°の範囲より大きくプラスマイナス100°の範囲より小さくしても良い。
検知部材15が、外輪4、内輪7のいずれに設けられる場合でも、回転方向が両方向に可能性がある場合には、検知部材15が、周方向の全周に設けることができる。
In addition, when the detection member 15 is provided at a part of the circumferential direction of the inner ring 7, when the rotation angle is viewed from a reference circumferential position where the maximum load is applied to the rolling element 8 around the rotation axis in the rotation direction of the outer ring 4 (the rolling element 8 in the absolute coordinate system) when the inner ring 7 is a fixed ring, if the outer ring 4 rotates counterclockwise, it is preferable to provide the detection member 15 in a range of ±90° or more from 315°. Alternatively, if the outer ring 4 rotates clockwise, it is preferable to provide the detection member 15 in a range of ±90° or more from 45°. In either case, the detection member 15 is provided at a circumferential direction of 180° or more. In other words, when the rotation angle is viewed from a reference circumferential position in the rotation direction, if the inner ring 7 rotates counterclockwise, it is preferable to provide the detection member 15 in a range of ±90° from 315°. Alternatively, if the outer ring 4 rotates clockwise, it is preferable to provide the detection member 15 in a range of ±90° from 45°. More specifically, the range in which the detection member 15 is provided may be greater than the range of plus or minus 90° from the above-mentioned center and smaller than the range of plus or minus 135°, and more preferably, greater than the range of plus or minus 90° from the above-mentioned center and smaller than the range of plus or minus 100°.
Regardless of whether the detection member 15 is provided on the outer ring 4 or the inner ring 7, if rotation is possible in both directions, the detection member 15 can be provided on the entire circumference in the circumferential direction.

検知部材15の2つの導体には、それぞれ導体と計測部16とを接続する電線17が設けられる。2つの導体の間の電気的特性は、保持器9が摩耗して回転時に径方向への移動量が大きくなったときに、保持器9が2つの導体に接触すると導通して変化する。計測部16は、2本の電線17から電気的特性の変化を計測して、この変化を含む情報を出力し、異常検知装置100の外部に伝える。The two conductors of the detection member 15 are each provided with an electric wire 17 that connects the conductor to the measurement unit 16. When the retainer 9 wears and the amount of radial movement during rotation increases, the electrical characteristics between the two conductors change as the retainer 9 comes into contact with the two conductors, causing conduction. The measurement unit 16 measures the change in electrical characteristics from the two electric wires 17, outputs information including this change, and transmits it to the outside of the anomaly detection device 100.

計測部16に接続され、計測部16で計測した情報を伝達する伝送部18は、異常の有無の診断を行う診断部19に情報を伝達する。転がり軸受の異常を診断する転がり軸受の異常診断装置200は、異常検知装置100と、電気的特性の情報を伝える伝送部18と、電気的特性の情報から転がり軸受の異常を診断する診断部19とを含む。A transmission unit 18 that is connected to the measurement unit 16 and transmits information measured by the measurement unit 16 transmits the information to a diagnosis unit 19 that diagnoses the presence or absence of an abnormality. A rolling bearing abnormality diagnosis device 200 that diagnoses abnormalities in rolling bearings includes an abnormality detection device 100, a transmission unit 18 that transmits information on electrical characteristics, and a diagnosis unit 19 that diagnoses abnormalities in the rolling bearings from the information on electrical characteristics.

(転動体から保持器が受ける力による振れ周り)
次に、転がり軸受(円筒ころ軸受)1が、回転中に保持器9に作用する力について説明する。まず、転動体(円筒ころ)8は、内輪7または外輪4から荷重を受けるが、荷重を主として受ける。この荷重を受ける転動体(円筒ころ)8は、複数ある転動体(円筒ころ)8のうち、主として回転中心軸に対して荷重方向の向きの一定範囲である荷重負荷圏にある転動体(円筒ころ)である。内輪7と外輪4との相対回転に伴い、転動体(円筒ころ)8は、回転軸周りに回転して移動する。1つの転動体(円筒ころ)8に注目すると、転動体8は、荷重負荷圏外から荷重負荷圏に入り、荷重負荷圏を通過して、荷重負荷圏を脱出する。
(Wobble caused by the force applied to the cage from the rolling elements)
Next, the force acting on the cage 9 during rotation of the rolling bearing (cylindrical roller bearing) 1 will be described. First, the rolling elements (cylindrical rollers) 8 receive a load from the inner ring 7 or the outer ring 4, but mainly receive the load. The rolling elements (cylindrical rollers) 8 that receive this load are, among the multiple rolling elements (cylindrical rollers) 8, those that are mainly in a load zone, which is a certain range in the direction of the load direction relative to the central axis of rotation. As the inner ring 7 and the outer ring 4 rotate relative to each other, the rolling elements (cylindrical rollers) 8 rotate and move around the axis of rotation. Focusing on one rolling element (cylindrical roller) 8, the rolling element 8 enters the load zone from outside the load zone, passes through the load zone, and leaves the load zone.

転動体8は、荷重負荷圏を通過して、脱出する際、荷重を受けていたことによりすべりが抑制されること及び圧縮から除荷へ変化する事で生じる開放方向へ向かう力によって、加速する。転動体8が、加速することによって、保持器9は、転動体8の負荷圏脱出位置における保持器9の径方向の幅の中心をとおる円周の接線方向に力を受ける。転動体8ととも回転する保持器9には、負荷圏脱出位置において、断続的に上記円周の接線方向の力を受ける。 When the rolling elements 8 pass through the loaded zone and escape, they accelerate due to the fact that slippage is suppressed by the load and due to the force in the opening direction that occurs as a result of the change from compression to unloading. As the rolling elements 8 accelerate, the cage 9 receives a force in the tangential direction of a circumference passing through the center of the radial width of the cage 9 at the position where the rolling elements 8 have escaped the loaded zone. The cage 9, which rotates together with the rolling elements 8, is intermittently subjected to a force in the tangential direction of the circumference at the position where the rolling elements 8 have escaped the loaded zone.

保持器9が受ける上記接線方向の力によって、保持器9は、回転軸回りの公転ではなく、回転軸から径方向に離れた位置で偏心公転(振れ回り)する。例えば、転動体8及び保持器9の回転方向が反時計周りの場合、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置から、回転方向に回転角度を見たときに、135°の位置で回転軸から径方向に離れた位置で偏心公転(振れ回り)する。または、転動体8及び保持器9の回転方向が時計周りの場合、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置から、回転方向に回転角度を見たときに、225°の位置で回転軸から径方向に離れた位置で偏心公転(振れ回り)する。 The above tangential force applied to the retainer 9 causes the retainer 9 to eccentrically revolve (swirl) at a position radially away from the rotation axis, rather than revolving around the rotation axis. For example, when the rotation direction of the rolling elements 8 and the retainer 9 is counterclockwise, the retainer 9 eccentrically revolves (swirls) at a position radially away from the rotation axis at 135° when the rotation angle is viewed in the direction of rotation from the reference circumferential position where the maximum load is applied to the rolling elements 8 around the rotation axis. Alternatively, when the rotation direction of the rolling elements 8 and the retainer 9 is clockwise, the retainer 9 eccentrically revolves (swirls) at a position radially away from the rotation axis at 225° when the rotation angle is viewed in the direction of rotation from the reference circumferential position where the maximum load is applied to the rolling elements 8 around the rotation axis.

保持器9は、負荷圏脱出位置での上記円周の接線方向の力によって、偏心するので、偏心方向は、負荷圏脱出位置での上記円周の接線方向となる。 The retainer 9 becomes eccentric due to a force in the tangential direction of the circumference at the load zone escape position, so that the eccentric direction is the tangential direction of the circumference at the load zone escape position.

(保持器の摩耗による影響)
次に、転がり軸受1の使用によって、保持器9が摩耗する影響について説明する。保持器9と、転動体(ころ)8との接触によって、保持器9は、ポケット部12の転動体8と接触する面である、ポケット部側面12aが、摩耗する。ポケット部側面12aが摩耗すると、柱部11が、細くなり、ポケット部12の周方向の幅が広くなる。保持器9の摩耗によって、ポケット部12の周方向の幅が広くなった保持器9は、前述の転動体(ころ)8から負荷圏脱出位置での上記円周の接線方向の力を受けた時、前述の偏心公転(振れ回り)の偏心量が大きくなる。すなわち、この偏心公転(振れ回り)現象によって、保持器9と外輪4または内輪7との距離が変化する。
(Effects of cage wear)
Next, the influence of wear of the cage 9 caused by use of the rolling bearing 1 will be described. Due to contact between the cage 9 and the rolling elements (rollers) 8, the cage 9 wears at the pocket side surface 12a, which is the surface of the pocket portion 12 that contacts the rolling elements 8. When the pocket side surface 12a wears, the column portion 11 becomes thinner and the circumferential width of the pocket portion 12 becomes wider. When the cage 9, which has become wider in the circumferential direction of the pocket portion 12 due to wear of the cage 9, receives a force in the tangential direction of the circumference from the rolling elements (rollers) 8 at the position of escape from the load zone, the eccentric amount of the eccentric revolution (swing) described above increases. In other words, the eccentric revolution (swing) phenomenon changes the distance between the cage 9 and the outer ring 4 or the inner ring 7.

保持器9の上記偏心公転(振れ回り)では、1公転周期の間で、外輪4と保持器9、および内輪7と保持器9の間の距離が最短になる位置が、保持器9の回転方向が反時計周りの場合、上記基準位置に対して、転動体8の回転方向に135°の位置となる。また、保持器9の回転方向が時計周りの場合、上記基準位置に対して、転動体8の回転方向に225°の位置となる。In the above-mentioned eccentric revolution (whirling) of the cage 9, the position where the distance between the outer ring 4 and the cage 9, and between the inner ring 7 and the cage 9, during one revolution period is shortest is a position at 135° in the rotational direction of the rolling elements 8 from the above-mentioned reference position when the rotational direction of the cage 9 is counterclockwise. Also, when the rotational direction of the cage 9 is clockwise, it is a position at 225° in the rotational direction of the rolling elements 8 from the above-mentioned reference position.

転がり軸受1は、外輪4または内輪7の転動体8がある内周側に検知部材15が設けられるため、上記のように、保持器9と外輪4または内輪7との距離が変化すると、当然に、保持器9と検知部材15との間の距離である保持器―検知部材距離Lも変化する。 In the rolling bearing 1, the detection member 15 is provided on the inner side where the rolling elements 8 of the outer ring 4 or inner ring 7 are located, so that, as described above, when the distance between the retainer 9 and the outer ring 4 or inner ring 7 changes, the retainer-detection member distance L, which is the distance between the retainer 9 and the detection member 15, also changes.

上記のように転がり軸受1の使用によって、保持器9のポケット部側面12aの摩耗量が増えると、保持器9の偏心公転(振れ回り)現象は、より顕著となり、保持器9と外輪4または内輪7との距離が、より大きく変化する。また、保持器―検知部材距離Lも、同様に、より大きく変化し、最短の保持器―検知部材距離Lも短くなる。すなわち、保持器9の摩耗に伴い、徐々に保持器―検知部材距離Lの変化量も増加し、やがて、保持器―検知部材距離Lはゼロになる。つまり、外輪4に検知部材15を設けた場合、保持器外周面9aと、検知部材15の異常検知接触部15aが接触するようになる。As described above, when the amount of wear on the pocket side surface 12a of the retainer 9 increases through use of the rolling bearing 1, the eccentric revolution (whirling) phenomenon of the retainer 9 becomes more pronounced, and the distance between the retainer 9 and the outer ring 4 or the inner ring 7 changes more significantly. Similarly, the retainer-detection member distance L also changes more significantly, and the shortest retainer-detection member distance L also becomes shorter. In other words, as the retainer 9 wears, the amount of change in the retainer-detection member distance L gradually increases, and eventually the retainer-detection member distance L becomes zero. In other words, if a detection member 15 is provided on the outer ring 4, the retainer outer peripheral surface 9a and the abnormality detection contact portion 15a of the detection member 15 will come into contact.

ここで、第一側および第二側の検知部材15は、保持器9が摩耗した際に保持器9と接触するように配置されるが、上記保持器9の摩耗時の偏心公転(振れ回り)現象を考慮して配置される。Here, the first and second side detection members 15 are positioned so as to come into contact with the retainer 9 when the retainer 9 becomes worn, but are positioned taking into consideration the eccentric revolution (whirling) phenomenon that occurs when the retainer 9 becomes worn.

(検知部材の配置)
検知部材15は、外輪4または内輪7の全周に亘って設けても良いが、一部に設けても良い。一部に設ける場合は、上記保持器9の摩耗時の偏心公転(振れ回り)現象の特性から次のように設けるとよい。外輪4を固定輪とした時では、基準の周方向位置から内輪7の(絶対座標系における転動体8の)回転方向に回転角度を見たときに、内輪7の回転が反時計周りの場合、135°を中心に±90°以上の範囲に設けられると良い。または、内輪7の回転が時計周りの場合、225°を中心に±90°以上の範囲に設けられると良い。内輪7を固定輪としたときでは、基準の周方向位置から、外輪4の(絶対座標系における転動体8の)回転方向に回転角度を見たときに、外輪4の回転が反時計周りの場合315°を中心に±90°以上の範囲に設けられると良い。または、外輪4の回転が時計周りの場合、45°を中心に±90°以上の範囲に設けられると良い。
(Disposition of detection member)
The detection member 15 may be provided over the entire circumference of the outer ring 4 or the inner ring 7, or may be provided on a part of the circumference. In the case of providing on a part of the circumference, it is preferable to provide it as follows, taking into consideration the characteristics of the eccentric revolution (whirling) phenomenon when the cage 9 wears. When the outer ring 4 is a fixed ring, when the rotation angle is viewed from the reference circumferential position in the rotation direction of the inner ring 7 (of the rolling element 8 in the absolute coordinate system), if the inner ring 7 rotates counterclockwise, it is preferable to provide it in a range of ±90° or more around 135°. Alternatively, when the inner ring 7 rotates clockwise, it is preferable to provide it in a range of ±90° or more around 225°. When the inner ring 7 is a fixed ring, when the rotation angle is viewed from the reference circumferential position in the rotation direction of the outer ring 4 (of the rolling element 8 in the absolute coordinate system), if the outer ring 4 rotates counterclockwise, it is preferable to provide it in a range of ±90° or more around 315°. Alternatively, when the outer ring 4 rotates clockwise, it is preferable to provide it in a range of ±90° or more around 45°.

検知部材15を設ける角度は、便宜上、90°とし、外輪4に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に90°から180°の範囲、内輪7に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に270°から360°の範囲としてもよい。検知部材15を設けた部分では、外輪4の内周面2または内輪7の外周面5から、保持器9の側に検知部材15が突出することになり、他の部分より、転がり軸受1が回転しないときには、保持器―検知部材距離Lが、小さくなる。すると、保持器9が摩耗したとき、上記接線方向の力によって、他の部分より検知部材15が存在する部分が先に接触する。 The angle at which the detection member 15 is provided is set to 90° for convenience, and when the detection member 15 is provided on the outer ring 4, it may be in the range of 90° to 180° in the rotational direction of the rolling element 8 from the reference circumferential position, and when the detection member 15 is provided on the inner ring 7, it may be in the range of 270° to 360° in the rotational direction of the rolling element 8 from the reference circumferential position. In the part where the detection member 15 is provided, the detection member 15 protrudes from the inner peripheral surface 2 of the outer ring 4 or the outer peripheral surface 5 of the inner ring 7 toward the cage 9, and when the rolling bearing 1 does not rotate, the cage-detection member distance L is smaller than in other parts. Then, when the cage 9 wears, the part where the detection member 15 is present comes into contact before other parts due to the above-mentioned tangential force.

なお、軸受の相対的回転の向きが変わる場合には、保持器9の摩耗時の偏心公転(振れ回り)現象が逆向きになるため、検知部材15を基準位置から両方の回転方向の上記範囲の2箇所に設けることで、いずれの回転方向であっても、保持器9の摩耗を検知することができる。 Furthermore, when the direction of relative rotation of the bearings changes, the eccentric revolution (whirling) phenomenon that occurs when the retainer 9 wears will be reversed. Therefore, by providing the detection member 15 at two locations within the above-mentioned range in both rotational directions from the reference position, wear of the retainer 9 can be detected in either rotational direction.

軸受の相対的回転の向きが変わる場合、かつ外輪4に検知部材15を設ける場合、基準の周方向位置から転動体8の一の回転方向に90°から270°の範囲、内輪7に検知部材15を設ける場合、基準の周方向位置から転動体8の一の回転方向に270°から360°の範囲として、製造、組み立てがしやすくすることができる。簡単に言えば、外輪4に検知部材15を付ける場合は、鉛直方向の上向き半分に、内輪7に検知部材15を付ける場合は、鉛直方向下向き半分に検知部材を設けても良い。 When the direction of relative rotation of the bearings changes and when the detection member 15 is provided on the outer ring 4, the range is 90° to 270° from the reference circumferential position in one rotation direction of the rolling element 8, and when the detection member 15 is provided on the inner ring 7, the range is 270° to 360° from the reference circumferential position in one rotation direction of the rolling element 8, which makes manufacturing and assembly easier. Simply put, when the detection member 15 is provided on the outer ring 4, the detection member may be provided on the upward half in the vertical direction, and when the detection member 15 is provided on the inner ring 7, the detection member may be provided on the downward half in the vertical direction.

また、転がり軸受1の回転方向が変わる場合には、それぞれ基準の周方向位置と回転軸の中心とを通る直線に対して線対称になるように検知部材15の周方向の範囲を設けることによって、回転方向がいずれの場合でも保持器9の摩耗検知の感度を高めることができる。 In addition, when the direction of rotation of the rolling bearing 1 changes, the sensitivity of wear detection of the retainer 9 can be increased in either direction of rotation by setting the circumferential range of the detection member 15 so that it is linearly symmetrical with respect to a line passing through the reference circumferential position and the center of the rotation axis.

検知部材15の外輪4の内周面2または内輪7の外周面5からの突出量は、外輪4の内周面2から保持器までの距離または内輪7の外周面5から保持器までの距離の10%より大きく、50%より小さくすると良い。The amount by which the detection member 15 protrudes from the inner surface 2 of the outer ring 4 or the outer surface 5 of the inner ring 7 should be greater than 10% and less than 50% of the distance from the inner surface 2 of the outer ring 4 to the retainer or the distance from the outer surface 5 of the inner ring 7 to the retainer.

また、図4に示すように、異常検知接触部15aの保持器方向への厚みDを外輪4の内周面2から保持器までの距離または内輪7の外周面5から保持器までの距離の10%~50%の間で変化させてもよい。例えば、厚みDを厚く設定することにより保持器の損傷が小さく裕度がある状態で検知可能など、異常検知の閾値設定が可能となる。 As shown in Fig. 4, the thickness D of the anomaly detection contact portion 15a toward the cage may be changed between 10% and 50% of the distance from the inner peripheral surface 2 of the outer ring 4 to the cage or the distance from the outer peripheral surface 5 of the inner ring 7 to the cage. For example, by setting the thickness D to be thick, it becomes possible to set a threshold value for anomaly detection, such as enabling detection in a state where damage to the cage is small and there is a margin of error.

また、検知部材15の外輪4側または内輪7側に、1または複数の薄板やシートを着脱できるように構成して、検知部材15の外輪4の内周面2または内輪7の外周面5からの突出量を調整できるようにしても良い。例えば、前述のように検知部材15をシート状のもので構成した場合、突出量の調整のため1層ずつ脱着可能な積層シート構造とし、シートの積層枚数によって突出量を調整できるものでもよい。上記のような径方向の厚さを調整する調整部を設けることによって、実際の転がり軸受1の使用状況等に応じて、異常検知の閾値設定、感度の調整が可能となる。 In addition, one or more thin plates or sheets may be configured to be detachable on the outer ring 4 side or inner ring 7 side of the detection member 15, so that the amount of protrusion of the detection member 15 from the inner peripheral surface 2 of the outer ring 4 or the outer peripheral surface 5 of the inner ring 7 can be adjusted. For example, when the detection member 15 is configured as a sheet as described above, it may have a laminated sheet structure that can be detached one layer at a time to adjust the amount of protrusion, and the amount of protrusion can be adjusted by the number of laminated sheets. By providing an adjustment unit for adjusting the radial thickness as described above, it becomes possible to set the threshold value for abnormality detection and adjust the sensitivity according to the actual usage conditions of the rolling bearing 1, etc.

保持器外周面9aと、検知部材15の異常検知接触部15aが接触することによって、電気的に絶縁されていた検知部材15の両側が、保持器9によって導通し、検知部材15の両側に、それぞれ接続された電線17、および電線17に接続された計測部16が、導通状態になる。なお、検知部材15、保持器9は、導電部材である。 When the outer peripheral surface 9a of the holder comes into contact with the abnormality detection contact portion 15a of the detection member 15, both sides of the detection member 15, which were electrically insulated, become conductive through the holder 9, and the electric wires 17 connected to both sides of the detection member 15 and the measuring portion 16 connected to the electric wires 17 become conductive. The detection member 15 and the holder 9 are conductive members.

計測部16は、2本の電線17の先に接続された絶縁された検知部材15の一方側と他方側の間の電気的特性を計測し、計測した電気的特性、またはこの電気的特性から求まる情報を計測情報として出力する。上述の保持器9と外輪4または内輪7とが接触するまでは、検知部材15の一方側と他方側との間は、絶縁されているので、電気的特性の電気抵抗値は無限大であり、また電圧をかけていれば、電気的特性の電流値はゼロである。保持器9と外輪4または内輪7とが接触すると、検知部材15の一方側と他方側との間は、導通し、電気抵抗値は、ゼロに近くなり、電流値は、大きくなる。The measuring unit 16 measures the electrical characteristics between one side and the other side of the insulated detection member 15 connected to the ends of two electric wires 17, and outputs the measured electrical characteristics or information derived from these electrical characteristics as measurement information. Until the above-mentioned retainer 9 and the outer ring 4 or the inner ring 7 come into contact, one side and the other side of the detection member 15 are insulated, so the electrical resistance value of the electrical characteristics is infinite, and if a voltage is applied, the current value of the electrical characteristics is zero. When the retainer 9 and the outer ring 4 or the inner ring 7 come into contact, conduction occurs between one side and the other side of the detection member 15, the electrical resistance value approaches zero, and the current value increases.

計測部16は、計測した電気的特性として、電気抵抗値や、電流値を出力する。または、計測部16は、計測した電気抵抗値に対して、予め所定の閾値を設けて、電気抵抗値が所定の閾値以上あれば、非接触、閾値未満であれば、接触を意味する信号を出力するようにしてもよい。また、計測部16は、計測した電流値に対して、予め所定の閾値を設けて、電流値が所定の閾値未満であれば、非接触、閾値以上であれば接触を意味する信号を出力するようにしてもよい。上記電気抵抗値、電流値、信号が計測情報となり、計測部16が、計測情報を外部へ出力する。The measurement unit 16 outputs an electrical resistance value or a current value as the measured electrical characteristics. Alternatively, the measurement unit 16 may set a predetermined threshold value for the measured electrical resistance value, and output a signal indicating non-contact if the electrical resistance value is equal to or greater than the predetermined threshold, and output a signal indicating contact if the electrical resistance value is less than the threshold. The measurement unit 16 may also set a predetermined threshold value for the measured current value, and output a signal indicating non-contact if the current value is less than the predetermined threshold, and output a signal indicating contact if the current value is equal to or greater than the threshold. The above electrical resistance value, current value, and signal become measurement information, and the measurement unit 16 outputs the measurement information to the outside.

計測部16は、計測した電気的特性が接触を意味する値でない場合には、出力をせず、接触を意味する値を計測したときに、時刻とともに出力するようにしてもよい。また、接触を意味する値を計測した後、連続して接触を意味する値を計測する場合、次に接触していないとなる値を計測するまで出力をせず、次に接触していないとなる値を計測したときに接触が終了した信号を時刻とともに出力するようにしても良い。このようにすることで出力信号、またはデータを大幅に削減することができる。 If the measured electrical characteristic is not a value indicating contact, the measurement unit 16 may not output, but may output a value indicating contact together with the time when it measures a value indicating contact. Also, if a value indicating contact is measured consecutively after a value indicating contact is measured, no output may be generated until the next value indicating no contact is measured, and a signal indicating the end of contact may be output together with the time when the next value indicating no contact is measured. In this way, the output signal or data can be significantly reduced.

異常検知装置100は、計測部16が計測した計測情報と、計測した時刻の時刻情報とを関連付けて記憶する記憶部31を設けても良い。また、異常検知装置100は、異常検知装置100の外部からの指令によって、記憶部31に記憶された計測情報および時刻情報を出力する外部インタフェース部32を設けても良い。外部インタフェース部32は、有線または無線にて外部との送受信を行う。外部インタフェース部32は、ネットワークに接続して、送受信してもよく、ネットワークは、ローカルネットワーク、インターネットであっても良い。The anomaly detection device 100 may be provided with a memory unit 31 that associates and stores the measurement information measured by the measurement unit 16 with time information of the time of measurement. The anomaly detection device 100 may also be provided with an external interface unit 32 that outputs the measurement information and time information stored in the memory unit 31 in response to a command from outside the anomaly detection device 100. The external interface unit 32 transmits and receives data to and from the outside via a wired or wireless connection. The external interface unit 32 may be connected to a network to transmit and receive data, and the network may be a local network or the Internet.

異常診断装置200の診断部19は、計測部16から出力される計測情報を受け取り、計測情報から転がり軸受1の状況を判断する。計測部16から伝送される計測情報の伝送路は、有線でも、無線でもよい。診断部19は、受け取った計測情報が電気抵抗値である場合には、計測情報が所定の閾値未満であれば、保持器9と外輪4または内輪7が接触したことになるので、保持器の摩耗が進んでいると判断する。また、診断部19は、受け取った計測情報が電流値である場合には、計測情報が所定の閾値以上であれば、保持器9と外輪4または内輪7が接触したことになるので、保持器の摩耗が進んでいると判断する。それまでは正常とする。The diagnosis unit 19 of the abnormality diagnosis device 200 receives the measurement information output from the measurement unit 16 and judges the condition of the rolling bearing 1 from the measurement information. The transmission path of the measurement information transmitted from the measurement unit 16 may be wired or wireless. When the received measurement information is an electrical resistance value, the diagnosis unit 19 judges that the cage 9 and the outer ring 4 or the inner ring 7 are in contact if the measurement information is less than a predetermined threshold value, and therefore the cage is worn out. When the received measurement information is a current value, the diagnosis unit 19 judges that the cage 9 and the outer ring 4 or the inner ring 7 are in contact if the measurement information is equal to or greater than a predetermined threshold value, and therefore the cage is worn out. Until then, the bearing is considered normal.

さらに、診断部19は、計測情報が保持器9と外輪4または内輪7との接触の有無を示す信号である場合には、接触無しの信号であれば、正常と判断し、接触有の信号であれば保持器9の摩耗が進んでいると判断する。 Furthermore, when the measurement information is a signal indicating the presence or absence of contact between the retainer 9 and the outer ring 4 or the inner ring 7, the diagnostic unit 19 judges it to be normal if the signal indicates no contact, and judges that the retainer 9 is wearing out if the signal indicates contact.

(接触割合、接触時間による保持器の摩耗度判断)
次に、保持器9の摩耗が進むほど、保持器―検知部材距離Lの変化量が大きくなり、保持器9と検知部材15が接触する時間が長くなることを利用した、保持器9の摩耗、または摩耗の程度の判断について説明する。
(Determination of cage wear based on contact rate and contact time)
Next, we will explain how to determine the wear or the degree of wear of the retainer 9, utilizing the fact that the more the wear of the retainer 9 progresses, the greater the change in the retainer-to-detection member distance L and the longer the time that the retainer 9 is in contact with the detection member 15.

上記で説明したように、保持器9が摩耗した際に、保持器9の摩耗時の偏心公転(振れ回り)現象によって、保持器9と検知部材15とが、最初は軸受の相対回転1回転につき1点で接触する。さらに保持器9が摩耗した際には、保持器9、転動体8、および検知部材15自体、並びにこれらの間の弾性変形によって、保持器9と検知部材15が接触する部分が増えて、軸受の相対回転1回転の間に、保持器9と検知部材15との接触時間が長くなる。As explained above, when the retainer 9 wears, the eccentric revolution (whirling) phenomenon occurs when the retainer 9 wears, and the retainer 9 and the detection member 15 initially come into contact at one point per rotation of the relative rotation of the bearing. When the retainer 9 wears further, the contact areas between the retainer 9 and the detection member 15 increase due to the elastic deformation of the retainer 9, the rolling elements 8, and the detection member 15 themselves, as well as the spaces between them, and the contact time between the retainer 9 and the detection member 15 becomes longer during one rotation of the relative rotation of the bearing.

すなわち、保持器9の摩耗が進行すると、軸受1回転中、保持器9と検知部材15とが接触する割合が増加する。したがって、軸受1回転中の保持器9と検知部材15とが接触する割合を計測することで、保持器9の摩耗の程度を知ることができる。In other words, as wear of the retainer 9 progresses, the percentage of contact between the retainer 9 and the detection member 15 during one rotation of the bearing increases. Therefore, by measuring the percentage of contact between the retainer 9 and the detection member 15 during one rotation of the bearing, the degree of wear of the retainer 9 can be determined.

計測部16は、外輪4と内輪7との相対回転が1回転する時間に対して、検知部材15と保持器9とが接触する時間の割合である接触割合を求めて、計測情報として出力するようにしても良い。ここで、計測部16が、計測した計測情報と、計測した時刻の時刻情報から、1回転の時間、および接触する時間を求めて、接触する時間を1回転に要する時間で除して、接触割合を求める。The measurement unit 16 may determine a contact ratio, which is the ratio of the time that the detection member 15 and the cage 9 are in contact with each other to the time that the relative rotation between the outer ring 4 and the inner ring 7 takes place for one rotation, and output this as measurement information. Here, the measurement unit 16 determines the time for one rotation and the time of contact from the measured measurement information and the time information of the time of measurement, and determines the contact ratio by dividing the time of contact by the time required for one rotation.

この際、計測情報と、時刻情報とを関連付けて記憶する記憶部31に記憶された情報を用いて、接触割合を求めても良い。また、外部インタフェース部32が、求めた接触割合を含む計測情報として外部に伝送しても良いし、外部からの要求に応じて、接触割合の信号を送信しても良い。ここで、接触割合の情報は、接触情報として計測情報に含めて捉えることもできる。At this time, the contact ratio may be calculated using information stored in the memory unit 31, which stores the measurement information in association with time information. The external interface unit 32 may transmit the calculated contact ratio as measurement information including the contact ratio to the outside, or may transmit a contact ratio signal in response to a request from the outside. Here, the contact ratio information may be included in the measurement information as contact information.

また、計測情報の接触情報として、接触割合の他に連続的に接触した時間である接触継続時間を接触情報として計測情報に含めて捉えることもできる。保持器9の摩耗が進むと、保持器9と検知部材15とが接触した際に、1点だけで接触するのでなく、外輪4と内輪7とが相対回転中に、連続してある程度の相対回転角において接触する。これによって、計測部16は、ある程度の時間、接触する信号を得る。接触した信号が連続した時間が接触時間となる。 In addition to the contact ratio, the contact duration, which is the time of continuous contact, can also be included in the contact information of the measurement information. As wear of the retainer 9 progresses, when the retainer 9 and the detection member 15 come into contact, the contact does not occur at just one point, but continues at a certain relative rotation angle while the outer ring 4 and the inner ring 7 are rotating relative to each other. This allows the measurement unit 16 to obtain a signal indicating contact for a certain period of time. The time during which the contact signal continues is the contact time.

保持器9の摩耗が進むと、接触時間は長くなる。転がり軸受1の回転速度、または転がり軸受1の設けられた移動体の移動速度と接触時間の関係から、上記の接触割合と同様の指標を得ることができるから、簡易的に摩耗の程度を判断できる。この際、予め、回転速度、移動体の移動速度ごと、保持器9の摩耗の程度ごとに接触時間の閾値を設けておき、回転速度、移動速度に応じて、接触時間が摩耗の程度の閾値を超えたか否かによって、転がり軸受1の異常を診断することもできる。なお、計測部16が、転がり軸受1の回転速度、または移動体の移動速度を接触時間とともに計測情報として出力するようにしても良い。As wear of the retainer 9 progresses, the contact time becomes longer. An index similar to the above contact ratio can be obtained from the relationship between the rotation speed of the rolling bearing 1 or the moving speed of the moving body on which the rolling bearing 1 is provided and the contact time, so the degree of wear can be easily determined. In this case, a contact time threshold is set in advance for each rotation speed, moving speed of the moving body, and degree of wear of the retainer 9, and an abnormality of the rolling bearing 1 can be diagnosed depending on whether the contact time exceeds the threshold for the degree of wear according to the rotation speed and moving speed. The measurement unit 16 may output the rotation speed of the rolling bearing 1 or the moving speed of the moving body together with the contact time as measurement information.

診断部19は、計測部16からの計測情報を受け取り、外輪4と内輪7との相対回転が1回転する時間に対して、検知部材15と保持器9とが接触する時間の割合である接触割合に基づいて、転がり軸受1の状況、特に保持器9の摩耗の程度を判断しても良い。接触割合が大きいほど、保持器9の摩耗がより進行していると判断し、閾値以上の場合に、警報を出力するようにしても良い。なお、診断部19は、接触割合を含まない計測情報を受け取り、計測情報を上記と同様に診断部19にて求めても良い。The diagnostic unit 19 may receive measurement information from the measurement unit 16 and determine the condition of the rolling bearing 1, in particular the degree of wear of the retainer 9, based on the contact ratio, which is the ratio of the time that the detection member 15 and the retainer 9 are in contact with each other relative to the time that the outer ring 4 and the inner ring 7 rotate once. It may be determined that the wear of the retainer 9 is more advanced as the contact ratio increases, and an alarm may be output if the contact ratio is equal to or exceeds a threshold value. The diagnostic unit 19 may also receive measurement information that does not include the contact ratio, and determine the measurement information in the diagnostic unit 19 in the same manner as described above.

また、診断部19は、計測部16が接触時間を計測情報に含める場合、外部から転がり軸受1の回転速度、または移動体の移動速度を取得し、受け取った計測情報に計測した接触時間と関連付けて回転速度、移動速度の情報を含めても良い。 In addition, when the measurement unit 16 includes the contact time in the measurement information, the diagnosis unit 19 may acquire the rotational speed of the rolling bearing 1 or the moving speed of the moving body from the outside, and include information on the rotational speed and moving speed in the received measurement information in association with the measured contact time.

診断部19は、回転速度、移動体の移動速度ごと、保持器9の摩耗の程度ごとに接触時間の閾値を記憶しておき、外部から、転がり軸受1の回転速度、または移動体の移動速度に関する情報を取得して、取得した回転速度、移動速度に応じて、接触時間が摩耗の程度の閾値を超えたか否かによって、転がり軸受1の異常を診断するようにしても良い。The diagnosis unit 19 may store threshold values for contact time for each rotation speed, moving speed of the moving body, and degree of wear of the retainer 9, and may acquire information on the rotation speed of the rolling bearing 1 or the moving speed of the moving body from the outside, and diagnose an abnormality in the rolling bearing 1 depending on whether the contact time exceeds the threshold value for the degree of wear according to the acquired rotation speed and moving speed.

なお、検知部材15を全周ではなく、一部に設けている場合には、当然検知部材15が存在しない部分での保持器9と検知部材15との接触はないので、当然、接触割合に上限がある。具体的には、(検知部材15を設けた範囲の角度)/360°が上限となる。In addition, if the detection member 15 is provided only partially, rather than all around, there is no contact between the retainer 9 and the detection member 15 in the area where the detection member 15 is not present, so there is an upper limit to the contact ratio. Specifically, the upper limit is (angle of the range in which the detection member 15 is provided)/360°.

なお、上述の実施形態においては、転がり軸受1として円筒ころ軸受1を挙げたが、本発明は、円錐ころ軸受や深溝玉軸受等、任意の転がり軸受に適用することが可能である。In the above-described embodiment, a cylindrical roller bearing 1 is used as the rolling bearing 1, but the present invention can be applied to any rolling bearing, such as a tapered roller bearing or a deep groove ball bearing.

本実施の形態の構成によれば、外輪4の内周面または内輪7の外周面に沿って転がり軸受の回転軸方向の一方の第一側および他方の第二側に電気的絶縁されて設けられる検知部材15と、第一側の検知部材および第二側の検知部材の間の電気的特性を計測した計測情報を出力する計測部とを備えることによって、簡易な構成で保持器の摩耗状況を把握できる効果がある。なお、上記で外輪4を固定輪とする場合に、外輪4の内周面に検知部材15を設け、内輪7を固定輪とする場合には、内輪7の外周面5に検知部材15を設けると良い。 According to the configuration of this embodiment, by providing detection members 15 provided electrically insulated on one first side and the other second side in the axial direction of the rolling bearing along the inner circumferential surface of the outer ring 4 or the outer circumferential surface of the inner ring 7, and a measurement unit that outputs measurement information measuring the electrical characteristics between the detection member on the first side and the detection member on the second side, it is possible to grasp the wear condition of the cage with a simple configuration. Note that, in the above case where the outer ring 4 is a fixed ring, it is preferable to provide the detection member 15 on the inner circumferential surface of the outer ring 4, and, in the case where the inner ring 7 is a fixed ring, the detection member 15 is provided on the outer circumferential surface 5 of the inner ring 7.

また、本実施の形態の転がり軸受の異常検知装置100によれば、保持器9の摩耗時の偏心公転(振れ回り)現象を考慮して、外輪4または内輪7の周方向の特定の範囲に検知部材15を設けることによって、構造が簡素、また少ない部品で早期に保持器9の摩耗を検知することができる。 In addition, according to the rolling bearing abnormality detection device 100 of this embodiment, by taking into account the eccentric revolution (whirling) phenomenon that occurs when the retainer 9 wears, a detection member 15 is provided in a specific circumferential range of the outer ring 4 or the inner ring 7, making it possible to detect wear of the retainer 9 early with a simple structure and few parts.

また、検知部材15は、円筒形または、円筒の一部の形状を含むので、外輪4の内周面または内輪7の外周面に嵌合させて固定できる。よって、転がり軸受への穴あけなど切削加工が不要であり、転がり軸受1自体の強度を低下させる恐れがないという効果がある。In addition, since the detection member 15 is cylindrical or has a shape that is part of a cylinder, it can be fitted and fixed to the inner surface of the outer ring 4 or the outer surface of the inner ring 7. This eliminates the need for cutting processes such as drilling holes in the rolling bearing, and has the effect of preventing the strength of the rolling bearing 1 itself from being reduced.

さらに、検知部材15を外輪4または内輪7の全周ではなく、一部の角度に設ける場合は、検知部材15が薄板状となることから、外輪4の内周面より曲率大きく、または内輪7の外周面より曲率を小さく検知部材15を作成して、弾性変形させて嵌合させることで容易に外輪4または内輪7に固定できる。Furthermore, when the detection member 15 is provided at a partial angle rather than around the entire circumference of the outer ring 4 or inner ring 7, the detection member 15 is thin plate-like, so the detection member 15 can be made to have a greater curvature than the inner surface of the outer ring 4 or a smaller curvature than the outer surface of the inner ring 7, and can be easily fixed to the outer ring 4 or inner ring 7 by elastically deforming and fitting it.

実施の形態2.
上述の実施の形態では、検知部材15の径方向の幅の変化については記載していなかったが、本実施の形態では、検知部材15の径方向の幅を変化させる例について、説明する。なお、本実施の形態において、上述の実施の形態と同じ文言、符号であるものは、特段の断りをしない限り、同様のものを意味する。
Embodiment 2.
In the above-described embodiment, no description was given regarding the change in the radial width of the detection member 15, but in this embodiment, an example will be described in which the radial width of the detection member 15 is changed. In this embodiment, the same words and symbols as those in the above-described embodiment have the same meanings unless otherwise specified.

本実施の形態の形態の転がり軸受の異常検知装置100は、外輪4の内周面2または内輪7の外周面5に沿って転がり軸受1の回転軸方向の一方の第一側および他方の第二側に電気的絶縁されて設けられる検知部材15と、第一側の検知部材および第二側の前記検知部材の間の電気的特性を計測した計測情報を出力する計測部16とを備える。ここで、第一側および第二側の検知部材は、保持器9が摩耗した際に保持器9と接触するように構成しても良い。なお、検知部材15は、外輪4または内輪7に嵌合するということもできる。 The rolling bearing abnormality detection device 100 of this embodiment includes detection members 15 provided electrically insulated on a first side on one side and a second side on the other side in the rotational axis direction of the rolling bearing 1 along the inner circumferential surface 2 of the outer ring 4 or the outer circumferential surface 5 of the inner ring 7, and a measurement unit 16 that outputs measurement information obtained by measuring electrical characteristics between the detection member on the first side and the detection member on the second side. Here, the detection members on the first side and the second side may be configured to come into contact with the cage 9 when the cage 9 is worn. It can also be said that the detection member 15 is fitted into the outer ring 4 or the inner ring 7.

異常検知装置100の第一側および第二側の検知部材は、保持器9が摩耗した際に保持器9と接触する。電気的に絶縁されている検知部材15の第一側および第二側が、保持器と接触すると、電気的に導通するから、第一側の検知部材および第二側の前記検知部材の間の電気的特性を計測する計測部16は、計測した計測情報を出力する。計測部16が出力する計測情報は、検知部材15と保持器とが接触する前と、接触した後とで、変化するから、計測部16が出力する計測情報を受け取る側で、変化を読み取とり、保持器9の摩耗を検知する。 The detection members on the first and second sides of the abnormality detection device 100 come into contact with the retainer 9 when the retainer 9 is worn. When the first and second sides of the electrically insulated detection member 15 come into contact with the retainer, they become electrically conductive, and a measurement unit 16 that measures the electrical characteristics between the detection member on the first side and the detection member on the second side outputs the measured measurement information. The measurement information output by the measurement unit 16 changes before and after the contact between the detection member 15 and the retainer, so the side that receives the measurement information output by the measurement unit 16 reads the change and detects wear of the retainer 9.

転がり軸受の異常診断装置200は、計測部16が出力する計測情報を受け取り、受け取った計測情報から転がり軸受1の状況を判断する診断部19を備える。The rolling bearing abnormality diagnosis device 200 is equipped with a diagnosis unit 19 that receives measurement information output by the measurement unit 16 and judges the condition of the rolling bearing 1 from the received measurement information.

検知部材15は、外輪4の内周面2または内輪7の外周面5に沿って、360°全周に亘って設けられる。本実施の形態の検知部材15は、全周のうち、保持器9が摩耗した際に、保持器9と検知部材15との間の距離である保持器―検知部材距離Lが小さくなる部分の径方向の厚さを他より厚くする。すなわち、保持器9が摩耗した際に、保持器9の摩耗時の偏心公転(振れ回り)現象によって、保持器9と検知部材15とが接触しやすくなる部分の径方向の厚さを厚くして、保持器9と検知部材15との間隔を狭くする。The detection member 15 is provided around the entire circumference of 360° along the inner peripheral surface 2 of the outer ring 4 or the outer peripheral surface 5 of the inner ring 7. In this embodiment, the detection member 15 has a thicker radial thickness at the portion of the circumference where the retainer-detection member distance L, which is the distance between the retainer 9 and the detection member 15, becomes smaller when the retainer 9 is worn. In other words, the radial thickness of the portion where the retainer 9 and the detection member 15 are more likely to come into contact due to the eccentric revolution (whirling) phenomenon caused by the wear of the retainer 9 when the retainer 9 is worn is thickened, thereby narrowing the gap between the retainer 9 and the detection member 15.

第一側および第二側の検知部材は、転がり軸受1の回転中心を中心として転動体8に最も力がかる位置の方向を基準方向とすると、基準方向から転動体8が回転する向きに180度回転させた方向までの範囲の径方向の最大厚さが、前記基準方向から前記転動体が回転する向きと逆向きに180度回転させた方向までの範囲の径方向の最大厚さより厚い。保持器9は、上記実施の形態で説明した、転動体8の負荷圏脱出位置における保持器9の径方向の幅の中心をとおる円周の接線方向で回転の向きに力を受け、保持器9が摩耗すると、この力の方向に振れ回る。したがって、回転軸の中心から上記力の方向の保持器9と検知部材15との距離が短くなるように、検知部材15の径方向厚さを決める。このため、外輪4に検知部材15を設ける場合と、内輪7に検知部材15を設ける場合では、検知部材15の径方向厚さを厚くする位置が、180°違うことになる。また、少なくとも、上記力の方向の位置を含む範囲の検知部材15の径方向厚さを厚くする。検知部材15の径方向の厚さは、検知部材15の保持器9方向への厚みともいえる。 The first and second detection members have a maximum radial thickness in a range from the reference direction to a direction rotated 180 degrees in the direction in which the rolling element 8 rotates, with the rolling bearing 1 at the center, where the force is greatest. The maximum radial thickness in a range from the reference direction to a direction rotated 180 degrees in the direction opposite to the direction in which the rolling element 8 rotates, is thicker than the maximum radial thickness in a range from the reference direction to a direction rotated 180 degrees in the direction opposite to the direction in which the rolling element rotates. The cage 9 receives a force in the direction of rotation in the tangential direction of the circumference passing through the center of the radial width of the cage 9 at the position where the rolling element 8 escapes from the load zone, as described in the above embodiment, and when the cage 9 wears, it swings in the direction of this force. Therefore, the radial thickness of the detection member 15 is determined so that the distance between the cage 9 and the detection member 15 in the direction of the force from the center of the rotating shaft is shortened. For this reason, the position where the radial thickness of the detection member 15 is increased is different by 180 degrees between the case where the detection member 15 is provided on the outer ring 4 and the case where the detection member 15 is provided on the inner ring 7. In addition, the radial thickness of the detection member 15 is increased at least in a range including the position in the direction of the force. The radial thickness of the detection member 15 can also be said to be the thickness of the detection member 15 in the direction toward the cage 9.

検知部材15の径方向の厚さを厚くする周方向の部分は、外輪4に検知部材15を設ける場合、基準位置から転動体8の回転方向に90°から180°の範囲、内輪7に検知部材を設ける場合、基準位置から転動体8の回転方向に270°から360°の範囲とすると良い。ここで、基準位置は、回転軸回りで転動体8に最大荷重がかかる基準の周方向位置である。加減速により基準の周方向位置は厳密には変わるが、回転軸の中心から静止状態での鉛直下向き周方向位置と考えてもよい。 The circumferential portion where the radial thickness of the detection member 15 is increased should be in the range of 90° to 180° from the reference position in the rotational direction of the rolling element 8 when the detection member 15 is provided on the outer ring 4, and in the range of 270° to 360° from the reference position in the rotational direction of the rolling element 8 when the detection member is provided on the inner ring 7. Here, the reference position is the reference circumferential position where the maximum load is applied to the rolling element 8 around the rotation axis. Although the reference circumferential position strictly changes due to acceleration and deceleration, it may be considered as the vertical downward circumferential position from the center of the rotation axis in a stationary state.

また、検知部材15の径方向の厚さを厚くする周方向の範囲は、便宜上、90°とし、外輪4に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に90°から180°の範囲、内輪7に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に270°から360°の範囲としてもよい。 In addition, for convenience, the circumferential range over which the radial thickness of the detection member 15 is increased may be set to 90°, and when the detection member 15 is provided on the outer ring 4, the range may be from 90° to 180° in the rotational direction of the rolling body 8 from a reference circumferential position, and when the detection member 15 is provided on the inner ring 7, the range may be from 270° to 360° in the rotational direction of the rolling body 8 from a reference circumferential position.

図10には、外輪4を固定輪とし、外輪4の内周面2に沿って検知部材15を全周に設ける例を示している。紙面の手前から奥行き方向に見て、反時計回りに転動体8が回転するとして、基準の周方向位置から転動体8の回転方向に90°から180°の範囲の検知部材15の径方向厚さを厚くする例を示す。この場合、検知部材15は、基準の周方向位置から転動体8の回転方向に90°から180°の範囲で、回転軸側に突出する形になる。突出量は、検知部材15の異常検知接触部底面15bから保持器外周面9aまでの距離の50%とすることができる。 Figure 10 shows an example in which the outer ring 4 is a fixed ring and the detection member 15 is provided all around along the inner surface 2 of the outer ring 4. Assuming that the rolling element 8 rotates counterclockwise when viewed from the front to the back of the page, an example is shown in which the radial thickness of the detection member 15 is increased in a range of 90° to 180° in the rotational direction of the rolling element 8 from a reference circumferential position. In this case, the detection member 15 protrudes toward the rotating shaft in a range of 90° to 180° in the rotational direction of the rolling element 8 from the reference circumferential position. The amount of protrusion can be 50% of the distance from the bottom surface 15b of the abnormality detection contact portion of the detection member 15 to the outer peripheral surface 9a of the cage.

図11には、外輪4を固定輪とし、内輪7の外周面5に沿って検知部材15を全周に設ける例を示している。紙面の手前から奥行き方向に見て、反時計回りに転動体8が回転するとして、基準の周方向位置から転動体8の回転方向に270°から360°の範囲の検知部材15の径方向厚さを厚くする例を示す。この場合、検知部材15は、基準の周方向位置から転動体8の回転方向に270°から360°の範囲で、回転軸から離れる方向に突出する形になる。 Figure 11 shows an example in which the outer ring 4 is fixed and the detection member 15 is provided all around along the outer circumferential surface 5 of the inner ring 7. Assuming that the rolling element 8 rotates counterclockwise when viewed from the front to the back of the page, an example is shown in which the radial thickness of the detection member 15 is increased in a range of 270° to 360° in the rotational direction of the rolling element 8 from a reference circumferential position. In this case, the detection member 15 protrudes away from the rotation axis in a range of 270° to 360° in the rotational direction of the rolling element 8 from the reference circumferential position.

さらに転動体8の回転方向が変わる場合には、外輪4に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に90°から270°の範囲、内輪7に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に0°から90°および270°から360°の合わせた範囲としてもよい。 Furthermore, when the rotational direction of the rolling body 8 changes, if a detection member 15 is provided on the outer ring 4, the range may be 90° to 270° in the rotational direction of the rolling body 8 from a reference circumferential position, and if a detection member 15 is provided on the inner ring 7, the range may be the combined range of 0° to 90° and 270° to 360° in the rotational direction of the rolling body 8 from a reference circumferential position.

本実施の形態の転がり軸受の異常検知装置100は、保持器9が摩耗した際に、保持器9の摩耗時の偏心公転(振れ回り)現象によって、保持器9と検知部材15とが接触しやすくなる部分の径方向の厚さを厚くすることによって、保持器の損傷が小さく裕度がある状態で検知でき、検知の精度を高くすることが可能となる。また、保持器9の摩耗検知の感度を高めることができる。In the rolling bearing abnormality detection device 100 of this embodiment, when the retainer 9 wears, the eccentric revolution (whirling) phenomenon caused by the wear of the retainer 9 causes the retainer 9 to easily come into contact with the detection member 15. This increases the radial thickness of the portion where the retainer 9 is more likely to come into contact with the detection member 15, making it possible to detect the retainer with little damage and with a margin of error, thereby increasing the accuracy of detection. In addition, the sensitivity of the wear detection of the retainer 9 can be increased.

また、検知部材15の厚さを厚くする範囲は、回転軸中心から見て転動体8の負荷圏脱出位置における保持器9の径方向の幅の中心をとおる円周の接線方向の位置を含むようにするから、保持器9の摩耗検知の感度を高めることができる。 In addition, the range in which the thickness of the detection member 15 is increased includes a tangential position on the circumference passing through the center of the radial width of the retainer 9 at the position where the rolling body 8 escapes the load zone when viewed from the center of the rotating shaft, thereby increasing the sensitivity of wear detection of the retainer 9.

さらに、検知部材15の径方向の厚さを厚くする周方向の範囲は、便宜上、90°とし、外輪4に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に90°から180°の範囲、内輪7に検知部材15を設ける場合、基準の周方向位置から転動体8の回転方向に270°から360°の範囲として、製造、組み立てがしやすくすることができる。 Furthermore, for convenience, the circumferential range over which the radial thickness of the detection member 15 is increased is set to 90°. When the detection member 15 is provided on the outer ring 4, the range is 90° to 180° from the reference circumferential position in the rotational direction of the rolling body 8, and when the detection member 15 is provided on the inner ring 7, the range is 270° to 360° from the reference circumferential position in the rotational direction of the rolling body 8, making manufacturing and assembly easier.

また、転がり軸受の回転方向が変わる場合には、それぞれ基準の周方向位置と回転軸の中心とを通る直線に対して線対称になるように検知部材15の径方向の厚さを厚くする周方向の範囲を設けることによって、回転方向がいずれの場合でも保持器9の摩耗検知の感度を高めることができる。 In addition, when the rotational direction of the rolling bearing changes, the sensitivity of wear detection of the retainer 9 can be increased in either direction of rotation by providing a circumferential range in which the radial thickness of the detection member 15 is increased so as to be linearly symmetrical with respect to a line passing through a reference circumferential position and the center of the rotation shaft.

実施の形態3.
上述の実施の形態の転がり軸受の異常検知装置100、および異常診断装置200は、鉄道車両の車軸、減速機、電動機軸に取り付けられた軸受の異常検知、異常診断に適用できる。本実施の形態は、上記実施の形態で説明した異常検知装置100、および異常診断装置200を用いた鉄道車両向けの列車異常監視システムについて説明する。なお、本実施の形態において、上述の実施の形態と同じ文言、符号であるものは、特段の断りをしない限り、同様のものを意味する。
Embodiment 3.
The rolling bearing abnormality detection device 100 and abnormality diagnosis device 200 of the above-mentioned embodiment can be applied to abnormality detection and abnormality diagnosis of bearings attached to axles, reduction gears, and electric motor shafts of railway vehicles. In this embodiment, a train abnormality monitoring system for railway vehicles using the abnormality detection device 100 and abnormality diagnosis device 200 explained in the above-mentioned embodiment will be described. In this embodiment, the same words and symbols as those in the above-mentioned embodiment have the same meanings unless otherwise specified.

列車異常監視システム300は、鉄道車両20の車軸、減速機または電動機の回転軸を保持する転がり軸受1の異常を監視する異常監視システムである。列車異常監視システム300は、異常検知装置100を有する異常診断装置200と、転がり軸受1を複数有する鉄道車両20に設置され回転機器の動作状態をモニタする機能を含む列車統合管理装置21とを備える。列車統合管理装置21は、異常診断装置200の診断部19で異常と判断される場合に、鉄道車両20の運転台22へ転がり軸受1に異常があることを例えば運転台22に表示させる。列車異常監視システム300は、監視対象が鉄道車両の転がり軸受1であるので、鉄道車両の列車異常監視システムとも言える。The train abnormality monitoring system 300 is an abnormality monitoring system that monitors abnormalities in the rolling bearing 1 that holds the rotating shaft of the axle, reduction gear, or electric motor of the railway vehicle 20. The train abnormality monitoring system 300 includes an abnormality diagnosis device 200 having an abnormality detection device 100, and a train integrated management device 21 that is installed in the railway vehicle 20 having a plurality of rolling bearings 1 and includes a function of monitoring the operating state of rotating equipment. When an abnormality is judged to exist by the diagnosis unit 19 of the abnormality diagnosis device 200, the train integrated management device 21 displays, for example, on the cab 22 of the railway vehicle 20 that there is an abnormality in the rolling bearing 1. Since the train abnormality monitoring system 300 monitors the rolling bearing 1 of the railway vehicle, it can also be said to be a train abnormality monitoring system for the railway vehicle.

異常検知装置100は、転がり軸受1の外輪4の内周面2または内輪7の外周面に沿って転がり軸受1の回転軸方向の一方の第一側および他方の第二側に電気的絶縁されて設けられる検知部材15と、第一側の検知部材および第二側の前記検知部材の間の電気的特性を計測した計測情報を出力する計測部16とを備える。ここで、第一側および第二側の検知部材は、保持器9が摩耗した際に保持器9と接触するように構成しても良い。 The abnormality detection device 100 comprises detection members 15 provided along the inner circumferential surface 2 of the outer ring 4 of the rolling bearing 1 or the outer circumferential surface of the inner ring 7, on one first side in the rotational axis direction of the rolling bearing 1 and on the other second side, while being electrically insulated, and a measurement unit 16 that outputs measurement information obtained by measuring an electrical characteristic between the detection member on the first side and the detection member on the second side. Here, the detection members on the first side and the second side may be configured to come into contact with the cage 9 when the cage 9 is worn.

転がり軸受の異常診断装置200は、計測部16が出力する計測情報を受け取り、受け取った計測情報から転がり軸受1の状況を判断する診断部19を備える。The rolling bearing abnormality diagnosis device 200 is equipped with a diagnosis unit 19 that receives measurement information output by the measurement unit 16 and judges the condition of the rolling bearing 1 from the received measurement information.

異常監視の対象となる鉄道車両20は、一両でも、複数両から構成される1つの編成23でも、複数の編成23でも良い。異常監視の対象となる対象となる転がり軸受1は、一両の鉄道車両20にも1または複数存在する。The railway vehicle 20 that is the subject of abnormality monitoring may be a single car, a single train 23 consisting of multiple cars, or multiple trains 23. A single railway vehicle 20 may have one or more rolling bearings 1 that are the subject of abnormality monitoring.

図12に、本実施の形態の列車異常監視システム300の構成図を示す。列車異常監視システム300は、鉄道車両20の車軸、減速機または電動機の回転軸を保持する転がり軸受1の異常を監視する列車の異常監視システムである。 Figure 12 shows a configuration diagram of a train abnormality monitoring system 300 according to the present embodiment. The train abnormality monitoring system 300 is a train abnormality monitoring system that monitors abnormalities in the rolling bearings 1 that hold the axles, reduction gears, or rotating shafts of the electric motors of the railway vehicle 20.

この例では、複数の車両から構成される一つの編成23に列車異常監視システム300を適用する場合を例に説明する。異常検知装置100は、検知部材15と計測部16とを備える。鉄道車両20の車軸、減速機または電動機の回転軸を保持する転がり軸受1(保持器9以外は、図示せず)の外輪4または内輪7に設けられた検知部材15は、転がり軸受1の軸方向の1方側と他方側に互いに絶縁されて設けられる。検知部材の一方側と他方側の間の電気的特性を計測する計測部16は、計測した計測情報を出力する。 In this example, the train abnormality monitoring system 300 is applied to one formation 23 consisting of multiple cars. The abnormality detection device 100 comprises a detection member 15 and a measurement unit 16. The detection member 15 is provided on the outer ring 4 or inner ring 7 of the rolling bearing 1 (not shown except for the retainer 9) that holds the rotating shaft of the axle, reducer or electric motor of the railway vehicle 20, and is provided on one side and the other side in the axial direction of the rolling bearing 1, insulated from each other. The measurement unit 16 measures the electrical characteristics between one side and the other side of the detection member, and outputs the measured measurement information.

異常検知装置100の検知部材15は、上述の実施の形態と同様に、各転がり軸受1の軸方向両側に設けられる(両側で1セットと呼ぶ。)。計測部16は、各転がり軸受ごとに設けられても良いし、複数のセットの検知部材15を1つの計測部16で計測し、複数セット分の計測情報を出力するように構成しても良い。計測部16は、複数車両で構成される編成23の車両ごとに設けても良い。 As in the above-described embodiment, the detection members 15 of the anomaly detection device 100 are provided on both axial sides of each rolling bearing 1 (both sides are referred to as one set). A measurement unit 16 may be provided for each rolling bearing, or a single measurement unit 16 may be configured to measure multiple sets of detection members 15 and output measurement information for multiple sets. A measurement unit 16 may be provided for each car in a trainset 23 consisting of multiple cars.

計測部16は、鉄道車両20に設置されている回転機器に使用される転がり軸受について、検知部材15と保持器9との接触の導通で得られる電気的特性またはこれから求まる接触情報および転がり軸受を識別する識別情報を出力する。 The measurement unit 16 outputs electrical characteristics obtained by the electrical continuity of contact between the detection member 15 and the retainer 9, or contact information derived from this, and identification information for identifying the rolling bearing, for the rolling bearing used in the rotating equipment installed in the railway vehicle 20.

計測部16が計測する計測情報は、検知部材15と保持器9と接触の導通で得られる電気的特性またはこれから求まる接触情報である。また、計測部16は、上記電気的特性を計測した時刻を、計測値と関連付けて、計測情報として、出力または記憶しても良い。The measurement information measured by the measurement unit 16 is the electrical characteristics obtained by the contact conduction between the detection member 15 and the retainer 9, or contact information obtained from this. In addition, the measurement unit 16 may output or store the time when the electrical characteristics were measured as measurement information, in association with the measurement value.

さらに、計測部16は、保持器9と検知部材15との接触で得られる電流値または抵抗値、および計測した時刻から、転がり軸受1の相対回転、この場合、軸の1回転する時間当たり、保持器9と検知部材15とが接触した時間である接触時間の割合である接触割合を接触情報として、計測情報に含めて出力しても良い。 Furthermore, the measurement unit 16 may output the relative rotation of the rolling bearing 1, in this case the contact ratio, which is the ratio of the contact time during which the retainer 9 and the detection member 15 are in contact per one rotation of the shaft, as contact information based on the current value or resistance value obtained by contact between the retainer 9 and the detection member 15 and the time of measurement, and include this in the measurement information.

各転がり軸受1は、それぞれを識別できる識別情報が与えられる。計測部16は、転がり軸受1の識別情報と、当該転がり軸受1の計測情報とを関連付けて、出力(外部へ伝送)したり、記憶部31に記憶したりしても良い。このように転がり軸受1の識別情報と、当該転がり軸受1の計測情報とをセットにするなどして、関連付けて出力、記憶することによって、計測情報から異常が検出された際、いずれの編成23、いずれの車両、いずれの台車、いずれの転がり軸受1で、摩耗などの異常が起こったかを特定できる。Each rolling bearing 1 is given identification information with which it can be identified. The measurement unit 16 may associate the identification information of the rolling bearing 1 with the measurement information of the rolling bearing 1, and output (transmit to the outside) or store in the memory unit 31. By outputting and storing the identification information of the rolling bearing 1 in this manner, for example by associating it with the measurement information of the rolling bearing 1 as a set, when an abnormality is detected from the measurement information, it is possible to identify in which formation 23, which car, which bogie, and which rolling bearing 1 the abnormality, such as wear, has occurred.

異常診断装置200は、診断部19を備える。診断部19は、異常検知装置100の計測部16から出力される計測情報を有線または無線にて受信して、計測情報である電気的特性、またはこれから求まる接触情報(接触割合)から、転がり軸受1の保持器9の摩耗などの異常を判断する。診断部19は、計測情報に含まる接触情報(接触割合)から、保持器9の摩耗の程度を判断し、閾値以上である場合に、異常と判断することもできる。The abnormality diagnosis device 200 includes a diagnosis unit 19. The diagnosis unit 19 receives measurement information output from the measurement unit 16 of the abnormality detection device 100 by wire or wirelessly, and judges abnormalities such as wear of the retainer 9 of the rolling bearing 1 from the electrical characteristics of the measurement information or the contact information (contact ratio) obtained from the electrical characteristics. The diagnosis unit 19 can also judge the degree of wear of the retainer 9 from the contact information (contact ratio) included in the measurement information, and judge an abnormality to exist if the wear is equal to or greater than a threshold value.

なお、診断部19は、計測部16にて接触割合を求めない場合には、診断部19において受信した計測情報から、接触割合を求めるようにしも良い。 In addition, when the contact ratio is not calculated by the measurement unit 16, the diagnosis unit 19 may calculate the contact ratio from the measurement information received by the diagnosis unit 19.

診断部19は、計測情報に含まれる転がり軸受1の識別情報から、対象の転がり軸受1を特定でき、いずれの編成23、いずれの車両、いずれの台車、いずれの転がり軸受1で、摩耗などの異常が起こったかを出力することができる。これには、診断部19が、識別情報と、編成23、車両、台車、転がり軸受の配置場所との関連を記憶しておき、異常が起こった軸受の編成23、車両、台車、配置場所を特定して、表示器に表示させる信号を出力することができる。The diagnosis unit 19 can identify the target rolling bearing 1 from the identification information of the rolling bearing 1 contained in the measurement information, and can output which train set 23, which car, which bogie, and which rolling bearing 1 the abnormality such as wear has occurred in. To do this, the diagnosis unit 19 stores the association between the identification information and the locations of the train set 23, car, bogie, and rolling bearing, and can identify the train set 23, car, bogie, and location of the bearing where the abnormality has occurred, and output a signal to display on the display.

列車統合管理装置21は、診断部19で判断された結果を有線または無線伝送にって、受け取り、異常がある場合に、表示器に異常を表示させる。表示器は、列車統合管理装置21と接続される運転台22のものを用いても良い。この際、診断部19で、異常が起こった軸受の編成23、車両、台車、場所を特定し、これら情報を列車統合管理装置21が受け取り、グラフィカルに異常個所がわる表示用の情報に変換して、表示器に出力しても良い。The train integrated management device 21 receives the results of the judgment made by the diagnosis unit 19 via wired or wireless transmission, and if an abnormality is found, displays the abnormality on a display. The display may be that of the cab 22 connected to the train integrated management device 21. In this case, the diagnosis unit 19 identifies the formation 23, car, bogie and location of the bearing where the abnormality occurred, and this information is received by the train integrated management device 21, converted into information for displaying the location of the abnormality graphically, and output to the display.

また、列車統合管理装置21は、診断部19から転がり軸受1の識別情報を受け取り、列車統合管理装置21で記憶される、識別情報と、編成23、車両、台車、転がり軸受の配置場所との関係を示す情報から、異常と判断された編成23、車両、台車、転がり軸受の配置場所を特定するようにしても良い。In addition, the train integrated management device 21 may receive identification information of the rolling bearing 1 from the diagnosis unit 19, and identify the locations of the formation 23, vehicle, bogie, and rolling bearing that have been determined to be abnormal from information stored in the train integrated management device 21 indicating the relationship between the identification information and the locations of the formation 23, vehicle, bogie, and rolling bearing.

上記は、複数の鉄道車両20から構成される一つの編成23として説明したが、一つの編成23の複数の転がり軸受1の異常を監視する異常監視システムということもできる。 The above has been described as one train 23 consisting of multiple railway cars 20, but it can also be described as an abnormality monitoring system that monitors abnormalities in multiple rolling bearings 1 in one train 23.

図13に、本実施の形態の別の列車異常監視システム300の構成図を示す。図12の例では、鉄道車両の一つの編成23内の転がり軸受1の状況を診断して診断結果を表示したが、複数の編成23の転がり軸受1の情報を保守サーバに集約して、収集した情報を記憶するようにしても良い。 Figure 13 shows a configuration diagram of another train abnormality monitoring system 300 of this embodiment. In the example of Figure 12, the condition of the rolling bearing 1 in one train set 23 of a railway vehicle is diagnosed and the diagnosis result is displayed, but information on the rolling bearings 1 of multiple train sets 23 may be aggregated in a maintenance server and the collected information may be stored.

図12の列車異常監視システム300の例では、上述のように、鉄道車両の一つの編成23に、異常検知装置100を有する異常診断装置200と、転がり軸受1を複数有する鉄道車両20に設置され回転機器の動作状態をモニタする機能を含む列車統合管理装置21とを設けるだけでなく、複数の編成23それぞれに、異常診断装置200と、列車統合管理装置21とを設ける。さらに、列車異常監視システム300は、列車統合管理装置21と有線、または無線のネットワークによって接続され、列車統合管理装置21を有する複数の編成23の前記鉄道車両の転がり軸受1の情報を保持する保守サーバ25を備える。12, as described above, not only is an abnormality diagnosis device 200 having an abnormality detection device 100 and a train integrated management device 21 installed in a railway vehicle 20 having a plurality of rolling bearings 1 and including a function of monitoring the operating state of rotating equipment provided in one train set 23 of the railway vehicle, but each of the plurality of train sets 23 is provided with an abnormality diagnosis device 200 and a train integrated management device 21. Furthermore, the train abnormality monitoring system 300 includes a maintenance server 25 that is connected to the train integrated management device 21 by a wired or wireless network and holds information on the rolling bearings 1 of the railway vehicles of the plurality of train sets 23 having the train integrated management device 21.

検知部材15、計測部16および診断部19は、上述の図12の例と同様の構成である。 The detection member 15, measurement unit 16 and diagnosis unit 19 have the same configuration as the example shown in Figure 12 above.

列車統合管理装置21においては、計測部16から出力される出力情報が、上記ネットワークを介して保守サーバ25に伝送される。また、保守サーバ25は、保守サーバ25の記憶装置に計測部16から出力される出力情報を記憶する。保守サーバ25は、鉄道車両20上ではなく、保守センター、保守基地などに設けてもよい。この場合、鉄道車両20の各編成23内に診断部19を設けなくても良い。したがって、診断部19を実行する能力、電力等を鉄道車両20の各編成23に設ける必要がなくなり、鉄道車両20、または各編成23の構成部品が減り、単純化できる。In the train integrated management device 21, output information output from the measurement unit 16 is transmitted to the maintenance server 25 via the network. The maintenance server 25 also stores the output information output from the measurement unit 16 in its own storage device. The maintenance server 25 may be provided in a maintenance center, maintenance base, etc., rather than on the railway vehicle 20. In this case, it is not necessary to provide a diagnosis unit 19 in each formation 23 of the railway vehicle 20. Therefore, it is no longer necessary to provide each formation 23 of the railway vehicle 20 with the ability to execute the diagnosis unit 19, power, etc., and the number of components of the railway vehicle 20 or each formation 23 can be reduced and simplified.

なお、診断部19または列車統合管理装置21が、各転がり軸受1の計測部16から出力される出力情報を一時的に記憶し、記憶した情報をいずれかのタイミングで保守サーバ25へ伝送する、または一時的に記憶した情報を記憶媒体に写し、記憶媒体によって保守サーバ25の記憶部に記憶させても良い。保守サーバ25へ伝送するタイミングは、駅、信号、車庫などでの停車時が考えられる。無線であれば、通信環境が良好となり、有線であれば、通信用の接続線を接続できるからである。 The diagnosis unit 19 or the train integrated management device 21 may temporarily store the output information output from the measurement unit 16 of each rolling bearing 1 and transmit the stored information to the maintenance server 25 at any timing, or copy the temporarily stored information to a storage medium and store it in the storage unit of the maintenance server 25 via the storage medium. Possible timings for transmission to the maintenance server 25 include when the train is stopped at a station, a signal, a depot, etc. This is because, if wireless, the communication environment is good, and if wired, a connection line for communication can be connected.

列車統合管理装置21においては、異常診断装置200から出力される診断した結果である診断情報が、上記ネットワークを介して保守サーバ25に伝送される。診断情報は、各頃がり軸受1の健全、異常、要検査などの判断結果の情報である。また、保守サーバ25は、保守サーバ25の記憶装置に上記伝送された診断情報を記憶するようにしても良い。計測部16から出力される出力情報は、各転がり軸受1において秒単位で発生するから、複数の編成23では大量のデータとなるが、診断情報、しかも異常情報を伝送するようにすることで、伝送負荷を大幅に削減できる。In the train integrated management device 21, the diagnosis information, which is the result of the diagnosis output from the abnormality diagnosis device 200, is transmitted to the maintenance server 25 via the network. The diagnosis information is information on the results of judgments such as whether each rolling bearing 1 is healthy, abnormal, or requires inspection. The maintenance server 25 may also store the transmitted diagnosis information in a storage device of the maintenance server 25. The output information output from the measurement unit 16 is generated on a second-by-second basis for each rolling bearing 1, resulting in a large amount of data for multiple trains 23. However, by transmitting diagnosis information, and abnormality information in particular, the transmission load can be significantly reduced.

図14に、本実施の形態の別の列車異常監視システム300の構成図を示す。図13の例では、複数の編成23の転がり軸受1の情報を保守サーバ25に集約して、収集した情報を記憶するようにしたが、鉄道車両20の各一つの編成23には、診断部19を設けず、診断部19を保守サーバ25に接続するように設けて、保守サーバ25に記憶された計測部16から出力される情報を診断部19が各転がり軸受1の状況を診断するようにしても良い。また、保守サーバ25に、外部から転がり軸受の識別情報に対応する出力情報(計測情報)を含む保守情報を入力する入力部を設けてもよい。入力された保守情報をもとに以下に説明する判断基準を求めてもよい。この際、保守情報は、過去の計測した計測情報を含み、検査した結果として保守、または更新が必要と判断した結果の情報を含むこともできる。過去の計測情報と保守、または更新が必要とした結果の情報を用いて、判断基準、閾値を決めることができる。 Figure 14 shows a configuration diagram of another train abnormality monitoring system 300 of this embodiment. In the example of Figure 13, the information of the rolling bearings 1 of multiple formations 23 is aggregated in the maintenance server 25 and the collected information is stored. However, instead of providing a diagnostic unit 19 in each formation 23 of the railway vehicle 20, the diagnostic unit 19 may be provided to connect to the maintenance server 25, and the diagnostic unit 19 may diagnose the condition of each rolling bearing 1 using the information output from the measurement unit 16 stored in the maintenance server 25. In addition, the maintenance server 25 may be provided with an input unit for inputting maintenance information including output information (measurement information) corresponding to the identification information of the rolling bearing from the outside. The judgment criteria described below may be obtained based on the input maintenance information. In this case, the maintenance information may include measurement information measured in the past, and may also include information on the result of the judgment that maintenance or updating is necessary as a result of the inspection. The judgment criteria and threshold value can be determined using the past measurement information and the information on the result of the necessity of maintenance or updating.

検知部材15、計測部16は、上述の図12の例と同様の構成である。 The detection member 15 and the measuring unit 16 have the same configuration as the example shown in Figure 12 above.

ここでは、検知部材15および計測部16によって構成される異常検知装置100が、鉄道車両20の転がり軸受1、または、鉄道車両に設けられる。計測部16は、鉄道車両20に設置されている回転機器に使用される転がり軸受1について検知部材15と保持器9と接触の導通で得られる電気的特性またはこれから求まる接触情報および転がり軸受を識別する識別情報を出力し、有線または無線のネットワークによって、保守サーバ25に伝送される。計測情報には、計測対象の転がり軸受1を識別する識別情報(編成23、車両、軸受を識別)の他、計測した時刻情報が含まれる。 Here, an abnormality detection device 100 consisting of a detection member 15 and a measurement unit 16 is provided on a rolling bearing 1 of a railway vehicle 20 or on the railway vehicle. The measurement unit 16 outputs electrical characteristics obtained by the contact conduction between the detection member 15 and the cage 9 for the rolling bearing 1 used in rotating equipment installed on the railway vehicle 20, or contact information derived from this, and identification information for identifying the rolling bearing, which are transmitted to a maintenance server 25 via a wired or wireless network. The measurement information includes identification information for identifying the rolling bearing 1 being measured (identifying the formation 23, vehicle, and bearing), as well as information on the time of measurement.

計測部16から保守サーバ25への伝送の間に、鉄道車両の各編成23の列車統合管理装置21にて、一時的に計測情報を保持して、保守サーバ25に伝送するようにしても良い。これは、鉄道車両20が、伝送路の環境が良好な箇所にて、伝送する場合に好適である。During transmission from the measurement unit 16 to the maintenance server 25, the train integrated management device 21 of each train set 23 of the railway vehicle may temporarily hold the measurement information and transmit it to the maintenance server 25. This is suitable when the railway vehicle 20 transmits the information at a location where the transmission path environment is good.

保守サーバ25は、複数の編成23の転がり軸受1の計測情報を受け取り、記憶部に保存する。 The maintenance server 25 receives measurement information of the rolling bearings 1 of multiple trains 23 and stores it in a memory unit.

診断部19は、保守サーバ25に保存された複数の編成23の転がり軸受1の計測情報を読み出し、各転がり軸受1の異常の有無の判断を行う。具体的には、診断部19は、保守サーバ25に保存された計測情報に含まれる、転がり軸受1の識別情報から、対象の転がり軸受1を特定し、いずれの編成23、いずれの車両、いずれの台車、いずれの転がり軸受1で、摩耗などの異常が起こったかを出力する。The diagnosis unit 19 reads out the measurement information of the rolling bearings 1 of multiple trains 23 stored in the maintenance server 25, and judges whether there is an abnormality in each rolling bearing 1. Specifically, the diagnosis unit 19 identifies the target rolling bearing 1 from the identification information of the rolling bearing 1 contained in the measurement information stored in the maintenance server 25, and outputs which train 23, which car, which bogie, and which rolling bearing 1 have an abnormality such as wear.

診断部19は、予め識別情報と、編成23、車両、台車、転がり軸受の配置場所との関連を記憶しておき、異常が起こった軸受の編成23、車両、台車、配置場所を特定して、表示器にグラフィカルに表示させる信号を出力することができる。The diagnosis unit 19 stores in advance the association between the identification information and the location of the train set 23, vehicle, bogie, and rolling bearing, and can identify the train set 23, vehicle, bogie, and location of the bearing in which an abnormality has occurred, and output a signal to display the information graphically on the display.

上記のように構成することによって、鉄道車両20の各編成23においては、長時間にわたる計測情報を保持するための記憶装置、または診断するための計算装置を設ける必要がなく、保守サーバ25およびこれに接続する診断部19にて実施する為、システム全体の効率が良い。 By configuring as described above, there is no need to provide a storage device for retaining measurement information over long periods of time or a computing device for diagnosis in each train set 23 of the railway vehicle 20, and since this is carried out by the maintenance server 25 and the diagnosis unit 19 connected to it, the efficiency of the entire system is high.

図15に、本実施の形態の別の列車異常監視システム300の構成図を示す。この例では、図12の列車異常監視システム300の構成に加えて、保守サーバ25に接続する分析部26を備え、分析部26にて、分析した結果である異常の判断基準を診断部19に伝送し、各診断部19が、判断基準に基づき、異常を判断する。 Figure 15 shows a configuration diagram of another train abnormality monitoring system 300 of this embodiment. In this example, in addition to the configuration of the train abnormality monitoring system 300 in Figure 12, an analysis unit 26 connected to a maintenance server 25 is provided, and the analysis unit 26 transmits the abnormality judgment criteria, which are the results of the analysis, to the diagnosis unit 19, and each diagnosis unit 19 judges an abnormality based on the judgment criteria.

図15の例では、異常検知装置100、異常診断装置200、および保守サーバ25は、図12の例と同様のものである。In the example of Figure 15, the abnormality detection device 100, abnormality diagnosis device 200, and maintenance server 25 are similar to those in the example of Figure 12.

分析部26は、保守サーバ25に有線または無線にて接続され、保守サーバ25に保存された鉄道車両20の転がり軸受1の計測情報を読み出す。分析部26は、複数の編成23の複数の鉄道車両20の複数の転がり軸受1の計測情報を分析し、転がり軸受1の保持器9の摩耗が異常となる計測情報の値の判断基準を求める。判断基準は、閾値データまたは計測情報の値を変数とする不等式の関数として求めることができる。求めた判断基準は判断基準情報として、分析部26が、保守サーバ25および列車統合管理装置21を介して、または列車統合管理装置21を介して、または直接に診断部19に伝送する。The analysis unit 26 is connected to the maintenance server 25 by wire or wirelessly, and reads out the measurement information of the rolling bearings 1 of the railway cars 20 stored in the maintenance server 25. The analysis unit 26 analyzes the measurement information of the multiple rolling bearings 1 of the multiple railway cars 20 of the multiple formations 23, and determines a judgment criterion for the value of the measurement information at which wear of the retainer 9 of the rolling bearing 1 becomes abnormal. The judgment criterion can be determined as a function of an inequality in which the threshold data or the value of the measurement information is a variable. The analysis unit 26 transmits the determined judgment criterion as judgment criterion information to the diagnosis unit 19 via the maintenance server 25 and the train integrated management device 21, or via the train integrated management device 21, or directly.

診断部19は、判断基準情報を受け取り、判断基準情報を記憶、または既にある判断基準を受け取った判断基準情報の判断基準に更新して、計測情報の異常の判断に用いる。The diagnosis unit 19 receives the criteria information, stores the criteria information, or updates existing criteria to the criteria of the received criteria information, and uses the criteria to determine abnormalities in the measurement information.

分析部26で行われる、診断部19の計測情報の異常の判断に用いる判断基準の求め方について説明する。 This section explains how the analysis unit 26 determines the criteria used to determine abnormalities in the measurement information of the diagnosis unit 19.

(1)標準偏差を用いる
一定期間運転後、保存されている各転がり軸受1について、転がり軸受1が回転している総時間に対する、計測情報の保持器9と検知部材15との接触を意味する信号があった時間の割合を求め、この総時間に対する接触時間の割合の標準偏差を求め、例えば、3σの範囲を超える割合があった転がり軸受1を異常、または要検査と判断するようにしても良い。分析部26は、3σの範囲の上限の総時間に対する接触時間の割合を求め、判断基準を当該上限の割合を超えることとし、判断基準情報として、上記のように診断部19へ伝送する。
(1) Use of standard deviation After a certain period of operation, for each stored rolling bearing 1, the proportion of time during which there was a signal indicating contact between the cage 9 and the detection member 15 in the measurement information was found relative to the total time that the rolling bearing 1 was rotating, and the standard deviation of the proportion of contact time relative to this total time may be calculated, and a rolling bearing 1 with a proportion exceeding the 3σ range, for example, may be judged to be abnormal or requiring inspection. The analysis unit 26 calculates the proportion of contact time relative to the total time of the upper limit of the 3σ range, sets the judgment criterion as exceeding this upper limit proportion, and transmits this as judgment criterion information to the diagnosis unit 19 as described above.

診断部19は、判断基準情報を受け取り、上限の総時間に対する接触時間の割合を超えることを判断基準として、転がり軸受1を異常、または要検査を判断する。異常、または要検査を判断された転がり軸受1の情報は、列車統合管理装置21を介して表示され、または診断情報として保守サーバ25に送られる。保守員は、上記表示、保守サーバ25に送られる診断情報をモニタリングして、異常、または要検査と判断された転がり軸受1を実際に検査する。The diagnosis unit 19 receives the judgment criteria information and judges the rolling bearing 1 as abnormal or requiring inspection based on the judgment criterion of exceeding the ratio of contact time to the upper limit of total time. Information on the rolling bearing 1 judged to be abnormal or requiring inspection is displayed via the train integrated management device 21 or sent to the maintenance server 25 as diagnostic information. Maintenance personnel monitor the display and the diagnostic information sent to the maintenance server 25, and actually inspect the rolling bearing 1 judged to be abnormal or requiring inspection.

上記では、総時間に対する接触時間の割合を評価基準としたが、上述した接触割合を用いても良い。 In the above, the ratio of contact time to total time was used as the evaluation criterion, but the above-mentioned contact ratio may also be used.

(2)実際の検査結果を用いる
一定期間運転後、上記の診断情報から実際に転がり軸受1を検査した結果、または、定期点検(走行距離ごとの点検を含む)によって実際に転がり軸受1を検査した結果を集計して、実際に交換または処置が必要となった転がり軸受1の情報を収集して、当該軸受1の計測情報を分析して判断基準を求めても良い。
(2) Use of Actual Inspection Results After a certain period of operation, the results of actual inspection of the rolling bearings 1 from the above-mentioned diagnostic information or the results of actual inspection of the rolling bearings 1 through regular inspections (including inspections based on mileage) can be compiled to collect information on the rolling bearings 1 that actually required replacement or treatment, and the measurement information of the bearings 1 can be analyzed to determine a judgment criterion.

分析部26は、保守サーバ25が保存している計測情報から、実際に検査した結果、実際に交換または処置が必要となった転がり軸受1の計測情報を識別情報の入力により特定し、その旨を保守サーバ25に記録する。一定期間が経過すれば、特定された転がり軸受1の数は、増加する。分析部26は、複数の特定された転がり軸受1の計測情報から、上記の総時間に対する接触時間の割合または接触割合が最も小さい転がり軸受1、およびその総時間に対する接触時間の割合または接触割合を得る。分析部26は、こうして得た最小の総時間に対する接触時間の割合または接触割合以上の転がり軸受1が異常または要検査であると判断することを判断基準として、判断基準情報として、記憶するともに、上記のように診断部19へ伝送する。The analysis unit 26 identifies the measurement information of rolling bearings 1 that actually required replacement or treatment as a result of actual inspection from the measurement information stored in the maintenance server 25 by inputting the identification information, and records that fact in the maintenance server 25. After a certain period of time has passed, the number of identified rolling bearings 1 increases. From the measurement information of the multiple identified rolling bearings 1, the analysis unit 26 obtains the rolling bearing 1 with the smallest ratio of contact time or contact rate to the total time described above, and the ratio of contact time or contact rate to the total time. The analysis unit 26 uses the thus obtained ratio of contact time or contact rate to the smallest total time or more as the judgment criterion for judging that a rolling bearing 1 is abnormal or requires inspection, stores this as judgment criterion information, and transmits it to the diagnosis unit 19 as described above.

(機械学習)
さらに、各編成23の運行情報を計測情報とともに保守サーバ25で収集し、保存し、分析部26が、これら運行情報、総時間に対する接触時間の割合または接触割合、および実際の検査の結果を学習データとして保守サーバ25に保存し、これを機械学習して学習済みモデルを作成するようにしても良い。
(Machine Learning)
Furthermore, the operation information of each train set 23 together with the measurement information may be collected and stored by the maintenance server 25, and the analysis unit 26 may store this operation information, the ratio of contact time to total time or contact rate, and the results of actual inspections as learning data in the maintenance server 25, and use machine learning to create a learned model.

ここで、各編成23の列車統合管理装置21が、転がり軸受1の計測情報を伝送する際、運行情報として、時刻ごとの当該編成23の加減速を表す、電流、ブレーキの情報をともに保守サーバ25へ伝送し、保守サーバ25は、これらの編成23の識別情報、時刻、電流、加減速を表す情報を保存するようにしても良い。このようにして複数の編成23から収集したデータを上記学習データとすることができる。Here, when the integrated train management device 21 of each formation 23 transmits the measurement information of the rolling bearings 1, it may transmit, as operation information, both current and brake information representing the acceleration/deceleration of the formation 23 at each time to the maintenance server 25, and the maintenance server 25 may store the identification information, time, current, and information representing the acceleration/deceleration of these formations 23. The data collected in this way from multiple formations 23 can be used as the learning data.

分析部26は、運行情報、総時間に対する接触時間の割合または接触割合、および実際の検査の結果を学習データとして、機械学習を行い、学習済みデータを作成する。分析部26は、作成した学習済みモデルを上記のように診断部19へ伝送する。この場合、画集済みモデルが、判断基準情報と捉えることができる。The analysis unit 26 performs machine learning using the operation information, the ratio of contact time to total time or the contact rate, and the results of the actual inspection as learning data, to create learned data. The analysis unit 26 transmits the created learned model to the diagnosis unit 19 as described above. In this case, the illustrated model can be considered as judgment criteria information.

診断部19は、受け取った学習済みモデルに、計測部16で計測した各転がり軸受1の計測情報(接触時間または接触割合を含む)、列車統合管理装置21からの加減速を表す情報を適用すると、異常または要検査か否かの判断結果を得る。さらに診断部19は、列車統合管理装置21に判断結果をおくり、他の形態と同様に、判断結果を表示したり、保守サーバ25に伝送したりして、運転員、保守員がモニタリングできるように構成することができる。The diagnosis unit 19 applies the measurement information (including contact time or contact ratio) of each rolling bearing 1 measured by the measurement unit 16 and the information representing acceleration and deceleration from the train integrated management device 21 to the received trained model, and obtains a judgment result as to whether or not there is an abnormality or inspection is required. Furthermore, the diagnosis unit 19 sends the judgment result to the train integrated management device 21, and as in the other forms, the judgment result can be displayed or transmitted to the maintenance server 25 so that the operator or maintenance personnel can monitor it.

以上をより上位概念としてとらえると、列車異常監視システム300は、鉄道車両20の転がり軸受1の外輪4または内輪7と保持器9との間隔が所定閾値以下となる近接時間を計測して近接時間の割合を表す近接時間割合として出力する近接時間計測部と、近接時間割合の情報を受け取り、接触割合が閾値を超えると異常と判断する診断部とを備えると捉えることができる。ここで、近接時間割合は、計測した総時間に対する近接時間の割合、または転がり軸受1の外輪4と内輪7の相対回転1回転時間のうちの近接時間の割合である。Taking the above as a higher-level concept, the train abnormality monitoring system 300 can be considered to include a proximity time measurement unit that measures the proximity time during which the gap between the outer ring 4 or inner ring 7 of the rolling bearing 1 of the railway vehicle 20 and the cage 9 is below a predetermined threshold and outputs the proximity time ratio indicating the ratio of the proximity time, and a diagnosis unit that receives the proximity time ratio information and determines that an abnormality has occurred when the contact ratio exceeds the threshold. Here, the proximity time ratio is the ratio of the proximity time to the total measured time, or the ratio of the proximity time to the time of one relative rotation of the outer ring 4 and inner ring 7 of the rolling bearing 1.

上記概念は、上述の実施の形態に記載の転動体8の負荷圏脱出位置における円周の接線方向の力によって保持器9に振れ回りが生じる現象から考案されたものである。上記上位概念の近接時間割合を用いて転がり軸受1の状態を判断すると、保持器9の摩耗の程度までを判断できる。The above concept was devised from the phenomenon in which the cage 9 swings due to a tangential force on the circumference at the position where the rolling element 8 leaves the load zone, as described in the above embodiment. By judging the state of the rolling bearing 1 using the proximity time ratio of the above-mentioned higher-level concept, it is even possible to judge the degree of wear of the cage 9.

上記の検知部材15および計測部16で計測する、外輪4または内輪7に設けた検知部材15と保持器9との接触においては、検知部材15が、外輪4の内周面2または内輪7の外周面5から保持器9側に突出していることから、この突出量が上記所定閾値に相当する。したがって、上記検知部材15および計測部16で計測する、計測した総時間に対する接触時間の割合または接触割合は、上記近接時間割合に含まれる概念である。よって、上記上位概念は、上述した列車異常監視システム300のいずれをも含む概念といえる。In the contact between the detection member 15 provided on the outer ring 4 or the inner ring 7 and the cage 9 measured by the detection member 15 and the measurement unit 16, the detection member 15 protrudes from the inner circumferential surface 2 of the outer ring 4 or the outer circumferential surface 5 of the inner ring 7 toward the cage 9, and this protrusion amount corresponds to the above-mentioned predetermined threshold value. Therefore, the ratio of contact time to the total measured time or the contact ratio measured by the detection member 15 and the measurement unit 16 is a concept included in the above-mentioned proximity time ratio. Therefore, the above-mentioned higher concept can be said to be a concept that includes any of the above-mentioned train abnormality monitoring systems 300.

また、検知部材15および計測部16に代えて、他の手段によって、近接時間割合を計測することも考えられる。例えば、外輪4の内周面2または内輪7の外周面5と、保持器9の外周との距離を計測する非接触式変位計(例えば、レーザ変位計、渦電流変位計など)を周方向に複数設け、複数の非接触式変位計で計測した距離の内、閾値以下となった変位計の数を求めて、周方向に設けた非接触式変位計の数で除算することで、簡易的に接触割合を求めるようにすることもできる。It is also possible to measure the proximity time ratio by other means instead of the detection member 15 and the measurement unit 16. For example, a number of non-contact displacement gauges (e.g., laser displacement gauges, eddy current displacement gauges, etc.) that measure the distance between the inner surface 2 of the outer ring 4 or the outer surface 5 of the inner ring 7 and the outer periphery of the cage 9 can be provided in the circumferential direction, and the number of displacement gauges that are below a threshold among the distances measured by the multiple non-contact displacement gauges can be found, and this can be divided by the number of non-contact displacement gauges provided in the circumferential direction to easily find the contact ratio.

先の上位概念として表現した列車異常監視システムは、上記のような非接触式変位計を用いても、上述の検知部材15を用いても、実現できる。具体的には、本実施の形態のいずれの例(図12―15)でも、検知部材15および計測部16に代えて、非接触式変位計(例えば、レーザ変位計、渦電流変位計など)を周方向に複数設けて、実現可能といえる。
ただし、適用の際には、非接触式変位計は、非接触であるので、接触を近接と読み替え、接触時間を近接検知した非接触変位計の箇所数に読み替える必要がある。
The train abnormality monitoring system expressed as a higher-level concept above can be realized by using the above-mentioned non-contact type displacement meter or the above-mentioned detection member 15. Specifically, in any of the examples (FIGS. 12-15) of this embodiment, it can be said that the system can be realized by providing a plurality of non-contact type displacement meters (e.g., laser displacement meters, eddy current displacement meters, etc.) in the circumferential direction instead of the detection member 15 and the measurement unit 16.
However, when applying this method, since non-contact displacement meters are non-contact, it is necessary to interpret contact as proximity and the contact time as the number of locations of the non-contact displacement meters that detected proximity.

本実施の形態の列車異常監視システム300は、上記実施の形態の異常検知装置100、および異常診断装置200を用いるものであるから、これらの効果を有するほか、以下の効果を有する。 The train abnormality monitoring system 300 of this embodiment uses the abnormality detection device 100 and abnormality diagnosis device 200 of the above-mentioned embodiments, and therefore in addition to these effects, it also has the following effects.

本実施の形態の列車異常監視システム300は、転がり軸受1を複数有する鉄道車両20に設けられ、異常診断装置200の診断部19が異常と判断した転がり軸受1に異常があることを回転機器の動作状態をモニタする列車統合管理装置21に表示させるから、鉄道車両20に設けられた複数の軸受の保持器9の異常を監視できる(図12)。異常診断装置200の異常検知装置100は、簡易な構造であり、強度も強いので、多数の転がり軸受1があり、長年使用する鉄道車両の列車異常監視システムに好適である。The train abnormality monitoring system 300 of this embodiment is provided in a railway vehicle 20 having a plurality of rolling bearings 1, and displays the presence of an abnormality in the rolling bearing 1 that the diagnosis unit 19 of the abnormality diagnosis device 200 judges to be abnormal on the train integrated management device 21 that monitors the operating state of rotating equipment, so that abnormalities in the retainers 9 of the plurality of bearings provided in the railway vehicle 20 can be monitored (FIG. 12). The abnormality detection device 100 of the abnormality diagnosis device 200 has a simple structure and is strong, so that it is suitable for a train abnormality monitoring system for railway vehicles that have a large number of rolling bearings 1 and are used for many years.

列車異常監視システム300は、計測情報から外輪4と内輪7との相対回転が1回転する時間に対して検知部材15と保持器9とが接触する時間の割合である接触割合に基づいて判断するから、保持器9の摩耗の程度まで鉄道車両の多数の転がり軸受1ごとに把握できるので、保守、点検、交換の時期がわかり、保守計画ができ、効率が良い。 The train abnormality monitoring system 300 makes judgments based on the contact ratio, which is the ratio of the time that the detection member 15 and the retainer 9 are in contact with each other per one rotation of the relative rotation between the outer ring 4 and the inner ring 7, from the measurement information. Therefore, it is possible to grasp the degree of wear of the retainer 9 for each of the many rolling bearings 1 in the railway vehicle, so that the timing of maintenance, inspection and replacement can be determined and maintenance can be planned efficiently.

本実施の形態の列車異常監視システム300は、複数の編成30の転がり軸受1の異常検知装置100で収集した計測情報、または診断部19で異常または要検査を判断した結果を保守サーバ25に集約して、検索等ができるので、保守員が、転がり軸受1の種類による検知感度の違いを把握し、検査タイミングなどを補正することができる(図13)。 The train abnormality monitoring system 300 of this embodiment can collect measurement information collected by the abnormality detection device 100 of the rolling bearings 1 of multiple formations 30, or the results of the diagnosis unit 19 determining whether there is an abnormality or need for inspection, in the maintenance server 25 and perform searches, etc., so that maintenance personnel can understand the differences in detection sensitivity depending on the type of rolling bearing 1 and adjust the inspection timing, etc. (Figure 13).

本実施の形態の列車異常監視システム300は、複数の編成30の転がり軸受1の異常検知装置100で収集した計測情報、または診断部19で異常または要検査を判断した結果される保守サーバ25に診断部19を直接接続するように構成したので、車両に直接搭載よりも地上側に診断部を集約させることで、異常検知アルゴリズムなどのアップデートが容易になる。検知部材15の形状等により診断部19の判断基準を変更する際に、一括して変更できる(図13)。 The train abnormality monitoring system 300 of this embodiment is configured to directly connect the diagnostic unit 19 to the maintenance server 25 that receives measurement information collected by the abnormality detection device 100 of the rolling bearings 1 of multiple formations 30, or the results of the diagnostic unit 19 determining that there is an abnormality or that an inspection is required. Therefore, by consolidating the diagnostic unit on the ground rather than directly on the vehicle, it becomes easier to update the abnormality detection algorithm, etc. When changing the judgment criteria of the diagnostic unit 19 due to the shape of the detection member 15, etc., the change can be made all at once (Figure 13).

本実施の形態の列車異常監視システム300は、複数の編成30の転がり軸受1の異常検知装置100で収集した計測情報、または診断部19で異常または要検査を判断した結果される保守サーバ25に分析部26を接続したので、保守サーバ25に保存されている計測情報、および保守、検査、更新した情報を分析して、判断基準を更新し、診断部19の判断基準を更新して、診断精度を高めることができる(図14)。特に、計測した総時間に対する接触時間の割合または接触割合を収集して分析することで、接触時間の割合または接触割合の閾値を実測、検査結果から求めて診断部19の判断基準として、診断精度を高めることができる。In the train abnormality monitoring system 300 of this embodiment, the analysis unit 26 is connected to the maintenance server 25 that receives measurement information collected by the abnormality detection device 100 of the rolling bearings 1 of multiple trains 30, or the results of the diagnosis unit 19 determining that an abnormality or inspection is required, so that the measurement information stored in the maintenance server 25 and the maintenance, inspection, and update information can be analyzed to update the judgment criteria, and the judgment criteria of the diagnosis unit 19 can be updated to improve the diagnosis accuracy (Figure 14). In particular, by collecting and analyzing the percentage of contact time or contact rate relative to the total measured time, the threshold value of the percentage of contact time or contact rate can be obtained from the actual measurement and inspection results and used as the judgment criteria of the diagnosis unit 19, thereby improving the diagnosis accuracy.

本実施の形態の列車異常監視システム300は、鉄道車両20の転がり軸受1の外輪4または内輪7と保持器9との間隔が所定閾値以下となる近接時間を計測して近接時間の割合を表す近接時間割合として出力する近接時間計測部と、近接時間割合の情報を受け取り、接触割合が閾値を超えると異常と判断する診断部とを備えるから、保持器9の摩耗の程度まで鉄道車両の多数の転がり軸受1ごとに把握できるので、保守、点検、交換の時期がわかり、保守計画ができ、効率が良い。 The train abnormality monitoring system 300 of this embodiment is equipped with a proximity time measurement unit that measures the proximity time during which the gap between the outer ring 4 or inner ring 7 of the rolling bearing 1 of the railway vehicle 20 and the retainer 9 is below a predetermined threshold and outputs it as a proximity time ratio indicating the proportion of the proximity time, and a diagnosis unit that receives the proximity time ratio information and determines that an abnormality has occurred when the contact ratio exceeds the threshold.As a result, even the degree of wear of the retainer 9 can be grasped for each of the many rolling bearings 1 of the railway vehicle, so the times for maintenance, inspection and replacement can be determined and maintenance planning can be carried out efficiently.

1 転がり軸受(円筒ころ軸受)
2 外輪の内周面
4 外輪
5 内輪の外周面
7 内輪
8 転動体
9 保持器
9a 保持器外周面
10 円環部
11 柱部
12 ポケット部
15 検知部材
15a 異常検知接触部
15b 異常検知接触部底面
16 計測部
17 電線
18 伝送部?
19 診断部
20 鉄道車両
21 列車統合管理装置
22 運転台
23 編成
31 記憶部
32 インタフェース部
100 転がり軸受の異常検知装置
200 転がり軸受の異常診断装置
300 列車異常監視システム
1. Rolling bearings (cylindrical roller bearings)
2 Inner peripheral surface of outer ring 4 Outer ring 5 Outer peripheral surface of inner ring 7 Inner ring 8 Rolling element 9 Cage 9a Cage outer peripheral surface 10 Ring portion 11 Column portion
12 Pocket portion 15 Detection member 15a Abnormality detection contact portion 15b Bottom surface of abnormality detection contact portion 16 Measurement portion 17 Electric wire 18 Transmission portion?
REFERENCE SIGNS LIST 19 Diagnosis unit 20 Railway vehicle 21 Train integrated management device 22 Driver's cab 23 Train configuration 31 Memory unit 32 Interface unit 100 Rolling bearing abnormality detection device 200 Rolling bearing abnormality diagnosis device 300 Train abnormality monitoring system

Claims (13)

外輪と、前記外輪の内側に設けられた内輪と、前記外輪と前記内輪の間に転動自在に設けられた複数の転動体と、前記転動体が隣接する前記転動体との間隔を保ちつつ前記複数の転動体を保持する保持器を備える転がり軸受の異常を検知する転がり軸受の異常検知装置において、
前記外輪の内周面または前記内輪の外周面に沿って前記転がり軸受の回転軸方向の一方の第一側の検知部材および前記第一側の検知部材に電気的絶縁された前記転がり軸受の回転軸方向の他方の第二側の検知部材と
前記第一側の検知部材および前記第二側の検知部材の間の電気的特性を計測した計測情報を出力する計測部とを備え、
前記第一側および前記第二側の検知部材は、前記保持器が摩耗した際に前記保持器と接触する転がり軸受の異常検知装置。
A rolling bearing abnormality detection device for detecting an abnormality in a rolling bearing comprising an outer ring, an inner ring provided inside the outer ring, a plurality of rolling elements provided to be able to roll between the outer ring and the inner ring, and a cage that holds the plurality of rolling elements while maintaining a distance between the rolling elements and adjacent rolling elements,
a first-side detection member on one side in the rotational axis direction of the rolling bearing along an inner circumferential surface of the outer ring or an outer circumferential surface of the inner ring, and a second-side detection member on the other side in the rotational axis direction of the rolling bearing electrically insulated from the first-side detection member ;
a measurement unit that outputs measurement information obtained by measuring an electrical characteristic between the first-side detection member and the second-side detection member,
The first and second side detection members are an abnormality detection device for a rolling bearing that comes into contact with the retainer when the retainer becomes worn.
前記第一側および前記第二側の検知部材は、前記転がり軸受の回転中心を中心として前記転動体に最も力がかる位置の方向を0度として、前記転動体が回転する向きに180度以上360度未満の範囲に配置される請求項1に記載の転がり軸受の異常検知装置。 2. The rolling bearing abnormality detection device according to claim 1, wherein the detection members on the first side and the second side are arranged in a range of 180 degrees or more and less than 360 degrees in the direction in which the rolling element rotates, with the direction in which the rolling element is subjected to the greatest force being defined as 0 degrees around the center of rotation of the rolling bearing. 前記第一側および前記第二側の検知部材は、前記外輪の前記内周面または前記内輪の前記外周面の全周に配置される請求項1に記載の転がり軸受の異常検知装置。 2. The rolling bearing abnormality detection device according to claim 1, wherein the first and second detection members are arranged on the entire circumference of the inner circumferential surface of the outer ring or the entire circumference of the outer circumferential surface of the inner ring. 前記第一側および前記第二側の検知部材は、前記転がり軸受の回転中心を中心として前記転動体に最も力がかる位置の方向を基準方向とすると、前記基準方向から前記転動体が回転する向きに180度回転させた方向までの範囲の径方向の最大厚さが、前記基準方向から前記転動体が回転する向きと逆向きに180度回転させた方向までの範囲の径方向の最大厚さより厚い請求項3に記載の転がり軸受の異常検知装置。 The rolling bearing abnormality detection device according to claim 3, wherein the maximum radial thickness of the detection members on the first and second sides in a range from the reference direction to a direction rotated 180 degrees in the direction in which the rolling elements rotate, when the direction of the position where the greatest force is applied to the rolling elements around the center of rotation of the rolling bearing is taken as a reference direction, is greater than the maximum radial thickness of the detection members in a range from the reference direction to a direction rotated 180 degrees in the opposite direction to the direction in which the rolling elements rotate. 前記第一側および前記第二側の検知部材は、前記保持器側への飛び出し量を調整する調整部を有する請求項1に記載の転がり軸受の異常検知装置。 The rolling bearing abnormality detection device according to claim 1, wherein the first-side and second-side detection members have an adjustment part that adjusts the amount of protrusion toward the retainer. 前記計測部が計測した前記計測情報と当該計測情報を計測した時刻情報とを関連付けて記憶する記憶部と、
外部からの指令によって前記記憶部に記憶された前記計測情報と前記時刻情報とを出力する外部インタフェース部を備える請求項1から5のいずれか1項に記載の転がり軸受の異常検知装置。
a storage unit that stores the measurement information measured by the measurement unit in association with time information at which the measurement information was measured;
6. The rolling bearing abnormality detection device according to claim 1, further comprising an external interface unit that outputs the measurement information and the time information stored in the memory unit in response to an external command.
前記計測部は、前記外輪と前記内輪との相対回転が1回転する時間に対して前記第一側および前記第二側の検知部材と前記保持器とが接触する時間の割合である接触割合を求めて前記計測情報として出力する請求項1から6のいずれか1項に記載の転がり軸受の異常検知装置。 7. The rolling bearing abnormality detection device according to claim 1, wherein the measurement unit determines a contact ratio, which is the ratio of the time that the first and second side detection members are in contact with the cage per one rotation of the relative rotation between the outer ring and the inner ring, and outputs the contact ratio as the measurement information. 請求項1から6のいずれか1項に記載の転がり軸受の異常検知装置と、
前記計測情報を受け取り、前記計測情報から前記転がり軸受の状況を判断する診断部とを備える転がり軸受の異常診断装置。
The rolling bearing abnormality detection device according to any one of claims 1 to 6,
a diagnosis unit that receives the measurement information and determines the condition of the rolling bearing from the measurement information.
前記診断部は、前記計測部からの出力から前記外輪と前記内輪との相対回転が1回転する時間に対して前記第一側および前記第二側の検知部材と前記保持器とが接触する時間の割合である接触割合に基づいて判断する請求項8に記載の転がり軸受の異常診断装置。 9. The rolling bearing abnormality diagnosis device according to claim 8, wherein the diagnosis unit makes a judgment based on a contact ratio, which is the ratio of the time that the first and second side detection members are in contact with the cage per time that the relative rotation between the outer ring and the inner ring takes place once, from the output from the measurement unit. 請求項1から6のいずれか1項に記載の転がり軸受の異常検知装置と、
前記計測情報を受け取り、前記計測情報から前記転がり軸受の状況を判断する診断部と、
前記転がり軸受を複数有する鉄道車両に設置され回転機器の動作状態をモニタする機能を含む列車統合管理装置とを備え、
前記列車統合管理装置は、前記診断部で異常と判断される場合に前記鉄道車両の運転台へ前記転がり軸受に異常があることを表示器に表示させる列車異常監視システム。
The rolling bearing abnormality detection device according to any one of claims 1 to 6,
a diagnosis unit that receives the measurement information and determines a condition of the rolling bearing from the measurement information;
a train integrated management device that is installed in a railway vehicle having a plurality of the rolling bearings and that includes a function of monitoring an operating state of rotating equipment,
The train integrated management device is a train abnormality monitoring system that displays on a display in the driver's cab of the railway vehicle that there is an abnormality in the rolling bearing when the diagnostic unit determines that there is an abnormality.
前記診断部は、前記計測部からの出力から前記外輪と前記内輪との相対回転が1回転する時間に対して前記第一側および前記第二側の検知部材と前記保持器とが接触する時間の割合である接触割合に基づいて判断する請求項10に記載の列車異常監視システム。 The train abnormality monitoring system described in claim 10, wherein the diagnosis unit makes a judgment based on a contact ratio, which is the ratio of the time that the first side and second side detection members are in contact with the retainer per time that the relative rotation between the outer ring and the inner ring takes place once, from the output from the measurement unit. 前記列車統合管理装置とネットワークによって接続され、前記列車統合管理装置を有する複数の編成の前記鉄道車両の前記転がり軸受の前記計測情報を含む保守情報を保持する保守サーバを備え、
前記列車統合管理装置は、前記計測部から出力される前記計測情報を前記ネットワークを介して前記保守サーバに伝送する請求項10または11に記載の列車異常監視システム。
a maintenance server connected to the train integrated management device via a network and storing maintenance information including the measurement information of the rolling bearings of the railway vehicles of a plurality of configurations having the train integrated management device;
The train abnormality monitoring system according to claim 10 or 11, wherein the train integrated management device transmits the measurement information output from the measurement unit to the maintenance server via the network.
前記保守サーバは、保守が必要となった前記転がり軸受の識別情報に対応する前記保守情報を入力する入力部を含み、
前記保守サーバは、保存された前記計測情報、前記識別情報および前記保守情報から前記計測情報が異常とする閾値を求めて前記閾値を前記診断部に伝送し、
前記診断部は、伝送された前記閾値に基づいて異常の有無を判断する請求項12に記載の列車異常監視システム。
the maintenance server includes an input unit for inputting the maintenance information corresponding to identification information of the rolling bearing requiring maintenance,
the maintenance server determines a threshold value for determining that the measurement information is abnormal from the stored measurement information, the identification information, and the maintenance information, and transmits the threshold value to the diagnosis unit;
The train abnormality monitoring system according to claim 12 , wherein the diagnosing unit determines whether or not there is an abnormality based on the transmitted threshold value.
JP2023526566A 2022-03-01 2022-03-01 Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, and train abnormality monitoring system Active JP7471523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023172969A JP2024003272A (en) 2022-03-01 2023-10-04 Method for diagnosing abnormality of rolling bearing and system for monitoring abnormality of train
JP2024035836A JP2024072845A (en) 2022-03-01 2024-03-08 Train Abnormality Monitoring System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008626 WO2023166567A1 (en) 2022-03-01 2022-03-01 Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, train abnormality monitoring system and rolling bearing abnormality diagnosis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023172969A Division JP2024003272A (en) 2022-03-01 2023-10-04 Method for diagnosing abnormality of rolling bearing and system for monitoring abnormality of train

Publications (2)

Publication Number Publication Date
JPWO2023166567A1 JPWO2023166567A1 (en) 2023-09-07
JP7471523B2 true JP7471523B2 (en) 2024-04-19

Family

ID=87883184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023526566A Active JP7471523B2 (en) 2022-03-01 2022-03-01 Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, and train abnormality monitoring system

Country Status (2)

Country Link
JP (1) JP7471523B2 (en)
WO (1) WO2023166567A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291287A (en) 2004-03-31 2005-10-20 Koyo Seiko Co Ltd Rolling bearing with sensor
JP2013155627A (en) 2012-01-27 2013-08-15 Ebara Corp Wear detection mechanism of bearing, and vertical shaft pump including the same
JP2015111113A (en) 2013-11-05 2015-06-18 日本精工株式会社 Bearing condition detecting device and bearing condition detecting method
WO2015141822A1 (en) 2014-03-20 2015-09-24 Ntn株式会社 Roller bearing
US20150345563A1 (en) 2012-12-05 2015-12-03 Aktiebolaget Skf Bearing power generating configuration
JP2021139431A (en) 2020-03-05 2021-09-16 学校法人 関西大学 Bearing device with load detection function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291287A (en) 2004-03-31 2005-10-20 Koyo Seiko Co Ltd Rolling bearing with sensor
JP2013155627A (en) 2012-01-27 2013-08-15 Ebara Corp Wear detection mechanism of bearing, and vertical shaft pump including the same
US20150345563A1 (en) 2012-12-05 2015-12-03 Aktiebolaget Skf Bearing power generating configuration
JP2015111113A (en) 2013-11-05 2015-06-18 日本精工株式会社 Bearing condition detecting device and bearing condition detecting method
WO2015141822A1 (en) 2014-03-20 2015-09-24 Ntn株式会社 Roller bearing
JP2021139431A (en) 2020-03-05 2021-09-16 学校法人 関西大学 Bearing device with load detection function

Also Published As

Publication number Publication date
JPWO2023166567A1 (en) 2023-09-07
WO2023166567A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP5725833B2 (en) Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
WO2006030786A1 (en) Abnormality diagnosis device and abnormality diagnosis method
JP4710455B2 (en) Abnormality diagnosis device for axle support device of railway vehicle
US10697854B2 (en) Rolling bearing fatigue state prediction device and rolling bearing fatigue state predicting method
US8522621B2 (en) Measurement bearing, in particular for a wheel set of a rail vehicle
JP7027782B2 (en) Rolling bearing abnormality diagnostic device
JP6380720B1 (en) Diagnosis method of rolling device
KR20170131792A (en) Device and method for monitoring railway vehicle and method for monitoring using the same
US11148689B2 (en) Vehicle monitoring system
US10345193B2 (en) Bearing gauge arrangement
JP4912255B2 (en) Bearing state inspection device and bearing state inspection method
JP7471523B2 (en) Rolling bearing abnormality detection device, rolling bearing abnormality diagnosis device, and train abnormality monitoring system
KR101495841B1 (en) Apparatus for Measuring Vibration of Electric Train
Scherb et al. A study on the smearing and slip behaviour of radial cylindrical roller bearings
JP2006017291A (en) Monitoring device and monitoring method
JP2024072845A (en) Train Abnormality Monitoring System
CN206496901U (en) A kind of box bearing fault detection system
EP3913245B1 (en) Method for diagnosing rolling device
CN106644483A (en) Bearing fault detection method and system for gear box
EP3556636A2 (en) Sensor signal processing system and method
JP7351142B2 (en) Rolling bearing condition monitoring method and condition monitoring device
CN105606364B (en) A kind of monitoring device of bearing running experiment
US20240157984A1 (en) Grounding contact and method for operating
EP3988896B1 (en) Method and system for diagnosing a rotation machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7471523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150