JP7468888B2 - Neutral pH water electrolysis method and system - Google Patents

Neutral pH water electrolysis method and system Download PDF

Info

Publication number
JP7468888B2
JP7468888B2 JP2020012202A JP2020012202A JP7468888B2 JP 7468888 B2 JP7468888 B2 JP 7468888B2 JP 2020012202 A JP2020012202 A JP 2020012202A JP 2020012202 A JP2020012202 A JP 2020012202A JP 7468888 B2 JP7468888 B2 JP 7468888B2
Authority
JP
Japan
Prior art keywords
water electrolysis
electrolyte solution
present
neutral
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020012202A
Other languages
Japanese (ja)
Other versions
JP2021116468A (en
Inventor
和広 高鍋
竜也 品川
剛大 内藤
武史 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2020012202A priority Critical patent/JP7468888B2/en
Publication of JP2021116468A publication Critical patent/JP2021116468A/en
Application granted granted Critical
Publication of JP7468888B2 publication Critical patent/JP7468888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、水電解を高効率に中性pH領域で作動させる方法、システム及び装置に関する。 The present invention relates to a method, system, and device for operating water electrolysis in the neutral pH range with high efficiency.

再生可能エネルギーにより持続可能な社会を実現することができるが、再生可能エネルギーには日常的、季節的、気象的変動が内在するため、これを大規模に利用することが妨げられている。この観点から、再生可能な発電電力を化学エネルギーへ転換することは、この問題に対する1つの解決策とみなされる。
水素は、ガソリン(44MJkg-1)よりも120MJkg-1高いエネルギー密度を有しており、水の電気分解を介して生成され得るエネルギー担体として大きな注目を集めている(非特許文献1)。
Although renewable energies can achieve a sustainable society, their inherent daily, seasonal and meteorological variability prevents their large-scale use. In this respect, the conversion of renewable electricity generation to chemical energy is seen as one solution to this problem.
Hydrogen has an energy density 120 MJkg −1 higher than that of gasoline (44 MJkg −1 ) and has attracted much attention as an energy carrier that can be produced via the electrolysis of water (Non-Patent Document 1).

確立された工業的な水電解による水素製造は、80℃程度の温度域にて、非常に強い塩基性及び酸性のpHレベルで作動する。そうしたpH条件に起因して、装置を構成する材料には高腐食耐性が要求され、また操業時の安全上の懸念も大きいという問題があった。 Established industrial hydrogen production using water electrolysis operates at temperatures of around 80°C and at very strong alkaline and acidic pH levels. Due to these pH conditions, the materials that make up the equipment must be highly resistant to corrosion, and there are also significant safety concerns during operation.

再生可能エネルギーによって駆動されるプロセスは、特に現場での適用では中性に近いpHのものとより適合性があると考えられ、プロセスの構成要素について材料の選択の幅を広げる費用対効果の高い反応媒体であり、また潜在的に安全なものであると考えられる(非特許文献2)。
しかしながら、このような温和な条件下での水分解効率は、極端なpH条件で行う従来の方法に比べて著しく低く、さらなる研究が必要である。
Renewable energy-powered processes are believed to be more compatible with near-neutral pH, especially for in-situ applications, are cost-effective reaction media that offer greater material options for process components, and are potentially safer (2).
However, the efficiency of water splitting under such mild conditions is significantly lower than that of conventional methods operating under extreme pH conditions, and further research is needed.

Satyapal, S., Petrovic, J., Read, C., Thomas, G., and Ordaz, G., Catal. Today, 120, 246 (2007).Satyapal, S., Petrovic, J., Read, C., Thomas, G., and Ordaz, G., Catal. Today, 120, 246 (2007). Nocera, D. G., Inorg. Chem. 48, 21, (2009).Nocera, D. G., Inorg. Chem. 48, 21, (2009).

本発明は、中性pHにおいて水電解を高効率に作動させることができる水の電気分解方法、及び水電解システムを提供することを目的とする。 The present invention aims to provide a water electrolysis method and a water electrolysis system that can operate water electrolysis at a neutral pH with high efficiency.

本発明者らは。鋭意検討した結果、中性付近のpHを有する高濃度緩衝液中で、水の沸点近傍またはそれ以上の温度にて水電解を高効率に操業することができることを見出し、本発明を完成した。 After extensive research, the inventors discovered that water electrolysis can be performed with high efficiency in a high-concentration buffer solution with a near-neutral pH at temperatures near or above the boiling point of water, and thus completed the present invention.

即ち、本発明は、
[1]中性付近のpHを有する緩衝液中において、60℃~120℃の範囲の温度で水を電気分解する方法であって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該方法。
[2]80℃~100℃の範囲の温度で水を電気分解する、[1]に記載の方法。
[3]前記電解質溶液の濃度が4M以上である、[1]又は[2]に記載の方法。
[4]前記カチオン種が、リチウム、ナトリウム、カリウム、セシウム又はルビジウムのカチオンである、[1]~[3]のいずれか1項に記載の方法。
[5]中性付近のpHを有する緩衝液中において、60℃~120℃の範囲の温度で水を電気分解するシステムであって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該システム。
[6]水の電気分解装置であって、
電解槽、電源、陽極、及び陰極を備え、
ここで、前記電解槽に電解質水溶液が貯留されており、
前記陽極および前記陰極は、前記電源に電気的に接続されており、
前記陽極および前記陰極は、前記電解質水溶液に接しており、
前記電解質水溶液は、中性付近のpHを有し、
前記電解質水溶液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含み、前記電解質水溶液の濃度が3M以上である、該装置。
を提供するものである。
That is, the present invention provides:
[1] A method for electrolyzing water in a buffer solution having a near-neutral pH at a temperature in the range of 60°C to 120°C, comprising the steps of:
the buffer solution is comprised of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphate, borate, and carbonate, the electrolyte solution having a concentration of 3M or greater.
[2] The method according to [1], wherein water is electrolyzed at a temperature in the range of 80°C to 100°C.
[3] The method according to [1] or [2], wherein the concentration of the electrolyte solution is 4 M or more.
[4] The method according to any one of [1] to [3], wherein the cationic species is a cation of lithium, sodium, potassium, cesium or rubidium.
[5] A system for electrolyzing water in a buffer solution having a near-neutral pH at a temperature in the range of 60°C to 120°C, comprising:
The buffer solution is comprised of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphate, borate, and carbonate, and the electrolyte solution has a concentration of 3M or greater.
[6] A water electrolysis apparatus comprising:
The electrolytic cell includes an electrolytic cell, a power source, an anode, and a cathode;
Here, an aqueous electrolyte solution is stored in the electrolytic cell,
the anode and the cathode are electrically connected to the power source;
the anode and the cathode are in contact with the electrolyte aqueous solution,
The electrolyte aqueous solution has a pH close to neutral,
the aqueous electrolyte solution contains at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphates, borates, and carbonates, and the concentration of the aqueous electrolyte solution is 3M or more.
This provides:

本発明は、中性pHにおいて水電解を高効率に作動させることができる水の電気分解方法、及び水電解システムを提供することができる。 The present invention provides a water electrolysis method and a water electrolysis system that can operate water electrolysis at a neutral pH with high efficiency.

このように、本発明は、中性pHにおいて高効率で水を電気分解するものであり、従来の強酸性・強塩基性の条件下で操業される方法に比べて以下のような効果を有する。
(1)材料に要求される耐腐食性が緩和され、安価な材料が利用可能となるためキャピタルコストを低減することができる。
(2)材料に要求される耐腐食性が緩和されるため、電極材料及び装置構成素材の高寿命化が期待される。
(3)中性pHで操業するため、人体への安全上の懸念が緩和され、水電解装置の設置先の候補が拡大する(例えば、住宅など)。
これらは、水電解装置を安価に完全に適用できる条件を実現し、分散型の水電解装置の拡充を可能とし得る。より具体的には、種々の再生可能エネルギー駆動発電装置と隣接して当該水電解装置を設置し、太陽電力や電力などで発電された余剰電力をその場で水分解に使用することが可能となる。
As described above, the present invention electrolyzes water highly efficiently at neutral pH, and has the following advantages over conventional methods operated under strongly acidic or strongly alkaline conditions:
(1) The required corrosion resistance of materials is relaxed, allowing the use of cheaper materials, thereby reducing capital costs.
(2) The corrosion resistance required of materials is relaxed, so that electrode materials and device components are expected to have longer life.
(3) Because it operates at a neutral pH, human safety concerns are mitigated, expanding the range of potential locations for installing water electrolysis equipment (e.g., homes, etc.).
These will realize the conditions for fully applying water electrolysis devices at low cost, and will enable the expansion of distributed water electrolysis devices. More specifically, the water electrolysis device will be installed adjacent to various renewable energy-driven power generation devices, and surplus electricity generated by solar power or electricity will be used for water splitting on the spot.

本発明の水電解装置の非限定的な概略図を示す。FIG. 1 shows a non-limiting schematic diagram of a water electrolysis device of the present invention. Pt及びIrOのモデル電極を用いた定電流密度で触媒試験を行った結果(電圧プロファイル)を示す。1 shows the results (voltage profiles) of catalytic tests performed at constant current density using model Pt and IrOx electrodes. 種々の電解質中で水電解を行った結果を示す。The results of water electrolysis in various electrolytes are shown below. 種々の電解質中で水電解を行った結果を示す。The results of water electrolysis in various electrolytes are shown below. 起動-シャットダウンのサイクルテストを行った結果を示す。The results of a startup-shutdown cycle test are shown below.

1.水の電気分解の方法
本発明の1つの実施態様は、中性付近のpHを有する緩衝液中において、60℃~120℃の範囲の温度で水を電気分解する方法であって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該方法である。
即ち、本発明の水を電気分解する方法(以下「本発明の水電解方法」とも言う。)においては、上記緩衝液を、3M~飽和濃度といった高い濃度で電解質として用いることで、水の沸点が大きく上昇し、従来の操業温度である80℃程度を大きく超える温度域での開放系水電解の操業が可能となった。
1. Method for electrolyzing water One embodiment of the present invention is a method for electrolyzing water in a buffer solution having a near-neutral pH at a temperature in the range of 60° C. to 120° C., comprising the steps of:
The method of the present invention, wherein the buffer solution is composed of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphates, borates, and carbonates, and the concentration of the electrolyte solution is 3M or greater.
That is, in the method for electrolyzing water of the present invention (hereinafter also referred to as the "water electrolysis method of the present invention"), the use of the buffer solution at a high concentration, such as 3 M to a saturated concentration, as an electrolyte significantly increases the boiling point of water, and enables open-system water electrolysis to be operated in a temperature range significantly exceeding the conventional operating temperature of about 80°C.

本発明で用いる緩衝液(以下「本発明の緩衝液」とも言う。)は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成される。 The buffer solution used in the present invention (hereinafter also referred to as the "buffer solution of the present invention") is composed of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphates, borates, and carbonates.

電解質溶液は、カチオン種として、アルカリ金属のカチオン、即ち、リチウム(Li)、ナトリウム(Na)、カリウム(K)、セシウム(Ce)及びルビジウム(Rb)のカチオン、及び、アルカリ土類金属のカチオン、即ち、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)のカチオンからなる群から選択される少なくとも1つを含む。これらカチオン種としては、リチウム、ナトリウム、カリウム、セシウム及びルビジウムのカチオン(即ち、Li、Na、K、Cs及びRb)が好ましい。これらの中でも、ナトリウム、カリウムのカチオンは、特にリン酸塩との緩衝液において、温度の上昇に伴い飽和溶解度が大きく上昇することから、更に好ましい。 The electrolyte solution contains at least one cationic species selected from the group consisting of alkali metal cations, i.e., lithium (Li), sodium (Na), potassium (K), cesium (Ce) and rubidium (Rb), and alkaline earth metal cations, i.e., beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). As these cationic species, lithium, sodium, potassium, cesium and rubidium cations (i.e., Li + , Na + , K + , Cs + and Rb + ) are preferred. Among these, sodium and potassium cations are more preferred because their saturation solubility increases significantly with increasing temperature, especially in a buffer solution with phosphate.

また、電解質溶液は、アニオン種として、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つを含む。具体的には、リン酸のアニオン(HPO 、HPO 2-、PO 3-)、ホウ酸のアニオン(B(OH)4-、B 2-)及び炭酸のアニオン(HCO 、CO 2-)からなる群から選択される少なくとも1つが含まれる。 The electrolyte solution contains at least one anion species selected from the group consisting of phosphates, borates, and carbonates. Specifically, the electrolyte solution contains at least one anion species selected from the group consisting of phosphoric acid anions (H 2 PO 4 , HPO 4 2− , PO 4 3− ), boric acid anions (B(OH) 4− , B 4 O 7 2− ), and carbonate anions (HCO 3 , CO 3 2− ).

電解質溶液は、上記のカチオン種及びアニオン種で構成される塩を1種類含んでもよく、2種類以上を含んでいてもよい。 The electrolyte solution may contain one type of salt composed of the above-mentioned cation species and anion species, or may contain two or more types.

電解質溶液としては、例えば、KHPO、KHPO、LiHPO、LiHPO、NaHPO、NaHPO、Na、K、LiHCO、NaHCO、KHCO、およびCsHCOの中性緩衝溶液が好ましく用いられる。 As the electrolyte solution, for example , neutral buffer solutions of KH2PO4 , K2HPO4 , LiH2PO4 , Li2HPO4 , NaH2PO4 , Na2HPO4 , Na2B4O7 , K2B4O7 , LiHCO3 , NaHCO3 , KHCO3 , and CsHCO3 are preferably used.

本発明の緩衝液は、上記のカチオン種及びアニオン種で構成される塩以外に、本発明の方法に不利な影響を与えない他の成分、例えば、硫酸塩、塩酸塩、過塩素酸塩を含んでもよい。 The buffer solution of the present invention may contain, in addition to the salts composed of the above-mentioned cationic and anionic species, other components that do not adversely affect the method of the present invention, such as sulfates, hydrochlorides, and perchlorates.

本発明の緩衝液は、中性付近のpHを有し、好ましくはpHが4~10、より好ましくはpHが5~9である。 The buffer solution of the present invention has a pH close to neutral, preferably a pH of 4 to 10, more preferably a pH of 5 to 9.

電解質溶液の濃度は、3M以上であり、好ましくは4M以上である。
本発明においては、本発明の緩衝液を3M以上という高い濃度で電解質として用いることで、水の沸点が大きく上昇し、従来の操業温度である80℃程度を大きく超える温度域での開放系水電解の操業が可能となる。
The concentration of the electrolyte solution is 3M or more, and preferably 4M or more.
In the present invention, the use of the buffer solution of the present invention at a high concentration of 3 M or more as an electrolyte significantly increases the boiling point of water, enabling open water electrolysis to be operated in a temperature range significantly exceeding the conventional operating temperature of about 80°C.

本発明の水電解方法は、60℃~120℃の範囲の温度、好ましくは60~110℃、更に好ましくは80~100℃の範囲の温度で行う。本発明の水電解方法は、高圧条件下でも行うことが可能であり、これにより120℃程度の温度でも操業が可能となる。 The water electrolysis method of the present invention is carried out at a temperature in the range of 60°C to 120°C, preferably 60 to 110°C, and more preferably 80 to 100°C. The water electrolysis method of the present invention can also be carried out under high pressure conditions, which makes it possible to operate at temperatures of around 120°C.

このように、本発明の水電解方法においては、操業温度を水の沸点近傍またはそれ以上とすることができるが、これにより以下の効果を発現することができる。
(1)中性pH条件における反応速度の大幅な向上が達成できる。従来、中性pHにおける水分解活性は、強酸性または共塩基性のpHでの活性と常温付近の温度域にて比較されてきた。しかしながら、常温では、反応速度は中性pHにおいて小さい。これは、「活性化エネルギーが大きい」と表現されるが、それは「反応速度の温度依存性が大きい」ことを意味する。即ち、反応温度の上昇に伴う反応速度上昇幅が、中性pHにおいては強酸性、強塩基性と比較して大きいことが示唆される。そこで、従来以上の温度環境を実現できる条件(中性pH高濃度緩衝溶液)にて操業することで、大幅な反応速度の向上が達成できる。
(2)イオン種や分子量の移動速度が大きく向上する。即ち、これらの物質移動に伴うエネルギー損失が低減される。
この結果として、こうした中性pH濃度の緩衝溶液を用いて、水の沸点付近又はそれを上回る温度で水電解を操業した場合に、従来の中性pH条件での試行に比べて、効率向上が実現されるのみならず、強酸性、強塩基性pHでの操業に匹敵する効率が実現される。更に、操業条件が中性pHであるため、キャピタルコストの低減や長寿命化が期待される。
As described above, in the water electrolysis method of the present invention, the operating temperature can be set to be close to or higher than the boiling point of water, which can provide the following effects.
(1) A significant improvement in reaction rate can be achieved under neutral pH conditions. Conventionally, water splitting activity at neutral pH has been compared with activity at strongly acidic or cobasic pH in the temperature range near room temperature. However, at room temperature, the reaction rate is small at neutral pH. This is expressed as "high activation energy", which means that "the reaction rate is highly temperature-dependent". In other words, it is suggested that the reaction rate increase with increasing reaction temperature is larger at neutral pH than at strongly acidic or strongly basic conditions. Therefore, a significant improvement in reaction rate can be achieved by operating under conditions that can realize a temperature environment higher than before (neutral pH high concentration buffer solution).
(2) The transfer speed of ionic species and molecular weights is greatly improved, i.e., the energy loss associated with these mass transfers is reduced.
As a result, when water electrolysis is performed at a temperature near or above the boiling point of water using such a buffer solution with a neutral pH concentration, not only is efficiency improved compared to conventional trials under neutral pH conditions, but efficiency comparable to that of operation under strongly acidic or strongly basic pH conditions is also achieved. Furthermore, because the operating condition is neutral pH, reduced capital costs and a longer life are expected.

更に、本発明の水電解方法においては、操業温度を水の沸点近傍またはそれ以上とすることにより、電解質の溶液の粘度が低減し、操業の効率を高めることができる。また、操業温度を上昇させることで、溶液の導電率が向上し、反応性が向上する。 Furthermore, in the water electrolysis method of the present invention, by setting the operating temperature near or above the boiling point of water, the viscosity of the electrolyte solution can be reduced and the operating efficiency can be increased. In addition, by increasing the operating temperature, the electrical conductivity of the solution is improved, and the reactivity is improved.

本発明の水電解方法で用いる電極材料(電極触媒)としては、従来の水電解方法で用いられている電極材料を使用することができる。
電極触媒は、例えば、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、銅(Cu)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、および/またはタングステン(W)などの1つ以上の豊富な元素を含むことができるが、これらに限定されない。
また、本発明のいくつかの実施形態において、電極触媒は、貴金属(例えば、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、および金(Au))、アルミニウム(Al)、亜鉛(Zn)、カドミウム(Cd)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、およびビスマス(Bi)および/またはその他遷移金属などの1つ以上の金属を含むことができる。
また、本発明の一部の実施形態では、電極触媒は、金属酸化物、金属炭化物、金属窒化物、金属硫化物および/または金属リン化物を形成し得るホウ素(B)、炭素(C)、窒素(N)、酸素(O)、ホスフィン(P)、硫黄(S)などの1つ以上の非金属を含むことができる。
As the electrode material (electrode catalyst) used in the water electrolysis method of the present invention, any electrode material used in conventional water electrolysis methods can be used.
The electrocatalyst may include one or more abundant elements such as, but not limited to, nickel (Ni), iron (Fe), cobalt (Co), manganese (Mn), copper (Cu), titanium (Ti), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), and/or tungsten (W).
Additionally, in some embodiments of the present invention, the electrocatalyst can include one or more metals, such as a precious metal (e.g., ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au)), aluminum (Al), zinc (Zn), cadmium (Cd), gallium (Ga), indium (In), tin (Sn), and bismuth (Bi) and/or other transition metals.
Additionally, in some embodiments of the present invention, the electrocatalyst may include one or more non-metals, such as boron (B), carbon (C), nitrogen (N), oxygen (O), phosphine (P), sulfur (S), etc., that may form metal oxides, metal carbides, metal nitrides, metal sulfides, and/or metal phosphides.

本発明の水電解方法においては、陰極として、従来公知の陰極が用いられる。陰極の材質としては、例えば、Pt、Rh、Ir等の白金族、Ni、Fe等、及びこれらの合金等が挙げられる。陰極の形態としては、平板、メッシュ、スパッタリング等で形成された膜等が挙げられる。 In the water electrolysis method of the present invention, a conventionally known cathode is used as the cathode. Examples of the material of the cathode include platinum group metals such as Pt, Rh, and Ir, Ni, Fe, and alloys thereof. Examples of the cathode form include a flat plate, a mesh, and a film formed by sputtering, etc.

本発明の水電解方法においては、陽極として、従来公知の陽極が用いられる。陽極の材質としては、Ni、Ru、Ir、Ti、Sn、Mo、Ta、Nb、V、Fe、Mn及びこれらの合金並びにこれらの酸化物が挙げられる。陽極の形態としては、平板、メッシュ、スパッタリング等で形成された膜等が挙げられる。 In the water electrolysis method of the present invention, a conventionally known anode is used as the anode. Examples of the material of the anode include Ni, Ru, Ir, Ti, Sn, Mo, Ta, Nb, V, Fe, Mn, and alloys and oxides of these. Examples of the form of the anode include a flat plate, a mesh, and a film formed by sputtering, etc.

2.水電解システム
水を電気分解する手法は一般に、アルカリ水電解方式と固体高分子形水電解、高温水電解に大別される。本発明の水電解方法は、従来のアルカリ水電解方式に好適に適用することができる。
2. Water Electrolysis System Methods for electrolyzing water are generally broadly divided into alkaline water electrolysis, solid polymer water electrolysis, and high-temperature water electrolysis. The water electrolysis method of the present invention can be suitably applied to conventional alkaline water electrolysis methods.

即ち、本発明のもう1つの実施態様は、中性付近のpHを有する緩衝液中において、60℃~120℃の範囲の温度で水を電気分解するシステムであって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該システムである。
緩衝液、操業温度等の詳細については、本発明の水電解方法で記載したのと同様である。
That is, another embodiment of the present invention is a system for electrolyzing water in a buffer solution having a near-neutral pH at a temperature in the range of 60° C. to 120° C., comprising:
The buffer solution is composed of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphate, borate, and carbonate, and the concentration of the electrolyte solution is 3M or greater.
Details of the buffer solution, operating temperature, etc. are the same as those described in the water electrolysis method of the present invention.

3.水の電気分解装置
本発明のもう1つの実施態様は、水の電気分解装置であって、電解槽、電源、陽極、及び陰極を備え、
ここで、前記電解槽に電解質水溶液が貯留されており、
前記陽極および前記陰極は、前記電源に電気的に接続されており、
前記陽極および前記陰極は、前記電解質水溶液に接しており、
前記電解質水溶液は、中性付近のpHを有し、
前記電解質水溶液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含み、前記電解質水溶液の濃度が3M以上である、該装置である。
以下、本発明の水の電気分解装置を「本発明の水電解装置」とも言う。
3. Water electrolysis device Another embodiment of the present invention is a water electrolysis device comprising an electrolytic cell, a power source, an anode, and a cathode,
Here, an aqueous electrolyte solution is stored in the electrolytic cell,
the anode and the cathode are electrically connected to the power source;
the anode and the cathode are in contact with the electrolyte aqueous solution,
The electrolyte aqueous solution has a pH close to neutral,
The apparatus is characterized in that the aqueous electrolyte solution contains at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphates, borates, and carbonates, and the concentration of the aqueous electrolyte solution is 3M or more.
Hereinafter, the water electrolysis device of the present invention will also be referred to as the "water electrolysis device of the present invention."

本発明の水電解装置においては、電解槽はさらに隔膜を有していてもよい。電解槽に隔膜を設けて、電解槽の内部を、陽極を有する第1室および陰極を有する第2室に分割すると、生成される水素ガスと酸素ガスが混合することを防ぐことができる。隔膜を設ける場合は、素焼き板のような多孔性セラミックス板、ポリプロピレンフィルムのような多孔性高分子膜、またはナフィオン(登録商標)のようなイオン交換膜を用いることができる。 In the water electrolysis device of the present invention, the electrolytic cell may further have a diaphragm. By providing a diaphragm in the electrolytic cell and dividing the inside of the electrolytic cell into a first chamber having an anode and a second chamber having a cathode, it is possible to prevent the generated hydrogen gas and oxygen gas from mixing. When providing a diaphragm, a porous ceramic plate such as a biscuit plate, a porous polymer membrane such as a polypropylene film, or an ion exchange membrane such as Nafion (registered trademark) can be used.

一方、本発明で用いる濃厚緩衝水溶液中では、生成されるガスが電解質溶液に溶ける量はかなり小さいため、隔膜を用いない形態で操業ができる可能性がある。従って、本発明の水電解装置においては、電解槽が隔膜を有さなくもよい。この場合には、装置の簡略化に伴うキャピタルコスト低減という利点がある。
即ち、本発明の水電解装置の1つの側面は、電解槽が隔膜を有していない水電解装置である。
On the other hand, in the concentrated buffer solution used in the present invention, the amount of gas generated that dissolves in the electrolyte solution is quite small, so that it may be possible to operate the water electrolysis apparatus without using a diaphragm. Therefore, in the water electrolysis apparatus of the present invention, the electrolytic cell does not need to have a diaphragm. In this case, there is an advantage that the capital cost can be reduced by simplifying the apparatus.
That is, one aspect of the water electrolysis apparatus of the present invention is a water electrolysis apparatus in which the electrolytic cell does not have a diaphragm.

電解槽の内部には、電解質水溶液が貯留されている。 An aqueous electrolyte solution is stored inside the electrolytic cell.

電解質溶液は、カチオン種として、アルカリ金属のカチオン、即ち、リチウム(Li)、ナトリウム(Na)、カリウム(K)、セシウム(Ce)及びルビジウム(Rb)のカチオン、及び、アルカリ土類金属のカチオン、即ち、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)のカチオンからなる群から選択される少なくとも1つを含む。これらカチオン種としては、リチウム、ナトリウム、カリウム、セシウム及びルビジウムのカチオン(即ち、Li、Na、K、Cs及びRb)が好ましい。これらの中でも、ナトリウム、カリウムのカチオンは、特にリン酸塩との緩衝液において、温度の上昇に伴い飽和溶解度が大きく上昇することから、更に好ましい。 The electrolyte solution contains at least one cationic species selected from the group consisting of alkali metal cations, i.e., lithium (Li), sodium (Na), potassium (K), cesium (Ce) and rubidium (Rb), and alkaline earth metal cations, i.e., beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). As these cationic species, lithium, sodium, potassium, cesium and rubidium cations (i.e., Li + , Na + , K + , Cs + and Rb + ) are preferred. Among these, sodium and potassium cations are more preferred because their saturation solubility increases significantly with increasing temperature, especially in a buffer solution with phosphate.

また、電解質溶液は、アニオン種として、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つを含む。具体的には、リン酸のアニオン(HPO 、HPO 2-、PO 3-)、ホウ酸のアニオン(B(OH)4-、B 2-)及び炭酸のアニオン(HCO 、CO 2-)からなる群から選択される少なくとも1つが含まれる。 The electrolyte solution contains at least one anion species selected from the group consisting of phosphates, borates, and carbonates. Specifically, the electrolyte solution contains at least one anion species selected from the group consisting of phosphoric acid anions (H 2 PO 4 , HPO 4 2− , PO 4 3− ), boric acid anions (B(OH) 4− , B 4 O 7 2− ), and carbonate anions (HCO 3 , CO 3 2− ).

電解質溶液は、上記のカチオン種及びアニオン種で構成される塩を1種類含んでもよく、2種類以上を含んでいてもよい。 The electrolyte solution may contain one type of salt composed of the above-mentioned cation species and anion species, or may contain two or more types.

電解質溶液としては、例えば、KHPO、KHPO、LiHPO、LiHPO、NaHPO、NaHPO、Na、K、LiHCO、NaHCO、KHCO、およびCsHCOの中性緩衝溶液が好ましく用いられる。 As the electrolyte solution, for example , neutral buffer solutions of KH2PO4 , K2HPO4 , LiH2PO4 , Li2HPO4 , NaH2PO4 , Na2HPO4 , Na2B4O7 , K2B4O7 , LiHCO3 , NaHCO3 , KHCO3 , and CsHCO3 are preferably used.

本発明の緩衝液は、上記のカチオン種及びアニオン種で構成される塩以外に、本発明の方法に不利な影響を与えない他の成分、例えば、硫酸塩、塩酸塩、過塩素酸塩を含んでもよい。 The buffer solution of the present invention may contain, in addition to the salts composed of the above-mentioned cationic and anionic species, other components that do not adversely affect the method of the present invention, such as sulfates, hydrochlorides, and perchlorates.

本発明の緩衝液は、中性付近のpHを有し、好ましくはpHが4~10、より好ましくはpHが5~9である。 The buffer solution of the present invention has a pH close to neutral, preferably a pH of 4 to 10, more preferably a pH of 5 to 9.

電解質溶液の濃度は、3M以上であり、好ましくは4M以上である。 The concentration of the electrolyte solution is 3M or more, preferably 4M or more.

陽極及び陰極は、電解質水溶液に接するように、電解槽の内部に配置される。陽極及び陰極は、後述する電源に電気的に接続されている。陽極上では、酸素が発生する。陰極上では、水素が発生する。 The anode and cathode are placed inside the electrolytic cell so that they are in contact with the aqueous electrolyte solution. The anode and cathode are electrically connected to a power source, which will be described later. Oxygen is generated on the anode. Hydrogen is generated on the cathode.

本発明の水電解装置においては、陰極として、従来公知の陰極が用いられる。陰極の材質としては、例えば、Pt、Rh、Ir等の白金族、Ni、Fe等、及びこれらの合金等が挙げられる。陰極の形態としては、平板、メッシュ、スパッタリング等で形成された膜等が挙げられる。 In the water electrolysis device of the present invention, a conventionally known cathode is used as the cathode. Examples of the material of the cathode include platinum group metals such as Pt, Rh, and Ir, Ni, Fe, and alloys thereof. Examples of the cathode form include a flat plate, a mesh, and a film formed by sputtering, etc.

本発明の水電解装置においては、陽極として、従来公知の陽極が用いられる。陽極の材質としては、Ni、Ru、Ir、Ti、Sn、Mo、Ta、Nb、V、Fe、Mn及びこれらの合金並びにこれらの酸化物が挙げられる。陽極の形態としては、平板、メッシュ、スパッタリング等で形成された膜等が挙げられる。 In the water electrolysis device of the present invention, a conventionally known anode is used as the anode. Examples of the material of the anode include Ni, Ru, Ir, Ti, Sn, Mo, Ta, Nb, V, Fe, Mn, and alloys and oxides of these. Examples of the form of the anode include a flat plate, a mesh, and a film formed by sputtering, etc.

陽極及び陰極は、導電性基板の上に、上記の金属、これらの合金、これらの酸化物を担持して形成することができる。導電性基板は、板、ロッド、またはメッシュ状のような種々の形状を有し得る。導電性基板の材料の例は、従来公知の材料、例えば、チタン、アルミニウム、クロムまたはその合金、カーボンを用いることができる。 The anode and cathode can be formed by supporting the above metals, their alloys, or their oxides on a conductive substrate. The conductive substrate can have various shapes such as a plate, a rod, or a mesh. Examples of materials that can be used for the conductive substrate include conventionally known materials such as titanium, aluminum, chromium, or alloys thereof, and carbon.

陽極は、電解質水溶液に接する。また、陰極は電解質水溶液に接する。 The anode is in contact with the aqueous electrolyte solution. The cathode is in contact with the aqueous electrolyte solution.

電源は、陽極及び陰極間に、所定の電位差を印加するために用いられる。電源を用いて陽極及び陰極の間に所定の電位差が印加され、電解質水溶液に含有される水を電気分解する。1.2ボルト以上4.0ボルト以下の電位差が印加されることが望ましい。電源の例は、ポテンシオスタットまたは電池である。 The power supply is used to apply a predetermined potential difference between the anode and the cathode. A predetermined potential difference is applied between the anode and the cathode using the power supply, and the water contained in the electrolyte aqueous solution is electrolyzed. It is desirable to apply a potential difference of 1.2 volts or more and 4.0 volts or less. Examples of power supplies are a potentiostat or a battery.

また、電源としては、太陽電池であってもよい。電源が太陽電池である場合は、太陽電池は、例えば、3組のシリコン電池を含むことができる。 The power source may also be a solar cell. When the power source is a solar cell, the solar cell may include, for example, three silicon cells.

本発明の水電解装置を用いて操業する場合は、60℃~120℃の範囲の温度、好ましくは60~110℃、更に好ましくは80~100℃の範囲の温度で行うことができる。 When operating the water electrolysis device of the present invention, it can be carried out at a temperature in the range of 60°C to 120°C, preferably 60 to 110°C, and more preferably 80 to 100°C.

本発明の水電解装置を用いて、高圧条件下で水電解の操業することもできる。この場合には、120℃程度の温度でも操業が可能となる。
高圧条件下で操業する場合は、高圧に適した従来公知の材料を用いることができる。
The water electrolysis apparatus of the present invention can also be used to perform water electrolysis under high pressure conditions, in which case operation is possible even at a temperature of about 120°C.
When operating under high pressure conditions, conventionally known materials suitable for high pressures can be used.

本発明の水電解装置の非限定的な概略図を図1に示す。
図中、11は電解槽を、12は陽極を、13は陰極を、14は電源を、15は電解質水溶液を、16は隔膜を示す。
A non-limiting schematic diagram of a water electrolysis apparatus of the present invention is shown in FIG.
In the figure, 11 denotes an electrolytic cell, 12 denotes an anode, 13 denotes a cathode, 14 denotes a power source, 15 denotes an aqueous electrolyte solution, and 16 denotes a diaphragm.

以下本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

[実験方法]
本発明における電気化学測定は2電極方式にて実施した。陽極材料としてはイリジウム担持チタンメッシュを用い、陰極には白金電極を使用した。イリジウム担持チタンメッシュは、チタンメッシュ上にイリジウムを電気化学的に析出させることで調製した。具体的には、400μM NaIrCl、2mM H、5mM NaCO・HOから構成される水溶液中に、チタンメッシュを作用極として用いて140mAcm-2の電流密度を63,000秒印加することで作製した(M.A. Petit, V. Plichon, J. Electroanal. Chem. 1998, 444, 247-252.)。陰極材料である白金も同様に電解析出にて準備した。白金メッシュを作用極に用い、10mM HPtClと23mM HClOで構成される水溶液中で、参照電極として用いる飽和カロメル電極に対して-0.1Vの電位を15分間印加した(I. Lee, K.-Y. Chan, D.L. Phillips, Appl. Surf. Sci. 1998, 136, 321-330.)。
電気化学的測定は種々の電解質水溶液を用いて行ったが、それらは以下の試薬等を用いて調整した:HClO、HSO、HPO、HBO、LiCO、NaCO、KCO、CsCO、LiOH、NaOH、KOH、及び/又はCsOH。電解質水溶液の濃度は0.1~7M程度の範囲で変化させ、また反応温度は25 -120℃の範囲とした。
また、以下の試薬で全てSigma-Aldrichから購入した。KOH(99.99%)、HPO(99.99%)、HClO(ACS試薬)
KOHとHPOを混合してpH 7.0のK-リン酸塩を調製した。
[experimental method]
The electrochemical measurement in the present invention was carried out in a two-electrode system. An iridium-supported titanium mesh was used as the anode material, and a platinum electrode was used as the cathode. The iridium-supported titanium mesh was prepared by electrochemically depositing iridium on the titanium mesh. Specifically, the titanium mesh was used as the working electrode in an aqueous solution composed of 400 μM Na 3 Ir 3 Cl 6 , 2 mM H 2 C 2 O 4 , and 5 mM Na 2 CO 3.H 2 O, and a current density of 140 mA cm −2 was applied for 63,000 seconds (MA Petit, V. Plichon, J. Electroanal. Chem. 1998, 444, 247-252.). The platinum, which is the cathode material, was also prepared by electrolytic deposition in the same manner. A platinum mesh was used as the working electrode, and a potential of -0.1 V was applied for 15 minutes in an aqueous solution consisting of 10 mM H2PtCl6 and 23 mM HClO4 against a saturated calomel electrode used as a reference electrode (I. Lee, K.-Y. Chan, DL Phillips, Appl. Surf. Sci. 1998, 136, 321-330.).
Electrochemical measurements were performed using various electrolyte aqueous solutions prepared using the following reagents: HClO4 , H2SO4 , H3PO4, H3BO3, Li2CO3, Na2CO3, K2CO3 , Cs2CO3 , LiOH , NaOH , KOH , and /or CsOH . The electrolyte aqueous solutions were varied in concentration from 0.1 to 7 M , and the reaction temperatures were in the range of 25-120°C.
The following reagents were all purchased from Sigma-Aldrich: KOH (99.99%), H 3 PO 4 (99.99%), HClO 4 (ACS reagent).
K-phosphate was prepared by mixing KOH and H3PO4 at pH 7.0.

[実施例1]
陰極及び陽極反応のため、夫々、Pt及びIrOのモデル電極を用いて定電流密度で25℃において触媒試験を行った。得られた電圧プロファイルを図2に示す。電極の幾何学的表面積は1.0cmで、電極間の距離は1cmに保った。
0.1MHClO及びKOHの酸性及びアルカリ性溶液中で必要とされるiRフリー電圧は、10mAcm-2でそれぞれ約1.47及び1.50Vであったが、pH7の飽和K-リン酸塩溶液中で同じ電流密度を達成するためには1.57Vの電圧が必要であった。
[Example 1]
Catalytic tests were carried out at 25 °C with constant current density using model electrodes of Pt and IrOx for cathodic and anodic reactions, respectively, and the obtained voltage profiles are shown in Figure 2. The geometric surface area of the electrodes was 1.0 cm2 and the distance between the electrodes was kept at 1 cm.
The iR-free voltages required in acidic and alkaline solutions of 0.1 M HClO4 and KOH were approximately 1.47 and 1.50 V at 10 mA cm - 2, respectively, whereas a voltage of 1.57 V was required to achieve the same current density in a saturated K-phosphate solution at pH 7.

[実施例2]
種々の電解質中で水電解を行った結果を図3に示す。図3は、IrO/Tiメッシュ及びPt/Ptメッシュをそれぞれ陽極及び陰極として用いて、10mAcm-2の定電流密度での2電極構成における電圧プロファイルの結果を表示する。測定はpH7の飽和K-リン酸塩水溶液、0.1M KOH及び0.1M HClOを電解質として用い、80℃の反応温度にて実施した。電極の幾何学的表面積は1.0cmで、電極間の距離は1cmに保った。なお、以降の図3、4、5において表示電圧はiRフリーではなく、印加全電圧を表示している。
10mAcm-2の電流密度に到達するため、80℃の酸性及びアルカリ性pH溶液において反応開始直後は約1.58Vおよび1.50Vが必要であり、時間の経過に伴ってその必要電圧は大きくなっていった。これに対して、80℃の飽和K-リン酸塩溶液で必要であった電圧は、反応開始直後は1.47V程度であった。80℃の飽和K-リン酸塩溶液においても時間経過とともに必要電圧は大きくなったが、その増大度合いは0.1M KOH及び0.1M HClOに比べて緩やかであった。結果として、本測定においては測定開始6時間後において、0.1M KOH及び0.1M HClOではそれぞれ1.70Vを超える電圧印加が必要であったのに対し、飽和K-リン酸塩溶液では1.55V程度のみで10mAcm-2が維持された。
[Example 2]
The results of water electrolysis in various electrolytes are shown in Figure 3. Figure 3 displays the voltage profile results in a two-electrode configuration at a constant current density of 10 mA cm -2 using IrO x /Ti mesh and Pt/Pt mesh as anode and cathode, respectively. Measurements were performed at a reaction temperature of 80 °C using saturated K-phosphate aqueous solution at pH 7, 0.1 M KOH and 0.1 M HClO 4 as electrolytes. The geometric surface area of the electrodes was 1.0 cm 2 and the distance between the electrodes was kept at 1 cm. Note that in the following Figures 3, 4 and 5, the voltage displayed is not iR-free but the total applied voltage.
In order to reach a current density of 10 mA cm −2 , approximately 1.58 V and 1.50 V were required immediately after the start of the reaction in the acidic and alkaline pH solutions at 80 ° C., and the required voltage increased with time. In contrast, the voltage required in the saturated K-phosphate solution at 80 ° C. was about 1.47 V immediately after the start of the reaction. The required voltage also increased over time in the saturated K-phosphate solution at 80 ° C., but the increase was slower than in 0.1 M KOH and 0.1 M HClO 4. As a result, in this measurement, 6 hours after the start of the measurement, voltages of more than 1.70 V were required in 0.1 M KOH and 0.1 M HClO 4 , respectively, while 10 mA cm −2 was maintained with only about 1.55 V in the saturated K-phosphate solution.

[実施例3]
種々の電解質中で水電解を行った結果を図4に示す。図4は、IrO/Tiメッシュ及びPt/Ptメッシュをそれぞれ陽極及び陰極として用いて、10mAcm-2の定電流密度での2電極構成における電圧プロファイルの結果を表示する。測定はpH7の飽和K-リン酸塩水溶液、7MHClOを電解質として用い、80および100℃の反応温度にて実施した。電極の幾何学的表面積は1.0cmで、電極間の距離は1cmに保った。
7M HClOを用いた場合、10mAcm-2の電流密度に到達するために必要となる電圧は、反応初期では1.27V程度であったが、時間と共に増大し、6時間後には1.5V程度となった。一方でpH7の飽和K-リン酸塩水溶液を用いた場合に必要であった電圧は、測定開始直後は1.48Vであり、時間と共にそれは増加するもののその程度は7MHClOに比べて緩やかであり、6時間経過時点で約1.55Vであった。
なお飽和K-リン酸塩水溶液を用いた場合に、高密度溶液の沸点上昇のため100℃の反応温度に到達することが可能であった。その反応温度において10mAcm-2の電流密度を得るために必要であった電圧は、測定開始直後は1.44Vであり、時間と共にそれは増加するもののその程度は緩やかで、6時間経過時点で約1.5Vであった。
[Example 3]
The results of water electrolysis in various electrolytes are shown in Figure 4, which displays the voltage profile results in a two-electrode configuration at a constant current density of 10 mA cm -2 using IrOx /Ti mesh and Pt/Pt mesh as anode and cathode, respectively. The measurements were carried out at reaction temperatures of 80 and 100 °C using saturated K-phosphate aqueous solution of pH 7, 7 M HClO4 as electrolyte. The geometric surface area of the electrodes was 1.0 cm2 and the distance between the electrodes was kept at 1 cm.
When 7M HClO4 was used, the voltage required to reach a current density of 10 mA cm -2 was about 1.27 V at the beginning of the reaction, but increased with time, reaching about 1.5 V after 6 hours. On the other hand, when a saturated K-phosphate aqueous solution of pH 7 was used, the voltage required was 1.48 V immediately after the start of the measurement, and although it increased with time, the increase was slower than that of 7M HClO4, reaching about 1.55 V after 6 hours.
When a saturated K-phosphate aqueous solution was used, it was possible to reach a reaction temperature of 100° C. due to the rise in the boiling point of the high-density solution. The voltage required to obtain a current density of 10 mA cm −2 at that reaction temperature was 1.44 V immediately after the start of the measurement, and although it increased over time, the increase was gradual, reaching approximately 1.5 V after 6 hours.

[実施例4]
起動-シャットダウンのサイクルテスト
起動-シャットダウンのサイクルテストを行った結果を図5に示す。図5は、10mAcm-2の定電流密度と開回路条件(それぞれ「10mA」と「off」として表示)での2電極構成における電圧プロファイルを示す。ここで、IrO/TiメッシュとPt/Ptメッシュをそれぞれ陽極と陰極として用いた。80℃でpH7の飽和K-リン酸塩水溶液及び7.0MのHClOを電解質として用いた。電極の幾何学的表面積は1cmであり、電極間の距離は1cmに保った。
図5中の時間「0」は、10mAcm-2でクロノアンペロメトリー試験を行った後、初めて電流印加をオフにしたタイミング(7M HClO中では6時間、K-リン酸飽和溶液中では12時間)に設定した。
電流印加を止めて1時間経過したのち再度10mAcm-2を印加した際に、7MHClO中では必要となる電圧は1.5V付近であったが、それは時間の経過とともに大きく上昇し、約1.61Vに到達した。再度電流を止め再び10mAcm-2を通じると、初期は1.6V程度の電圧が必要であったものが時間の経過とともに再度大きく上昇し、1.67V程度まで増加した。これに対して飽和K-リン酸飽和溶液中では電流印加の開始・停止サイクルによらず電位は一定であり、およそ1.56Vであった。
[Example 4]
Startup-shutdown cycle test
A start-up-shutdown cycle test was performed and the results are shown in Figure 5. Figure 5 shows the voltage profile in a two-electrode configuration at a constant current density of 10 mA cm -2 and open circuit conditions (denoted as "10 mA" and "off", respectively), where IrOx /Ti mesh and Pt/Pt mesh were used as the anode and cathode, respectively. Saturated aqueous K-phosphate solution at pH 7 and 7.0 M HClO4 at 80 °C were used as electrolytes. The geometric surface area of the electrodes was 1 cm2 and the distance between the electrodes was kept at 1 cm.
Time "0" in FIG. 5 was set as the first time the current application was turned off after the chronoamperometry test at 10 mA cm −2 (6 hours in 7 M HClO 4 and 12 hours in K-phosphate saturated solution).
When 10 mA cm -2 was applied again one hour after the current application was stopped, the voltage required in 7 M HClO4 was around 1.5 V, but this increased significantly over time, reaching approximately 1.61 V. When the current was stopped again and 10 mA cm -2 was passed again, a voltage of around 1.6 V was initially required, but this increased again over time, reaching approximately 1.67 V. In contrast, in a saturated K-phosphate saturated solution, the potential was constant, at approximately 1.56 V, regardless of the start and stop cycles of current application.

Claims (5)

pHが4~10の緩衝液中において、60℃~120℃の範囲の温度で水を電気分解する方法であって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該方法。
A method for electrolyzing water in a buffer solution having a pH of 4 to 10 at a temperature in the range of 60°C to 120°C, comprising the steps of:
the buffer solution is comprised of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphate, borate, and carbonate, the electrolyte solution having a concentration of 3M or greater.
80℃~100℃の範囲の温度で水を電気分解する、請求項1に記載の方法。 The method according to claim 1, in which water is electrolyzed at a temperature in the range of 80°C to 100°C. 前記電解質溶液の濃度が4M以上である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the concentration of the electrolyte solution is 4M or more. 前記カチオン種が、リチウム、ナトリウム、カリウム、セシウム又はルビジウムのカチオンである、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the cationic species is a lithium, sodium, potassium, cesium or rubidium cation. pHが4~10の緩衝液中において、60℃~120℃の範囲の温度で水を電気分解するシステムであって、
前記緩衝液は、アルカリ金属のカチオン及びアルカリ土類金属のカチオンからなる群から選択される少なくとも1種のカチオン種、及び、リン酸塩、ホウ酸塩及び炭酸塩からなる群から選択される少なくとも1つのアニオン種を含む電解質溶液から構成され、前記電解質溶液の濃度が3M以上である、該システム。
A system for electrolyzing water in a buffer solution having a pH of 4 to 10 at a temperature in the range of 60°C to 120°C, comprising:
The buffer solution is comprised of an electrolyte solution containing at least one cationic species selected from the group consisting of alkali metal cations and alkaline earth metal cations, and at least one anionic species selected from the group consisting of phosphate, borate, and carbonate, and the electrolyte solution has a concentration of 3M or greater.
JP2020012202A 2020-01-29 2020-01-29 Neutral pH water electrolysis method and system Active JP7468888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012202A JP7468888B2 (en) 2020-01-29 2020-01-29 Neutral pH water electrolysis method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012202A JP7468888B2 (en) 2020-01-29 2020-01-29 Neutral pH water electrolysis method and system

Publications (2)

Publication Number Publication Date
JP2021116468A JP2021116468A (en) 2021-08-10
JP7468888B2 true JP7468888B2 (en) 2024-04-16

Family

ID=77174188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012202A Active JP7468888B2 (en) 2020-01-29 2020-01-29 Neutral pH water electrolysis method and system

Country Status (1)

Country Link
JP (1) JP7468888B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538360A (en) 2000-04-13 2004-12-24 エラン・フアルマ・インターナシヨナル・リミテツド Improved electrolytic cell
JP2006176879A (en) 2004-12-20 2006-07-06 General Electric Co <Ge> Electrolyte composition for electrolytic hydrogen production method, and related sstem
JP2011179109A (en) 2010-02-08 2011-09-15 Sharp Corp Apparatus for producing hydrogen and method for producing hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538360A (en) 2000-04-13 2004-12-24 エラン・フアルマ・インターナシヨナル・リミテツド Improved electrolytic cell
JP2006176879A (en) 2004-12-20 2006-07-06 General Electric Co <Ge> Electrolyte composition for electrolytic hydrogen production method, and related sstem
JP2011179109A (en) 2010-02-08 2011-09-15 Sharp Corp Apparatus for producing hydrogen and method for producing hydrogen

Also Published As

Publication number Publication date
JP2021116468A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6869234B2 (en) Redox flow battery with carbon dioxide based redox pair
CN102471900B (en) For being produced the device of hydrogen when needed from dry negative electrode by electrolytic aqueous solution
Gyenge Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells
CA2928790C (en) Anode for alkaline water electrolysis
US9062382B2 (en) Electrolytic cells and methods for the production of ammonia and hydrogen
KR20080025170A (en) Hydrogen generation system
EP3391450B1 (en) Regenerative fuel cells
EP3311438B1 (en) High-power redox flow battery based on the criii/crvi redox couple and its mediated regeneration
WO2015136158A1 (en) Aqueous all-copper redox flow battery
AU2007279151A1 (en) Water electrolysis device
JP2017020053A (en) Water electrolysis device and energy storage-feed system using the same
CN104285328A (en) Regenerative fuel cells
EP3641041A1 (en) Carbon electrode for dichromate redox flow batteries
JP2022541385A (en) Apparatus for the production of hydrogen
CN110791773A (en) Method and device for producing hydrogen by electrolyzing water
JP7468888B2 (en) Neutral pH water electrolysis method and system
US4501803A (en) Porous gas diffusion-electrode
Chang et al. An investigation of thermally prepared electrodes for oxygen reduction in alkaline solution
CN1997774A (en) Method for the production of nickel oxide surfaces having increased conductivity
Goor Influence of temperature and pH on the hydrogen evolution reaction (HER) on platinum
TWI660779B (en) Process for producing an electrocatalyst usable in water oxidation
RU2573558C2 (en) Coating for metal materials of elements of electrolytic cell
CN117616152A (en) Method for generating hydrogen by decoupling water electrolysis
Rupisan Ionomer-coated & tungsten-based nanoarray materials for proton exchange membrane electrolysis
KR20240034845A (en) Electrolyzer system and electrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240328

R150 Certificate of patent or registration of utility model

Ref document number: 7468888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150