JP7469461B2 - マイクロ波アブレーションプローブ - Google Patents

マイクロ波アブレーションプローブ Download PDF

Info

Publication number
JP7469461B2
JP7469461B2 JP2022507665A JP2022507665A JP7469461B2 JP 7469461 B2 JP7469461 B2 JP 7469461B2 JP 2022507665 A JP2022507665 A JP 2022507665A JP 2022507665 A JP2022507665 A JP 2022507665A JP 7469461 B2 JP7469461 B2 JP 7469461B2
Authority
JP
Japan
Prior art keywords
antenna
arm
microwave
feedline
microwave ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022507665A
Other languages
English (en)
Other versions
JP2022543854A (ja
Inventor
エフ. モセソフ、オレグ
ティ. コールマン、ダニエル
Original Assignee
バイオコンパティブルズ ユーケー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオコンパティブルズ ユーケー リミテッド filed Critical バイオコンパティブルズ ユーケー リミテッド
Publication of JP2022543854A publication Critical patent/JP2022543854A/ja
Priority to JP2024060883A priority Critical patent/JP2024084820A/ja
Application granted granted Critical
Publication of JP7469461B2 publication Critical patent/JP7469461B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • A61B2018/00035Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open with return means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00077Electrical conductivity high, i.e. electrically conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1892Details of electrical isolations of the antenna

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Description

本開示はマイクロ波アブレーションプローブに関する。
癌等の疾患の治療において、ある種の組織は高温で変性することが分かっている。一般に温熱療法として知られるこれらのタイプの治療は、通常、電磁放射線を利用して60℃を超える温度まで癌組織を加熱しながら、健康な組織を不可逆的な細胞破壊が発生しないより低い温度で維持する。マイクロ波アブレーションは、電磁放射線を利用して組織を加熱するこうした治療のうちの1つである。
マイクロ波組織アブレーションは、外科的除去よりも侵襲性の低い処置である。マイクロ波組織アブレーションは、腫瘍が外科手術で除去することが困難である多くの状況において好ましい。そのような状況は、例えば、腫瘍が比較的小さい、比較的小さい臓器の近くにある、又は主要な血管の近くにある状況である。この手法は、前立腺、心臓及び肝臓等、腫瘍の外科的除去を実施することが困難である可能性のある臓器において使用されている。
処置を効果的に計画及び最適化するために、アブレーション装置が予測可能なサイズ及び形状の体積のアブレーションを引き起こすことが望まれる。この理由で、規則的な形状の予測可能なアブレーション体積が好ましく、球形又は略球形のアブレーション体積を生成することが特に好ましい。予測可能なサイズ及び形状のアブレーション体積をもたらすアブレーション装置により、外科処置が簡略化し、望ましくない医学的合併症が減少する。
本明細書に開示する実施形態は、マイクロ波組織アブレーション装置に関連する上述した問題の影響を低減させることを目的とする。より具体的には、本明細書に開示する実施形態は、規則的な形状の予測可能なアブレーション体積を生成するとともに、球形又は略球形のアブレーション体積を生成するために使用することができる、マイクロ波アンテナを提供する。
本発明の態様は、給電線とアンテナとを含むマイクロ波アブレーションプローブに関する。給電線は、内側導体と、外側導体と、それらの間に配置された誘電体とを有することができる。アンテナは、螺旋状アームと線状アームとを含むことができる。螺旋状アームは、接合点において給電線の外側導体に電気的に接続することができ、螺旋状アームはさらに、接合点から遠位方向に延びていることも可能である。線状アームは、給電線の内側導体に電気的に接続することができ、さらに、給電線の遠位端から遠位側に延びることができる。螺旋状アームは、線状アームの周囲に同軸に配置することができる。線状アームは、第1部分と第2部分とをさらに含むことができ、第1部分は誘電体によって包囲され、第2部分は、誘電体がなく、第1部分に対して遠位である。
アンテナの線状アームは、給電線の内側導体の延長部を構成することができる。線状アームは、例えば、4~14mmの長さであり得る。線状アームの第2部分は、いくつかの手法では、第1部分よりも長い場合がある。第2部分が第1部分よりも長い場合、第2部分は、給電線の内側導体よりも大きい直径であり得る。代替的に、線状アームの第1部分は第2部分よりも長い場合がある。第2部分は、例えば0.1~2mmの長さであり得る。第2部分が第1部分よりも長い場合、第1部分は0.1~2mmの長さであり得る。アンテナの螺旋状アームは、1~18mmの長さである場合があり、且つ/又は1~14回の巻きを有する場合がある。
螺旋状アームは、典型的には、螺旋状アームの2周を超える巻きか又は1周未満の巻きによって給電線及び/又は外側導体を包囲することはない。代替的に、螺旋状アームは、2mmを超えて、又は1mmを超えて、又は0.5mmを超えて、給電線及び/又は外側導体を包囲しない可能性がある。
本発明のいくつかの態様は、シャフトをさらに備え、アンテナ及び給電線がシャフト内に配置されるマイクロ波アブレーションプローブに関する。さらに、シャフトは、金属部分とセラミック部分とを含むことができる。セラミック部分は、アンテナと少なくとも同じ範囲を占めるように軸方向に延びることができる。
本発明の態様は、追加的に又は代替的に、アンテナにわたって冷却剤流体を通過させるように構成された冷却システムを含むことができる。加えて、冷却システムは、給電線の少なくとも一部にわたり且つアンテナにわたり冷却剤流体を通過させるように構成され、且つ/又は、装置シャフトの内壁の間に画定された冷却剤チャンバを備えることができる。加えて、冷却システムは、線状アームの周囲に配置された冷却管を備えることができる。追加的な態様では、冷却管は、冷却チャンバを第1冷却導管及び第2冷却導管に分割することができる。第1冷却導管は、線状アームと冷却管の内壁との間に配置することができる。第2冷却導管は、冷却管の外壁と装置シャフトの内壁との間に配置することができる。この配置では、アンテナの線状アームは第1冷却導管内に配置することができ、アンテナの螺旋状アームは第2冷却導管内に配置することができる。
追加的に又は代替的に、冷却管は、給電線の遠位部分に延び、アンテナの少なくとも一部の周囲で遠位側に延びることができる。
追加的に又は代替的に、冷却管は、線状アームと同軸である。さらに、冷却管は、アンテナの線状アームまで且つ/又は線状アームを越えて延びることができる。いくつかの態様では、アンテナの螺旋状アームは、冷却管の周囲に且つ/又は線状アームの周囲に巻回され、冷却管及び/又は線状アームそれぞれの周囲に一連の巻きで接合点から遠位側に延びることができる。
いくつかの態様では、マイクロ波アブレーションプローブは金属キャップを有することができる。さらに、アンテナの線状アームは、金属キャップに電磁結合され得るが、キャップには接続されない可能性がある。追加的に又は代替的に、アンテナの遠位先端は、0.2mm~3mmの距離だけキャップから分離することができる。
本開示の追加的な態様は、給電線とシャフトとを有するマイクロ波アブレーション針に関する。給電線は、マイクロ波アンテナに電気的に接続することができ、シャフトは、マイクロ波アンテナ及び給電線を包囲していることも可能である。シャフトは、非金属部分と金属部分とを含むことができる。非金属部分は、マイクロ波を放射するアンテナの少なくとも一部と同じ範囲を占めるように軸方向に延びることができる。
いくつかの態様では、シャフトの非金属部分はセラミックであり得る。追加的に又は代替的に、マイクロ波アブレーション針は、弾性要素を備えることができる。弾性要素は、非金属部分と金属部分との間に配置することができ、プローブシャフトの非金属部分と金属部分との間の接合部に弾性又は歪み緩和を提供するようにさらに構成することができる。
上述したマイクロ波アブレーション針のいくつかの態様では、マイクロ波アンテナは、螺旋状アームと線状アームとを備えることができる。螺旋状アームは、接合点において給電線の外側導体に電気的に接続することができ、螺旋状アームは、さらに、接合点から遠位方向に延びていることも可能である。線状アームは、給電線の内側導体に電気的に接続することができ、さらに、給電線の遠位端から遠位側に延びることができる。螺旋状アームは、線状アームの周囲に同軸に配置することができる。線状アームは、第1部分と第2部分とをさらに含むことができ、第1部分は誘電体によって包囲され、第2部分は、誘電体がなく、第1部分に対して遠位である。
本発明の追加的な態様は、1つ以上のマイクロ波アブレーションプローブを有するマイクロ波アブレーションシステムに関することができ、1つ以上のマイクロ波アブレーションプローブの各々は、給電線と、アンテナと、電力モジュールと、1つ以上の電力ケーブルとを含むことができる。給電線は、内側導体と、外側導体と、それらの間に配置された誘電体とを有することができる。アンテナは、螺旋状アームと線状アームとを含むことができる。螺旋状アームは、接合点において給電線の外側導体に電気的に接続され、螺旋状アームは、さらに、接合点から遠位方向に延びていることも可能である。線状アームは、給電線の内側導体に電気的に接続することができ、さらに、給電線の遠位端から遠位方向に延びることができる。螺旋状アームは、線状アームの周囲に同軸に配置することができる。線状アームは、第1部分と第2部分とをさらに含むことができ、第1部分は、誘電体によって包囲され、第2部分は、誘電体がなく、第1部分に対して遠位である。電力モジュールは、アンテナにマイクロ波エネルギーを提供するように構成することができる。1つ以上の電力ケーブルは、電力モジュールを各マイクロ波アンテナに接続するとともに、電力モジュールによって提供されるマイクロ波エネルギーを組織のアブレーションのためにアンテナに送達するように構成することができる。
本発明の追加的な態様は、1つ以上のマイクロ波アブレーション針と、電力モジュールと、1つ以上の電力ケーブルとを有する、組織のアブレーション用のマイクロ波アブレーションシステムに関することができる。1つ以上のマイクロ波針は、給電線とシャフトとを含むことができる。給電線は、マイクロ波アンテナに電気的に接続することができ、シャフトは、マイクロ波アンテナ及び給電線を包囲していることも可能である。シャフトは、マイクロ波アンテナ及び給電線を包囲し、非金属部分と金属部分とを含むことができる。非金属部分は、アンテナの少なくとも放射部分と同じ範囲を占めるように軸方向に延びることができる。電力モジュールは、アンテナにマイクロ波エネルギーを提供するように構成することができる。1つ以上の電力ケーブルは、電力モジュールを各マイクロ波アンテナに接続するとともに、電力モジュールによって提供されるマイクロ波エネルギーを組織のアブレーションのためにアンテナに送達するように構成することができる。
いくつかの態様では、マイクロ波アブレーションシステムは、給電線とアンテナとを含むことができる。給電線は、内側導体と、内側導体の周囲に同軸に配置された誘電体と、誘電体の周囲に同軸に配置された外側導体とを有することができる。アンテナは、螺旋状アームと線状アームとを含むことができる。螺旋状アームは、接合点において給電線の外側導体に電気的に接続することができ、接合点から遠位方向に延びることができる。線状アームは、給電線の内側導体に電気的に接続することができ、給電線の遠位端から遠位方向に延びることができる。線状アームは、第1部分と第2部分とをさらに含むことができる。第1部分は、誘電体によって包囲することができ、第2部分は、誘電体がなく、第1部分の遠位側であり得る。
追加的に又は代替的に、1つ以上のマイクロ波アブレーション針は、各々、アンテナ及び/又は給電線の少なくとも一部を冷却する冷却システムを含むことができる。アブレーションシステムは、1つ以上のマイクロ波アブレーションプローブの各々のアンテナ及び給電線の少なくとも一部を冷却するために、1つ以上のマイクロ波アブレーションプローブの冷却システムに冷却剤流体を送達するように構成された冷却システムをさらに備えることができる。
本開示のいくつかの態様では、1つ以上のマイクロ波アブレーション針の電力ケーブルは、冷却された電力ケーブルとすることができ、冷却システムは、1つ以上のマイクロ波アブレーション針の電力ケーブルを冷却するように構成することができる。
追加的に又は代替的に、螺旋状アームの大部分は、給電線及び/又は外側導体を包囲しない可能性がある。さらに、外側導体は、接合点を越えて遠位側に延びない可能性があり、且つ/又は螺旋状アームのわずかな部分のみを通って延びることができる。本発明のいくつかの態様では、螺旋状アームは、接合点以外、内側導体又は外側導体との電気的接触を形成しない。線状アームの1つの変形では、第2部分は、螺旋状アームを通って延びないように、螺旋状アームの遠位端の遠位側に配置することができる。さらに、螺旋状アームは、第1部分よりも大きい直径を有することができる。
1つ以上の例の詳細が添付図面及び以下の説明に示されている。他の特徴、目的及び利点は、その説明及び図面から、且つ特許請求の範囲から明らかとなろう。
本明細書を通して、本発明の他の実施形態について考察する。本発明の1つの態様に関して考察する任意の実施形態は、本発明の他の態様にも適用され、その逆も同様である。本明細書に記載する各実施形態は、本発明のすべての態様に適用可能である本発明の実施形態であると理解される。本明細書で考察する任意の実施形態は、本発明の任意の方法又は組成物に関して実施することができ、逆もまた同様であることが想定されている。さらに、本発明の組成物及びキットは、本発明の方法を達成するために使用することができる。以下は、本明細書を通して使用するさまざまな用語及び語句の定義を含む。
「球形状」という用語は、概ね球形である3次元形状を意味する。
「遠位」と言う用語は、使用者から最も遠い位置又は部分を指し、「近位」という用語は、使用者に最も近い位置又は部分を指す。
ヘリカルアンテナの「ピッチ」という用語は、螺旋の軸に対して平行に測定された、螺旋の1周の巻きの高さである。
「電気的に接続された」、「電気的に結合された」又は「電気的に接触している」という用語は、1つの物品から他の物品に電流が流れることができることとして定義する。通常、2つの物品は、導体、例えば金属線により、又は導体を介して物理的に接続される。
「電磁結合された」という用語は、エネルギー場の形状及び生成されるアブレーション体積に影響を与えるように等、物理的接触なしに、1つの物品から他の物品に電磁エネルギーが流れることができることとして定義する。2つの物品は、導体により又は導体を介して物理的に接続される必要はなく、電磁エネルギーは、1つの物品から他の物品に伝送することができる(例えば、電磁誘導)。
「絶縁層」、「誘電体」及び「絶縁体」という用語は、装置の動作可能な使用下でいかなる電気的接触も形成しない非導電性材料の層を意味する。本明細書に開示する実施形態では、絶縁層又は誘電体層は、望ましくない電気的接触を防止するために使用される。
「約」及び「およそ」という用語は、当業者によって理解されるものに近いものとして定義し、非限定的な実施形態では、これらの用語は20%以内であると定義する。
特許請求の範囲又は明細書において「備えている、からなる(comprising)」という用語と併せて用いる場合の「ある、1つの(a、an)」という語の使用は、「1つ」を意味する場合があるが、「1つ以上」、「少なくとも1つ」及び「1つ又は2つ以上」の意味とも一致する。
「備えている、からなる(comprising)」(並びに「備える、からなる(comprise)」及び「備える、からなる(comprises)」等の任意の形態の備える、含む)、「有する(having)」(並びに「有する(have)」及び「有する(has)」等の任意の形態の有する)又は「含む(containing)」(並びに「含む(contains)」及び「含む(contain)」等の任意の形態の含む)という語は、包括的又は非限定的(open-ended)であり、追加の記載されていない要素又は方法ステップを排除するものではない。
本明細書に開示するアセンブリ、装置又は方法は、特定の方法ステップ、成分、構成要素、組成物等を「含む」、それらから「本質的に構成される」又はそれらから「構成される」ことができる。
本明細書に開示する他の目的、特徴及び利点は、以下の図、詳細な説明及び例から明らかとなろう。しかしながら、そうした図、詳細な説明及び例は、本発明の具体的な実施形態を示しているが、単に例示として与えられており、限定的であるように意図されていないことが理解されるべきである。さらに、本発明の趣旨及び範囲内での変形及び変更は、この詳細な説明から当業者には明らかとなることが想定されている。
本発明の利点は、当業者には、以下の詳細な説明の利益を受け且つ添付図面を参照することにより、明らかとなり得る。
本開示の一態様による、アブレーションプロセスを実施するシステムの構成要素を含むブロック図。 本開示の一態様によるアブレーションプロセスを実施するアブレーション装置と接続する、アブレーション装置インタフェースの動作を説明するブロック図。 本開示の一態様による冷却システムの簡略図。 本開示の1つの実施形態による、ハンドルを備えたマイクロ波組織アブレーション装置の斜視図。 アブレーション装置シャフトの、シャフトの金属部分とセラミック部分との接合部を示す断面の拡大図。 本開示の1つの実施形態によるマイクロ波組織アブレーション装置のハンドルの側面図。 本開示の1つの実施形態によるマイクロ波組織アブレーション装置の簡略断面図。 本開示の1つの実施形態による、冷却システムを有するマイクロ波組織アブレーション装置の簡略断面図。 本開示の1つの実施形態による、代替的な冷却システムを有するマイクロ波組織アブレーション装置の簡略断面図。 本開示の1つの実施形態による、さらなる代替的な冷却システムを有するマイクロ波組織アブレーション装置の簡略断面図。 本開示の1つの実施形態による、代替的なアンテナ設計を有するマイクロ波組織アブレーション装置の簡略断面図。 本発明の1つの実施形態による、金属キャップを備えたマイクロ波組織アブレーション装置の概略図。 本発明の1つの実施形態による、金属キャップを備えたマイクロ波組織アブレーション装置の概略図。 本発明の1つの実施形態による、金属キャップを備えたマイクロ波組織アブレーション装置の概略図。 本発明の1つの実施形態による、金属キャップを備えたマイクロ波組織アブレーション装置の概略図。 本開示の1つの実施形態によるマイクロ波組織アブレーション装置の斜視図。 本開示の1つの実施形態によるマイクロ波組織アブレーション装置の概略断面図。この断面は図7AのX-Yを通して切断されている。 本開示の1つの実施形態によるアブレーション装置を使用して生成されたアブレーションパターンを示す写真。 本開示の1つの実施形態によるアブレーション装置を使用して生成されたアブレーションパターンを示す別の写真。
本発明は、さまざまな変更形態及び代替形態が可能であるが、図面では、その具体的な実施形態を例として示す。図面は、正確な縮尺ではない場合がある。
マイクロ波組織アブレーション装置によって作成されるアブレーション領域のサイズ及び寸法は、他の要素もあるがとりわけ、マイクロ波アンテナのタイプによって決まる。臨床医は、標的組織のサイズ及び寸法よりも大きいアブレーション領域を生成することができるマイクロ波アンテナを選択し、マイクロ波アンテナによって作成されるアブレーション領域が標的組織を含むように、マイクロ波アンテナを挿入することができる。焼灼すべき組織が、装置によって生成されるアブレーション体積のサイズよりも大きい場合、2つ以上の装置を使用し、焼灼すべき組織を覆うようにアブレーション体積を組み合わせることができる。本明細書に記載するマイクロ波組織アブレーション装置の実施形態を使用して、テーリングを低減して予測可能な形状のアブレーション領域を作成することができ、これにより、アブレーション計画が促進されるとともに、処置すべき体積の外側の組織に対する損傷が防止される。
いくつかの態様では、本明細書に開示するアブレーション装置は、マイクロ波アブレーション装置であり、すなわち、加熱により組織を死滅させるマイクロ波エネルギーの放射によって、アブレーションを引き起こす。典型的には、装置は、本明細書に記載するもの等のマイクロ波アンテナを有するマイクロ波アブレーション針である。追加的な態様では、本発明は、本明細書に記載するようなプローブ又は針等の1つ以上のマイクロ波アブレーション装置を備える、組織のマイクロ波アブレーション用のシステムを提供する。マイクロ波アブレーション装置は、組織にマイクロ波エネルギーを伝送するように構成されたマイクロ波アンテナと、マイクロ波エネルギーをマイクロ波アンテナに給電線を介して提供するように構成されたマイクロ波発生器と、アブレーション装置のマイクロ波アンテナにマイクロ波発生器を接続するとともに、マイクロ波発生器によって提供されるマイクロ波エネルギーを組織のアブレーションのためにアンテナに送達するように構成された1つ以上の電力ケーブルとを備える。
本明細書に記載するもの等のアブレーション装置は、最大150ワットの出力で最大20分又はそれを超える期間、動作するように構成することができる。装置は使用中加熱する。アンテナの抵抗加熱や組織から反射されるエネルギーのためである。従って、典型的には、給電線及びアンテナの遠位部分を含む装置の少なくとも遠位部分は、冷却を必要とする。好都合なように、さまざまな実施形態において、給電線及びアンテナの全体が冷却される。アンテナを冷却することにより、装置自体が損傷することが防止され、アンテナに近い組織が過熱されるか又は焦げることが防止される。これにより、組織のエネルギー吸収及び反射特性を含む、組織の物理的特性が変化し、従って、アンテナの効率が低下し、アブレーションゾーンが変化する可能性がある。一実施形態では、上記組織アブレーション装置は、従って、アンテナ及び/又は給電線の少なくとも一部を冷却する冷却システムをさらに備えることができる。こうした冷却システムは、典型的には、給電線の少なくとも一部にわたり且つアンテナにわたり冷却剤(例えば、水)等の冷却流体を通過させるようにさらに構成されている。典型的にはこうしたシステムは、冷却剤入口及び冷却剤出口を備え、それらは協働して、アンテナ及び任意選択的に給電線の少なくとも一部にわたり冷却剤を通過させて、アンテナ及び任意選択的に給電線の少なくとも一部、恐らくはすべてを冷却する。アンテナ及び給電線は、典型的には、冷却剤と接触している。
図1Aは、本開示の1つの実施形態による、アブレーションプロセスを実施するシステムの構成要素を含むブロック図を示す。本システムは、ユーザインタフェース104、コントローラ106及びアブレーション装置インタフェース108を含むコンソール102を含む。一実施形態では、ユーザインタフェース104は、ユーザに情報を提示するディスプレイと、1つ以上のボタン、ダイヤル、スイッチ又は他の作動可能な要素を介する等、ユーザから入力を受け取る入力装置とを含む。一実施形態では、ユーザインタフェース104は、ディスプレイとユーザインタフェース104の入力装置との両方として機能するタッチスクリーンディスプレイを含む。
本発明の一態様によれば、コンソール102のアブレーション装置インタフェース108は、1つ以上のアブレーション装置と接続するように配置されている。図1Aの実施形態では、アブレーション装置インタフェース108は、3つのアブレーション120a、120b、120cと、それぞれライン110a、110b、110cを介して接続する。一実施形態では、コンソール102は、1つ、2つ又は3つすべてのアブレーション装置(120a、120b、120c)と個々に又は同時に接続することができる。図1Aの実施形態には3つのアブレーション装置が示されているが、本発明の異なる態様は、異なる数のアブレーション装置と接続することができるアブレーション装置インタフェースを有するコンソールを含むことができることが理解されよう。
一実施形態では、コンソールは、単一のアブレーション装置と接続することができるアブレーション装置インタフェースを含む。他の実施形態では、コンソールは、2つのアブレーション装置、3つのアブレーション装置、4つのアブレーション装置又は5つのアブレーション装置と接続することができるアブレーション装置インタフェースを含む。いくつかの例では、アブレーション装置インタフェースは、任意の数のアブレーション装置と接続するように構成することができる。
本発明のいくつかの態様によれば、コンソールを使用して、アブレーション装置インタフェースによってサポートされるアブレーション装置の数まで、任意の数のアブレーション装置を動作させることができる。例えば、3つのアブレーション装置を同時に受け入れることができるアブレーション装置インタフェースを有するコンソールは、1つ、2つ又は3つのアブレーション装置を動作させるように構成することができる。
一実施形態では、ライン110a、110b、110cは、(例えば、冷却剤源140からの)冷却剤とアブレーション出力(例えば、マイクロ波信号)とをアブレーション装置120a、120b、120cにそれぞれ提供するように構成されている。ライン110a、110b、110cは、冷却剤がそれぞれのアブレーション装置に提供される経路と、それぞれのアブレーション装置からアブレーション装置内の冷却剤流路を通り抜けた後の冷却剤を受け取る戻り経路とを提供するように構成することができる。
本発明の一態様によれば、コントローラ106は、ユーザインタフェース104及びアブレーション装置インタフェース108と接続するように構成されている。一実施形態では、コントローラ106は、ユーザインタフェース104を介して1つ以上の入力を受け取るとともに、ユーザインタフェース104を介して1つ以上のアイテムを出力するように構成することができる。
コントローラ106は、アブレーション装置インタフェース108を介して1つ以上のアブレーション装置(例えば、120a、120b、120c)の動作を制御するように構成することができる。一実施形態では、コントローラ106は、冷却剤が、アブレーション装置インタフェース108を介して1つ以上のアブレーション装置に提供されるようにすることができる。コントローラ106は、アブレーション装置にアブレーションプロセスを実施させるために、1つ以上のアブレーション装置にアブレーション出力が提供されるようにすることができる。一実施形態では、アブレーション装置に提供されるアブレーション出力により、マイクロ波アブレーション装置はマイクロ波放射線を放射する。電源130が、アブレーション出力を発生させるために使用される電力を提供することができる。
一例では、コントローラは、1つ以上のプロセッサと、1つ以上のプロセッサがコントローラを介して実行されるようにする命令を含むメモリとを含む。本発明のさまざまな実施形態では、コントローラは、1つ以上のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理回路等、1つ以上のプロセッサとして、単独で又は任意の好適な組合せで、実装することができる。コントローラは、実行されると、コントローラに、本開示においてコントローラに属する機能を実行させるプログラム命令及び関連データを格納するメモリも含むことができる。メモリは、RAM、ROM、CD-ROM、フラッシュメモリ、EEPROM等、任意の固定された又は取外し可能な磁気、光又は電気媒体を含むことができる。メモリは、メモリ更新又はメモリ容量の増加を提供するために使用することができるリムーバブルメモリ部分も含むことができる。リムーバブルメモリは、画像データが別のコンピューティング装置に容易に転送されるようにすることもできる。コントローラは、コンピュータ又は他の電子システムのいくつかの又はすべてのコンポーネントを単一チップに統合するシステムオンチップとして実装してもよい。
図1Bは、本開示の1つの実施形態によるアブレーションプロセスを実施するアブレーション装置と接続する、アブレーション装置インタフェースの動作を説明するブロック図を示す。一例では、アブレーション装置インタフェース108は、1つ以上の流体ポンプを含み、1つ以上の流体ポンプ(148a、148b、148c)の各々は、それぞれのアブレーション装置に冷却剤を圧送するように構成されている。例えば、図示するように、ポンプ148aは、冷却剤源140と連通しており、冷却剤ライン114aを介してアブレーション装置(例えば、120a)に冷却剤を提供するように構成することができる。こうしたポンプは、コントローラによって制御することができる。コントローラは、アブレーション装置に冷却剤を提供するポンプを始動すること、及びアブレーション装置に冷却剤を提供するポンプを停止すること等、ポンプ(例えば、148a)からアブレーション装置(例えば、120a)に提供される流体の流量を制御するように構成することができる。
図1Bの例では、アブレーション装置インタフェース108は、冷却剤ライン114a、114b、114cそれぞれを介してそれぞれのアブレーション装置に冷却剤を提供する3つのポンプ148a、148b、148cを含む。冷却剤ライン114a、114b、114cは、図1に示すライン110a、110b、110cにそれぞれが含まれ得る。一実施形態では、各ポンプは、コントローラにより、例えば、他のポンプから独立して制御され、それにより、いかなるポンプも、他のポンプの動作状態とは無関係に動作することができる。
別の実施形態では、ポンプ148a、148b、148cの各々は、コントローラによって制御される単一モータによって駆動される蠕動ポンプを含む。いくつかのこうした例では、各ポンプは、モータによって規定された同じ速度で動作し、冷却剤は、冷却剤ライン114a、114b、114cを介して任意の接続されたアブレーション装置を通って流れる。コントローラは、モータの速度を制御することにより、アブレーション装置を通る冷却剤の流量を調整することができる。
いくつかの例では、アブレーション装置に提供される冷却剤は、閉ループ再循環システムにおいて提供され、冷却剤は、アブレーション装置から受け取られ、冷却剤源140に戻される。一実施形態では、冷却剤源140は、滅菌水等の冷却剤のリザーバを備え、冷却剤は、該リザーバから引き出され、冷却剤ラインを介して1つ以上のアブレーション装置に向けられ、1つ以上のアブレーション装置からリザーバに、アブレーション装置から冷却剤を運び出すように構成された冷却剤出口ラインを介して戻される。いくつかの代替例では、冷却剤出口ラインは、アブレーション装置から廃棄物に向かって(例えば、排水管に向かって)冷却剤を搬送する。図1Bのアブレーション装置インタフェースは、マイクロ波発生器138を含む。マイクロ波発生器138は、マイクロ波信号を発生させて、マイクロ波エネルギーを組織に伝送するように構成されたマイクロ波アブレーション装置におけるマイクロ波アンテナに提供する。マイクロ波信号をアブレーション装置に提供することは、装置がマイクロ波放射線を放射するようにアブレーション装置にアブレーション出力を提供することを含むことができる。マイクロ波発生器138は、電力ケーブルを介してアブレーション装置にマイクロ波信号を提供することができる。図1Bの実施形態では、マイクロ波発生器138は、マイクロ波信号を電力ケーブル112a、112b、112cそれぞれを介して最大3つのアブレーション装置に提供することができる。
電力ケーブル112a、112b、112cは、少なくとも30ワット、場合により少なくとも100ワット、さらには恐らくは少なくとも150ワット電力に定格されている同軸ケーブルであり得る。ケーブルは、冷却剤供給によって冷却されるように構成された被冷却ケーブルであり得る。該冷却剤供給は、ケーブル冷却剤入口とケーブル冷却剤出口との間でケーブルに沿って冷却剤を循環させるものであり得る。いくつかの例では、流体ライン114a~114cは、それぞれ電力ケーブル112a~112cに沿って冷却剤を提供する。一構成例では、本システムは、冷却システムを備え、冷却システムは、ケーブル及びマイクロ波アブレーション装置の両方を冷却するように構成されている。
いくつかの例では、マイクロ波発生器は、915MHz範囲、2.45GHz範囲又は5.8GHz範囲のうちの1つ以上でアンテナにマイクロ波エネルギーを供給するように構成することができる。装置は、典型的には、2.45GHz又は約2.45GHz等、2.45GHz範囲で動作する。マイクロ波発生器は、最大5つのマイクロ波アブレーションプローブのアンテナにマイクロ波エネルギーを提供するように構成することができ、1つ、2つ又は3つのプローブからなり得る。
マイクロ波発生器138は、コントローラ106によって指示されるマイクロ波信号を提供するように構成することができる。例えば、一実施形態例では、コントローラ106は、特定のアブレーション装置に特定のマイクロ波信号を提供するように、マイクロ波発生器138に命令することができる。コントローラは、特定のアブレーションの大きさ(例えば、アブレーション装置から放射される所望のマイクロ波電力及び/又はエネルギー)、アブレーションの持続時間、又は、マイクロ波信号に関連するデューティサイクル、位相シフト若しくは他のパラメータ等の他のパラメータを指定するように構成することができる。いくつかの例では、マイクロ波信号は、アブレーション装置に送達される電力(例えば、90W)を含む。マイクロ波信号は、アブレーション装置に所望の特性を有するマイクロ波放射線(例えば、周囲組織に放射されるマイクロ波電力等)を放射させるために、特性(電力、周波数等)を含む電気信号を含むことができる。電気信号は、マイクロ波アブレーション装置に所望のアブレーション出力を提供することができる。
一実施形態では、コントローラ106は、複数のアブレーション装置の各々にマイクロ波信号を印加するようにマイクロ波発生器138に命令することができる。例えば、図1Bに関して、コントローラは、電力ケーブル112aを介して第1アブレーション装置に第1マイクロ波信号を提供し、電力ケーブル112bを介して第2アブレーション装置に第2マイクロ波信号を提供し、電力ケーブル112cを介して第3アブレーション装置に第3マイクロ波信号を提供するように、マイクロ波発生器138に命令することができる。いくつかのこうした例では、マイクロ波発生器138は、こうした第1、第2及び第3マイクロ波信号を同時に提供することができる。こうした信号は、同じ信号であっても又は異なる信号であってもよい。例えば、一実施形態では、第1、第2及び第3マイクロ波信号の各々により、同じレベルのアブレーション出力が提供される。
いくつかの例では、コントローラは、以下のパラメータ、すなわち、出力波長、出力電力、マイクロ波エネルギーがアンテナのうちの1つ以上の送達される期間、エネルギーが出力電力で送達される期間のうちの1つ以上を制御するように構成することができる。アブレーション装置が温度センサ等のセンサを備える場合、コントローラは、センサからの信号(例えば、温度測定値)に応じてパラメータのうちの任意の1つ以上を制御するように構成することができる。例えば、コントローラは、過熱状態に応じてアンテナのうちの1つ以上への電力をオフにするように構成することができる。
図1Bでは、複数のアブレーション装置にマイクロ波信号を提供するように構成された単一のマイクロ波発生器138として実装されるように示すが、いくつかの例では、アブレーション装置インタフェース108は複数のマイクロ波発生器を含み、各々がそれぞれのアブレーション装置に対応するようにすることができる。一実施形態では、コントローラ106は、複数のマイクロ波発生器と通信し、複数のマイクロ波発生器に、それぞれの電力ケーブル(例えば、112a、112b、112c)にマイクロ波信号を印加させて、こうしたマイクロ波信号をそれぞれのアブレーション装置に提供するように構成することができる。
図1Bは、3つのライン110a、110b、110cがマイクロ波信号及び冷却剤をそれぞれの3つのアブレーション装置に同時に提供することができる、一実施形態例を示す。本発明のいくつかの態様では、例えば、3つ未満のアブレーション装置がコンソール102に接続されている場合、ライン110a、110b、110cのサブセットにマイクロ波信号及び冷却剤を提供することができる。さらに、いくつかの態様では、3つのアブレーション装置がコンソール102に接続されている場合であっても、ライン110a、110b、110cのサブセットにマイクロ波信号及び冷却剤を提供することができる。例えば、1つ以上のこうした接続されたアブレーション装置は、未使用のままにすることができる。
一実施形態では、コントローラ106は、いずれのアブレーション装置が(例えば、110a、110b、110cのいずれのラインが)マイクロ波信号及び冷却剤を受け取るかを制御する。本発明の一態様では、コントローラ106は、マイクロ波信号の大きさ、周波数、デューティサイクル、持続時間等、マイクロ波信号の態様を制御することができる。本発明の別の態様では、コントローラ106は、例えば、それぞれのポンプの動作を制御することにより、冷却剤の流量を制御する等、アブレーション装置に冷却剤を提供する態様を制御することができる。一実施形態では、各アブレーション装置に対して、コントローラは、アブレーション装置に印加されるマイクロ波信号とアブレーション装置に冷却剤を提供する態様との両方の態様を制御する。動作中、異なるアブレーション装置は、各々、他のアブレーション装置において受け取られたマイクロ波信号及び流体とは無関係なマイクロ波信号及び無関係な量の冷却剤を受け取ることができ、他のアブレーション装置に提供されるマイクロ波信号及び流体の量と同じであっても又は異なっていてもよい。
図1Bは、3つのアブレーション装置と接続するアブレーション装置インタフェースを示すが、異なる実施形態によるコンソールは、異なる数のアブレーション装置と接続することができるアブレーション装置インタフェースを含むことができることが理解されよう。
図1Bのブロック図は、アブレーション装置と接続するいくつかの構成要素を含むアブレーション装置インタフェース108を示すが、アブレーション装置インタフェース108の一部であるものとして示す構成要素は、必ずしも単一のモジュール又はハウジング内に含まれるとは限らないことが理解されよう。こうした構成要素は、接続されたアブレーション装置のコントローラ106による制御を容易にするという点で、アブレーション装置インタフェースに分類される。
さらに、図1Bは、マイクロ波アブレーション装置と接続するアブレーション装置インタフェースを示すが、同様のアブレーション装置インタフェース概念を用いて、コントローラと、RFアブレーション、クライオアブレーション等、他のアブレーション装置とのインタフェースを提供することができることが理解されよう。
一実施形態では、アブレーション装置インタフェースは、流体ライン(例えば、114a)に接続する流体インタフェースと、電力ケーブル(例えば、112a)に接続する電気インタフェースとを有するカートリッジ等、アブレーション装置の一部を受け入れるように構成された1つ以上のポートを含む。
図2は、本開示による冷却システムの簡略図である。システム201は、アブレーション装置202を備える。この場合、マイクロ波アブレーション装置は、患者の組織にマイクロ波エネルギーを送達して組織を焼灼するように構成されているマイクロ波アブレーション針を備える。
マイクロ波アブレーション装置202は、組織に突き刺さるように構成されたチップ203と、近位端205及び遠位端206を有する長尺状シャフトとを有することができる。シャフトは、冷却剤空間214及び給電線207を封入しており、給電線207は、内側導体、外側導体、及びそれらの間の誘電体(図2には図示せず)を有する同軸ケーブルであり得る。図2の給電線は、遠位側に、マイクロ波アンテナ204を含む放射領域208を含む。給電線207の近位端は、ケーブル209(典型的には、同軸ケーブル)に取り付けることができ、ケーブル209は、マイクロ波アブレーション装置202をマイクロ波発生器210に、装置にマイクロ波エネルギーを提供するために接続する。ケーブルは、適切に接続可能であるか、又は、この場合のように、装置に恒久的に取り付けられ得る。いくつかの実施形態では、図1に関して示したように、マイクロ波発生器210は、コンソール102等のコンソールに収容することができる。
装置には、装置冷却剤入口212に恒久的に取り付けることができる装置冷却剤供給ライン211を介して冷却剤が提供される。いくつかの実施形態では、装置冷却剤供給ラインは、代替的に、ルアー(Luer)(登録商標)型コネクタを介する等、冷却剤入口212に解除可能に接続可能であり得る。装置冷却剤入口212は、装置内で冷却剤を循環させるように構成された一連の冷却剤通路214、215及び216を介して、装置冷却剤出口213と流体連通している。この簡略表現では、冷却剤は、冷却剤入口管215を介して装置に入り、冷却剤チャンバ214を通って循環して装置を冷却し、冷却剤出口管216及び装置冷却剤戻りライン217を介して出る。
システム201に、冷却剤システム供給ライン220を介して、冷却剤流体源219から冷却剤流体を受け取るマニホールド218が設けられている。冷却剤システム供給ライン220は、マニホールド流体供給入口250においてマニホールド218に恒久的に接続されてもよく、又は、例えばルアーロック(LuerLok)(登録商標)コネクタにより、供給入口250に解除可能に接続可能であってもよい。冷却剤流体源は、例えば、IVバッグであり得る。流入冷却剤は、マニホールド流入導管222を介して、1つ以上のマニホールド出口ポート221に分散させることができる。有利な実施形態では、図2に示すように、ポート221から出る冷却剤の流れは、マニホールド出口弁223によって制御することができる。この弁は、通常、閉位置にあり得る。いくつかの実施形態では、図1に関して示したように、マニホールド218は、コンソール102等のコンソール内に収容することができる。
マニホールド218は、1つ以上のマニホールド流体入口ポート225と冷却剤システム戻りライン226との流体接続を提供するマニホールド冷却剤流出導管224も備える。冷却剤システム戻りライン226は、マニホールド流体戻り入口251においてマニホールド218に恒久的に接続されてもよく、又は、例えばLuerLok(登録商標)コネクタにより、供給入口250に解除可能に接続可能であってもよい。設計の一態様では、マニホールド入口弁227が、各入口ポートを通る流れを制御し、マニホールド入口弁227もまた、通常は閉状態にあり得る。
供給継手229が、マニホールド出口ポート221に接続されるように構成されている。本システムは、マニホールド入口ポートに接続されるように構成されている戻り継手233も備えることができる。1つの態様では、マニホールド出口弁223は、供給継手229に接続されると開くように構成することができる。1つの手法では、供給継手は、継手229がポート221に接続されると弁が開くようにする突起230を備えることができるが、本明細書の別の場所で考察するように他の配置もあり得る。
供給継手229における冷却剤回路冷却剤入口231が、装置冷却剤供給ライン211と流体連通しており、それにより、供給継手229を出口ポート221に接続することで、冷却回路232が冷却流体供給部219と流体連通する。
戻り継手233が、装置冷却剤戻りライン217と流体連通している冷却剤回路出口234を有することができる。供給継手229及び戻り継手233は、それぞれマニホールド出口ポート221及び入口ポート225に同時に接続されるように配置することができる。
装置冷却回路232内に、圧送部分235を配置することができ、それは、例えば供給ライン211内に配置することができ、マイクロ波アブレーション装置202を通して冷却剤を循環させるように配置されている。図2に示すシステムでは、ポンプは、ポンプ羽根237を有する使い捨てポンプヘッド236であり、ポンプヘッド236は、装置冷却剤供給ライン内に恒久的に接続され、ポンプヘッド駆動装置(図示せず)に接続されるように適合されている。代替的な圧送部分を使用することができ、それについては本明細書の別の場所に記載する。いくつかの実施形態では、図1A又は図1Bに関して示したように、圧送部分235は、コンソール102等のコンソール内に収容することができる。
図3Aは、本開示の1つの実施形態による、ハンドル305を備えたマイクロ波組織アブレーション装置300の斜視図である。
マイクロ波組織アブレーション装置300は、ハンドル305を含む。ハンドル305は、外科医が組織アブレーション装置300を取り扱うためのより堅固なグリップを提供するように構成されている。ハンドルは、冷却剤循環のための液体マニホールドと給電線に電力を供給する同軸コネクタとを収容するようにさらに構成されている。
マイクロ波組織アブレーション装置300は、プローブ307を含む。プローブ307は、標的組織を加熱するために患者の体内に挿入されるように構成されている。1つの実施形態では、プローブ307は、給電線、非対称ダイポールアンテナ、流入管及び流出管を有する冷却システム等、本明細書の別の場所に記載するさまざまなアブレーション装置構成要素を含む。一実施形態では、マイクロ波アンテナは、915MHz帯(902~928MHz)、2.45GHz帯(2.402~2.483GHz)及び/又は5.8GHz帯(5.725~5.875GHz)から選択された周波数帯でマイクロ波放射線を放射するように構成されている。波長は、2.45GHz帯内である可能性があり、特に、アンテナは、2.45GHzで又は約2.45GHzでマイクロ波エネルギーを放射するに構成することができる。装置は、アンテナに供給される最大150ワット電力で動作するように構成されている。
プローブ307は、表面315を含む。表面315は、人体組織と接触するように構成されており、生体適合性材料で作製されている。装置シャフトは、少なくとも部分的に金属、例えばステンレス鋼であり、マーキング311、例えばレーザマーキングを含む。マーキング311は、体内へプローブを突き刺した深さを外科医に知らせるように構成されている。マーキング311は、挿入に役立つとともに組織がそれに貼り付くのを防止するようにPTFE等の滑性表面層を含むことができる。
本明細書の装置のシャフトは、典型的には円筒状であり、典型的には、生体適合性ポリマー、ガラス繊維強化ポリマー若しくは炭素繊維強化ポリマー等の生体適合性複合材料、セラミック又は金属(ステンレス鋼等)から作製される。シャフトは、セラミック又は金属から作製することができるが、任意選択的な実施形態では、シャフトは、金属部分と非金属部分とを含む。非金属部分は、ガラス繊維強化ポリマー若しくは炭素繊維強化ポリマー又はセラミック等、生体適合性複合材料であり得るが、その性能及び強度を向上させるためにセラミックであり得る。セラミックは、アルミナ又はジルコニアセラミックであり得る。
装置のシャフトは、任意選択的に装置キャップの遠位側で終端する。シャフトは、円筒状であり得る。給電線及びアンテナは、任意選択的に、装置シャフト内に配置されている。装置シャフトは、典型的には、近位マニホールドから延び、遠位キャップにおいて遠位側で終端する。マニホールドは、給電線等、シャフトの電気構成要素への電気接続部を備え、必要な場合は冷却剤入口接続部及び出口接続部も備えることができる。
シャフトの直径は、限定されず、典型的には、意図された目的に適合され、例えばアブレーション針の場合、挿入時に引き起こされる損傷を制限するとともに位置決めの微調整を可能にするように細い針を有することが重要であり、その結果、針シャフトは、直径が1.4~3mm、任意選択的に1.5~2.5mm、特に2~2.5mmである。
図3Aのプローブ307によって示すような本明細書における装置は、アプリケータキャップ330を含むことができる。一実施形態では、アプリケータキャップ330は、生体適合性金属又はセラミック、例えば任意選択的にステンレス鋼又はセラミックから作製される。アプリケータキャップ330は、円形ベースと遠位先端(例えば、トロカールチップ)とを含むことができる。アプリケータキャップ330の先端は、アプリケータキャップ330の遠位端に配置されるとともに組織に突き刺さるように構成された、鋭利端を含むことができる。円形ベースは、プローブ307の内部がプローブ307の外部から流体的に隔離されるように、プローブ307のシースと封止されるように構成することができる。
本明細書の装置のシャフトは、超音波撮像下で可視であるように構成された外面にエコー源性領域をさらに含むことができる。1つの実施形態では、この領域は、音響反射性ミクロスフェアを含むコーティングを含む。エコー源性領域は、少なくとも、アンテナの半径方向外側のシャフトの領域を覆うように延びる。図3Aのプローブ307は、超音波撮像下で可視であるように構成されたエコー源性領域325と、音響反射性ミクロスフェアを含むコーティングを含む1つの実施形態とを含む。
本発明の装置のシャフトが金属部分と非金属部分とを含む場合、金属部分及び非金属部分が当接する、これら2つの部分の間の接合部は、特に非金属部分がセラミックである場合、セラミックは、通常、ステンレス鋼等の金属よりも可撓性が低く且つ脆性が高いため、潜在的脆弱点である可能性がある。従って、シャフトは、この部分と金属部分との間に、使用時にプローブシャフトの非金属(例えば、セラミック)部分と金属部分との間の接合部に弾性を提供するように構成された弾性部分をさらに含むことができる。
装置は(プローブ307に関して)、シャフトの屈曲によって引き起こされるもの等、使用中に誘発されるプローブに対する歪みを緩和するように構成された領域320を含むことができる。この領域は、シャフトの金属部分と非金属部分との間に位置決めされた弾性要素を含むことができる。この歪み緩和領域は、プローブシースの遠位部分がセラミックである場合に特に有用である。歪み緩和領域320は、プローブ307に、接合部に追加された弾性を提供するように構成されている。
弾性要素は、非金属領域とキャップとの間に存在し得るが、この箇所においてシャフトに対する歪みは相対的に低いため、それは必須ではない。歪み緩和領域は、例えば、弾性環状スペーサを含むことができ、それは、ポリエーテルブロックアミド(PEBA)、商品名ペバックス(PEBAX)(登録商標)又はベスティミッド(Vestimid)(登録商標)E(エボニックインダストリーズ(Evonik Industries))等の弾性熱可塑性エラストマー、又はポリエーテルエーテルケトン(PEEK)等のポリアリールエーテルケトン(PAEK)から作製することができる。スペーサは、非金属部分の近位端を金属部分の遠位端から離隔するような形状とするとともにそのように構成することができる。弾性スペーサは、任意選択的に、近位面では金属部分と当接し、遠位面では非金属部分と当接する。弾性環状スペーサは、典型的には、半径方向外側に延びて、プローブシャフトの外面と同一平面の表面を形成する。環状スペーサの半径方向内側部分は、近位側に且つ/又は遠位側に延びて、非金属部分の近位端及び/又は金属部分の遠位端の内面を支持するように構成された環状段部を提供することができる。1つの任意選択的な実施形態では、環状スペーサは、近位側に延びて、金属部分の遠位端の内面を支持するように構成された環状段部を提供するが、遠位側には延びない。装置シャフトは、シャフトの非金属部分と金属部分との間の接合部を支持するアダプタスリーブも備えることができる。アダプタは、シャフトの金属部分と非金属部分との間の平滑な表面移行を提供するため等、非金属部分と金属部分との厚さのいかなる差も考慮するように構成することができる。アダプタは、金属、又は、PEBAペバックス(PEBAX)(登録商標)又はベスティミッド(Vestimid)(登録商標)E等の熱可塑性エラストマー又はPEEK等のPAEK等、非金属であり得る。非金属部分がセラミックである場合、セラミックのさらなる強度に厚さが必要であり、シャフトの屈曲によりこの箇所に裂け目が引き起こされる危険性があるため、アダプタは特に重要である。好都合には、スリーブは、接合部のための支持を提供するのに十分に接合部の各側で延び、典型的には給電線とシャフトの内壁との間で、典型的にはシャフトの半径方向内側に位置決めされる。アダプタスリーブは金属製であり得る。
弾性スペーサ及びアダプタスリーブ(存在する場合)は、合わせて、歪み緩和領域を構成する。弾性スペーサ及びアダプタスリーブは、単一部品であっても又は別個であってもよく、単一部品である場合、上述したように、非金属、任意選択的に熱可塑性エラストマーからなり得る。
1つの任意選択的な実施形態では、歪み緩和領域は、上述したような弾性スペーサからなる。該弾性スペーサは、非金属部分の近位端を金属部分の遠位端から離隔するような形状であるとともにそのように構成される。該スペーサは、近位面では金属部分と当接し、遠位面では非金属部分と当接するように構成される。該スペーサは、半径方向外側に延びて、プローブシャフトの外面と同一平面の表面を形成する。該スペーサの半径方向最内部分は、近位側に延びて環状段部を提供する。該環状段部は、シャフトの金属部分の遠位端の内面を支持するように構成される。歪み緩和領域は、追加的にアダプタスリーブをさらに備える。該アダプタスリーブは、接合部の各側に、且つ、環状スペーサの半径方向内側に延びる、金属製であり得る。任意選択的に、スリーブは、環状スペーサの近位側に延び、シャフトの金属部分の遠位端の内面と接触するとともにそれを支持するように構成され、任意選択的に、スペーサの遠位側に延びるとともに、シャフトのセラミック部分の近位端の内面と接触するとともにそれを支持するように構成されている。
図示するマイクロ波組織アブレーション装置300は、ハウジング310を含む。ハウジング310は、同軸ケーブル、流体ライン、電線等を収容する。
図3Bは、装置のシャフト350の1つの実施形態の断面を示し、歪み緩和領域366を示す。シャフトの近位端をAで示し、遠位端をBで示す。明確にするために、同軸ケーブル、アンテナ及び冷却システム等の他の特徴は省略している。シャフトは、近位金属部分351と、セラミック352から作製することができる遠位非金属部分とを有する。シャフトは、歪み緩和領域366を備える。歪み緩和領域366は、シャフトの金属部分と非金属部分との間に位置決めされた弾性環状スペーサ353の形態の弾性要素と、任意選択的に、弾性スペーサ353の半径方向内側のアダプタスリーブ364とを備える。
弾性環状スペーサ353は、非金属部分355の近位端を金属部分356の遠位端から離隔するような形状とするとともにそのように構成することができる。スペーサは、近位面357では金属部分と当接し、遠位面358では非金属部分と当接するように構成されている。スペーサは、半径方向外側に延びて、プローブシャフト360の外面と同一平面である表面359を形成する。環状スペーサ361の半径方向最内部分は、近位側に延びて、金属部分363の遠位端の内面を支持するように構成された環状段部362を提供することができる。アダプタスリーブ364は、金属セクションと非金属セクションとの接合部の各側に且つ環状スペーサ353の半径方向内側に延びるように位置決めすることができる。任意選択的に、スリーブは、環状スペーサ353の近位側に延び、シャフト360の金属部分363の遠位端の内面と接触するとともにそれを支持するように構成されている。スリーブは、スペーサ353の遠位側に延び、シャフト365のセラミック部分の近位端の内面と接触するとともにそれを支持するように構成されている。弾性環状スペーサ及び任意選択的なスリーブは、歪み緩和領域を形成する。
図4は、上記設計の一態様のマイクロ波組織アブレーション装置400の側面図である。アブレーション装置400は、ハンドル401を含む。ハンドル401は、マニホールド405を収容している。
マニホールド405は、同軸ケーブルコネクタ415を通して電源(図示せず)及び組織アブレーションプローブ430を電気的に接続する。組織アブレーションプローブ430は、外科手術中にプローブを突き刺した深さを外科医に知らせるように構成されたマーキング435を含む。
マニホールド405はまた、冷却剤源(図示せず)及び組織アブレーションプローブ430を流体的に接続する。マニホールド405は、冷却剤入口420及び冷却剤出口425を含む。冷却剤入口420は、冷却剤流入導管に流体的に接続され、冷却剤出口425は、冷却剤流出導管に流体的に接続されている。
組織アブレーション装置400は、電線及び流体管を収容する管状ハウジング440をさらに含む。本明細書の別の場所で考察するように、複数のアブレーション装置を同時に使用して、アブレーションプロセスを実施することができる。こうしたアブレーション装置は、種々の方法で配置することができる。一例では、マイクロ波アブレーション装置は、互いに等距離に位置決めすることができる。複数のアブレーション装置を互いに等距離に位置決めすることにより、当該複数のアブレーション装置によって形成されたおよそ対称の正味のアブレーション体積を有利に提供することができる。加えて、アブレーション装置を規則的な多角形編成で配置することにより、複数のアブレーション装置によって形成されたおよそ球形の正味のアブレーション体積を提供することができる。代替的に、他の配置において、複数の装置は、一直線に、又は、不規則な形状で配置され得る。アブレーション装置は、特定の動作に対して適切な所望のアブレーション体積を提供するように複数の構成で配置することができる。さらに、こうした装置は、同じ挿入深さ又は異なる挿入深さまで挿入することができる。異なる計画配置と同様に、アブレーション装置は、特定の動作に対して適切な所望のアブレーション体積を提供するように複数の構成で配置することができる。
1つの選択肢では、冷却システムは、冷却剤チャンバを備える。冷却剤チャンバは、アンテナと給電線の少なくとも遠位部分とを包囲する。さらに冷却剤チャンバは、冷却剤チャンバに冷却剤を供給するように構成された冷却剤入口導管と、冷却剤チャンバから冷却剤を運び出すように構成された冷却剤出口導管とを有する。冷却剤入口導管及び冷却剤出口導管は、給電線の少なくとも一部とアンテナの少なくとも一部とにわたり冷却剤を通過させるように構成されている。
図5は、マイクロ波組織アブレーション装置500の遠位端の概略側面図である。装置は、例示を容易にするために簡略化されている。図5は、非対称アンテナの特徴を概ね例示している。
図5に示すように、アブレーション装置500は、同軸給電線510を含む。給電線510は、内側導体502を含むことができる。給電線510は、内側導体502の周囲に同心円状に且つ円周方向に配置された第1絶縁体504を含む。内側導体502は、電力線であり得る。給電線510は、第1絶縁体504の周囲に同心円状に配置された外側導体506を含む。外側導体506は、接地線であり得る。給電線510は、外側導体506の周囲に同心円状に配置された第2絶縁体508を含む。
アブレーション装置500は、非対称ダイポールアンテナ520を含む。非対称ダイポールアンテナ520は、螺旋状アーム518を含む。螺旋状アーム518の近位端525は、接合点517において給電線510の外側導体506との電気接続を形成する。接合点は、給電線の遠位端に又はその近くに配置することができる。螺旋状アーム518は、一連の巻きで接合点517から遠位側に延びている。螺旋状アーム518は、接合点517以外、内側導体502又は外側導体506の電気的接触を形成しない。
本明細書に開示するアンテナでは、図5を参照すると、アンテナの螺旋状アーム518は長さLha524を有する。螺旋の各1周の巻きに対して、軸方向に測定された高さは、ピッチP522である。螺旋状巻きの数及びピッチ(P)は、マイクロ波エネルギーの出力、放射場の形状及びエネルギー吸収スペクトルに影響を与える可能性がある。
非対称ダイポールアンテナ520は、線状アーム519をさらに含む。線状アーム519は、給電線510の内側導体502に電気的に接続され、例えば、内側導体の延長部を構成することができる。線状アーム519は、内側導体502の遠位から遠位側に延びる。螺旋状アーム518は、線状アーム519が螺旋状アーム518を通って延びるように、線状アーム519の周囲に一連の巻きで接合点517から遠位側に延びている。螺旋状アームの遠位端の遠位側に、線状アームの一部を配置することができる。螺旋状アーム518は、線状アーム519と同軸とすることができ、線状アーム519自体、装置のシャフト514と同軸であり得る。線状アーム519は、螺旋状アーム518の大部分を通って、螺旋状アーム518の近位端525において接合部517の遠位側に延びることができる。従って、螺旋状アーム518の大部分は、外側導体506又は第2絶縁体508を包囲しない。外側導体506及び存在する任意の第2絶縁体508は、螺旋状アーム518の近位端525において接合部517を越えて、又は、はるかに越えて延びない可能性がある。外側導体506及び任意の第2絶縁体508は、螺旋状アーム518のわずかな部分のみを通って延びることができる。典型的には、接合点と給電線の遠位端との間の距離は、外側導体と螺旋状アームの近位端との接続部を配置及び支持するために必要な距離を超えない。典型的には、これは、螺旋状アームの2周以下の巻きであり、任意選択的に1周未満の巻きである。典型的には、接合点と給電線の遠位端との間の距離は、2mm以下であり、特に1mm以下、任意選択的に0.5mm以下である。
線状アーム519は、誘電体535によって包囲された第1部分531をさらに含む。誘電体535は、給電線510の内側導体502と外側導体506との間に配置された第1絶縁体504の延長部であり得る。線状アーム519は、誘電体のない第2部分533をさらに含む。第2部分533は、第1部分531の遠位側である。
1つの手法では、線状アームの第2部分は、本明細書に示すように、第1部分よりも短い場合がある。代替的に、第2部分は、図5Dに示すように、第1部分より長い場合がある。
1つの手法では、螺旋状アーム518は、第1部分531の周囲に延びるが第2部分の周囲には延びないように、第2部分の近位側に配置することができる。これは特に、図5に示すような、第1部分531が第2部分533よりも長い場合である。図5Dに代替手法を示す。
螺旋状アーム518は、第1部分531の周囲に延びることができるが、第1部分531よりも大きい直径を有し、それにより、それらの間に分離距離をもたらして、螺旋状アームが線状アームの半径方向外側に、ただしシャフトの内壁の半径方向内側に配置されるようにすることができる。螺旋状アーム518は、自立型であってもよく、又は、その内面若しくはその外面において支持されてもよい。図5では、螺旋状アームは、支持基材521を介してその内面で物理的に支持されているが、他の方法で支持してもよく、例えば、図5C及び図5Dに示すように冷却管で支持することができる。
線状アーム519は、長さL1aを有する。線状アーム519の第1部分531は長さL1 527を有する。線状アーム519の第2部分533は長さL2 528を有する。
図5の図では、線状アームは、アプリケータキャップ530のベース534と接触していない。代替的な配置については図6を参照されたい。
アンテナ及び給電線は、シャフト514内に収納することができ、シャフト514は、シャフト514に取り付けられるとともに封止されている、別個の遠位アプリケータキャップ530を有する。アプリケータキャップ530は、生体適合性金属又はセラミック、例えば任意選択的にステンレス鋼又はセラミックから作製されている。円形ベース534の遠位側のアプリケータキャップ530の部分は、円錐形状である。アプリケータキャップ530は、アプリケータキャップ530の遠位端に配置されるとともに組織に突き刺さるように構成された鋭利端532を含む。アプリケータキャップ530は、シース514と封止されるように構成された円形ベース534を含む。
アブレーション装置500は、アンテナ及び/又は給電線を冷却するように構成された冷却システムを備えることができる。図5A~図5Dは、冷却システムを組み込んだ装置のさらなる例示的な実施形態を提供する。図5A~図5Dに示すアンテナの特徴は、それらの図に示す冷却システムのうちの任意のものと組み合わせることができる。誤解を避けるために、各冷却システムにおいて、リボン及びワイヤ型の螺旋状アームを使用することができ、図示する冷却システムのうちの任意のものにおいて、線状アームの長さ及び構成の変形もまた使用することができる。
図5Aは、冷却システムを有する本発明の装置の一実施形態を示す。図5Aにおける装置の他の特徴は例示的である。
図5に示す装置のように、図5Aに示す装置500は、内側導体502と、内側導体502の周囲に同心円状に配置された第1絶縁体504と、第1絶縁体504の周囲に同心円状に配置された外側導体506と、外側導体506の周囲に同心円状に配置された第2絶縁体508とを含む同軸給電線510を含む。
アブレーション装置500は、螺旋状アーム518を有するアンテナ520も含み、その近位端525は、給電線の最遠位端の近くの接合点517において給電線510の外側導体506との電気接続を形成している。螺旋状アーム518は、一連の巻きで接合点517から遠位側に延びている。アンテナ520は線状アーム519も含む。線状アーム519は、給電線510の内側導体502に電気的に接続されている。線状アーム519は、内側導体502の遠位端から遠位側に延び、誘電体535によって包囲された第1部分531と誘電体のない第2部分533とを含む。図5におけるように、螺旋状アーム518は、線状アーム519が螺旋状アーム518を通って延びるように、線状アーム519の周囲に一連の巻きで接合点517から遠位側に延びている。螺旋状アーム518は、線状アーム519と同軸であり得る。線状アーム519は、螺旋状アーム518の大部分を通って、螺旋状アーム518の近位端525において接合部517の遠位側に延びることができる。従って、螺旋状アーム518の大部分は、外側導体506又は第2絶縁体508を包囲しない。外側導体506及び第2絶縁体508は、螺旋状アーム518の近位端525において接合部517を越えて又ははるかに越えて延びない可能性がある。外側導体506及び第2絶縁体508は、螺旋状アーム518のわずかな部分のみを通って延びることができる。螺旋状アーム518は、第1部分531の周囲に延びるが、線状アームの第2部分の周囲には延びないように、第2部分の近位側に配置されている。螺旋状アーム518は、第1部分531の周囲に延びることができるが、第1部分531よりも大きい直径を有し、それにより、本明細書の別の場所で考察するようにそれらの間に分離距離をもたらすことができる。螺旋状アーム518は自立型であってもよく、又はその内面又は外面で支持されてもよい。図5Aでは、螺旋状アームは、支持基材521を介してその内面で物理的に支持されている。螺旋状アーム518は、接合点517以外、内側導体502又は外側導体506と電気的接触を形成しない。図5におけるように、線状アームはアプリケータキャップ530と接触しない。
アンテナ及び給電線は、別個の金属アプリケータキャップ530において遠位側で終端するシャフト(この図では簡略化して示す)514内に収容されており、アプリケータキャップ530は図5の装置と同様にその遠位端に配置された鋭利端532を有する。
図5Aは、本明細書に記載するアンテナの配置に適用可能な1つのタイプの冷却配置の全体的な特徴を例示する。
シャフト514の内壁560の間に冷却剤チャンバ563を画定することができる。冷却チャンバ563は、キャップ530のベース534によって、遠位側の境界が定めるとともに、給電線510が貫通する、マニホールド(図示せず)の遠位側及びアンテナ520の箇所に位置決めされたシール562又は他のストッパによって、近位側の境界を定めることができる。冷却剤入口導管564及び冷却剤出口導管567もまた、シール又はストッパ562を貫通している。冷却剤入口導管564は、冷却剤チャンバ563内に配置されるとともに給電線510の半径方向外側に変位した冷却剤入口管565の形態であり得る。冷却剤入口管565は、アンテナ520とシャフトの内壁560との間を通過するとともに、冷却剤管565の冷却剤出口からアンテナ520の一部に隣接する位置まで冷却剤を送達するような、サイズであるとともにそのように構成することができる。
冷却剤入口導管564は、シール562に近接して終端することができ、又は、チャンバの任意の部分に冷却流体を送達するように延びることができる。アンテナ520に近接する送達は、それにより新鮮な冷却流体がアンテナにわたって通過することが確実になるため有利である。冷却剤出口管567又は戻り管は、冷却剤チャンバ563から流れ出る冷却剤を受け取ることができる。このように冷却チャンバを通して冷却流体を通過させることにより、アンテナ及び/又は給電線において発生した熱の少なくとも一部を放散させることができる。
図5Bは、本発明によるアブレーション装置のさらなる実施形態を示す。図5Bに示す装置500は、内側導体502と、内側導体502の周囲に同心円状に配置された第1絶縁体504と、第1絶縁体504の周囲に同心円状に配置された外側導体506とを含む、図5Aに対して記載したような構成要素を備えた同軸給電線510を含む。図示する給電線は、外側絶縁材を有しておらず、使用時は冷却流体と接触する。
装置は、金属リボンから形成された螺旋状アーム518を有する非対称ダイポールアンテナ520を含む。螺旋状アーム518の近位端は、接合点517において給電線510の外側導体506との電気接続を形成している。螺旋状アーム518は、一連の螺旋状巻きで接合点517から遠位側に延びている。
アンテナ520は、線状アーム519も含む。線状アーム519は、給電線510の内側導体502に電気的に(一体的に又は他の方法で)接続されている。線状アーム519は、内側導体502の遠位端から遠位側に延び、誘電体535によって包囲された第1部分531と誘電体のない第2部分533とを含む。線状アーム519の第1部分531は、長さL1 526を有する。線状アーム519の第2部分533は長さL2 528を有する。線状アーム519は、L1にL2を足した長さを有する。図5Bに示す線状アーム519の設計では、L1はL2よりもはるかに大きい。螺旋状アーム518は、線状アーム519が螺旋状アーム518を通って延びるように、線状アーム519の周囲で一連の巻きで接合点517から遠位側に延びている。螺旋状アーム518は、線状アーム519と同軸であり得る。線状アーム519は、螺旋状アーム518の大部分を通って、螺旋状アーム518の近位端525において接合部517の遠位側に延びることができる。従って、螺旋状アーム518の大部分は、外側導体506又は第2絶縁体508を包囲しない。外側導体506及び第2絶縁体508は、螺旋状アーム518の近位端525において接合部517を越えて又ははるかに越えて延びない可能性がある。外側導体506及び第2絶縁体508は、螺旋状アーム518のわずかな部分のみを通って延びることができる。螺旋状アームは、螺旋状アームの2周を超える巻き又は1周未満の巻きで、給電線及び/又は外側導体を包囲しない可能性がある。代替的に、螺旋状アームは、2mm以下、又は1mm以下、又は0.5mm以下を超えて給電線及び/又は外側導体を包囲しない可能性がある。螺旋状アーム518は、第1部分531のみの周囲に延びるように、第2部分533の近位側に配置されている。螺旋状アーム518は、第1部分531の周囲に延びることができるが、第1部分531よりも大きい直径を有し、それにより、それらの間に分離距離をもたらすことができる。螺旋状アーム518は自立型であり得るか、又はその内面又は外面で支持することができる。図5Cでは、螺旋状アーム518は、支持基材521を介してその内面で物理的に支持されている。螺旋状アーム518は、接合点517以外、内側導体502又は外側導体506と電気的接触を形成しない。線状アームは、アプリケータキャップ530に接触しない。
図5Bは、本明細書に記載するアンテナの配置に適用可能なさらなるタイプの冷却配置の全体的な特徴を例示する。
冷却チャンバ563が、給電線583及びアンテナ520を包囲することができる。本明細書の別の場所のような冷却チャンバは、シャフト514の内壁560と、アンテナ520及び給電線583と、アプリケータキャップ530のベース534との間に画定することができる。装置は、冷却管582を備えることができ、冷却管582は、給電線510及びアンテナ520と同軸であるとともに、アンテナの線状アームの端部584の近くの箇所まで遠位側に延びている。冷却管582は、冷却チャンバ563を、この場合は、アンテナ520の螺旋状アーム518と線状アーム519とにわたって延びる、給電線583の遠位部分と同軸である第1冷却導管580と、冷却管582の外壁とシース514の内壁560との間に延びる第1冷却導管と同軸の第2冷却導管とに分割することができる。冷却管582と第1及び第2導管とは、遠位端で開口しており、冷却流体が、アプリケータキャップ530のベース534と冷却管582の遠位端との間の冷却流体混合チャンバ585を通って循環するのを可能にすることができる。第1冷却導管及び第2冷却導管は、協働して、アンテナにわたって冷却剤循環を提供する。第1冷却導管は冷却剤流入部とし、第2冷却導管は冷却剤流出部とすることができ、又はその逆もあり得る。冷却導管のこの配置により、アンテナを先端まで冷却することができる。
図5Cは、上記設計によるアブレーション装置のさらなる実施形態を示す。図5Cに示す装置500は、内側導体502と、内側導体502の周囲に同心円状に配置された第1絶縁体504と、第1絶縁体504の周囲に同心円状に配置された外側導体506とを含む、図5Aに対して記載したような構成要素を備えた同軸給電線510を含む。給電線は、外側絶縁材を有していない可能性があり、使用時に冷却流体と接触する可能性がある。
装置は、リボン等の他の形態も可能であるが、金属ワイヤから形成された螺旋状アーム518を有する非対称ダイポールアンテナ520を含む。螺旋状アーム518の近位端は、本明細書の別の場所で記載するように、接合点517において給電線510の外側導体506との電気接続を形成する。螺旋状アーム518は、一連の螺旋状巻きで接合点517から遠位側に延びている。
アンテナ520は、線状アーム519も含む。線状アーム519は、給電線510の内側導体502に電気的に接続されている。線状アームは、ここに示すように、給電線510の内側導体の延長部とすることができ、誘電体は、給電線の誘電体の延長部とすることができる。線状アーム519は、内側導体502の遠位端から遠位側に延び、誘電体535によって包囲された第1部分531と、誘電体のない第2部分533とを含む。線状アーム519の第1部分531は長さL1 526を有する。線状アーム519の第2部分533は長さL2 528を有する。線状アーム519は、L1にL2を足した長さを有する。図5Cに示す線状アーム519の設計では、L1はL2よりもはるかに大きい。他のアンテナに対して概ね記載するように、螺旋状アーム518は、線状アーム519が螺旋状アーム518を通って延びるように、線状アーム519の周囲に一連の巻きで接合点517から遠位側に延びている。螺旋状アーム518は、線状アーム519と同軸であり得る。線状アーム519は、螺旋状アーム518の大部分を通って、螺旋状アーム518の近位端525において接合部517の遠位側に延びることができる。従って、螺旋状アーム518の大部分は、外側導体506又は第2絶縁体508を包囲しない。外側導体506及び第2絶縁体508は、螺旋状アーム518の近位端525において接合部517を越えて又ははるかに越えて延びない可能性がある。螺旋状アームは、螺旋状アームの2周を超える巻き又は1周未満の巻きで、給電線及び/又は外側導体を包囲しない可能性がある。代替的に、螺旋状アームは、2mm以下、又は1mm以下、又は0.5mm以下を超えて給電線及び/又は外側導体を包囲しない可能性がある。外側導体506及び第2絶縁体508は、螺旋状アーム518のわずかな部分のみを通って延びることができる。螺旋状アーム518は、第1部分531の周囲に延びるように、第2部分533の近位側に配置されている。螺旋状アーム518は、第1部分531の周囲に延びることができるが、第1部分531よりも大きい直径を有し、それにより、それらの間に分離距離をもたらすことができる。螺旋状アーム518は、接合点517以外、内側導体502又は外側導体506と電気的接触を形成しない。線状アームは、アプリケータキャップ530に接触しない。
図5Cは、本明細書に記載するアンテナの配置に適用可能な、さらに別のタイプの冷却配置の全体的な特徴を例示する。
本明細書の別の場所に記載するように、冷却チャンバ563が、給電線583及びアンテナ520を包囲することができる。冷却チャンバは、シャフト514の内壁560と、アンテナ520及び給電線583と、アプリケータキャップ530のベース534との間に画定することができる。装置は、冷却管582を備えることができ、冷却管582は、給電線510及びアンテナの線状アーム519と同軸であるとともに、線状アームの端部584の近くの箇所まで遠位側に延びている。冷却管582は、冷却チャンバ563を、給電線の遠位部分及びアンテナ520の線状アーム519と同軸である第1冷却導管580と、第1冷却導管と同軸であるとともに冷却管582の外壁とシース514の内壁560との間に延びる第2冷却導管581とに分割する。冷却管582は、ここに示すように、冷却管582の外側の周囲に巻回することができる、アンテナの螺旋状アーム518用の支持体を提供することができる。螺旋状アームの近位端525と給電線583の外側導体の最遠位端部との間に、冷却管582を通過する接続部517を作成することができる。従って、アンテナの螺旋状アーム518は第2冷却導管581内に配置することができ、一方で、線状アームは第1冷却導管580内に配置される。
冷却管582と第1導管及び第2導管とは、遠位端において開口しており、冷却流体が、アプリケータキャップ530のベース534と冷却管582の遠位端との間の冷却流体混合チャンバ585を通って循環するのを可能にすることができる。第1冷却導管及び第2冷却導管は、協働して、アンテナにわたって冷却剤循環を提供する。第1冷却導管は冷却剤流入部とし、第2冷却導管は冷却剤流出部とすることができ、その逆もあり得る。冷却導管のこの配置によってもまた、アンテナを先端まで冷却することができ、追加の支持構造なしに螺旋状アームを線状アームの半径方向外側に配置することができる。
図5Dは、本発明によるアブレーション装置のさらに別の実施形態を示す。図5Dの設計は、図5Cに関して本明細書に記載した設計と同様であり、線状アーム519に関する相違のみを以降記載する。
従って、ここで、アンテナの線状アームのさらなる配置について、図5Dを参照して考察する。本明細書の別の場所に記載するように、線状アーム519は、誘電体によって包囲された第1部分531と、誘電体のない第2部分533とを含むことができる。線状アーム519の第1部分531は、長さL1 526を有する。線状アーム519の第2部分533は、長さL2 528を有する。従って、線状アーム519全体は、L1にL2を足した長さを有する。L1がL2よりも大きい、線状アームの先行して考察した実施形態とは対照的に、図5Dに示すアンテナ実施形態では、L2はL1よりもはるかに大きい。加えて、図5Cに示す設計とは対照的に、図5Dにおける線状アーム519の第2部分533は、より大きい直径を有することができる。例えば、直径は、給電線の内側導体の直径よりも大きいか、若しくは第1部分の誘電体の直径よりも大きい場合があり、又は、給電線と同じ直径若しくはほぼ同じ直径、又はそれよりも大きい場合がある。設計の1つの態様では、第2部分533の直径は、給電線510の外側導体506の直径とほぼ同じ程度まで延びる。1つの手法では、第2部分533は、外側の導電性スリーブ588を備えることができ、それは、給電線583の中心導体の延長部を包囲するとともに封入し、それに電気的に接続されている。給電線583の導体を封入する代わりに、導電性スリーブ588は、給電線583の内側導体と一体的であってもよい。導電性スリーブ588は、給電線583の内側導体と同じ導電性材料から形成することができる。
この配置では、線状アームの第2部分533と外側導体506とは、互いに隣接することができるが、導電連通していない。線状アームの第2部分533と外側導体とは、距離L1 526、すなわち線状アームの第1部分531の長さだけ分離することができる。さらに、第1部分531の導体を包囲する誘電体535は、外側導体506から第2部分を電気的に絶縁することができる。
第2部分が第1部分よりも大きい場合、第1部分は、例えば、0.1~2mmの長さであり得る。
第2部分533が第1部分531よりも長い場合、螺旋状アームは、典型的には、第1部分531と第2部分533の少なくとも近位部分との両方にわたって遠位側に延びる。
アンテナのさまざまな部分に対する全体的な寸法は以下の通りである。螺旋状アームは、1~18mmの螺旋状アームの全体的な長さ(Lha)を有することができ、特に、螺旋状アームは、4~10mmの範囲である。特定の実施形態では、螺旋状アームは、4~7mmの範囲である。
本明細書におけるアンテナの線状アームは、4mm~14mm、任意選択的に8mm~10mmの長さ(L1a)を有することができる。長さL1が長さL2よりもはるかに大きい態様では、線状アームの第2部分は、0.1mm~2mm、場合により0.3mm~0.5mmのみの長さL2を有することができ、線状アームの長さL1aの残りの部分は第1部分の長さL1である。図5Dに示す設計等、アンテナの別の態様では、長さL2は、長さL1よりもはるかに大きく、その場合、L1及びL2の寸法は逆にすることができる(例えば、図5Dにおける非露出部分は、0.1mm~2mm、場合により0.3mm~0.5mのみの長さL1を有する)。この設計の別の態様では、図5Dにおける線状アームの露出部分は、9mm~11mmの長さを有する。
図6は、マイクロ波組織アブレーション装置の遠位部分の概略図を示し、金属キャップの4つの実施形態と、アンテナの遠位端とキャップ602との関係とを示す。
図6Aは、本発明の1つの実施形態による、金属キャップ602を備えたマイクロ波組織アブレーション装置600の概略図を示す。金属キャップ602は、円錐形であり、円形ベース603を有する。中実円筒突出部604が、ベース603から垂下する(subtend)とともにベース614を有し、キャップは肩部605を有し、それにより、金属又はセラミックであり得る装置シャフト606の遠位端内にキャップ602を挿入することができる。キャップは、接着剤(図示せず)によってシャフトに固定することができる。マイクロ波組織アブレーション装置600は、ここでは単純な形態で示し且つ本明細書の別の場所で詳細に考察する非対称ダイポールアンテナ607をさらに含む。アンテナは、螺旋状アーム611及び線状アーム608を備える。線状アームは、誘電体612によって包囲された近位部分609と誘電体を有していない自由遠位部分610を有する。線状アーム608の遠位部分は、距離Hgだけキャップから分離されている先端613を有する。先端613とキャップとの間の距離を調整することにより、金属キャップがアンテナに電磁結合される程度が変更され、それにより、エネルギー放射場の形状、従ってアブレーションゾーンの形状が変化する。
図6Bは、さらなる実施形態を示す。マイクロ波組織アブレーション装置625は、円錐形であるとともに円形ベース626を有する、金属キャップを含む。金属キャップ625はベース627を含み、そこから、中空円筒突出部628が下方に延びている。キャップは、肩部631を有し、それにより、キャップ626を装置シャフト632の遠位端に挿入することができる。キャップは、接着剤(図示せず)によってシャフトに固定することができる。マイクロ波組織アブレーション装置625は、図6Aに示すような特徴を備えた非対称ダイポールアンテナ629をさらに含む。
図6Bに示すように、ギャップHg629が、中空円筒突出部628の近位端と非対称ダイポールアンテナ630の遠位端との間に配置されている。
図6Cは、本発明の1つの実施形態による、金属キャップ636を備えたマイクロ波組織アブレーション装置635の概略図である。金属キャップ636は、ベース637を有する円形ベース円錐体である。マイクロ波組織アブレーション装置625は、図6Aに記載したような特徴を備えた非対称ダイポールアンテナ639をさらに含む。
金属キャップ636は、装置シャフト641の遠位端640に直接取り付けられている。アンテナ639の線状アームの遠位先端は、キャップ636のベースから距離Hg638離れている。ギャップHg638は、ベース637の近位端と非対称ダイポールアンテナ639の遠位端との間に軸方向に配置されている。
図6Dは、本発明の1つの実施形態による、金属キャップ646を備えたマイクロ波組織アブレーション装置645の概略図である。金属キャップ677は、円錐形であり、円形ベース648を有する。円筒状突出部649が、肩部648から離れる円形ベース647の中心から下方に延び、それにより、装置シャフト655の遠位端に円筒状突出部を挿入することができる。端部が貫通していない円筒状空隙又はポケット650が、円筒状突出部のベースにおいて中心に形成され、空隙650の壁658から軸方向に且つ半径方向に間隔が空けられているアンテナの線状アームの遠位部分652の長さHp659を受け入れるように構成されている。
アンテナの他の特徴は、図6Aに示すようなものである。
図7A及び図7Bは、装置のいくつかの特徴を例示している。図7Aは、本開示の1つの実施形態によるマイクロ波組織アブレーション装置700の斜視図である。図7Bは、冷却機能の1つの実施形態を示す、線XYを横切る断面図である。
図7Aの組織アブレーション装置700は、マイクロ波アンテナ及び給電線の少なくとも一部の両方を包囲するとともに典型的にはそれらと同軸であるシャフト701を有する。シャフトは、典型的には、近位マニホールドから遠位キャップまで延びる。アンテナ及び給電線の両方は、シャフト内に配置されている。シャフトは、一体構造であってもよく、又は、図に示すように金属部分745とセラミック部分702等の非金属部分とを有していてもよい。存在する場合、非金属部分は、少なくともアンテナと同じ範囲を占めるように軸方向に延びることができる。図7Aでは、セラミック部分は、カラー705の遠位端706からキャップ740のベース741まで延びる。装置の内部特徴を示すために、非金属部分702は、シャフト701とは別個に変位するように示されている。
図示するように、組織アブレーション装置700は、(例えば、本明細書の別の場所により詳細に記載するような)弾性要素705と、金属部分745をシャフトのセラミック部分702に接合するアダプタ710とを含むことができる。本発明の装置では、2つの部分の間のシャフトの厚さのいかなる相違も吸収するために使用するためにアダプタを使用することができ、アダプタは、金属シャフト745とセラミック部分702との間の屈曲を低減させるようにさらに作用することができる。本発明の装置では、ここに示すようなシャフトのセラミック部分と金属部分との間の705等の弾性環状スペーサが、この領域に弾性を提供し、そのため、使用中にこの箇所におけるシャフトに対する歪みに起因する亀裂の発生を低減させるように作用する。組織アブレーション装置700は、マニホールドを介する制御ユニットに対する電気接続部751を有する、内部アダプタ710に隣接して収容された、例えば温度センサ750を含むことができる。
例えば図1に関して記載したように、マイクロ波発生器によって発生したマイクロ波エネルギーは、マイクロ波発生器を装置700内のアンテナ752の給電線732に電気的に接続する電力ケーブルによって、アンテナに供給することができる。マイクロ波アブレーション装置は、マイクロ波アンテナと給電線の少なくとも一部との両方を包囲するとともに典型的にはそれらと同軸であるシャフトも有する。シャフトは、典型的には、近位マニホールドから遠位キャップまで延びる。
給電線は、内側導体と、外側導体と、それらの間に配置された誘電体とを備えることができる。給電線は、外側導体を装置の他の部分から絶縁するとともに給電線に対する外側絶縁体として作用する、さらなる誘電体又は絶縁体を備えることができるが、すべての実施形態においてそれは必須ではない。いくつかの実施形態では、給電線の遠位端から少なくとも接合点まで、さらなる誘電体は不在であってもよい。給電線は、遠位マニホールドの近位給電線コネクタとアンテナの接合点との間等、装置シャフト内にこうしたらさらなる誘電体はなくてもよい。給電線は、典型的には、第1誘電体又は絶縁体によって包囲された、中心導体を有する同軸ケーブルであり、第1誘電体は、上述したようなさらなる誘電体又は絶縁体によって覆うことができる第2誘電体によって包囲されている。内側導体は、典型的には、電力導体である。
図7Aを参照すると、組織アブレーション装置700は、螺旋状アーム712及び線状アーム720を含むアンテナ752を有する。螺旋状アーム712の近位端735は、接合点736において給電線732の外側導体730との電気接続を形成し、接合点736から遠位側に延びている。螺旋状アーム712は、接合点736以外、内側導体727又は外側導体730と電気的接触を形成しない。
接合点は、好都合には、給電線732の最遠位端に近いか又は最遠位端にある。給電線732は、本明細書の別の場所に記載するように、電気的接合部に好適な機械的支持を提供するために、接合点736を越えて延びることができる。それは、任意選択的に、接合点736を2mm超えて、特に1mmを超えて延びない。代替的に、それは、螺旋状アームの2周を超える巻き、任意選択的に1周以下の巻きで延びない。
線状アーム720は、給電線732の内側導体727に電気的に接続されており、給電線732の遠位端から遠位側に延びている。螺旋状アーム712は、線状アーム720を中心に同軸に配置されている。
装置は、アンテナにわたって冷却剤流体を通過させるように構成された冷却システムを有する。冷却システムは、以下より詳細に記載するように、給電線の少なくとも一部にわたり且つアンテナにわたり冷却剤流体を通過させるように構成されている。
図7Aに示すように、螺旋状アーム712は、管726に渦巻状に巻回することができ、管726は、支持基材として作用することができ、又はこの場合のように、マニホールド(図示せず)からシャフトの金属部分745を通ってアンテナ728の先端まで延びることができる、冷却管として作用する。アンテナの螺旋状アーム712と給電線732の外側導体730との間の電気接続は、接合点736において管726を通過する。螺旋状アーム712は長さ(Lha)を有する。いくつかの例では、螺旋状アームの全長(Lha)は、1~18mmの範囲とすることができ、任意選択的に、螺旋状アームは4~10mmの範囲である。任意選択的な実施形態では、螺旋状アームは、4~7mmの範囲である。
冷却管726は、アンテナの線状アーム720の周囲に配置されている。それは、管726の内壁754と線状アーム720との間の第1冷却導管748と、管726の外壁755とシャフト753の内壁との間の第2冷却導管760とを画定している。冷却剤は、管726と線状アーム720との間の空間を通って管726とキャップ740との間の混合チャンバ729まで圧送することができ、管726の外側とシャフトのセラミック部分702との間の空間内でシャフトの内側とアダプタ710との間の空間711を通り、シャフトの金属部分745を下ってマニホールドに戻る。
線状アーム720は、給電線732の内側導体727の延長部であり、誘電体のない第2部分723を除き、誘電体層725によって包囲されている。
本明細書に記載するアンテナの線状アームは、給電線732の内側導体に電気的に接続されているとともに、特に、螺旋状アーム及び/又は給電線732と同軸の軸上で、内側導体から遠位側に延びている、導体である。この導体は、任意選択的に直線ワイヤの形態である。特定の実施形態では、線状アームは、第1の、近位、絶縁部分と、第2の遠位非絶縁部分とを含む。典型的には、第1部分は誘電体によって包囲され、第1部分の遠位側の第2部分には誘電体がない。第2部分は、アームの先端まで延びている。線状アームの第1部分を包囲する誘電体は、給電線732の遠位端から延びることができる。アンテナの線状アームは、その最も単純な形態で、給電線の内側導体の延長部であり得る。そして、誘電体は、同軸給電線の中心導体と外側導体との間に配置された誘電体の延長部であり得る。
任意選択的に、アンテナの線状アーム及び螺旋状アームは、アブレーション装置のシャフトと同軸であり、従って、線状アームは、螺旋状アームと同軸であるとともにそこから遠位側に延びている。図示するように、図7Aの非対称ダイポールアンテナの線状アーム720は、長さL1aを有する。線状アームは、絶縁体でコーティングされた第1部分L1 721を含み、絶縁体は、給電線732の第1誘電体層の延長部であり得るとともに、内側導体727と外側導体730との間に配置することができるが、この図では可視ではない。
線状アーム720は、長さL2 722を有するとともに絶縁体でコーティングされていない、第2部分723をさらに含む。1つの実施形態では、第2部分L2 722は、循環する冷却剤に対して露出している。
図7Aに示すように、線状アーム720は、螺旋状アーム712を通って延びている。螺旋状アーム712は、線状アーム720と同軸であり得る。線状アーム720は、螺旋状アーム712の大部分を通って、螺旋状アーム712の近位端735において接合部736に対して遠位側に延びることができる。従って、螺旋状アーム712の大部分は、外側導体730、又は外側導体730を包囲する絶縁体を包囲しない。それは、任意選択的に、接合点736を2mm超えて、特に1mmを超えて延びない可能性がある。代替的に、それは、螺旋状アームの2周を超える巻き、任意選択的に1周以下の巻きで延びない。
外側導体730と外側導体730を包囲する絶縁体は、螺旋状アーム712の近位端735において接合部736を越えて又ははるかに越えて延びない可能性がある。外側導体730と外側導体730を包囲する絶縁体とは、螺旋状アーム712のわずかな部分のみを通って延びることができる。
1つの実施形態では、螺旋状アーム712は、線状アームL1 721の第1部分のみの周囲に延びるように、線状アームL2 723の第2部分の近位側に配置されている。第2手法では、螺旋状アームは、第1部分の全体にわたり、任意選択的に図5Dに基づいて考察したように線状アームの第2部の少なくとも近位部分にもわたって、延びることができる。
1つの態様では、L2、すなわち誘電体のない線状アームの部分は、部分的に又は完全に金属キャップに挿入されるが、キャップに接触しない。これは、アンテナのこの部分又はその一部分が挿入されるキャップのベースに開放ポケットを作成することによって達成することができる。露出した遠位先端が挿入される程度は、エネルギー場の遠位部分の形状、従ってアブレーションゾーンの形状に影響を与える。
先端とキャップとの間の距離が3mmよりも大きい場合、それらは、特に2.45GHzで、アブレーションを成形するのに有用であるように十分に結合されているとはみなされない。
概して、ここでのアンテナの線状アーム720は、4mm~14mm、場合により8mm~10mmのみの長さ(L1a)を有することができる。図7Aに示す設計等、アンテナ設計の1つの態様では、長さL1は、長さL2よりもはるかに大きい。こうした設計では、線状アームの露出部分723は、0.1mm~2mm、場合により0.3mm~0.5mmのみの長さL2を有し、線状アーム720の長さL1aの残りは、第1部分721の長さL1である。図5Dに示す設計等、アンテナ設計の別の態様では、長さL2は、長さL1よりもはるかに大きい。この態様では、L1及びL2の寸法を逆にすることができる(例えば、図5Dにおける非露出部分は、0.1mm~2mm、場合により0.3mm~0.5mmのみの長さL1を有する)。設計の別の態様では、図5Dの手法の線状アームの露出部分は、9mm~11mmの長さを有する。
螺旋状アームは、1~18mmの長さLhaを有することができ、1~14回の巻き、代替的に4~10mm及び4~8回の巻き又は4~6mmを含み、3~5回の巻きを含む。
従って、任意選択的な実施形態では、アンテナの螺旋状アーム712は、リボンの形態であり、1~18mmの長さ(Lha)を有することができ、1~14回の巻きを含み、アンテナの線状アーム720は、4~14mm長さであり、0.1~3mm長の誘電体のない第2の遠位部分723を有する。誘電体のない部分は、0.2~3mmだけキャップのベースから分離することができる。
この設計のより具体的な態様では、アンテナの螺旋状アーム712は、4~10mmの長さ(Lha)を有するリボンの形態であり、4~8回の巻きを含み、アンテナの線状アーム720は、7~10m長であり、0.3~0.5mm長の誘電体のない第2の遠位部分723を有する。誘電体のない部分は、1~2mmだけキャップのベースから分離することができる。
この設計のさらにより具体的な態様では、アンテナの螺旋状アーム712は、4~6mmの長さ(Lha)を有するリボンの形態であり、3~5回の巻きを含む。線状アーム720は、0.3~0.5mm長の誘電体のない第2の遠位部分723を有し、7~10mm長である。誘電体のない部分は、1~2mmだけ、任意選択的に1.5mm又は約1.5mm、キャップのベースから分離することができる。
シャフトが非金属部分(例えば、セラミック部分702)を有する場合、非金属部分は、アンテナを覆うように軸方向に延びることができ、従って、アンテナの放射部分と少なくとも同じ範囲を占める。1つの実施形態では、非金属部分は、少なくとも螺旋状アームの最近位点からシャフトの遠位端(例えば、装置の先端の取付点)まで延びる。非金属部分は、シャフトが、非金属部分の近位範囲と遠位範囲との間で非金属であり得るように、同軸に且つ円周方向に延びる。
冷却剤漏出又は組織流体浸透を防止するために装置の遠位端を封止するように、キャップを構成することができる。キャップは、別個の部品として製造することができ、シャフトに取り付けられるように構成することができる。キャップは、組織内への挿入に役立つように、且つ患者の皮膚を貫通するように構成することができ、そのため、例えば、遠位点に来るか又はトロカールとして構成され得る。図7に示すキャップ740は、トロカールチップを含む。キャップ740のトロカールチップは、ステンレス鋼及び/又はセラミックで作製することができる。
いくつかの例では、キャップは、生体適合性ポリマー、複合材、セラミック、又はステンレス鋼等の金属等、任意の好適な生体適合性材料から作製することができる。キャップが金属である場合、キャップとアンテナの遠位端(すなわち、アンテナの線状アームの遠位端)とは、電磁結合されるように構成することができる。これは、アンテナの遠位先端とキャップとの間の距離を調整して、それらが、アンテナが動作するように意図されている周波数で且つ電力で電磁結合されるようにすることによって、達成することができる。この効果を使用して、アンテナによって発生するエネルギー場の遠位部分の形状、従ってアブレーションゾーンの形状を調整することができる。しかしながら、キャップ及びアンテナは、そのように結合されることは必須ではなく、すなわち、アンテナは、キャップから電磁的に分断されてもよい。1つの実施形態では、先端及びキャップは接触しない。実際には、先端とキャップとのギャップは、0.2mm以上、詳細には0.2mm~3mm、最も詳細には1~2mmである。最も詳細には、1.5mm又は約1.5mmである。
エネルギー場の形状、従ってアブレーション体積は、給電線と同心円状の金属シースを設けることによっても影響を受ける可能性がある。シースは円筒状とすることができ、アンテナの近位側に給電線の少なくとも一部にわたって延びる。シースは、アンテナの少なくとも一部にわたって延びてもよいが、任意選択的に、アンテナの螺旋状アームの最遠位点の近位側の点で終端し、アンテナにわたって延びない。任意選択的に、シースと螺旋状アームの最遠位部分との間のギャップは、少なくとも0.1mmである。このギャップは、例えば、0.1~2mm、又は0.1~1mmであり得るか、又は、約0.5mmである。シースは、シャフトの外面に配置されない場合もあるが、給電線から半径方向に変位するとともに給電線と同軸である。シースは、給電線とシャフトの内壁との間に配置することができる。1つの配置では、金属シースは、本明細書の別の場所に記載するようにアダプタシースであり得る。
任意選択的に、冷却剤チャンバは、装置シャフトの内壁の間に画定される。チャンバは、キャップによって遠位側の境界を定めることができ、冷却剤チャンバを近位側で閉鎖する、1つ以上の近位シール又はストッパによって近位側の境界を定めることができる。それらは、任意選択的に、マニホールドに、又はマニホールドとアンテナの螺旋状アームの近位部分との間の箇所に形成される。冷却システムは、冷却剤チャンバに冷却剤を送達するように構成された少なくとも1つの冷却剤入口導管と、チャンバから冷却剤を取り出すように構成された少なくとも1つの冷却剤出口とを備える。冷却剤入口導管及び冷却剤出口導管は、近位シール/ストッパを貫通することができる。1つの手法では、冷却剤入口導管は、アンテナ及び/又は給電線に隣接し且つその半径方向外側の位置に冷却剤を送達するように構成された冷却剤入口管である。この場合、冷却剤入口管は、アンテナとシャフトの内壁との間の冷却剤チャンバ内に配置することができる。任意選択的に、それは、給電線の半径方向外側に配置される。
冷却システムは、冷却剤入口導管及び冷却剤出口導管の両方と流体連通して、冷却剤入口及び冷却剤出口が冷却剤混合チャンバを介して流体連通するようにする、冷却剤混合チャンバをさらに備えることができる。冷却剤混合チャンバは、冷却剤をアンテナの少なくとも一部、特にアンテナの線状アームの少なくとも一部にわたって通過させることができるように構成することができる。冷却剤混合チャンバは、特に、冷却剤をアンテナの線状アームの遠位部分及びキャップの少なくとも一部にわたって通過させることができるように構成されている。
代替実施形態では、冷却システムは、装置シャフトの内壁の間に画定された冷却剤チャンバを備える。チャンバは、キャップによって遠位側の境界を定めることができ、マニホールドとシャフトとの間のシールにより、又はマニホールドから遠位のいずれかの箇所で且つ上述したようにアンテナとマニホールドとの間で、近位側の境界を定めることができる。冷却剤チャンバは、アンテナと給電線の少なくとも遠位部分とを包囲することができる。
一実施形態では、(例えば、図7Aを参照)冷却システムは、給電線の周囲に配置された冷却管をさらに備え、冷却管は、給電線の周囲で遠位側に且つ任意選択的に給電線と同軸に延びることができる。冷却管は、任意選択的に、冷却チャンバを第1冷却導管748と第2冷却導管760とに分割し、第1冷却導管は、給電線と冷却管の内壁との間に配置され、第2冷却導管は、冷却管の外壁と装置シャフトの内壁との間に配置される。冷却管は、任意選択的に、給電線の遠位部分にわたって延びるとともに、アンテナの少なくとも一部分の周囲で遠位側に延び、任意選択的に冷却管は、少なくともアンテナの線状アームの先端まで延びる。冷却管に対して種々の材料が好適であるが、冷却管は非金属であり得る。好都合には、冷却管は、ポリイミド等の熱硬化性ポリマー、又はポリエチレンテレフタレート(PET)等の熱可塑性ポリマー樹脂若しくはポリテトラフルオロエチレン(PTFE)等のフルオロポリマー、又はPEEK等のPAEKから作製することができる。
本明細書の別の場所に記載したように、図7Aの例では、螺旋状アームは、管726に渦巻状に巻回することができる。一実施形態では、管は、管726の内壁754と給電線732との間の第1冷却導管748と、管726の外壁755とシャフト753の内壁との間の第2冷却導管760とを画定する冷却管726であり得る。管726と給電線732との間の空間、管726とキャップ740との間の混合チャンバ729を通って、冷却剤を圧送することができ、冷却剤は、管726の外側とシャフトのセラミック部分との間の空間において、シャフトの内側とアダプタ710との間の空間711を通って、シャフトの金属部分745を下ってマニホールドに戻る。
アンテナの螺旋状アームは、第1冷却導管内に又は第2冷却導管内に配置することができる。例えば、1つの実施形態では、装置は、(図5Bに示すように)線状アームの周囲に同軸に配置されたアンテナ支持体を備えることができる。アンテナの螺旋状アームは、アンテナ支持体で支持することができ、例えば、支持体の内面又は支持体の外面で支持することができる。アンテナ支持体は、線状アームの半径方向外側に、ただし冷却管の半径方向内側に配置することができる。従って、螺旋状アームは、第1冷却導管内に配置される。この場合、冷却管は、螺旋状アームの一部にわたるように、任意選択的に螺旋状アーム及び線状アームの一部を覆うように延びることができるが、最も詳細には、冷却管は、第1冷却導管が少なくともアンテナの先端まで延びるように、少なくともアンテナの遠位端まで延びる。
そうでない場合、冷却管は、給電線の遠位部分と線状アームの少なくとも近位部分まで延びるが、最も詳細には、冷却管は、第1冷却導管が少なくともアンテナの先端まで延びるように、少なくとも線状アームの遠位端まで延びる。そして、螺旋状アームは、第2冷却導管内に配置されるように冷却管の周囲に巻回することができる。
この冷却システムは、さらに、第1冷却導管及び第2冷却導管の両方と流体連通する冷却剤混合チャンバも備えて、第1冷却導管及び第2冷却導管が冷却混合チャンバを介して流体連通するようにすることができる。冷却剤混合チャンバは、冷却剤がキャップの一部と接触することができるように構成することができる。
第1冷却導管又は第2冷却導管のいずれかが、冷却剤入力導管又は冷却剤出力導管として作用することができる。第1及び第2冷却導管は、遠位端において開口して、冷却剤が冷却管の遠位端とアプリケータキャップのベースとの間の冷却剤混合チャンバを通って循環するのを可能にする。
冷却管は、任意選択的に、マニホールドに向かって近位側に延びる。第1冷却導管及び第2冷却導管は、使用中に冷却剤を供給及び排出するために、マニホールドの冷却剤入力コネクタ及び出力コネクタと流体連通する。
特定の手法では、任意選択的にリボンの形態であるアンテナの螺旋状アームは、冷却管の周囲に巻回される。この場合、螺旋状アームは、接合点において給電線の外側導体と電気的に接触し、上述したように、冷却管の周囲に一連の巻きで遠位側に延びている。この場合、冷却管は、任意選択的に、少なくともアンテナ及び給電線の接合点まで遠位側に延び、任意選択的に、線状アームの少なくとも一部を覆うようにさらに延びるが、最も詳細には、冷却管は、第1冷却導管が少なくともアンテナの先端まで延びるように、線状アームの先端まで延びる。任意選択的に、螺旋状アームの遠位端と給電線の外側導体との間の電気接点は、冷却管を通過する。
この手法では、外側絶縁体は、給電線の遠位部分にわたって延びないことが任意選択的である。任意選択的に、外側絶縁体は、少なくとも、アンテナの螺旋状アームのすぐ近位側の給電線の箇所から接合点まで延びる部分にわたって延びない。外側絶縁体は、アブレーション装置のシャフト内で給電線全体に存在しなくてもよい。
冷却システムが上述したような冷却管を備える実施形態では、螺旋状アームは、ワイヤ又はリボンのいずれかであり得るが、最も詳細にはリボンである。螺旋状アームは、円筒状導体の形態であって、給電線の周囲に、任意選択的に給電線と同軸に配置された平面導体面を有する螺旋状導体を与えるように、その近位端からその遠位端まで延びる螺旋状ギャップを有する形態であり得る。
本明細書に記載する冷却システムは、給電線とアンテナの少なくとも一部、任意選択的にアンテナ全体にわたって冷却剤(例えば、水)を通過させる。通常動作に対して冷却剤からアンテナを絶縁する必要はない。本明細書に記載するいくつかの実施形態では、給電線の一部には、給電線を包囲する外側絶縁体はない。給電線は、マニホールドと接合点との間、又は装置シャフト内にその全長に絶縁体がなくてもよい。アンテナの螺旋状アームは、特に冷却管の周囲に巻回される場合、いかなる絶縁材がなくてもよい。
本明細書に記載するアブレーション装置は、シャフトに沿った箇所において温度を測定する、熱電対等の1つ以上の温度センサをさらに備えることができる。典型的には、熱電対は、冷却システム内に配置し、装置の動作中に冷却剤又は給電線若しくは装置シャフト等の装置の他の部分の温度を測定するように構成することができる。図7Aの組織アブレーション装置700は、内側アダプタ710に隣接して収容されるとともにマニホールドを介する制御ユニットへの電気接続部751を有する温度センサ750を含むことができる。
本明細書の別の場所に記載するように、本明細書に記載するもの等のアブレーション装置は、典型的には、簡単に上述したように近位マニホールドを備える。マニホールドは、典型的には、エネルギー供給ラインに給電線を接続するコネクタと、装置シャフト内の電気装置を制御システムに接続するコネクタとを備える。こうしたコネクタは、恒久的であっても取外し可能であってもよい。マニホールドは、冷却剤入力部を冷却剤供給部に接続する入力コネクタと、冷却剤出力部を排出又は再循環システムに接続する出力コネクタとを有する冷却剤マニホールドも備えることができる。マニホールドは、外科医が組織アブレーション装置を取り扱うためのより堅固なグリップを提供するように構成されたハンドルの一部を形成することもできる。
装置700は、トロカールチップ740を含む。1つの実施形態では、トロカールチップ740は、図5に示すアプリケータキャップ130と、図6A~図6Dに示す金属キャップと、図3Aに示すトロカールチップ330とであり得る。トロカールチップ740は、ステンレス鋼及び/又はセラミックから作製することができる。
図8Aは、本開示の1つの実施形態による組織アブレーション装置のアブレーション効果を示す写真である。組織を、5分間にわたり25~30Wで加熱した。図8Aに示すように、アブレーション体積は、およそ球形である。
図8Bは、本開示の1つの実施形態による組織アブレーション装置のアブレーション効果を示す写真である。生理食塩水を、4分間にわたり90Wで加熱した。図8Bに示すように、アブレーション体積は、およそ球形である。

Claims (10)

  1. マイクロ波アブレーションプローブであって、
    該マイクロ波アブレーションプローブはアンテナに接続された給電線を備え、該給電線は、内側導体と、外側導体と、前記内側導体と前記外側導体との間に配置された誘電体とを有し、
    該マイクロ波アブレーションプローブは金属材料からなるキャップを備え、
    該マイクロ波アブレーションプローブは前記アンテナと前記給電線とを包囲するシャフトを備え、前記シャフトは前記キャップに接続され、前記シャフトは非金属部分と金属部分とを備え、前記非金属部分はマイクロ波を放射する前記アンテナの少なくとも一部と同じ範囲を占めるように軸方向に延びており、
    前記アンテナは螺旋状アームを含み、該螺旋状アームは接合点において前記給電線の前記外側導体に電気的に接続され、該螺旋状アームは前記接合点から遠位方向に延びており、
    前記アンテナは線状アームを含み、該線状アームは前記給電線の前記内側導体に電気的に接続され、該線状アームは前記給電線の遠位端から遠位側に延びており、前記螺旋状アームは前記線状アームの周囲に同軸に配置されており、前記線状アームは、誘電体によって包囲された第1部分と、誘電体のない第2部分であって、前記第1部分の遠位側である第2部分と、をさらに含み、
    前記アンテナと前記キャップとの間の距離の調整することにより、前記マイクロ波アブレーションプローブのエネルギー放射場の形状を変化させる、マイクロ波アブレーションプローブ。
  2. 前記非金属部分がセラミック材料からなる、請求項に記載のマイクロ波アブレーションプローブ。
  3. 前記アンテナの前記螺旋状アームがリボンである、請求項1又は2に記載のマイクロ波アブレーションプローブ。
  4. 前記アンテナの前記線状アームが、前記キャップに電磁結合されているが、前記キャップには接続されていない、請求項1~のいずれか一項に記載のマイクロ波アブレーションプローブ。
  5. 前記アンテナにわたって冷却剤流体を通過させるように構成された冷却システムをさらに備える、請求項1~のいずれか一項に記載のマイクロ波アブレーションプローブ。
  6. 前記冷却システムが、冷却管と、前記シャフトの内壁の間に画定された冷却剤チャンバとを備える、請求項に記載のマイクロ波アブレーションプローブ。
  7. 前記冷却管が前記冷却剤チャンバを第1冷却導管と第2冷却導管とに分割し、前記第1冷却導管が前記線状アームと前記冷却管の前記内壁との間に配置されており、前記第2冷却導管が前記冷却管の外壁と前記内壁との間に配置されている、請求項に記載のマイクロ波アブレーションプローブ。
  8. 前記非金属部分と前記金属部分との間に配置されるとともに、前記非金属部分と前記金属部分との間の接合部に弾性を提供するように構成された、弾性要素をさらに備える、請求項1から7のいずれか一項に記載のマイクロ波アブレーションプローブ
  9. 1つ以上のマイクロ波アブレーションプローブを備えるマイクロ波アブレーションシステムであって、
    各マイクロ波アブレーションプローブはアンテナに接続された給電線を備え、該給電線は、内側導体と、前記内側導体の周囲に同軸に配置された誘電体と、前記誘電体の周囲に同軸に配置された外側導体とを有し、
    各マイクロ波アブレーションプローブは金属材料からなるキャップを備え、
    各マイクロ波アブレーションプローブは前記アンテナと前記給電線とを包囲するシャフトを備え、前記シャフトは前記キャップに接続され、前記シャフトは非金属部分と金属部分とを備え、前記非金属部分はマイクロ波を放射する前記アンテナの少なくとも一部と同じ範囲を占めるように軸方向に延びており、
    前記アンテナは螺旋状アームを含み、該螺旋状アームは接合点において前記給電線の前記外側導体に電気的に接続され、該螺旋状アームは前記接合点から遠位方向に延びており、
    前記アンテナは線状アームを含み、該線状アームは前記給電線の前記内側導体に電気的に接続され、該線状アームは前記給電線の遠位端から遠位方向に延びており、該線状アームは、
    誘電体によって包囲された第1部分と、
    誘電体のない第2部分であって、前記第1部分の遠位側である第2部分と、
    をさらに含み、
    前記アンテナと前記キャップとの間の距離の調整することにより、前記マイクロ波アブレーションプローブのエネルギー放射場の形状を変化させ、
    各マイクロ波アブレーションプローブは電力モジュールを備え、該電力モジュールは前記アンテナにマイクロ波エネルギーを提供するように構成されており、
    各マイクロ波アブレーションプローブは1つ以上の電力ケーブルを備え、該1つ以上の電力ケーブルは、前記電力モジュールを各アンテナに接続するように構成されるとともに、前記電力モジュールによって提供されるマイクロ波エネルギーを組織のアブレーションのために前記アンテナに送達するように構成される、マイクロ波アブレーションシステム。
  10. 前記又は各マイクロ波アブレーションプローブが、前記アンテナ若しくは前記給電線の少なくとも一部、又は、前記アンテナ及び前記給電線の少なくとも一部を冷却する冷却システムを備え、
    前記アブレーションシステムが、前記アンテナ及び前記給電線の少なくとも一部を冷却するために、前記マイクロ波アブレーションプローブの前記冷却システムに冷却剤流体を送達するように構成された冷却システムをさらに備える、請求項に記載のマイクロ波アブレーションシステム。
JP2022507665A 2019-08-07 2020-08-07 マイクロ波アブレーションプローブ Active JP7469461B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024060883A JP2024084820A (ja) 2019-08-07 2024-04-04 マイクロ波アブレーションプローブ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962883989P 2019-08-07 2019-08-07
US62/883,989 2019-08-07
PCT/US2020/045440 WO2021026471A2 (en) 2019-08-07 2020-08-07 Microwave ablation probe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024060883A Division JP2024084820A (ja) 2019-08-07 2024-04-04 マイクロ波アブレーションプローブ

Publications (2)

Publication Number Publication Date
JP2022543854A JP2022543854A (ja) 2022-10-14
JP7469461B2 true JP7469461B2 (ja) 2024-04-16

Family

ID=72234954

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022507665A Active JP7469461B2 (ja) 2019-08-07 2020-08-07 マイクロ波アブレーションプローブ
JP2024060883A Pending JP2024084820A (ja) 2019-08-07 2024-04-04 マイクロ波アブレーションプローブ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024060883A Pending JP2024084820A (ja) 2019-08-07 2024-04-04 マイクロ波アブレーションプローブ

Country Status (7)

Country Link
US (2) US11737824B2 (ja)
EP (1) EP4009897A2 (ja)
JP (2) JP7469461B2 (ja)
CN (1) CN114980829A (ja)
AU (1) AU2020324453B2 (ja)
CA (1) CA3150109A1 (ja)
WO (1) WO2021026471A2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020324453B2 (en) 2019-08-07 2024-03-07 Biocompatibles Uk Limited Microwave ablation probe
US12070266B2 (en) 2021-06-29 2024-08-27 Varian Medical Systems, Inc. Microwave ablation probe with choke
CN117958960B (zh) * 2024-02-28 2024-09-06 安徽硕金医疗设备有限公司 一种核磁兼容微波消融针

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272472A (ja) 2007-04-25 2008-11-13 Covidien Ag マイクロ波切除のために冷却されるらせん状アンテナ
JP2012139495A (ja) 2011-01-05 2012-07-26 Vivant Medical Inc 柔軟な流体冷却シャフトを備えたエネルギー伝達装置、それと共に使用するのに適した流入/流出接合部およびそれらを含むシステム
US20140081254A1 (en) 2012-09-19 2014-03-20 Denervx LLC Cooled microwave denervation
JP2014531265A (ja) 2011-09-20 2014-11-27 ビーエスディー・メディカル・コーポレーション 焼灼アンテナ
JP2016528987A (ja) 2013-08-08 2016-09-23 エッチ.エス. ‐ ホスピタル、サーヴィス、ソシエタ、ペル、アチオニH.S. − Hospital Service S.P.A. 組織切除のためのマイクロ波装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330518A (en) * 1992-03-06 1994-07-19 Urologix, Inc. Method for treating interstitial tissue associated with microwave thermal therapy
US6223085B1 (en) * 1997-05-06 2001-04-24 Urologix, Inc. Device and method for preventing restenosis
US6016811A (en) 1998-09-01 2000-01-25 Fidus Medical Technology Corporation Method of using a microwave ablation catheter with a loop configuration
US6868290B2 (en) * 2001-11-05 2005-03-15 Prostalund Operations Ab Thermotherapy catheter and method of prostate thermotherapy with improved guide and heat confinement
GB2434314B (en) * 2006-01-03 2011-06-15 Microsulis Ltd Microwave applicator with dipole antenna
GB0620063D0 (en) * 2006-10-10 2006-11-22 Medical Device Innovations Ltd Needle structure and method of performing needle biopsies
US20090082762A1 (en) * 2007-09-20 2009-03-26 Ormsby Theodore C Radio frequency energy transmission device for the ablation of biological tissues
US8876814B2 (en) * 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US8551083B2 (en) 2009-11-17 2013-10-08 Bsd Medical Corporation Microwave coagulation applicator and system
US9579150B2 (en) * 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
ITMO20120041A1 (it) 2012-02-17 2013-08-18 Hs Hospital Service Spa Dispositivo a microonde per l¿ablazione di tessuti
CN108030549B (zh) * 2017-12-29 2024-04-12 南京康友医疗科技有限公司 一种单边微波消融针
US11304755B2 (en) * 2018-04-18 2022-04-19 Boston Scientific Scimed, Inc. Microwave tissue ablation probe with non-metallic introducer set
CN114469329A (zh) 2018-05-25 2022-05-13 南通融锋医疗科技有限公司 一种用于治疗ggo的微波消融天线
AU2020324453B2 (en) 2019-08-07 2024-03-07 Biocompatibles Uk Limited Microwave ablation probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272472A (ja) 2007-04-25 2008-11-13 Covidien Ag マイクロ波切除のために冷却されるらせん状アンテナ
JP2012139495A (ja) 2011-01-05 2012-07-26 Vivant Medical Inc 柔軟な流体冷却シャフトを備えたエネルギー伝達装置、それと共に使用するのに適した流入/流出接合部およびそれらを含むシステム
JP2014531265A (ja) 2011-09-20 2014-11-27 ビーエスディー・メディカル・コーポレーション 焼灼アンテナ
US20140081254A1 (en) 2012-09-19 2014-03-20 Denervx LLC Cooled microwave denervation
JP2016528987A (ja) 2013-08-08 2016-09-23 エッチ.エス. ‐ ホスピタル、サーヴィス、ソシエタ、ペル、アチオニH.S. − Hospital Service S.P.A. 組織切除のためのマイクロ波装置

Also Published As

Publication number Publication date
WO2021026471A2 (en) 2021-02-11
US11737824B2 (en) 2023-08-29
US20230346473A1 (en) 2023-11-02
AU2020324453B2 (en) 2024-03-07
US20210038303A1 (en) 2021-02-11
JP2022543854A (ja) 2022-10-14
CN114980829A (zh) 2022-08-30
CA3150109A1 (en) 2021-02-11
AU2020324453A1 (en) 2022-03-24
JP2024084820A (ja) 2024-06-25
EP4009897A2 (en) 2022-06-15
WO2021026471A3 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7403962B2 (ja) マイクロ波凝固アプリケータ及びシステム
JP7280275B2 (ja) 広帯域アンテナを備えた組織アブレーションデバイス及びその方法
JP7469461B2 (ja) マイクロ波アブレーションプローブ
US20210212763A1 (en) Microwave ablation systems and methods having adjustable ablation parameters and modes of operation
US20210282850A1 (en) Cycling of ablation devices
US20210282834A1 (en) Ramping up function for ablation devices
US11759247B2 (en) Systems and methods for determining an ablation score and for pre-ablation testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240404

R150 Certificate of patent or registration of utility model

Ref document number: 7469461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150