JP7470450B1 - Manufacturing method of recycled reinforcing fiber - Google Patents

Manufacturing method of recycled reinforcing fiber Download PDF

Info

Publication number
JP7470450B1
JP7470450B1 JP2022161819A JP2022161819A JP7470450B1 JP 7470450 B1 JP7470450 B1 JP 7470450B1 JP 2022161819 A JP2022161819 A JP 2022161819A JP 2022161819 A JP2022161819 A JP 2022161819A JP 7470450 B1 JP7470450 B1 JP 7470450B1
Authority
JP
Japan
Prior art keywords
acid
fiber
resin
reinforcing fibers
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022161819A
Other languages
Japanese (ja)
Other versions
JP2024058678A (en
Inventor
春菜 円子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRAIKASEI INC.
Original Assignee
MIRAIKASEI INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRAIKASEI INC. filed Critical MIRAIKASEI INC.
Priority to JP2022161819A priority Critical patent/JP7470450B1/en
Application granted granted Critical
Publication of JP7470450B1 publication Critical patent/JP7470450B1/en
Publication of JP2024058678A publication Critical patent/JP2024058678A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】溶媒法において繊維強化樹脂材料から効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供する。【解決手段】本発明再に係る生補強繊維の製造方法は、樹脂と補強繊維とを含む繊維強化樹脂材料を酸化剤および重合抑制剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程を有する。【選択図】 なし[Problem] To provide a method for producing recycled reinforcing fibers that can efficiently recover reinforcing fibers from fiber-reinforced resin materials using a solvent method. [Solution] The method for producing raw reinforcing fibers according to the present invention includes a step of treating a fiber-reinforced resin material containing a resin and reinforcing fibers with a treatment liquid containing an oxidizing agent and a polymerization inhibitor, and dissolving at least a portion of the resin of the fiber-reinforced resin material in the treatment liquid. [Selected Figures] None

Description

本発明は、再生補強繊維の製造方法に関する。 The present invention relates to a method for producing recycled reinforcing fibers.

ガラス繊維等の繊維を強化材として用いた繊維強化プラスチック(Fiber Reinforced Plastics;FRP)は、軽量、高強度、かつ高弾性の材料であり、小型船舶、自動車、鉄道車両等の部材に幅広く使用されている。また、更なる軽量化、高強度化、及び高弾性化を目的として、炭素繊維を強化材として用いた炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)が開発されており、航空機、自動車等の部材に使用されている。 Fiber Reinforced Plastics (FRP), which uses fibers such as glass fiber as reinforcing materials, is a lightweight, high-strength, and highly elastic material, and is widely used in components for small ships, automobiles, railway cars, etc. Furthermore, with the aim of further reducing weight, increasing strength, and increasing elasticity, Carbon Fiber Reinforced Plastics (CFRP), which uses carbon fiber as a reinforcing material, has been developed and is used in components for aircraft, automobiles, etc.

近年、使用済みの繊維強化プラスチックの廃棄量が増大傾向にあり、その再生利用技術の開発が検討されている。繊維強化プラスチックの補強繊維を回収する方法としては、主に、熱処理により樹脂成分を熱分解して除去し補強繊維を回収する熱分解法と、溶媒を用いて樹脂成分を溶解させて除去し補強繊維を回収する溶媒法とが挙げられる。このうち、溶媒法は、樹脂成分の回収が容易であり、資源リサイクルの観点から有利である。 In recent years, the amount of used fiber-reinforced plastics being discarded has been increasing, and the development of recycling technologies is being considered. Methods for recovering the reinforcing fibers of fiber-reinforced plastics mainly include the pyrolysis method, in which the resin components are thermally decomposed and removed by heat treatment to recover the reinforcing fibers, and the solvent method, in which the resin components are dissolved and removed using a solvent to recover the reinforcing fibers. Of these, the solvent method is advantageous from the perspective of resource recycling, as it is easy to recover the resin components.

溶媒法としては、例えば、特許文献1、2において提案される方法が挙げられる。特許文献1には、炭素繊維複合材料を、酸性水溶液に浸漬して、炭素繊維複合材料の樹脂分の少なくとも一部を溶出して略繊維状物を得る工程、及び略繊維状物をアルカリ性水溶液に浸漬して、略繊維状物の樹脂分の少なくとも一部を溶出して繊維状物を得る工程を含む、炭素繊維の製造方法が提案されている。また、特許文献2には、リン酸を含有する溶解液を用いて、炭素繊維強化プラスチック材の母材を溶解する工程を備え、前記溶解液のリン酸濃度は、110質量%以上であり、前記溶解する工程は、前記溶解液の温度が200℃以上300℃以下で行われる炭素繊維回収方法が提案されている。 Examples of the solvent method include the methods proposed in Patent Documents 1 and 2. Patent Document 1 proposes a method for producing carbon fibers, including a step of immersing a carbon fiber composite material in an acidic aqueous solution to dissolve at least a part of the resin content of the carbon fiber composite material to obtain a substantially fibrous material, and a step of immersing the substantially fibrous material in an alkaline aqueous solution to dissolve at least a part of the resin content of the substantially fibrous material to obtain a fibrous material. Patent Document 2 also proposes a carbon fiber recovery method that includes a step of dissolving a base material of a carbon fiber reinforced plastic material using a dissolving solution containing phosphoric acid, the phosphoric acid concentration of the dissolving solution being 110 mass% or more, and the dissolving step being performed at a temperature of the dissolving solution of 200°C or more and 300°C or less.

特開2019-136932号公報JP 2019-136932 A 特開2020-50704号公報JP 2020-50704 A

しかしながら、従来の溶媒法においては、樹脂成分を除去する効率が十分に高くなく、例えば特許文献1、2に記載される方法においては、溶媒を含む処理液の浸透を考慮して繊維強化樹脂材料を数センチ程度のチップ状に細かく裁断した上で樹脂成分を除去している。このように繊維強化樹脂材料を細かく裁断してしまうと、繊維強化樹脂材料から回収される再生補強繊維の長さが必然的に短くなり、回収前の繊維強化樹脂材料中に含まれる補強繊維の性能を維持することが困難となるとともに、回収される補強繊維の用途が、限定されてしまう。一方で、溶媒法により樹脂成分を効率除去するためには、高温等の過酷な条件で長時間処理することが要求される。 However, conventional solvent methods are not efficient enough at removing resin components. For example, in the methods described in Patent Documents 1 and 2, the fiber-reinforced resin material is finely cut into chips of about several centimeters in length to allow for the penetration of the solvent-containing treatment liquid, and then the resin components are removed. If the fiber-reinforced resin material is finely cut in this way, the length of the recycled reinforcing fibers recovered from the fiber-reinforced resin material is inevitably shortened, making it difficult to maintain the performance of the reinforcing fibers contained in the fiber-reinforced resin material before recovery, and limiting the uses of the recovered reinforcing fibers. On the other hand, in order to efficiently remove resin components using the solvent method, long-term treatment under harsh conditions such as high temperatures is required.

したがって、本発明の目的は、溶媒法において繊維強化樹脂材料から効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供することにある。 The object of the present invention is therefore to provide a method for producing recycled reinforcing fibers that can efficiently recover reinforcing fibers from fiber-reinforced resin materials using a solvent method.

本発明者らは、繊維強化樹脂材料から補強繊維の回収を検討する中で、溶媒法において、特定の化学構造を有するエポキシ樹脂が一旦分解した後に再重合する可能性を認識した。そして、溶媒法において酸化剤と共に重合抑制剤を用いることにより、比較的温和な条件下であっても樹脂成分が溶媒に効率よく溶解することを見出した。
そして、以上の知見に基づき、本発明者らはさらに検討を行い、本発明に至った。
While studying the recovery of reinforcing fibers from fiber-reinforced resin materials, the inventors recognized the possibility that an epoxy resin having a specific chemical structure may repolymerize after being decomposed in the solvent method. They then discovered that the resin component can be efficiently dissolved in the solvent even under relatively mild conditions by using a polymerization inhibitor together with an oxidizing agent in the solvent method.
Based on the above findings, the present inventors conducted further studies and arrived at the present invention.

本発明の要旨は、以下の通りである。
(1) 樹脂と補強繊維とを含む繊維強化樹脂材料を酸化剤および重合抑制剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程を有する、再生補強繊維の製造方法。
(2) 前記樹脂は、エポキシ樹脂を含む、(1)に記載の再生補強繊維の製造方法。
(3) 前記エポキシ樹脂は、アミン硬化エポキシ樹脂を含む、(1)または(2)に記載の再生補強繊維の製造方法。
(4) 前記重合抑制剤は、亜硝酸塩および亜硝酸エステルからなる群から選択される1種以上を含む、(1)~(3)のいずれか1項に記載の再生補強繊維の製造方法。
(5) 前記重合抑制剤は、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸エチルおよび亜硝酸アミルからなる群から選択される1種以上を含む、(1)~(4)のいずれか1項に記載の再生補強繊維の製造方法。
(6) 前記処理液中における前記重合抑制剤の含有量が、0.20質量%以上5.0質量%以下である、(1)~(5)のいずれか1項に記載の再生補強繊維の製造方法。
(7) 前記酸化剤は、酸化力を有する酸を含む、(1)~(6)のいずれか1項に記載の再生補強繊維の製造方法。
(8) 前記酸化力を有する酸は、硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を含む、(7)に記載の再生補強繊維の製造方法。
(9) さらに、前記工程に先立ち、前記繊維強化樹脂材料を酸を含む酸性溶液により処理する工程を有する、(1)~(8)のいずれか1項に記載の再生補強繊維の製造方法。
(10) 前記酸は、硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含む、(9)に記載の再生補強繊維の製造方法。
(11) 前記酸性溶液中における前記酸の濃度が、0.5mol/L以上である、(9)または(10)に記載の再生補強繊維の製造方法。
The gist of the present invention is as follows.
(1) A method for producing recycled reinforcing fibers, comprising the steps of treating a fiber-reinforced resin material containing a resin and reinforcing fibers with a treatment liquid containing an oxidizing agent and a polymerization inhibitor, and dissolving at least a portion of the resin of the fiber-reinforced resin material in the treatment liquid.
(2) The method for producing recycled reinforcing fibers according to (1), wherein the resin includes an epoxy resin.
(3) The method for producing recycled reinforcing fibers according to (1) or (2), wherein the epoxy resin includes an amine-cured epoxy resin.
(4) The method for producing recycled reinforcement fiber according to any one of (1) to (3), wherein the polymerization inhibitor includes at least one selected from the group consisting of nitrites and nitrite esters.
(5) The method for producing recycled reinforcement fiber according to any one of (1) to (4), wherein the polymerization inhibitor includes at least one selected from the group consisting of sodium nitrite, potassium nitrite, ethyl nitrite, and amyl nitrite.
(6) The method for producing recycled reinforcement fibers according to any one of (1) to (5), wherein the content of the polymerization inhibitor in the treatment liquid is 0.20% by mass or more and 5.0% by mass or less.
(7) The method for producing recycled reinforcing fiber according to any one of (1) to (6), wherein the oxidizing agent contains an acid having oxidizing power.
(8) The method for producing recycled reinforcing fiber according to (7), wherein the acid having oxidizing power includes at least one selected from the group consisting of nitric acid, a mixed acid of sulfuric acid and nitric acid, a mixed acid of nitric acid and hydrochloric acid (aqua regia), and a mixed solution of hydrogen peroxide and sulfuric acid.
(9) The method for producing recycled reinforcing fibers according to any one of (1) to (8), further comprising a step of treating the fiber-reinforced resin material with an acidic solution containing an acid prior to the step.
(10) The method for producing recycled reinforcing fibers according to (9), wherein the acid includes at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid.
(11) The method for producing recycled reinforcing fibers according to (9) or (10), wherein the concentration of the acid in the acidic solution is 0.5 mol/L or more.

以上の構成により、溶媒法において繊維強化樹脂材料から効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供することができる。 The above configuration provides a method for producing recycled reinforcing fibers that can efficiently recover reinforcing fibers from fiber-reinforced resin materials using the solvent method.

以下、本発明の好適な実施形態に係る再生補強繊維の製造方法の一例について説明する。本発明に係る再生補強繊維の製造方法は、樹脂と補強繊維とを含む繊維強化樹脂材料を酸化剤および重合抑制剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程(酸化工程)を有する。 Below, an example of a method for producing recycled reinforcing fibers according to a preferred embodiment of the present invention is described. The method for producing recycled reinforcing fibers according to the present invention includes a process (oxidation process) in which a fiber-reinforced resin material containing a resin and reinforcing fibers is treated with a treatment liquid containing an oxidizing agent and a polymerization inhibitor, and at least a portion of the resin of the fiber-reinforced resin material is dissolved in the treatment liquid.

また、本実施形態に係る再生補強繊維の製造方法は、酸化工程に先立ち、繊維強化樹脂材料を準備する工程(準備工程)と、繊維強化樹脂材料を酸を含む酸性溶液により処理する工程(酸処理工程)と、繊維強化樹脂材料から得られた繊維状物を洗浄する洗浄工程と、を有し、任意に洗浄工程後に繊維強化材料を気体雰囲気下で加熱する加熱工程を含む。以下、本実施形態に係る再生補強繊維の製造方法の各工程について順に説明する。 The method for producing recycled reinforcing fibers according to this embodiment includes, prior to the oxidation step, a step of preparing a fiber-reinforced resin material (preparation step), a step of treating the fiber-reinforced resin material with an acidic solution containing an acid (acid treatment step), and a washing step of washing the fibrous material obtained from the fiber-reinforced resin material, and optionally includes a heating step of heating the fiber-reinforced material in a gas atmosphere after the washing step. Each step of the method for producing recycled reinforcing fibers according to this embodiment will be described in order below.

1. 準備工程
まず、酸処理工程に先立ち、繊維強化樹脂材料を準備する。繊維強化樹脂材料は、補強繊維がマトリックス樹脂(単に「樹脂」ともいう)に埋設されることにより強化された樹脂材料である。このような、繊維強化樹脂材料としては、特に限定されず、例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)、ガラス繊維強化プラスチック(Glass Fiber Reinforced Plastics;GFRP)、ガラス長繊維マット強化熱可塑性プラスチック(Glass-Mat reinforced Thermoplastics;GMT)、アラミド繊維強化プラスチック(Aramid-Fiber-Reinforced Plastics;AFRP)、ケブラー繊維強化プラスチック(Kevlar Fiber Reinforced Plastics;KFRP)、ダイニーマ繊維強化プラスチック(Dyneema Fiber-Reinforced Plastics;DFRP)、バサルト繊維強化プラスチック、ボロン繊維強化プラスチック、およびこれらのプリプレグ等が挙げられる。上述した中でも、炭素繊維強化プラスチックは、使用量が比較的多く、また炭素繊維の製造時における消費エネルギー量が多大であるため、使用済みの炭素繊維強化プラスチックおよび/またはこのプリプレグ中の炭素繊維を回収し、再利用することが望ましい。
1. Preparation process First, prior to the acid treatment process, a fiber-reinforced resin material is prepared. The fiber-reinforced resin material is a resin material reinforced by embedding reinforcing fibers in a matrix resin (also simply referred to as "resin"). Such fiber-reinforced resin materials are not particularly limited, and examples thereof include carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (GFRP), glass-mat reinforced thermoplastics (GMT), aramid fiber reinforced plastics (AFRP), Kevlar fiber reinforced plastics (KFRP), Dyneema fiber-reinforced plastics (DFRP), basalt fiber reinforced plastics, boron fiber reinforced plastics, and prepregs thereof. Among the above, carbon fiber reinforced plastics are used in relatively large quantities and the amount of energy consumed during the production of carbon fibers is large, so it is desirable to recover and reuse used carbon fiber reinforced plastics and/or the carbon fibers in the prepregs.

また、繊維強化樹脂材料中の補強繊維は、複数の補強繊維を一方向に引き揃えた繊維束(トウ)、補強繊維の繊維束を経糸および緯糸に用いた織物または不織布の状態で存在してもよいし、各補強繊維がランダムな位置および方向に配置された状態で存在していてもよい。なお、補強繊維はチップ状であってもよく、この場合、例えば、繊維束を切断したチョップド繊維、チップ状の織物等が挙げられる。 The reinforcing fibers in the fiber-reinforced resin material may be in the form of a fiber bundle (tow) in which multiple reinforcing fibers are aligned in one direction, a woven or nonwoven fabric in which bundles of reinforcing fibers are used as warp and weft threads, or each reinforcing fiber may be arranged in a random position and direction. The reinforcing fibers may be in chip form, and in this case, examples include chopped fibers in which fiber bundles are cut, and chip-shaped fabrics.

また、繊維強化樹脂材料中の樹脂は、特に限定されるものではなく、例えば、熱硬化性樹脂および熱可塑性樹脂のいずれであってもよい。また、熱硬化性樹脂は、未硬化のものであってもよいし、硬化物であってもよい。 The resin in the fiber-reinforced resin material is not particularly limited, and may be, for example, a thermosetting resin or a thermoplastic resin. The thermosetting resin may be uncured or cured.

熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネート樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせで用いることができる。 Thermosetting resins are not particularly limited, but examples include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenolic resins, cyanate resins, polycarbonate resins, polyacetal resins, etc., and one of these can be used alone or two or more can be used in combination.

熱可塑性樹脂としては、特に限定されないが、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエーテルケトン、ポリフェニレンスルフィド等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。 Thermoplastic resins are not particularly limited, but examples include polyolefins, polyesters, polycarbonates, acrylic resins, acrylonitrile-butadiene-styrene copolymers, polyether ketones, polyphenylene sulfides, etc., and one of these can be used alone or two or more can be used in combination.

また、繊維強化樹脂材料を構成する樹脂は、好ましくはエポキシ樹脂を含む。エポキシ樹脂は、後述する重合抑制剤用いた酸化工程において、効率よく分解され、処理液中に溶解することができる。 The resin constituting the fiber-reinforced resin material preferably contains an epoxy resin. The epoxy resin is efficiently decomposed in the oxidation process using a polymerization inhibitor, which will be described later, and can be dissolved in the treatment liquid.

エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹脂等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。 The epoxy resin is not particularly limited, but examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, aliphatic type epoxy resin, etc., and these can be used alone or in combination of two or more.

また、繊維強化樹脂材料中の樹脂におけるエポキシ樹脂の含有量は、特に限定されないが、例えば50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上であり、さらに好ましくは樹脂は本質的にエポキシ樹脂からなり、最も好ましくは樹脂はエポキシ樹脂からなる。これにより、酸化程を行った際に繊維強化樹脂材料からの樹脂の除去および補強繊維の回収がより一層容易となる。 The content of epoxy resin in the resin in the fiber-reinforced resin material is not particularly limited, but is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably the resin essentially consists of epoxy resin, and most preferably the resin consists of epoxy resin. This makes it even easier to remove the resin from the fiber-reinforced resin material and recover the reinforcing fibers when the oxidation step is carried out.

また、本実施形態において、繊維強化樹脂材料を構成する樹脂は、好ましくは、塩基性構造を有する樹脂を含む。塩基性構造を有する樹脂は、後述する酸処理工程において、酸性溶液中の水素イオン(プロトン)を配位させ、膨潤することができる。膨潤した塩基性構造を有する樹脂に対しては後述する酸化工程において酸化剤が十分に浸透することができ、この結果樹脂の処理液への溶解が促進される。 In addition, in this embodiment, the resin constituting the fiber-reinforced resin material preferably contains a resin having a basic structure. The resin having a basic structure can coordinate hydrogen ions (protons) in an acidic solution and swell in the acid treatment process described below. The oxidizing agent can sufficiently penetrate the swollen resin having a basic structure in the oxidation process described below, which promotes dissolution of the resin in the treatment solution.

樹脂が有する塩基性構造としては、特に限定されないがアミド結合、イミド結合、アゾ基、ジアゾ基、ウレア結合、ウレタン結合、ペプチド結合、イソシアナート基、アジ基等、もしくはそれらから派生、類似した化学構造等が挙げられ、塩基性構造を有する樹脂はこれらのうち1種または2種以上を含むことができる。上述した中でも、本実施形態に係る方法は、塩基性構造として1、2または3級アミド結合を有する樹脂を膨潤、分解するのに好適に用いることができる。 The basic structure of the resin is not particularly limited, but may include amide bonds, imide bonds, azo groups, diazo groups, urea bonds, urethane bonds, peptide bonds, isocyanate groups, azide groups, etc., or chemical structures derived from or similar to these, and the resin having a basic structure may contain one or more of these. Among the above, the method according to this embodiment can be suitably used to swell and decompose resins having primary, secondary, or tertiary amide bonds as basic structures.

また、塩基性構造を有する樹脂は、好ましくは、その主鎖構造に塩基性をもつ化学結合を含む。これにより、酸処理工程において、塩基性を有する化学構造と反応することをより一層膨潤させることができ、後述する酸化工程において、樹脂の分解およびこれに引き続く処理液への溶解を促進させることができる。このような塩基性構造を有する樹脂としては、アミン硬化エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、ポリアミド、メラミン樹脂、アニリン樹脂、ウレア樹脂等が挙げられ、樹脂は、これらのうち1種をまたは2種以上を塩基性構造を有する樹脂として含むことができる。 In addition, the resin having a basic structure preferably contains a chemical bond having basicity in its main chain structure. This allows the reaction with the chemical structure having basicity to be further swollen in the acid treatment step, and promotes the decomposition of the resin and subsequent dissolution in the treatment liquid in the oxidation step described below. Examples of resins having such a basic structure include amine-cured epoxy resins, urethane resins, polyimide resins, polyamides, melamine resins, aniline resins, urea resins, etc., and the resin can contain one or more of these as resins having a basic structure.

なお、塩基性構造を有する樹脂は、その側鎖に塩基性構造を含んでもよい。このような樹脂としては、後述する各種樹脂成分の側鎖に上述したような塩基性構造を有するものが挙げられる。 The resin having a basic structure may contain a basic structure in its side chain. Examples of such resins include those having the above-mentioned basic structure in the side chain of various resin components described below.

また、繊維強化樹脂材料中の樹脂における塩基性構造を有する樹脂の含有量は、特に限定されないが、例えば20質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上であり、さらに好ましくは樹脂は本質的に塩基性構造を有する樹脂からなり、最も好ましくは樹脂は塩基性構造を有する樹脂からなる。これにより、酸処理工程を行った際に繊維強化樹脂材料からの樹脂の除去および補強繊維の回収がより一層容易となる。 The content of the resin having a basic structure in the resin in the fiber-reinforced resin material is not particularly limited, but is, for example, 20% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably the resin essentially consists of a resin having a basic structure, and most preferably the resin consists of a resin having a basic structure. This makes it even easier to remove the resin from the fiber-reinforced resin material and recover the reinforcing fibers when the acid treatment process is performed.

また、繊維強化樹脂材料は、それ自身がシート状をなしていてもよいし、裁断されたチップ状をなしていてもよい。特に、本実施形態に係る方法は、樹脂の除去を比較的効率よく行うことができるため、従来補強繊維の回収が困難であったシート状の繊維強化樹脂材料についても好適に適用できる。 The fiber-reinforced resin material may be in the form of a sheet, or may be in the form of cut chips. In particular, the method according to the present embodiment can remove the resin relatively efficiently, and therefore can be suitably applied to sheet-shaped fiber-reinforced resin materials from which it has been difficult to recover the reinforcing fibers in the past.

また、繊維強化樹脂材料の大きさも特に限定されない。しかしながら、繊維強化樹脂材料中の補強繊維の方向を保持することを考慮すると、繊維強化樹脂材料の一片の長さは、例えば、100mm以上、好ましくは500mm以上3000mm以下であることができる。より具体的には、繊維強化樹脂材料として、例えば1000mm×500mmの広さの積層された厚さ300mm程度の繊維強化樹脂材料シートを利用することもできる。上述したような比較的大きな繊維強化樹脂材料は、処理液の浸透が進行しにくく、樹脂の除去および補強繊維の回収が困難であった。しかしながら、本実施形態に係る方法は、樹脂の除去を比較的効率よく行うことができるため、比較的大きな繊維強化樹脂材料についても適用可能である。 The size of the fiber-reinforced resin material is not particularly limited. However, in consideration of maintaining the direction of the reinforcing fibers in the fiber-reinforced resin material, the length of one piece of the fiber-reinforced resin material can be, for example, 100 mm or more, preferably 500 mm or more and 3000 mm or less. More specifically, as the fiber-reinforced resin material, for example, a fiber-reinforced resin material sheet with a thickness of about 300 mm, which is laminated with an area of 1000 mm x 500 mm, can be used. The relatively large fiber-reinforced resin material described above is difficult to penetrate with the treatment liquid, making it difficult to remove the resin and recover the reinforcing fibers. However, the method according to this embodiment can be applied to relatively large fiber-reinforced resin materials because it can remove the resin relatively efficiently.

2. 酸処理工程
本工程においては、準備した繊維強化樹脂材料を酸を含む酸性溶液により処理する。このように、繊維強化樹脂材料を酸を含む酸性溶液により処理することにより、繊維強化樹脂材料の樹脂中に含まれる酸に分解可能な成分の少なくとも一部が分解し、酸性溶液に溶解する。あるいは酸に溶解可能な成分の少なくとも一部が酸性溶液に溶解する。この結果、後述する酸化工程において、より処理液が樹脂に浸透しやすくなり、より効率よく樹脂を処理液に溶解させることができる。
2. Acid Treatment Step In this step, the prepared fiber reinforced resin material is treated with an acidic solution containing an acid. By treating the fiber reinforced resin material with an acidic solution in this way, at least a part of the components that are decomposable by acid contained in the resin of the fiber reinforced resin material are decomposed and dissolved in the acidic solution. Alternatively, at least a part of the components that are soluble in acid are dissolved in the acidic solution. As a result, in the oxidation step described later, the treatment liquid can more easily penetrate into the resin, and the resin can be more efficiently dissolved in the treatment liquid.

また、繊維強化樹脂材料が塩基性構造を有する樹脂を含む場合、繊維強化樹脂材料を酸を含む酸性溶液により処理することにより、塩基性構造を有する樹脂成分に酸性溶液中の水素イオンを配位させて塩を形成させ、この結果、塩基性構造を有する樹脂成分ひいては樹脂自体が膨潤する。これにより、後述する酸化工程において酸化剤が樹脂に浸透しやすくなり、酸化工程における樹脂の分解・溶出が促進される。 In addition, when the fiber-reinforced resin material contains a resin having a basic structure, the fiber-reinforced resin material is treated with an acidic solution containing an acid, which causes the hydrogen ions in the acidic solution to be coordinated with the resin component having a basic structure to form a salt, resulting in the resin component having a basic structure and the resin itself swelling. This makes it easier for the oxidizing agent to penetrate the resin in the oxidation process described below, accelerating the decomposition and elution of the resin in the oxidation process.

本工程における酸性溶液は、少なくとも酸を含み、任意に溶媒を含む。酸としては、無機酸もしくは有機酸またはこれらの混合物を用いることができる。無機酸としては、例えば、硫酸、塩酸、リン酸等を挙げることができ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。リン酸としては、例えば、正リン酸、メタリン酸、次リン酸、亜リン酸、次亜リン酸、ピロリン酸、トリメタリン酸、テトラメタリン酸、ピロ亜リン酸等が挙げられる。有機酸としては、例えば、ギ酸、酢酸、クエン酸、コハク酸、シュウ酸等が挙げられる。 The acidic solution in this step contains at least an acid and optionally a solvent. The acid may be an inorganic acid, an organic acid, or a mixture of these. Examples of inorganic acids include sulfuric acid, hydrochloric acid, phosphoric acid, etc., and one of these may be used alone or two or more may be used in combination. Examples of phosphoric acid include orthophosphoric acid, metaphosphoric acid, hypophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, pyrophosphorous acid, etc. Examples of organic acids include formic acid, acetic acid, citric acid, succinic acid, oxalic acid, etc.

上述した中でも、樹脂成分を好適に膨潤させることができることから、酸は、無機酸、特に硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含むことが好ましい。 Among the above, it is preferable that the acid contains at least one inorganic acid, particularly one selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid, since this can favorably swell the resin component.

また、酸に含まれる成分のうち最もモル濃度の大きい成分の酸解離定数pKaは、特に限定されないが、好ましくは5.0以下、より好ましくは1.5以下である。このように酸に含まれる成分のうち最もモル濃度の大きい成分のpKaが十分に小さいことにより、酸性溶液中に水素イオンが放出されやすくなり、この結果、上述した効果をより一層得ることができる。なお、酸に含まれる成分のうち最もモル濃度の大きい成分が複数の酸解離定数を有する場合、1段目、すなわちより小さい酸解離定数が上記の値であることが好ましい。 The acid dissociation constant pKa of the component with the highest molar concentration among the components contained in the acid is not particularly limited, but is preferably 5.0 or less, more preferably 1.5 or less. When the pKa of the component with the highest molar concentration among the components contained in the acid is sufficiently small in this way, hydrogen ions are easily released into the acidic solution, and as a result, the above-mentioned effect can be obtained even more effectively. Note that, when the component with the highest molar concentration among the components contained in the acid has multiple acid dissociation constants, it is preferable that the first stage, i.e., the smaller acid dissociation constant, is the above value.

酸性溶液中に含まれる酸の濃度は特に限定されないが、例えば0.5mol/L以上、好ましくは1.0mol/L以上、より好ましくは3.5mol/L以上である。これにより、酸性溶液中に水素イオンが放出されやすくなり、この結果、上述した効果をより一層得ることができる。なお、酸の濃度の上限は、酸性溶液として存在し得る限り限定されるものではなく、酸の種類によって異なる。 The concentration of the acid contained in the acidic solution is not particularly limited, but is, for example, 0.5 mol/L or more, preferably 1.0 mol/L or more, and more preferably 3.5 mol/L or more. This makes it easier for hydrogen ions to be released into the acidic solution, and as a result, the above-mentioned effects can be obtained even more effectively. Note that the upper limit of the acid concentration is not limited as long as it can exist as an acidic solution, and varies depending on the type of acid.

また、酸性溶液は、通常溶媒を含む。溶媒としては、上述した酸と混合可能であり、かつ当該酸に対して化学的に安定であれば、特に限定されず、例えば、水および/または各種有機溶媒を用いることができる。 The acidic solution usually contains a solvent. There are no particular limitations on the solvent, so long as it is miscible with the above-mentioned acid and is chemically stable against the acid. For example, water and/or various organic solvents can be used.

有機溶媒としては、特に限定されないが、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、芳香族炭化水素、ハロゲン化芳香族炭化水素、ハロゲン化脂肪族炭化水素等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。 The organic solvent is not particularly limited, but examples thereof include alcohol-based solvents, ether-based solvents, ketone-based solvents, aromatic hydrocarbons, halogenated aromatic hydrocarbons, halogenated aliphatic hydrocarbons, etc., and one of these can be used alone or two or more can be used in combination.

アルコール系溶媒としては、脂肪族アルコール系溶媒、芳香族アルコール系溶媒、グリコール系溶媒等や、グリセリン等のその他多価アルコールが挙げられる。
脂肪族アルコール系としては、例えば、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-エチルヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、ドデカノール、メタノール、エタノール等の非環式脂肪族アルコールや、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等の脂環式アルコールが挙げられる。
Examples of the alcohol-based solvent include aliphatic alcohol-based solvents, aromatic alcohol-based solvents, glycol-based solvents, and other polyhydric alcohols such as glycerin.
Examples of aliphatic alcohols include acyclic aliphatic alcohols such as 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 2,2-dimethyl-1-propanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-ethylhexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, dodecanol, methanol, and ethanol; and alicyclic alcohols such as cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, and 4-methylcyclohexanol.

芳香族アルコール系溶媒としては、例えば、フェノール、クレゾール、ベンジルアルコール、フェノキシエタノール等が挙げられる。
グリコール系溶媒としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、ポリエチレングリコール(分子量200~400)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ジプロピレングリコール等が挙げられる。
Examples of aromatic alcohol solvents include phenol, cresol, benzyl alcohol, and phenoxyethanol.
Examples of glycol solvents include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol, polyethylene glycol (molecular weight 200 to 400), 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, and dipropylene glycol.

エーテル系溶媒としては、例えば、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル等の脂肪族エーテル、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン、フラン等の環式エーテル、アニソール、フェネトール、ジフェニルエーテル、ベンゾフラン等の芳香族含有エーテル等が挙げられる。 Examples of ether solvents include aliphatic ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, and dihexyl ether; cyclic ethers such as 1,3-dioxolane, 1,4-dioxane, tetrahydrofuran, and furan; and aromatic ethers such as anisole, phenetole, diphenyl ether, and benzofuran.

ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-プタノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ホロン、イソホロン、アセチルアセトン、アセトフェノン、ジエチルケトン、ジアセトンアルコール等が挙げられる。 Examples of ketone solvents include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-butanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phorone, isophorone, acetylacetone, acetophenone, diethyl ketone, and diacetone alcohol.

芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
ハロゲン化芳香族炭化水素としては、例えば、オルトクロロフェノール、オルト時クロロベンゼン等が挙げられる。
ハロゲン化脂肪族炭化水素としては、例えば、クロロホルム、塩化メチレン等が挙げられる。
Examples of aromatic hydrocarbons include benzene, toluene, and xylene.
Examples of halogenated aromatic hydrocarbons include ortho-chlorophenol and ortho-dichlorobenzene.
Examples of halogenated aliphatic hydrocarbons include chloroform and methylene chloride.

上述した中でも、酸との混合が容易であり、酸における水素イオンの解離を適切に行うために、溶媒が水を含むことが好ましい。なお、溶媒は、水および水と混和可能な有機溶媒の混合溶媒であってもよい。水と混和可能な有機溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒等が挙げられる。 Among the above, it is preferable that the solvent contains water, since it is easy to mix with the acid and dissociates hydrogen ions in the acid appropriately. The solvent may be a mixed solvent of water and an organic solvent miscible with water. Examples of organic solvents miscible with water include alcohol-based solvents and ketone-based solvents.

酸性溶液中に含まれる溶媒の含有量は、特に限定されず、酸等の他の成分の残部とすることができる。 The amount of solvent contained in the acidic solution is not particularly limited, and can be the remainder of other components such as acid.

上述したような酸性溶液を用いて繊維強化樹脂材料を処理する。処理中における酸性溶液の温度は、特に限定されず、例えば0℃以上100℃以下、好ましくは50℃以上100℃以下である。 The fiber-reinforced resin material is treated with the acid solution described above. The temperature of the acid solution during treatment is not particularly limited and is, for example, 0°C or higher and 100°C or lower, preferably 50°C or higher and 100°C or lower.

酸性溶液による処理の時間は、特に限定されず、目的とする温度に達してから5分以上1200分以下、好ましくは10分以上120分以下である。 The time for treatment with the acidic solution is not particularly limited, but is from 5 minutes to 1200 minutes, preferably from 10 minutes to 120 minutes, after the desired temperature is reached.

また、酸性溶液による処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。酸性溶液による処理を加圧下で行う場合、例えば、0.11MPa以上7.0MPa以下、特に0.11MPa以上2.0MPa以下の雰囲気下で処理を行うことができる。なお、安全性および経済性を考慮すると、酸性溶液による処理は、常圧下で行うことが好ましい。 The treatment with the acidic solution may be carried out under normal pressure, under reduced pressure, or under pressure. When the treatment with the acidic solution is carried out under pressure, the treatment can be carried out, for example, in an atmosphere of 0.11 MPa or more and 7.0 MPa or less, particularly 0.11 MPa or more and 2.0 MPa or less. In consideration of safety and economy, it is preferable to carry out the treatment with the acidic solution under normal pressure.

なお、酸性溶液による繊維強化樹脂材料の処理は、特に限定されず、酸性溶液中に繊維強化樹脂材料を浸漬することにより行ってもよいし、スプレー等により酸性溶液を繊維強化樹脂材料に対し噴霧することにより行ってもよく、酸性溶液と繊維強化樹脂材料とが接触可能な任意の手段を採用することができる。また、酸性溶液による処理中において、酸性溶液を攪拌してもよい。また、繊維強化樹脂材料の繊維束が維持されるように繊維強化樹脂材料を固定具により固定してもよい。 The treatment of the fiber-reinforced resin material with the acidic solution is not particularly limited, and may be performed by immersing the fiber-reinforced resin material in the acidic solution, or by spraying the acidic solution onto the fiber-reinforced resin material with a spray or the like. Any means capable of contacting the acidic solution with the fiber-reinforced resin material may be used. The acidic solution may be stirred during the treatment with the acidic solution. The fiber-reinforced resin material may be fixed with a fixture so that the fiber bundles of the fiber-reinforced resin material are maintained.

また、本発明の再生補強繊維の製造方法において、本工程を省略してもよい。 In addition, this step may be omitted in the method for producing recycled reinforcing fibers of the present invention.

3. 酸化工程
本工程においては、繊維強化樹脂材料を処理液により処理して、繊維強化樹脂材料の樹脂の少なくとも一部を処理液に溶解させる。また、本工程における処理液は、少なくとも酸化剤および重合抑制剤を含み、任意に溶媒を含む。
In this step, the fiber reinforced resin material is treated with a treatment liquid to dissolve at least a part of the resin of the fiber reinforced resin material in the treatment liquid. The treatment liquid in this step contains at least an oxidizing agent and a polymerization inhibitor, and optionally contains a solvent.

このように処理液が酸化剤に加え重合抑制剤を含むことにより、樹脂を効率よく分解し、処理液中に溶解させることができる。この処理中に生じる現象の詳細は定かではないが、本発明者は以下のように推測している。 By containing a polymerization inhibitor in addition to an oxidizing agent in this way, the resin can be efficiently decomposed and dissolved in the treatment liquid. Although the details of the phenomenon that occurs during this treatment are unclear, the inventor speculates as follows.

まず、繊維強化樹脂材料中の樹脂は、一般には、酸化剤により樹脂中の分子鎖が開裂することにより低分子化し得る。そして酸化反応により生じた水酸基、カルボキシ基や酸化剤に起因する極性基が樹脂に導入されることにより樹脂が処理液に溶解しやすくなる。以上が相まって処理液中に樹脂が溶解する。 First, the resin in the fiber-reinforced resin material can generally be broken down into smaller molecules by the cleavage of molecular chains in the resin by an oxidizing agent. Hydroxyl groups and carboxyl groups produced by the oxidation reaction and polar groups resulting from the oxidizing agent are then introduced into the resin, making it more soluble in the treatment liquid. The combination of the above causes the resin to dissolve in the treatment liquid.

一方で、本発明者は上述した酸化反応によっても処理後の補強繊維樹脂材料樹脂が依然として一部残存していることに着目した。そして、本発明者が鋭意検討した結果、酸化剤による樹脂の酸化反応においては、上記の分解反応と平行して再重合反応も生じている可能性を、本発明者は認識した。そして、処理液中に酸化剤とともに重合抑制剤を含めることにより、重合抑制剤を未添加の場合と比較して大幅に樹脂を溶解させることができることを見出し、本発明に至った。 On the other hand, the inventors noticed that even after the above-mentioned oxidation reaction, some of the resin in the reinforcing fiber resin material still remained after the treatment. As a result of the inventors' intensive research, they realized that in the oxidation reaction of the resin by the oxidizing agent, a repolymerization reaction may also occur in parallel with the above-mentioned decomposition reaction. They then discovered that by including a polymerization inhibitor in the treatment liquid together with the oxidizing agent, it is possible to dissolve the resin to a greater extent than when the polymerization inhibitor is not added, which led to the present invention.

さらには、酸性溶液により処理された繊維強化樹脂材料は、酸化剤が樹脂に浸透しやすくなり、この結果、本工程においては、処理液による処理により樹脂が効率よく分解・溶出する。特に、樹脂が塩基性構造を有する樹脂を含む場合には、樹脂が酸処理により膨潤する結果、樹脂への酸化剤の浸透がより容易となっている。 Furthermore, fiber-reinforced resin materials treated with an acidic solution allow the oxidizing agent to easily penetrate the resin, and as a result, in this process, the resin is efficiently decomposed and eluted by treatment with the treatment liquid. In particular, when the resin contains a resin with a basic structure, the resin swells due to the acid treatment, making it easier for the oxidizing agent to penetrate the resin.

酸化剤としては、特に限定されず、硝酸、熱濃硫酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)、過酸化水素と硫酸との混合溶液、過塩素酸、塩素酸、次亜塩素酸、亜塩素酸、過臭素酸、臭素酸、次亜臭素酸、亜臭素酸、過ヨウ素酸、ヨウ素酸、次亜ヨウ素酸、亜ヨウ素酸等の酸化力を有する酸、これらのアルカリ(土類)金属塩、酸素、オゾン、過酸化水素、過酸化アセトン(過酸化水素とアセトンとの反応物)等の酸素系酸化剤、塩素、二酸化塩素、臭素、フッ素、ヨウ素等のハロゲン系酸化剤等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。また、アルカリ金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられ、アルカリ土類金属としては、カルシウム、ストロンチウム、バリウム、およびラジウムが挙げられる。 The oxidizing agent is not particularly limited, and examples thereof include nitric acid, hot concentrated sulfuric acid, a mixed acid of sulfuric acid and nitric acid, a mixed acid of nitric acid and hydrochloric acid (aqua regia), a mixed solution of hydrogen peroxide and sulfuric acid, acids having oxidizing power such as perchloric acid, chloric acid, hypochlorous acid, chlorous acid, perbromic acid, bromic acid, hypobromous acid, bromous acid, periodic acid, iodic acid, hypoiodous acid, and iodous acid, alkali (earth) metal salts thereof, oxygen-based oxidizing agents such as oxygen, ozone, hydrogen peroxide, and acetone peroxide (a reaction product of hydrogen peroxide and acetone), and halogen-based oxidizing agents such as chlorine, chlorine dioxide, bromine, fluorine, and iodine, and one of these may be used alone or in combination of two or more. Examples of alkali metal elements include lithium, sodium, potassium, rubidium, cesium, and francium, and examples of alkaline earth metals include calcium, strontium, barium, and radium.

上述した中でも、比較的取り扱いやすくかつ処理液の液性を安定させることができることから、酸化剤は、好ましくは酸化力を有する酸を含む。特に、樹脂成分の分解の効率の観点から、酸化剤は、より好ましくは硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を、特に好ましくは硝酸または過酸化水素と硫酸との混合溶液を含む。 Among the above, the oxidizing agent preferably contains an acid having oxidizing power, since it is relatively easy to handle and can stabilize the liquid properties of the treatment liquid. In particular, from the viewpoint of the efficiency of decomposing the resin component, the oxidizing agent more preferably contains one or more selected from the group consisting of nitric acid, a mixed acid of sulfuric acid and nitric acid, a mixed acid of nitric acid and hydrochloric acid (aqua regia), and a mixed solution of hydrogen peroxide and sulfuric acid, and particularly preferably contains nitric acid or a mixed solution of hydrogen peroxide and sulfuric acid.

処理液中における酸化剤の濃度は、特に限定されず、処理される繊維強化樹脂材料中の樹脂成分の量に応じて適宜設定できる。しかしながら、例えば、酸化剤が酸化力を有する酸である場合、処理液における酸化剤の濃度は、例えば5質量%以上80質量%以下、好ましくは20質量%以上50質量%以下である。 The concentration of the oxidizing agent in the treatment liquid is not particularly limited and can be set appropriately depending on the amount of resin components in the fiber-reinforced resin material to be treated. However, for example, when the oxidizing agent is an acid having oxidizing power, the concentration of the oxidizing agent in the treatment liquid is, for example, 5% by mass or more and 80% by mass or less, preferably 20% by mass or more and 50% by mass or less.

また、上述したように、処理液は重合抑制剤を含む。重合抑制剤としては、樹脂の分解物の再重合を抑制できれば特に限定されず、例えば、亜硝酸のアルカリ金属またはアルカリ土類金属塩等の亜硝酸塩、亜硝酸エステル、ヒドロキノン、オキソキノン、4-tert-ブチルピロカテコール、tert-ブチルヒドロキノン、1,4-ベンゾキノン、ジブチルヒドロキシトルエン、1,1-ジフェニル-2-ピクリルヒドラジルフリーラジカル、メキノール、フェノチアジン等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。アルカリ金属としては、例えばナトリウム、カリウム、セシウム、ルビジウム等を挙げることができる。アルカリ土類金属としては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。また、亜硝酸エステルとしては、例えば、亜硝酸メチル、亜硝酸エチル、亜硝酸アミル、亜硝酸イソアミル、亜硝酸イソブチル、亜硝酸イソプロピル、亜硝酸t-ブチル、亜硝酸n-ブチル、亜硝酸n-プロピル等が挙げられる。 As described above, the treatment liquid contains a polymerization inhibitor. The polymerization inhibitor is not particularly limited as long as it can suppress the repolymerization of the decomposition product of the resin. For example, nitrite salts such as alkali metal or alkaline earth metal salts of nitrous acid, nitrite esters, hydroquinone, oxoquinone, 4-tert-butylpyrocatechol, tert-butylhydroquinone, 1,4-benzoquinone, dibutylhydroxytoluene, 1,1-diphenyl-2-picrylhydrazyl free radical, mequinol, phenothiazine, etc. can be used alone or in combination of two or more of these. Examples of alkali metals include sodium, potassium, cesium, rubidium, etc. Examples of alkaline earth metals include beryllium, magnesium, calcium, strontium, barium, etc. Examples of nitrite esters include methyl nitrite, ethyl nitrite, amyl nitrite, isoamyl nitrite, isobutyl nitrite, isopropyl nitrite, t-butyl nitrite, n-butyl nitrite, n-propyl nitrite, etc.

上述した中でも重合抑制剤は、好ましくは亜硝酸塩および亜硝酸エステルからなる群から選択される1種または2種以上を、より好ましくは亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸エチルおよび亜硝酸アミルからなる群から選択される1種または2種以上を含む。これにより、より効率よく樹脂を処理液中に溶解させることができる。 Among the above, the polymerization inhibitor preferably contains one or more selected from the group consisting of nitrites and nitrite esters, more preferably one or more selected from the group consisting of sodium nitrite, potassium nitrite, ethyl nitrite and amyl nitrite. This allows the resin to be dissolved in the treatment solution more efficiently.

処理液中における重合抑制剤の濃度は、特に限定されず、処理される繊維強化樹脂材料中の樹脂の量に応じて適宜設定できる。しかしながら、例えば、処理液における重合抑制剤の濃度は、例えば0.010質量%以上20量%以下、好ましくは0.20質量%以上5.0質量%以下である。これにより、酸化剤による樹脂の酸化反応を阻害することなく、低分子化した樹脂の再重合反応を十分に抑制することができる。 The concentration of the polymerization inhibitor in the treatment liquid is not particularly limited and can be set appropriately depending on the amount of resin in the fiber-reinforced resin material to be treated. However, for example, the concentration of the polymerization inhibitor in the treatment liquid is, for example, 0.010% by mass or more and 20% by mass or less, preferably 0.20% by mass or more and 5.0% by mass or less. This makes it possible to sufficiently suppress the repolymerization reaction of the low-molecular-weight resin without inhibiting the oxidation reaction of the resin by the oxidizing agent.

また、処理液は、通常溶媒を含む。溶媒としては、使用する酸化剤や重合抑制剤に対し安定であり、これらの成分と混和可能であれば特に限定されず、例えば上述した処理液の溶媒に挙げられた水や各種有機溶媒を1種単独でまたは2種以上を組み合わせて用いることができる。 The treatment liquid also typically contains a solvent. There are no particular limitations on the solvent as long as it is stable to the oxidizing agent and polymerization inhibitor used and is miscible with these components. For example, water and various organic solvents listed as solvents for the treatment liquid described above can be used alone or in combination of two or more.

中でも、処理液に含まれる溶媒は、上述した酸性溶液の溶媒に含まれる水または有機溶媒を含むことが好ましい。酸性溶液が複数種の溶媒を含む場合、処理液は、これらの複数種の溶媒のうち1種以上を含むことが好ましい。これにより、処理液を繊維強化樹脂材料に接触させた際に、不本意な副反応が生じたり、膨潤した繊維強化樹脂材料が不本意に収縮したりすることがより確実に抑制される。 In particular, the solvent contained in the treatment liquid preferably contains water or an organic solvent contained in the solvent of the acidic solution described above. When the acidic solution contains multiple types of solvents, the treatment liquid preferably contains one or more of these multiple types of solvents. This more reliably prevents unintended side reactions from occurring and unintended shrinkage of the swollen fiber-reinforced resin material when the treatment liquid is brought into contact with the fiber-reinforced resin material.

また、処理液は、取り扱いの容易性および酸化剤による酸化反応を促進させる観点から、好ましくは水または水と混和可能な有機溶媒と水との混合溶媒、より好ましくは水を含む。 In addition, from the viewpoints of ease of handling and promoting the oxidation reaction by the oxidizing agent, the treatment liquid preferably contains water or a mixed solvent of water and an organic solvent miscible with water, and more preferably contains water.

処理液中に含まれる溶媒の含有量は、特に限定されず、酸化剤等の他の成分の残部とすることができる。 The amount of solvent contained in the treatment liquid is not particularly limited, and can be the remainder of other components such as the oxidizing agent.

また、処理液は、好ましくは中性または酸性、より好ましくは酸性を呈する。これにより、処理液を繊維強化樹脂材料に接触させた際に、酸性溶液により処理された繊維強化樹脂材料が中和されて不本意に樹脂が固化・沈着することが防止される。 The treatment liquid is preferably neutral or acidic, and more preferably acidic. This prevents the fiber-reinforced resin material treated with the acidic solution from being neutralized when the treatment liquid is brought into contact with the fiber-reinforced resin material, thereby preventing the resin from unintentionally solidifying and depositing.

具体的には、25℃の処理液のpHは、例えば、5.0以下、好ましくは2.0以下、より好ましくは1.5以下である。 Specifically, the pH of the treatment solution at 25°C is, for example, 5.0 or less, preferably 2.0 or less, and more preferably 1.5 or less.

処理液は、酸を含んでいてもよい。これにより、処理液のpHを調節することができるこのような酸としては、酸処理工程いて挙げた酸が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。 The treatment liquid may contain an acid. As an acid capable of adjusting the pH of the treatment liquid, the acids listed in the acid treatment step can be mentioned. One of these acids can be used alone or two or more of them can be used in combination.

上述したような処理液を用いて繊維強化樹脂材料を処理する。処理中における処理液の温度は、特に限定されず、例えば0℃以上100℃以下、好ましくは50℃以上100℃以下である。 The fiber-reinforced resin material is treated using the treatment liquid as described above. The temperature of the treatment liquid during treatment is not particularly limited and is, for example, 0°C or higher and 100°C or lower, preferably 50°C or higher and 100°C or lower.

処理液による処理の時間は、特に限定されず、目的とする温度に達してから5分以上1200分以下、好ましくは10分以上120分以下である。 The time for treatment with the treatment solution is not particularly limited, but is from 5 minutes to 1200 minutes, preferably from 10 minutes to 120 minutes, after the desired temperature is reached.

また、処理液による処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。処理液による処理を加圧下で行う場合、例えば、0.11MPa以上7.0MPa以下、特に0.11MPa以上2.0MPa以下の雰囲気下で処理を行うことができる。なお、安全性および経済性を考慮すると、処理液による処理は、常圧下で行うことが好ましい。 The treatment with the treatment liquid may be carried out under normal pressure, reduced pressure, or pressurized. When the treatment with the treatment liquid is carried out under pressurized pressure, the treatment can be carried out, for example, in an atmosphere of 0.11 MPa or more and 7.0 MPa or less, particularly 0.11 MPa or more and 2.0 MPa or less. From the viewpoints of safety and economy, it is preferable to carry out the treatment with the treatment liquid under normal pressure.

なお、処理液による繊維強化樹脂材料の処理は、特に限定されず、処理液中に繊維強化樹脂材料を浸漬することにより行ってもよいし、スプレー等により処理液を繊維強化樹脂材料に対し噴霧することにより行ってもよく、処理液と繊維強化樹脂材料とが接触可能な任意の手段を採用することができる。また、処理液による処理中において、処理液を攪拌してもよい。また、繊維強化樹脂材料の繊維束が維持されるように繊維強化樹脂材料を固定具により固定してもよい。 The treatment of the fiber-reinforced resin material with the treatment liquid is not particularly limited, and may be performed by immersing the fiber-reinforced resin material in the treatment liquid, or by spraying the treatment liquid onto the fiber-reinforced resin material with a spray or the like. Any means capable of contacting the treatment liquid with the fiber-reinforced resin material may be used. The treatment liquid may be stirred during treatment with the treatment liquid. The fiber-reinforced resin material may be fixed with a fixing device so that the fiber bundles of the fiber-reinforced resin material are maintained.

4. 洗浄工程
次に、必要に応じて洗浄を行う。洗浄は、洗浄液を繊維強化樹脂材料と接触させることにより行うことができる。具体的には、上記の酸化工程において、処理液を洗浄液に置き換えることにより実施できる。ただし、洗浄時における洗浄液の温度や洗浄時間は、適宜設定できる。
4. Washing step Next, washing is performed as necessary. Washing can be performed by contacting a washing liquid with the fiber reinforced resin material. Specifically, washing can be performed by replacing the treatment liquid with the washing liquid in the above oxidation step. However, the temperature of the washing liquid and the washing time during washing can be appropriately set.

洗浄液としては、上述した処理液の溶媒に挙げられた水や各種有機溶媒を1種単独でまたは2種以上を組み合わせて用いることができる。また、有機溶媒としては、上述した溶媒の他、以下のエステル系溶媒、アミド系溶媒を用いてもよい。 As the cleaning solution, water or various organic solvents listed as the solvents for the above-mentioned treatment solution can be used alone or in combination of two or more. In addition to the above-mentioned solvents, the following ester-based solvents and amide-based solvents may also be used as the organic solvent.

エステル系溶媒としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、3-メトキシブチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチル、酪酸メチル、酪酸エチル、酪酸ブチル、酪酸イソペンチル、イソ酪酸イソブチル、イソ吉草酸エチル、イソ吉草酸イソペンチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、γ-ブチロラクトン、シュウ酸ジエチル、シュウ酸ジブチル、マロン酸ジエチル、サリチル酸メチル、エチレングリコールジアセタート、ホウ酸トリブチル、リン酸トリメチル、リン酸トリエチル等が挙げられる。 Examples of ester solvents include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, butyl propionate, and isopropionate. These include isopentyl, methyl lactate, ethyl lactate, butyl lactate, methyl butyrate, ethyl butyrate, butyl butyrate, isopentyl butyrate, isobutyl isobutyrate, ethyl isovalerate, isopentyl isovalerate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, gamma-butyrolactone, diethyl oxalate, dibutyl oxalate, diethyl malonate, methyl salicylate, ethylene glycol diacetate, tributyl borate, trimethyl phosphate, and triethyl phosphate.

アミド系溶媒としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、カプロラクタム、カルバミド酸エステル等が挙げられる。 Examples of amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, caprolactam, carbamic acid esters, etc.

また、洗浄液には、塩基性物質が含まれていてもよい。塩基性物質により中和を行って液性を調節することにより、繊維強化樹脂材料中の残存する樹脂成分やその反応物を除去することができる。これにより、強化繊維を含む繊維状物が得られる。 The cleaning liquid may also contain a basic substance. By adjusting the liquid properties through neutralization with a basic substance, the remaining resin components and their reaction products in the fiber-reinforced resin material can be removed. This results in a fibrous material containing reinforcing fibers.

塩基性物質としては、例えば、リチウム、アルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、硫酸塩、亜硫酸塩、硝酸塩等の無機塩基性物質や、ジメチルアミン、ジエチルアミン等のアミン化合物が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。アルカリ金属としては、例えばナトリウム、カリウム、セシウム、ルビジウム等を挙げることができる。アルカリ土類金属としては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。 Examples of basic substances include inorganic basic substances such as hydroxides, carbonates, hydrogen carbonates, sulfates, sulfites, and nitrates of lithium, alkali metals, and alkaline earth metals, and amine compounds such as dimethylamine and diethylamine. One of these can be used alone or two or more can be used in combination. Examples of alkali metals include sodium, potassium, cesium, and rubidium. Examples of alkaline earth metals include beryllium, magnesium, calcium, strontium, and barium.

5. 加熱工程
洗浄工程後に繊維状物を気体雰囲気下で加熱してもよい。これにより、繊維状物に残存する樹脂を溶融または熱分解させて、さらに樹脂を除去することができる。具体的には、、酸化工程においては、繊維強化樹脂材料に含まれる樹脂は、分解等により低分子化するとともに、樹脂自体の溶出により樹脂が外気と接触する表面積が増大する。このような状態の繊維強化樹脂材料について、気体雰囲気下で加熱することにより、繊維強化樹脂材料中に残存する樹脂が容易に分解および/または溶融し、この結果、樹脂が十分に除去された再生補強繊維が得られる。
5. Heating Step After the cleaning step, the fibrous material may be heated in a gas atmosphere. This melts or pyrolyzes the resin remaining in the fibrous material, and the resin can be further removed. Specifically, in the oxidation step, the resin contained in the fiber reinforced resin material is decomposed or otherwise degraded into lower molecular weight molecules, and the surface area of the resin in contact with the outside air is increased due to the elution of the resin itself. By heating the fiber reinforced resin material in such a state in a gas atmosphere, the resin remaining in the fiber reinforced resin material is easily decomposed and/or melted, and as a result, recycled reinforcing fibers from which the resin has been sufficiently removed are obtained.

また、一般に、熱分解法によって再生補強繊維を得る場合には、500℃以上の温度にて処理を行い、樹脂を除去する。このような場合には、繊維強化樹脂材料中に存在する補強繊維自体も熱による損傷が生じうる。さらには、熱分解法によって樹脂を除去する場合、硬化性樹脂等の樹脂は熱によって一旦硬化してその後分解する。このような樹脂の硬化は、樹脂の分解、ひいては除去を却って阻害する。 In general, when recycled reinforcing fibers are obtained by pyrolysis, they are treated at a temperature of 500°C or higher to remove the resin. In such cases, the reinforcing fibers themselves present in the fiber-reinforced resin material may be damaged by heat. Furthermore, when resin is removed by pyrolysis, resins such as curable resins are first hardened by heat and then decomposed. Such hardening of the resin actually hinders the decomposition and, therefore, removal of the resin.

これに対し、本実施形態においては、上述した酸化工程において樹脂の少なくとも一部を分解することから、単に熱分解法を採用する場合と比較して、樹脂が硬化しにくい状態となっている。さらには、酸化工程において樹脂の少なくとも一部を分解することから、比較的低温であっても樹脂を分解、除去することができ、補強繊維の熱による損傷を抑制することができる。 In contrast, in this embodiment, at least a portion of the resin is decomposed in the oxidation process described above, so the resin is less likely to harden compared to when a thermal decomposition method is simply adopted. Furthermore, because at least a portion of the resin is decomposed in the oxidation process, the resin can be decomposed and removed even at relatively low temperatures, and damage to the reinforcing fibers due to heat can be suppressed.

加熱温度としては、特に限定されないが、例えば150℃以上600℃以下、好ましくは200℃以上350℃以下であることができる。これにより、得られる再生補強繊維の熱や酸、酸化剤等による損傷を抑制しつつ、より確実に樹脂を除去することができる。 The heating temperature is not particularly limited, but can be, for example, 150°C to 600°C, preferably 200°C to 350°C. This makes it possible to more reliably remove the resin while minimizing damage to the resulting recycled reinforcing fiber caused by heat, acid, oxidizing agents, etc.

加熱時間は、特に限定されず、目的とする温度に達してから30分以上1500分以下、好ましくは60分以上300分以下である。これにより、得られる再生補強繊維の熱や酸、酸化剤等による損傷を抑制しつつ、より確実に樹脂を除去することができる。 The heating time is not particularly limited, and is from 30 to 1,500 minutes, preferably from 60 to 300 minutes, after the target temperature is reached. This makes it possible to more reliably remove the resin while suppressing damage to the resulting recycled reinforcing fiber caused by heat, acid, oxidizing agents, etc.

また、本工程における周囲雰囲気に存在する気体は、特に限定されないが、例えば、窒素、希ガス等の不活性ガス、空気および/または水蒸気を含むことができる。上述した中でも、周囲雰囲気に存在する気体は、好ましくは空気を含む。 The gas present in the ambient atmosphere in this process is not particularly limited, but may include, for example, an inert gas such as nitrogen or a rare gas, air, and/or water vapor. Among the above, the gas present in the ambient atmosphere preferably includes air.

加熱処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。なお、安全性および経済性を考慮すると、加熱処理は、常圧下で行うことが好ましい。 The heat treatment may be carried out under normal pressure, reduced pressure, or pressurized pressure. From the viewpoints of safety and economy, it is preferable to carry out the heat treatment under normal pressure.

ここで、繊維強化樹脂材料を必要に応じて固定しつつ加熱処理を行ってもよい。これにより、繊維強化樹脂材料に含まれる補強繊維の形状や配向を維持したまま補強繊維を乾燥させることが可能である。 Here, the fiber-reinforced resin material may be fixed while being heated as necessary. This allows the reinforcing fibers contained in the fiber-reinforced resin material to be dried while maintaining their shape and orientation.

以上の酸処理工程、酸化工程、洗浄工程および加熱工程は、必要に応じてそれぞれ複数回行うことができる。また、必要に応じて各工程の順序を変更してもよい。例えば、酸処理工程、酸化工程および洗浄工程を複数回繰り返したのちに加熱工程を行ってもよい。また例えば、酸処理工程を複数回行った後、酸化工程を行い、その後洗浄工程および加熱工程を必要な回数行ってもよい。あるいは、例えば、酸処理工程、酸化工程、洗浄工程および加熱工程をこの順に必要な回数行ってもよい。 The above-mentioned acid treatment step, oxidation step, cleaning step, and heating step can each be performed multiple times as necessary. The order of each step can also be changed as necessary. For example, the acid treatment step, oxidation step, and cleaning step can be repeated multiple times, followed by the heating step. For example, the acid treatment step can be performed multiple times, followed by the oxidation step, and then the cleaning step and heating step can be performed the required number of times. Alternatively, for example, the acid treatment step, oxidation step, cleaning step, and heating step can be performed in this order the required number of times.

6. 乾燥工程
また、上記の加熱工程に代えて、あるいは上記の加熱工程に加えて、繊維状物を気体雰囲気下で乾燥してもよい。
6. Drying Step Instead of or in addition to the above heating step, the fibrous material may be dried in a gas atmosphere.

乾燥温度としては、特に限定されないが、例えば50℃以上150℃未満、好ましくは80℃以上130℃以下であることができる。乾燥時間は、特に限定されず、目的とする温度に達してから15分以上3000分以下、好ましくは60分以上300分以下である。 The drying temperature is not particularly limited, but can be, for example, 50°C or higher and lower than 150°C, and preferably 80°C or higher and 130°C or lower. The drying time is not particularly limited, and is 15 minutes or longer and 3000 minutes or shorter, and preferably 60 minutes or longer and 300 minutes or shorter, after the target temperature is reached.

他の条件は、上記の加熱工程に記載された範囲内とすることができる。 Other conditions can be within the ranges described for the heating process above.

以上により、再生補強繊維を得ることができる。本実施形態に係る再生補強繊維の製造方法では、酸化剤と重合抑制剤とを含む処理液により繊維強化樹脂材料を処理して再生補強繊維を得る。 In this way, recycled reinforcing fibers can be obtained. In the method for producing recycled reinforcing fibers according to this embodiment, a fiber-reinforced resin material is treated with a treatment liquid containing an oxidizing agent and a polymerization inhibitor to obtain recycled reinforcing fibers.

これにより、本実施形態によれば、溶媒法でありながら繊維強化樹脂材料について効率的に補強繊維を回収することができる。また、本実施形態によれば、比較的温和な温度条件下でも効率的な樹脂の除去が可能である。 As a result, this embodiment allows for efficient recovery of reinforcing fibers from fiber-reinforced resin materials, even though it is a solvent method. Furthermore, this embodiment allows for efficient removal of resin even under relatively mild temperature conditions.

さらには、本実施形態によれば、効率的な樹脂の除去が可能であることから、従来とは異なり、繊維強化樹脂材料を細かく裁断してから樹脂の溶解処理を行う必要がない。すなわち、比較的大きな繊維強化樹脂材料であっても、本実施形態に係る方法を採用することにより、均一かつ効率的な樹脂の除去が可能である。 Furthermore, according to this embodiment, since efficient resin removal is possible, unlike the conventional method, there is no need to cut the fiber-reinforced resin material into small pieces and then perform a resin dissolution process. In other words, even with relatively large fiber-reinforced resin materials, uniform and efficient resin removal is possible by adopting the method according to this embodiment.

なお、各工程において溶解した樹脂については、回収してリサイクルすることも可能である。 The resin dissolved in each process can also be recovered and recycled.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples.

1.再生補強繊維の製造
(実施例1)
(i)準備工程
まず、試料としての炭素繊維強化樹脂材料を用意した。用いた炭素繊維樹脂材料は、長さ約30cm、幅5cm、厚さ約1mmのシートであった。また、炭素繊維強化樹脂材料を構成する樹脂は、アミン硬化エポキシ樹脂であった。
1. Production of Regenerated Reinforcement Fiber (Example 1)
(i) Preparation step First, a carbon fiber reinforced resin material was prepared as a sample. The carbon fiber reinforced resin material used was a sheet with a length of about 30 cm, a width of 5 cm, and a thickness of about 1 mm. The resin constituting the carbon fiber reinforced resin material was an amine-cured epoxy resin.

(ii)酸処理工程
次に、炭素繊維強化樹脂材料を80℃に加熱しておいた40質量%(5.3mol/L)硫酸水溶液に1時間浸漬した。浸漬時において、硫酸水溶液の温度は80℃に維持した。
(ii) Acid Treatment Step Next, the carbon fiber reinforced resin material was immersed for 1 hour in a 40 mass % (5.3 mol/L) aqueous sulfuric acid solution that had been heated to 80° C. During the immersion, the temperature of the aqueous sulfuric acid solution was maintained at 80° C.

(iii)酸化工程
次に、40質量%(8.0mol/L)硝酸水溶液に対して、0.5質量%の亜硝酸ナトリウム添加し、処理液を得た。処理液中の硝酸の濃度は39.8質量%、亜硝酸ナトリウムの濃度は0.50質量%であった。炭素繊維強化樹脂材料を80℃に加熱しておいた処理液に60分間浸漬した。浸漬時において、処理液の温度は80℃に維持した。
(iii) Oxidation step Next, 0.5% by mass of sodium nitrite was added to a 40% by mass (8.0 mol/L) aqueous nitric acid solution to obtain a treatment liquid. The concentration of nitric acid in the treatment liquid was 39.8% by mass, and the concentration of sodium nitrite was 0.50% by mass. The carbon fiber reinforced resin material was immersed in the treatment liquid heated to 80°C for 60 minutes. During the immersion, the temperature of the treatment liquid was maintained at 80°C.

(iv)洗浄工程
次に、反応生成物を10質量%炭酸水素ナトリウム水溶液で中和し、その後炭素繊維強化樹脂材料から得られる繊維状物(炭素繊維)を精製水で洗浄した。
(iv) Washing Step Next, the reaction product was neutralized with a 10% by mass aqueous solution of sodium hydrogen carbonate, and then the fibrous material (carbon fiber) obtained from the carbon fiber reinforced resin material was washed with purified water.

(v)加熱工程
次に、洗浄して得られた繊維状物を、350℃で1時間加熱し、実施例1に係る再生補強繊維を得た。
(v) Heating Step Next, the fibrous material obtained after washing was heated at 350° C. for 1 hour to obtain the recycled reinforcing fiber according to Example 1.

(実施例2)
加熱工程に代えて、乾燥工程を行った以外は、実施例1と同様にして実施例2に係る再生補強繊維を得た。乾燥工程においては、洗浄して得られた繊維状物を、110℃で1時間乾燥した。
Example 2
Except for carrying out a drying step instead of the heating step, the recycled reinforcing fiber according to Example 2 was obtained in the same manner as in Example 1. In the drying step, the fibrous material obtained by washing was dried at 110° C. for 1 hour.

(実施例3)
洗浄工程において、反応生成物の10質量%炭酸水素ナトリウム水溶液による中和を省略した以外は、実施例2と同様にして実施例3に係る再生補強繊維を得た。
Example 3
The regenerated reinforcing fiber of Example 3 was obtained in the same manner as in Example 2, except that the neutralization of the reaction product with a 10% by mass aqueous solution of sodium bicarbonate in the washing step was omitted.

(実施例4)
酸処理工程を省略した以外は、実施例3と同様にして実施例4に係る再生補強繊維を得た。
Example 4
The recycled reinforcing fiber of Example 4 was obtained in the same manner as in Example 3, except that the acid treatment step was omitted.

(比較例1)
酸化工程においては亜硝酸ナトリウムを処理液に含めなかったこと以外は、実施例2と同様にして比較例1に係る再生補強繊維を得た。
(Comparative Example 1)
The regenerated reinforcing fiber according to Comparative Example 1 was obtained in the same manner as in Example 2, except that sodium nitrite was not included in the treatment liquid in the oxidation step.

(比較例2)
洗浄工程において、反応生成物の10質量%炭酸水素ナトリウム水溶液による中和を省略した以外は、比較例1と同様にして比較例2に係る再生補強繊維を得た。
(Comparative Example 2)
Regenerated reinforcing fibers according to Comparative Example 2 were obtained in the same manner as in Comparative Example 1, except that neutralization of the reaction product with a 10% by mass aqueous solution of sodium bicarbonate in the washing step was omitted.

(比較例3)
酸処理工程を省略した以外は、比較例2と同様にして比較例3に係る再生補強繊維を得た。
(Comparative Example 3)
The recycled reinforcing fiber of Comparative Example 3 was obtained in the same manner as in Comparative Example 2, except that the acid treatment step was omitted.

2.再生補強繊維の評価
得られた実施例1~4および比較例1~3にかかる再生炭素繊維および、参考例として炭素繊維強化樹脂材料に用いられたバージンの炭素繊維について、熱重量分析(TGA)により残存樹脂の量を評価した。
2. Evaluation of Recycled Reinforcing Fibers The amount of residual resin was evaluated by thermogravimetric analysis (TGA) for the recycled carbon fibers obtained in Examples 1 to 4 and Comparative Examples 1 to 3, and for the virgin carbon fibers used in the carbon fiber reinforced resin material as a reference example.

具体的には、まず、200ml/minの流量で窒素を流しながら10℃/minの昇温速度で実施例1~4および比較例1~3にかかる再生炭素繊維を加熱し、試料の対流による重量変化が収まるのを待つために、200℃にて15分保持した。次いで、200℃から10℃/minの昇温速度で600℃まで加熱し、この間の再生炭素繊維の重量の減少分を測定した。なお、未処理の炭素繊維補強樹脂材料中の樹脂量は、体積含有率として50%であり、エポキシ樹脂の比重を1.1~1.4g/cmとした場合、おおよそ37~43質量%である。結果を実験条件とともに表1に示す。 Specifically, the recycled carbon fibers according to Examples 1 to 4 and Comparative Examples 1 to 3 were first heated at a temperature increase rate of 10°C/min while flowing nitrogen at a flow rate of 200 ml/min, and then held at 200°C for 15 minutes to wait for the weight change due to convection of the sample to subside. Next, the sample was heated from 200°C to 600°C at a temperature increase rate of 10°C/min, and the weight loss of the recycled carbon fiber during this period was measured. The amount of resin in the untreated carbon fiber reinforced resin material was 50% as a volume content, and was approximately 37 to 43 mass% when the specific gravity of the epoxy resin was 1.1 to 1.4 g/ cm3 . The results are shown in Table 1 together with the experimental conditions.

表1に示すように、実施例1~4においては炭素繊維強化樹脂材料から効率よく樹脂を除去できたことが確認できた。具体的には、実施例1、2に係る再生炭素繊維は比較例1に係る再生炭素繊維と比較して、実施例3に係る再生炭素繊維は比較例2に係る再生炭素繊維と比較して、実施例4に係る再生炭素繊維は比較例3に係る再生炭素繊維と比較して、優位に残存樹脂量が少なかった。これにより、酸化工程において、酸化剤とともに重合抑制剤を添加することにより、効率よく炭素繊維強化樹脂材料から樹脂を除去できることがわかる。特に、実施例1、2においては、参考例として行ったバージンの炭素繊維の重量減少率に近い重量減少率が観察され、ほぼすべての樹脂が除去されたことが確認された。 As shown in Table 1, it was confirmed that in Examples 1 to 4, the resin was efficiently removed from the carbon fiber reinforced resin material. Specifically, the recycled carbon fibers of Examples 1 and 2 had significantly less residual resin than the recycled carbon fiber of Comparative Example 1, the recycled carbon fiber of Example 3 had significantly less residual resin than the recycled carbon fiber of Comparative Example 2, and the recycled carbon fiber of Example 4 had significantly less residual resin than the recycled carbon fiber of Comparative Example 3. This shows that adding a polymerization inhibitor together with an oxidizing agent in the oxidation process can efficiently remove resin from the carbon fiber reinforced resin material. In particular, in Examples 1 and 2, a weight loss rate close to that of the virgin carbon fiber used as a reference example was observed, and it was confirmed that almost all of the resin was removed.

以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can conceive of various modified or revised examples within the scope of the technical ideas described in the claims, and it is understood that these also naturally fall within the technical scope of the present invention.

Claims (9)

樹脂と補強繊維とを含む繊維強化樹脂材料を酸化剤重合抑制剤および水を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程を有し、
前記酸化剤は、酸化力を有する酸を含み、
前記処理液における前記酸化剤の濃度は、20質量%以上であ
前記重合抑制剤は、亜硝酸塩および亜硝酸エステルからなる群から選択される1種以上を含む、再生補強繊維の製造方法。
The method includes a step of treating a fiber-reinforced resin material containing a resin and reinforcing fibers with a treatment liquid containing an oxidizing agent , a polymerization inhibitor , and water , and dissolving at least a portion of the resin of the fiber-reinforced resin material in the treatment liquid,
The oxidizing agent includes an acid having an oxidizing power,
The concentration of the oxidizing agent in the treatment liquid is 20% by mass or more,
A method for producing recycled reinforcement fibers , wherein the polymerization inhibitor comprises at least one selected from the group consisting of nitrites and nitrite esters .
前記樹脂は、エポキシ樹脂を含む、請求項1に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 1, wherein the resin includes an epoxy resin. 前記エポキシ樹脂は、アミン硬化エポキシ樹脂を含む、請求項2に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 2, wherein the epoxy resin includes an amine-cured epoxy resin. 前記重合抑制剤は、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸エチルおよび亜硝酸アミルからなる群から選択される1種以上を含む、請求項1に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 1, wherein the polymerization inhibitor comprises one or more selected from the group consisting of sodium nitrite, potassium nitrite, ethyl nitrite, and amyl nitrite. 前記処理液中における前記重合抑制剤の含有量が、0.20質量%以上5.0質量%以下である、請求項1に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 1, wherein the content of the polymerization inhibitor in the treatment liquid is 0.20% by mass or more and 5.0% by mass or less. 前記酸化力を有する酸は、硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を含む、請求項に記載の再生補強繊維の製造方法。 2. The method for producing recycled reinforcement fiber according to claim 1 , wherein the oxidizing acid includes at least one selected from the group consisting of nitric acid, a mixed acid of sulfuric acid and nitric acid, a mixed acid of nitric acid and hydrochloric acid (aqua regia), and a mixed solution of hydrogen peroxide and sulfuric acid. さらに、前記工程に先立ち、前記繊維強化樹脂材料を酸を含む酸性溶液により処理する工程を有する、請求項1に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 1 further comprises a step of treating the fiber-reinforced resin material with an acidic solution containing an acid prior to the above step. 前記酸は、硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含む、請求項に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcement fibers according to claim 7 , wherein the acid comprises at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid. 前記酸性溶液中における前記酸の濃度が、0.5mol/L以上である、請求項に記載の再生補強繊維の製造方法。 The method for producing recycled reinforcing fibers according to claim 7 , wherein the concentration of the acid in the acidic solution is 0.5 mol/L or more.
JP2022161819A 2022-10-06 2022-10-06 Manufacturing method of recycled reinforcing fiber Active JP7470450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022161819A JP7470450B1 (en) 2022-10-06 2022-10-06 Manufacturing method of recycled reinforcing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022161819A JP7470450B1 (en) 2022-10-06 2022-10-06 Manufacturing method of recycled reinforcing fiber

Publications (2)

Publication Number Publication Date
JP7470450B1 true JP7470450B1 (en) 2024-04-18
JP2024058678A JP2024058678A (en) 2024-04-26

Family

ID=90667634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022161819A Active JP7470450B1 (en) 2022-10-06 2022-10-06 Manufacturing method of recycled reinforcing fiber

Country Status (1)

Country Link
JP (1) JP7470450B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344936A (en) 1999-06-02 2000-12-12 Idemitsu Petrochem Co Ltd Method for decomposition of resin
JP2019131789A (en) 2018-02-01 2019-08-08 株式会社日本触媒 Method for decomposing water-absorbing polymer, method for producing recycle pulp, and water-absorbing polymer decomposer kit
CN110527137A (en) 2019-08-28 2019-12-03 武汉理工大学 A method of orientation scission of link degrading composite and therefrom recycled fiber
WO2022138764A1 (en) 2020-12-23 2022-06-30 株式会社ミライ化成 Manufacturing method for recycled reinforcing fibers
JP7386304B1 (en) 2022-10-06 2023-11-24 株式会社ミライ化成 Method for producing recycled reinforcing fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344936A (en) 1999-06-02 2000-12-12 Idemitsu Petrochem Co Ltd Method for decomposition of resin
JP2019131789A (en) 2018-02-01 2019-08-08 株式会社日本触媒 Method for decomposing water-absorbing polymer, method for producing recycle pulp, and water-absorbing polymer decomposer kit
CN110527137A (en) 2019-08-28 2019-12-03 武汉理工大学 A method of orientation scission of link degrading composite and therefrom recycled fiber
WO2022138764A1 (en) 2020-12-23 2022-06-30 株式会社ミライ化成 Manufacturing method for recycled reinforcing fibers
JP7386304B1 (en) 2022-10-06 2023-11-24 株式会社ミライ化成 Method for producing recycled reinforcing fibers

Also Published As

Publication number Publication date
JP2024058678A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
JP2024055865A (en) Manufacturing method of recycled reinforcing fiber
CN108430724B (en) Recycled carbon fiber-based materials
KR102363839B1 (en) Recycling of polymer matrix composites
Hanaoka et al. Recovery of carbon fiber from prepreg using nitric acid and evaluation of recycled CFRP
JP7240567B2 (en) Method for producing recycled reinforcing fiber
CN110527137B (en) Method for directionally breaking bond and degrading composite material and recycling fiber from composite material
EP4257254A1 (en) Reactor device for recovering reinforcing fibers and production method for recycled reinforcing fibers
US10774194B2 (en) Method of separating inorganic material, method of producing reprocessed material and method of removing organic substance
JP7470450B1 (en) Manufacturing method of recycled reinforcing fiber
JP4696423B2 (en) Fiber reinforced plastic reinforced with recycled fiber
JP2022082861A (en) Method for recycling carbon fiber
CN114044936A (en) Method for recovering carbon fiber resin matrix composite material by catalytic steam pyrolysis
JP6540996B2 (en) Dissolution method of uncured epoxy resin composite material
JP4765202B2 (en) Treatment solution for cured epoxy resin, treatment method and treatment product using the same
JP2022030256A (en) Method of recovering carbon fiber from carbon fiber-reinforced resin
JP2018086835A (en) Fiber recovery from fiber-reinforced polymer using lewis base
JP2003055474A (en) Reclaimed fiber-reinforced plastic
JPWO2017154102A1 (en) Method for recovering decomposition product of cured thermosetting resin and method for producing recycled material
JP2008255361A (en) Reutilizing method of filler material
JP4004387B2 (en) Non-metallic honeycomb panel disassembly method
US10773422B2 (en) Method of separating inorganic material, method of producing reprocessed material and method of removing organic substance
JP4978104B2 (en) Regeneration method of fiber reinforced plastic dissolution catalyst
JP4654537B2 (en) Treatment solution for cured unsaturated polyester resin, treatment method and treatment product using the same
JP2023110547A (en) Method for treating thermosetting resin cured product, and method for producing thermoplastic resin
JP2020040302A (en) Method for recovering amphoteric metal and method for producing regenerated amphoteric metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7470450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150