JP2017020053A - Water electrolysis device and energy storage-feed system using the same - Google Patents
Water electrolysis device and energy storage-feed system using the same Download PDFInfo
- Publication number
- JP2017020053A JP2017020053A JP2013215941A JP2013215941A JP2017020053A JP 2017020053 A JP2017020053 A JP 2017020053A JP 2013215941 A JP2013215941 A JP 2013215941A JP 2013215941 A JP2013215941 A JP 2013215941A JP 2017020053 A JP2017020053 A JP 2017020053A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- hydrogen
- water
- intermediate product
- water electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B5/00—Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/16—Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
本発明は、水を電気分解して水素と酸素を発生する水電気分解装置に関する。 The present invention relates to a water electrolysis apparatus that generates hydrogen and oxygen by electrolyzing water.
近年、地球において資源の枯渇と環境破壊は大きな問題とされており、再生可能エネルギーによるゼロエミッション型社会の構築が求められている。風力発電および太陽光発電などの再生可能エネルギー発電所は発電時にほとんど二酸化炭素を放出しないため、今後の導入の大幅な伸びが予想される。またエネルギーの地産地消に適した発電所として、離島や山間部、僻地など、これまでエネルギーコストの高かった地域への導入が見込まれている。しかしながら、再生可能エネルギーは不安定であるため、電力需要に応じた供給が難しい。これを解決するために、一般的には火力発電所や揚水発電による電力需給ギャップの補填が行われているが、離島や山間部に調整用の火力発電所や揚水発電所を設置することは規模やコストの点から難しい。そこで、大規模に電力を貯蔵できる水素および蓄電池が注目されている。 In recent years, depletion of resources and destruction of the environment are regarded as major problems on the earth, and there is a demand for the construction of a zero-emission society using renewable energy. Renewable energy power plants, such as wind and solar power generation, emit almost no carbon dioxide during power generation and are expected to grow significantly in the future. In addition, power plants suitable for local production and consumption of energy are expected to be introduced to remote islands, mountainous areas, remote areas such as remote areas where energy costs have been high. However, since renewable energy is unstable, it is difficult to supply it according to power demand. In order to solve this problem, the power supply / demand gap is generally compensated by thermal power plants and pumped-storage power generation, but it is not possible to install thermal power plants and pumped-storage power plants for adjustment on remote islands and mountainous areas. Difficult in terms of scale and cost. Therefore, hydrogen and storage batteries that can store electric power on a large scale have attracted attention.
電力貯蔵用の蓄電池に関しては、鉛蓄電池、リチウムイオン二次電池、NAS電池、レドックスフロー電池など構成部材や運転方法の異なる様々な種類が開発されており、家庭用、発電所用、事業所用などの貯蔵規模や瞬停対策、系統向け電力平準化、ロードレベリング(夜間電力利用)などの用途によって、それぞれに適した装置構成、電気容量のシステムが提案されている。しかしながら、容量当たりのコスト高、資源問題、大規模化の難しさなどから揚水発電に匹敵する規模までには至っていない。 Regarding storage batteries for power storage, various types of components and operation methods such as lead storage batteries, lithium ion secondary batteries, NAS batteries, and redox flow batteries have been developed, such as home use, power plant use, and business use use. Depending on applications such as storage scale, measures against instantaneous interruption, power leveling for systems, and load leveling (use of nighttime power), a system with an appropriate device configuration and electric capacity has been proposed. However, due to the high cost per capacity, resource problems, difficulty in scaling up, etc., it has not reached a scale comparable to pumped-storage power generation.
一方、特許文献1等の水電気分解によって製造した水素を利用して電力を貯蔵するシステムでは、比較的簡便に電力を水素エネルギーに変換して貯蔵することが可能であり、また資源が無尽蔵に存在することから再び注目されている。ただし、電力利用を前提にした場合、系統電力などに比べ競争力を保つには、電気分解装置の設備コストの低減が課題となる。従来の水電解装置は電極で発生する水素ガスと酸素ガスの混合を防ぐため、電極間はガス透過性の低い隔壁で完全に隔離されており、配管やタンクなどを含めた装置全体に関しても、水素ラインと酸素ラインの二系統に完全に分離されている。隔壁材料は水電解装置の設備コストの中でも最大の割合を有しており、隔壁コストの低減が強く求められている。また補器類の簡素化などのためにも、水素ラインと酸素ラインの統合が行なえるとなおよい。 On the other hand, in a system for storing electric power using hydrogen produced by water electrolysis such as Patent Document 1, it is possible to convert electric power into hydrogen energy and store it relatively easily, and resources are inexhaustible. It is attracting attention again because it exists. However, when it is assumed that power is used, in order to maintain competitiveness compared to system power, etc., reduction of the equipment cost of the electrolyzer is an issue. In order to prevent the mixing of hydrogen gas and oxygen gas generated at the electrodes in the conventional water electrolysis device, the electrodes are completely separated by a low-gas-permeable partition wall, and the entire device including piping and tanks is also It is completely separated into two lines, hydrogen line and oxygen line. The partition wall material has the largest proportion of the equipment cost of the water electrolysis apparatus, and the reduction of the partition wall cost is strongly demanded. In addition, it is better that the hydrogen line and the oxygen line can be integrated in order to simplify the auxiliary devices.
上述したように、従来の水電解装置の隔壁には主にイオン交換膜が利用されており、装置の高コスト化の主因となっている。隔壁を多孔膜とする製品も存在するが、十分な低ガス透過性と導電性を実現するには、高度な技術が必要となり低コスト化は困難である。これに対して、電極から水素ガスと酸素ガスが異なるタイミングで発生する水電気分解装置を実現できれば、水素ガスと酸素ガスの混合を無視できるため、上述した隔壁材料や補器類などの制約を受けず、装置の簡素化および低コスト化が可能となる。 As described above, ion exchange membranes are mainly used for the partition walls of the conventional water electrolysis apparatus, which is the main cause of the cost increase of the apparatus. There are products that use a porous membrane as a partition wall, but advanced technology is required to achieve sufficient low gas permeability and conductivity, and cost reduction is difficult. On the other hand, if a water electrolysis device that generates hydrogen gas and oxygen gas at different timings from the electrode can be realized, the mixing of hydrogen gas and oxygen gas can be ignored. Therefore, the device can be simplified and the cost can be reduced.
本発明は、電極から水素ガスと酸素ガスが異なるタイミングで発生する水電気分解装置を提供することを目的とする。 An object of the present invention is to provide a water electrolysis apparatus in which hydrogen gas and oxygen gas are generated from electrodes at different timings.
上記課題を解決するため、本発明の要旨は以下である。 In order to solve the above problems, the gist of the present invention is as follows.
水を電気分解して水素と酸素を発生する水電気分解装置であって、酸化還元反応を繰り返す中間生成物を含む電解質水溶液と、水を電気分解する電解電極と、中間生成物の酸化還元反応を行う中間電極と、これらを収容する電解槽とを備え、中間電極および中間生成物の水素発生電位よりも中間生成物の酸化還元電位が高く、かつ、中間生成物の酸化還元電位が電解電極の水素発生電位よりも低いことを特徴とする。 A water electrolysis apparatus that electrolyzes water to generate hydrogen and oxygen, an aqueous electrolyte solution containing an intermediate product that repeats a redox reaction, an electrolytic electrode that electrolyzes water, and a redox reaction of the intermediate product An intermediate electrode and an electrolytic cell for accommodating these, the intermediate product has a higher redox potential than the hydrogen generation potential of the intermediate product and the intermediate product, and the intermediate product has a higher redox potential than the electrolytic electrode. It is characterized by being lower than the hydrogen generation potential.
本発明によれば、電極から水素ガスと酸素ガスが異なるタイミングで発生する水電気分解システムを提供することができる。 According to the present invention, it is possible to provide a water electrolysis system in which hydrogen gas and oxygen gas are generated from electrodes at different timings.
図1に本発明の実施形態の一つである二極式の水電気分解装置101の構成の一例を示す。本実施形態の水電気分解装置101は、電解質水溶液107が収容された電解槽112の内部に水を電気分解する電解電極103と、中間生成物の酸化還元反応を行う中間電極102が設置されている。中間電極102と電解電極103の間には発生ガスの逆反応を防止するために隔壁104が設けられている。電解質水溶液107には酸化還元反応を繰り返す中間生成物が含まれている。 FIG. 1 shows an example of the configuration of a bipolar water electrolyzer 101 that is one embodiment of the present invention. In the water electrolysis apparatus 101 of the present embodiment, an electrolytic electrode 103 that electrolyzes water and an intermediate electrode 102 that performs an oxidation-reduction reaction of an intermediate product are installed inside an electrolytic cell 112 that contains an aqueous electrolyte solution 107. Yes. A partition wall 104 is provided between the intermediate electrode 102 and the electrolytic electrode 103 to prevent a reverse reaction of the generated gas. The aqueous electrolyte solution 107 contains an intermediate product that repeats a redox reaction.
このような構成を備える電気分解装置において、中間電極102および中間生成物の水素発生電位よりも中間生成物の酸化還元電位が高く、かつ、中間生成物の酸化還元電位が電解電極103の水素発生電位よりも低い関係にすることによって、電解電極103から水素ガスと酸素ガスを異なるタイミングで発生させることができる。 In the electrolysis apparatus having such a configuration, the intermediate product 102 has a higher redox potential than the intermediate product 102 and the intermediate product, and the intermediate product has a higher redox potential than the intermediate electrode 102. By making the relationship lower than the potential, hydrogen gas and oxygen gas can be generated from the electrolytic electrode 103 at different timings.
一般的な水電気分解装置では電極間に電圧をかけて水の電気分解を行うと、式(1)、式(2)の反応により陽極から酸素が発生し、陰極から水素が発生する。
陽極:2H2O → O2+4H++4e- ・・・(1)
陰極:2H++2e- → H2 ・・・(2)
In a general water electrolyzer, when water is electrolyzed by applying a voltage between electrodes, oxygen is generated from the anode and hydrogen is generated from the cathode by the reactions of the formulas (1) and (2).
Anode: 2H 2 O → O 2 + 4H + + 4e − (1)
Cathode: 2H + + 2e − → H 2 (2)
これに対して、本実施形態の水電気分解装置101では、電源108を接続して中間電極102と電解電極103の間に所定の電圧を印加すると、両電極間に電流が流れて電気化学反応が進行する。まず、電解電極103の表面では式(1)の酸化反応により水が酸化されて酸素ガス109が発生する。一方、中間電極102の表面では還元反応が進行する。この際、中間電極102および中間生成物の水素発生電位よりも中間生成物の酸化還元電位が高いため、中間電極102の表面では式(2)の還元反応ではなく、中間生成物の酸化体105が還元体106に還元される還元反応が進行する。例えば、中間生成物として亜鉛を用いた場合には以下の式(3)の反応が進行する。ここで、亜鉛イオン(Zn2+)が酸化体105であり、亜鉛(Zn)が還元体106である。
中間電極:Zn2++2e- → Zn・・・(3)
On the other hand, in the water electrolysis apparatus 101 of this embodiment, when a predetermined voltage is applied between the intermediate electrode 102 and the electrolytic electrode 103 by connecting the power source 108, an electric current flows between the two electrodes and the electrochemical reaction occurs. Progresses. First, on the surface of the electrolytic electrode 103, water is oxidized by the oxidation reaction of the formula (1) to generate oxygen gas 109. On the other hand, the reduction reaction proceeds on the surface of the intermediate electrode 102. At this time, since the oxidation-reduction potential of the intermediate product is higher than the hydrogen generation potential of the intermediate electrode 102 and the intermediate product, the intermediate product 102 is not the reduction reaction of the formula (2) but the oxidized product 105 of the intermediate product. The reduction reaction in which is reduced to the reductant 106 proceeds. For example, when zinc is used as an intermediate product, the reaction of the following formula (3) proceeds. Here, zinc ions (Zn 2+ ) are the oxidant 105, and zinc (Zn) is the reductant 106.
Intermediate electrode: Zn 2+ + 2e − → Zn (3)
所定量の中間生成物の酸化体105が還元体106に変化した後、水電気分解装置101に負荷110を接続するか電極間を短絡させると、中間生成物の酸化還元電位が電解電極103の水素発生電位よりも低い関係にある場合では中間電極102の表面で酸化反応、電解電極103の表面で還元反応が進行する。このとき、中間電極102表面では還元体106が酸化体105に戻る酸化反応が進行する。例えば、中間生成物として亜鉛を用いた場合には以下の式(4)の反応が進行する。
中間電極:Zn → Zn2++2e-・・・(4)
After the predetermined amount of the intermediate product oxidant 105 is changed to the reductant 106, when the load 110 is connected to the water electrolysis apparatus 101 or the electrodes are short-circuited, the redox potential of the intermediate product is reduced to that of the electrolytic electrode 103. When the relationship is lower than the hydrogen generation potential, an oxidation reaction proceeds on the surface of the intermediate electrode 102 and a reduction reaction proceeds on the surface of the electrolytic electrode 103. At this time, an oxidation reaction in which the reductant 106 returns to the oxidant 105 proceeds on the surface of the intermediate electrode 102. For example, when zinc is used as an intermediate product, the reaction of the following formula (4) proceeds.
Intermediate electrode: Zn → Zn 2+ + 2e − (4)
還元体106から放出された電子は、中間電極102から負荷110を通り、電解電極103に流れ、電解電極103の表面では式(2)の還元反応により水素ガス111が発生する。 Electrons emitted from the reductant 106 flow from the intermediate electrode 102 through the load 110 to the electrolytic electrode 103, and hydrogen gas 111 is generated on the surface of the electrolytic electrode 103 by the reduction reaction of formula (2).
このように、本実施形態の水電気分解装置では、水電気分解装置への電圧印加時(充電時)には酸素ガスのみが発生し、水電気分解装置に負荷あるいは短絡回路に接続した放電時には水素ガスのみが発生する。これは、酸化体105から還元体106および還元体106から酸化体105への変化を繰り返す中間生成物を利用して、水電気分解装置に入力した電力を中間生成物の還元体106として一旦貯蔵することで、電解槽内部で酸素もしくは水素のいずれか一方のガスのみを任意の時間に発生させることが可能となる。更には、本実施形態の水電気分解装置では、電力入力時に中間生成物の還元反応により電力を還元体として貯蔵しておき、その後、電極間を負荷に接続することで電力を取り出せることから充放電機能を備えた水電気分解装置となる。 As described above, in the water electrolysis apparatus of the present embodiment, only oxygen gas is generated when a voltage is applied to the water electrolysis apparatus (during charging), and during discharge when the water electrolysis apparatus is connected to a load or a short circuit. Only hydrogen gas is generated. This is because an intermediate product that repeats changes from the oxidant 105 to the reductant 106 and from the reductant 106 to the oxidant 105 is used, and the electric power input to the water electrolysis apparatus is temporarily stored as the reductant 106 of the intermediate product. By doing so, it becomes possible to generate only one gas of oxygen or hydrogen at an arbitrary time inside the electrolytic cell. Furthermore, in the water electrolysis apparatus of the present embodiment, the power is stored as a reductant by the reduction reaction of the intermediate product when power is input, and then the power can be taken out by connecting the electrodes to a load. A water electrolysis apparatus having a discharge function is obtained.
中間生成物は、水素発生電位よりも酸化還元電位が高ければよい。中間生成物の種類は、有機分子や金属錯体などの水溶性分子でも利用可能だが、酸化体と還元体がともに水溶性の場合、対極で逆反応が進行するため望ましくない。そこで、特に入力電力を貯蔵する役目を果たす還元体106が固体であることが望ましい。特に、金属は還元体の密度が高く、中間電極102の表面に安定に固定できるため、より望ましい。酸化還元電位が水素発生電位より高い金属としては、亜鉛、鉄、鉛、錫、ニッケルおよびこれらの合金が挙げられるが、副反応としての水素発生や環境問題などから、亜鉛を用いることが望ましい。 The intermediate product only needs to have a redox potential higher than the hydrogen generation potential. The intermediate product can be used as a water-soluble molecule such as an organic molecule or a metal complex. However, when both the oxidant and the reductant are water-soluble, the reverse reaction proceeds at the counter electrode, which is not desirable. Therefore, it is desirable that the reductant 106 that plays a role of storing input power is solid. In particular, a metal is more desirable because the density of the reductant is high and can be stably fixed to the surface of the intermediate electrode 102. Examples of the metal whose oxidation-reduction potential is higher than the hydrogen generation potential include zinc, iron, lead, tin, nickel, and alloys thereof. However, it is desirable to use zinc because of hydrogen generation as a side reaction and environmental problems.
中間生成物の酸化還元反応を行なう中間電極102としては、水素発生電位が中間生成物の酸化還元電位よりも低く、析出した金属との密着性が高ければよい。この際、水素発生過電圧が小さいことが好ましい。また、中間電極102には中間生成物の還元時に金属イオンが析出することから、析出金属との密着性が高いことが好ましい。析出金属との密着性の観点からは中間生成物の金属と同じ金属材料を用いることが好ましい。中間生成物として亜鉛を用いる場合には、中間電極102は亜鉛電極を用いることが望ましいが、亜鉛以外に銅、金、炭素を用いることも可能である。 The intermediate electrode 102 that performs the oxidation-reduction reaction of the intermediate product only needs to have a hydrogen generation potential lower than the oxidation-reduction potential of the intermediate product and high adhesion to the deposited metal. At this time, the hydrogen generation overvoltage is preferably small. In addition, since metal ions are deposited on the intermediate electrode 102 during the reduction of the intermediate product, it is preferable that the adhesion with the deposited metal is high. From the viewpoint of adhesion to the deposited metal, it is preferable to use the same metal material as the intermediate product metal. When zinc is used as an intermediate product, it is desirable to use a zinc electrode as the intermediate electrode 102, but it is also possible to use copper, gold, or carbon in addition to zinc.
電解質水溶液107は中間生成物である金属イオンを含む水溶液であればよい。特に、金属イオンの溶解度が高く、導電性の高い水溶液であることが望ましい。電解質水溶液107中の金属イオンの濃度に関しては、高濃度になるほど電力の貯蔵量が増えるため好ましいが、高濃度になると電解質水溶液の導電度が低下するため、0.01〜10モル/リットル程度が望ましい。また、導電度の向上のため金属イオン以外のイオンを加えても良い。一般的に水電解で用いられるアルカリ性の電解質水溶液を使用しても良いが、めっき液などの金属イオンを含む水溶液を使用してもよい。 The aqueous electrolyte solution 107 may be an aqueous solution containing metal ions that are intermediate products. In particular, an aqueous solution having high solubility of metal ions and high conductivity is desirable. Regarding the concentration of metal ions in the aqueous electrolyte solution 107, the higher the concentration, the greater the amount of stored power, which is preferable. However, the higher the concentration, the lower the conductivity of the aqueous electrolyte solution, so about 0.01 to 10 mol / liter. desirable. Further, ions other than metal ions may be added to improve conductivity. In general, an alkaline electrolyte aqueous solution used in water electrolysis may be used, but an aqueous solution containing metal ions such as a plating solution may be used.
電解電極103としては、水素発生電位が中間生成物の酸化還元電位よりも高くなるものを使用する。二極式の水電気分解装置101の構成の場合には、水素発生過電圧および酸素発生過電圧が小さい材料であることが好ましく、白金、ロジウム、ニッケルのいずれか1種以上を含む金属材料が挙げられる。電極の形状は電気化学反応を促進するために高比表面積であることが望ましい。そこで、多孔体、メッシュ、パンチングメタル、エキスパンドメタル、不織布などの形状が好ましい。さらに粗化もしくは高比表面積めっきを施してもよい。 As the electrolytic electrode 103, one having a hydrogen generation potential higher than the oxidation-reduction potential of the intermediate product is used. In the case of the configuration of the bipolar water electrolysis apparatus 101, a material having a small hydrogen generation overvoltage and oxygen generation overvoltage is preferable, and a metal material containing at least one of platinum, rhodium, and nickel can be used. . It is desirable that the electrode has a high specific surface area in order to promote an electrochemical reaction. Therefore, shapes such as a porous body, a mesh, a punching metal, an expanded metal, and a nonwoven fabric are preferable. Further, roughening or high specific surface area plating may be applied.
本実施形態の水電気分解装置では、任意の時間に水素ガスのみを発生させることが可能となるため、隔壁104は低いガス透過性を必要としない。発生したガスの逆反応を防ぐため、隔壁104は必要であるが、多孔性の膜でよい。具体的には、めっき用もしくは鉛蓄電池などの蓄電池用に用いられる低コストの隔壁を用いることが可能である。 In the water electrolysis apparatus of the present embodiment, only hydrogen gas can be generated at an arbitrary time, so that the partition wall 104 does not require low gas permeability. In order to prevent the reverse reaction of the generated gas, the partition wall 104 is necessary, but may be a porous film. Specifically, it is possible to use a low-cost partition wall used for plating or a storage battery such as a lead storage battery.
図1の水電気分解装置101は二極式であるが、電解電極103を水素発生極と酸素発生極に分けても良い。図2に三極式の水電気分解装置201の構成の一例を示す。電解質水溶液208が収容された電解槽214の内部に中間生成物の酸化還元反応を行う中間電極202、その一方の面側に水の酸化反応で酸素を発生する酸素発生用電解電極203、他方の面側に水の還元反応によって水素を発生する水素発生用電解電極204が設置される。図1と同様に各電極間には発生ガスの逆反応を防止するために隔壁205が設けられている。また、電解質水溶液208には、還元体206と酸化体207の酸化還元反応を繰り返す中間生成物が含まれている。図2の水電気分解装置201には、電源209と負荷210が接続されており、それぞれ接続スイッチ211、212を切り替えることで接続が切り替えられる構成となっている。電源209と接続する場合には、接続スイッチ212をオン、接続スイッチ211をオフとする。負荷210と接続する場合には、接続スイッチ211をオン、接続スイッチ212をオフとする。電源209と接続して中間電極202と酸素発生用電解電極203の間に電圧を印加すると、図1と同様に中間電極202の表面では中間生成物の還元反応が進行し、酸素発生電解電極203の表面では式(1)の反応によって酸素213が発生する。一方、所定量の還元体207が貯蔵された状態で中間電極202と水素発生用電解電極204を負荷209で接続すると、図1と同様に中間電極202の表面では中間生成物の酸化反応が進行し、水素発生電解電極204の表面では式(2)の反応によって水素214が発生する。 Although the water electrolysis apparatus 101 of FIG. 1 is a bipolar type, the electrolytic electrode 103 may be divided into a hydrogen generation electrode and an oxygen generation electrode. FIG. 2 shows an example of the configuration of the tripolar water electrolyzer 201. An intermediate electrode 202 that performs an oxidation-reduction reaction of an intermediate product in an electrolytic cell 214 in which an aqueous electrolyte solution 208 is accommodated, an oxygen-generating electrolytic electrode 203 that generates oxygen by water oxidation reaction on one side, and the other An electrolytic electrode 204 for hydrogen generation that generates hydrogen by a reduction reaction of water is installed on the surface side. As in FIG. 1, a partition wall 205 is provided between the electrodes in order to prevent the reverse reaction of the generated gas. Further, the electrolyte aqueous solution 208 contains an intermediate product that repeats the redox reaction of the reductant 206 and the oxidant 207. A power source 209 and a load 210 are connected to the water electrolysis apparatus 201 in FIG. 2, and the connection is switched by switching the connection switches 211 and 212 respectively. When connecting to the power source 209, the connection switch 212 is turned on and the connection switch 211 is turned off. When connecting to the load 210, the connection switch 211 is turned on and the connection switch 212 is turned off. When a voltage is applied between the intermediate electrode 202 and the oxygen generating electrolytic electrode 203 by connecting to the power source 209, the reduction reaction of the intermediate product proceeds on the surface of the intermediate electrode 202 as in FIG. On the surface, oxygen 213 is generated by the reaction of the formula (1). On the other hand, when the intermediate electrode 202 and the hydrogen generating electrolytic electrode 204 are connected by the load 209 in a state where a predetermined amount of the reductant 207 is stored, the oxidation reaction of the intermediate product proceeds on the surface of the intermediate electrode 202 as in FIG. On the surface of the hydrogen generating electrolytic electrode 204, hydrogen 214 is generated by the reaction of the formula (2).
三極式の水電気分解装置201の場合には、水素発生用電解電極204の水素発生電位が中間生成物の酸化還元電位よりも高いものを使用する。酸素発生用電解電極203については中間生成物の酸化還元電位との関係での制限は特にない。また、二極式の場合には水素発生過電圧および酸素発生過電圧の両方が小さいことが好ましいが、三極式の場合には、酸素発生用電解電極203は酸素発生過電圧のみが小さければよく、水素発生用電解電極204は水素発生過電圧のみが小さければよい。このため、二極式の水電気分解装置101に比べ電極として使用可能な材料の種類は増える。水素発生過電圧が小さい材料としては、白金、ロジウム、ニッケル、鉄が挙げられる。酸素発生過電圧が小さい材料としては白金、銀、ロジウム、ニッケル、鉄、二酸化マンガン、コバルト、銀、炭素およびフタロシアニン錯体が挙げられる。特に、酸素発生用電解電極203では、気体状の酸素が低密度であるため、見かけの表面積の10〜1000倍程度の面積があることが好ましい。具体的には、カーボンブラックや金属粉末などの高比表面積粒子をバインダで成膜した薄膜電極などが挙げられる。 In the case of the tripolar water electrolyzer 201, a hydrogen generation electrode 204 having a hydrogen generation potential higher than the oxidation-reduction potential of the intermediate product is used. The oxygen generating electrolytic electrode 203 is not particularly limited in relation to the redox potential of the intermediate product. Further, in the case of the bipolar type, it is preferable that both the hydrogen generation overvoltage and the oxygen generation overvoltage are small. However, in the case of the tripolar type, the oxygen generation electrolytic electrode 203 only needs to have a small oxygen generation overvoltage. The generation electrode 204 only needs to have a small hydrogen generation overvoltage. For this reason, compared with the bipolar water electrolyzer 101, the kind of material which can be used as an electrode increases. Examples of the material having a small hydrogen generation overvoltage include platinum, rhodium, nickel, and iron. Examples of the material having a small oxygen generation overvoltage include platinum, silver, rhodium, nickel, iron, manganese dioxide, cobalt, silver, carbon, and a phthalocyanine complex. In particular, the oxygen-generating electrolytic electrode 203 preferably has an area of about 10 to 1000 times the apparent surface area because gaseous oxygen has a low density. Specifically, a thin film electrode in which high specific surface area particles such as carbon black and metal powder are formed with a binder can be used.
次に、図3に本発明の実施形態に係る水電気分解装置のガス配管の一例を示す。本発明の水電気分解装置によれば、電解槽内部には水素もしくは酸素のいずれか一方を任意の時間に取り出すことが可能となる。このため、従来はスタック構造で空間分離されていた水素極側と酸素極側のそれぞれからガスを取り出す流路が必要であったが、本実施形態の水電気分解装置においては、図3に示したようにガスを取り出す流路は電解槽に対して1本接続すればよく、配管類の削減が可能である。また、発生ガスの種類によって三方弁によって配管を切り替えることで、水素と酸素を混合することなく回収することが可能となる。 Next, FIG. 3 shows an example of gas piping of the water electrolysis apparatus according to the embodiment of the present invention. According to the water electrolysis apparatus of the present invention, it is possible to take out either hydrogen or oxygen into the electrolytic cell at an arbitrary time. For this reason, a flow path for extracting gas from each of the hydrogen electrode side and the oxygen electrode side, which has conventionally been separated by a stack structure in space, was necessary. In the water electrolysis apparatus of the present embodiment, as shown in FIG. As described above, it is only necessary to connect one flow path for taking out the gas to the electrolytic cell, and piping can be reduced. Moreover, it becomes possible to collect | recover, without mixing hydrogen and oxygen by switching piping by a three-way valve according to the kind of generated gas.
本発明によれば、電力入力時には電解電極から酸素が発生し、中間電極で中間生成物の還元反応が進行する。負荷につなぐと中間生成物の還元体が酸化され、電解電極では水素が発生する。このとき、負荷には中間生成物の酸化還元電位と電解電極の水素発生電位との電位差に匹敵する電圧がかかり、水素発生量に比例した電流が流れる。すなわち水素の製造と同時に、電力を取り出すことが出来る。発電電力量は中間生成物の酸化還元電位と電解電極における水素発生電位の電位差に比例するため、中間生成物としては亜鉛が、電解電極としては白金もしくはニッケルおよびこれらの合金を使用することが望ましい。 According to the present invention, oxygen is generated from the electrolytic electrode when power is input, and the reduction reaction of the intermediate product proceeds at the intermediate electrode. When connected to a load, the reduced product of the intermediate product is oxidized, and hydrogen is generated at the electrolytic electrode. At this time, a voltage equal to the potential difference between the redox potential of the intermediate product and the hydrogen generation potential of the electrolytic electrode is applied to the load, and a current proportional to the amount of hydrogen generation flows. That is, electric power can be taken out simultaneously with hydrogen production. Since the amount of generated power is proportional to the potential difference between the redox potential of the intermediate product and the hydrogen generation potential at the electrolytic electrode, it is desirable to use zinc as the intermediate product and platinum or nickel and their alloys as the electrolytic electrode. .
次に、図4に本発明の充放電機能を有する水電気分解装置を含む再生可能エネルギー貯蔵・供給システムの一例を示す。風力発電機や太陽光発電などの再生可能エネルギー発電部で発電した電力は電力変換部において所望の電力形態に変換されて系統電力網などの電力需要者に供給される。ここで、再生可能エネルギー発電部の発電電力は変動するため、直接系統電力網に接続すると系統に負荷をかけ、停電などの障害を引き起こす。このため、需要に応じた電力のみを系統に流し、余剰の電力は水電気分解装置に入力することで水素に変換し、水素エネルギーとして貯蔵する。水電気分解装置で製造した水素は燃料貯蔵制御部の反応器にて、エネルギー密度の高い有機分子に添加して有機ハイドライドとしてタンクに貯蔵する。一方、需用電力に対して再生可能エネルギー発電部の発電量が不足する場合には、タンクに貯蔵されている有機ハイドライドの脱水素反応によって水素を取り出し、水素を用いて発電部のエンジン発電機、タービン等で発電を行い不足分の電力を供給する。 Next, FIG. 4 shows an example of a renewable energy storage / supply system including a water electrolyzer having a charge / discharge function of the present invention. Electric power generated by a renewable energy power generation unit such as a wind power generator or solar power generation is converted into a desired power form by the power conversion unit and supplied to a power consumer such as a grid power network. Here, since the power generated by the renewable energy power generation unit fluctuates, if it is directly connected to the grid power grid, a load is applied to the grid, causing a failure such as a power failure. For this reason, only the electric power according to a demand is sent to a system, and surplus electric power is converted into hydrogen by inputting into a water electrolysis device, and is stored as hydrogen energy. Hydrogen produced by the water electrolyzer is added to organic molecules with high energy density and stored in a tank as organic hydride in the reactor of the fuel storage control unit. On the other hand, when the amount of power generated by the renewable energy power generation unit is insufficient with respect to the power demand, hydrogen is taken out by the dehydrogenation reaction of the organic hydride stored in the tank, and the engine generator of the power generation unit is used using hydrogen. Then, power is generated by a turbine or the like to supply the insufficient power.
ここで、本実施形態の水電気分解装置では、充放電機能を有していることから電力不足時には水電気分解装置からも電力を供給することが可能となる。これによって、再生可能エネルギー由来の電力の平準化の機能を持たせることが可能である。水電気分解装置の充放電の切替えは、例えば再生可能エネルギー発電部の発電量をモニターして制御部にて制御される。また、本実施形態の水電気分解装置では、従来の水電気分解装置と異なり、電力入力時ではなく放電時に水素が発生するという特徴を有している。そのため、電力不足時には水電気分解装置から電力を供給するとともに、水電気分解装置で発生した水素を直接発電部に供給することも可能である。また、システムの運用方法として、再生可能エネルギー発電部の発電時には酸素発生反応と中間生成物の還元反応を進行させて電力を貯蔵しておき、再生可能エネルギー発電部が発電していない時には中間生成物の還元体として貯蔵したエネルギーを用いて水素発生反応と中間生成物の酸化反応を進行させて電力を供給するようにすることもできる。
(評価1)
図1の構成の水電解装置を作製し、特性評価を行った。中間電極102には銅メッシュ、電解電極103には高比表面積化したニッケルのエキスパンドメタルを使用した。電解質水溶液107には硫酸亜鉛を溶解した水酸化カリウム水溶液を使用した。隔壁104には多孔質ポリエチレン薄膜を使用した。
Here, since the water electrolysis apparatus of this embodiment has a charge / discharge function, it is possible to supply power from the water electrolysis apparatus when power is insufficient. Thereby, it is possible to have a function of leveling electric power derived from renewable energy. The charge / discharge switching of the water electrolysis apparatus is controlled by the control unit, for example, by monitoring the power generation amount of the renewable energy power generation unit. Further, the water electrolysis apparatus of the present embodiment has a feature that hydrogen is generated at the time of discharging, not at the time of power input, unlike the conventional water electrolysis apparatus. For this reason, when power is insufficient, it is possible to supply power from the water electrolyzer and also supply hydrogen generated in the water electrolyzer directly to the power generation unit. In addition, as a system operation method, during the generation of electricity by the renewable energy power generation unit, the oxygen generation reaction and the reduction reaction of the intermediate product proceed to store power, and when the renewable energy power generation unit is not generating power, the intermediate generation It is also possible to supply power by advancing the hydrogen generation reaction and the intermediate product oxidation reaction using the energy stored as the reduced product.
(Evaluation 1)
A water electrolysis apparatus having the configuration shown in FIG. 1 was produced and evaluated for characteristics. The intermediate electrode 102 was made of a copper mesh, and the electrolytic electrode 103 was made of nickel expanded metal having a high specific surface area. As the aqueous electrolyte solution 107, an aqueous potassium hydroxide solution in which zinc sulfate was dissolved was used. A porous polyethylene thin film was used for the partition 104.
まず、電源108から入力電力として中間電極102と電解電極103の間に2.3V通電したところ、電解電極103には酸化電流が流れ、電極表面からは酸素の気泡が発生した。また、中間電極102には還元電流が流れ、中間電極102が灰色に変色した。これにより、酸素発生と亜鉛の析出が進行することが確認できた。 First, when 2.3 V was passed between the intermediate electrode 102 and the electrolytic electrode 103 as input power from the power source 108, an oxidation current flowed through the electrolytic electrode 103, and oxygen bubbles were generated from the electrode surface. Further, a reduction current flowed through the intermediate electrode 102, and the intermediate electrode 102 turned gray. This confirmed that oxygen generation and zinc precipitation proceeded.
その後、電力の入力を中止し、電解電極103と中間電極102を短絡させたところ、電解電極103には還元電流が流れ、電解電極103の表面から水素の気泡が発生した。
また、中間電極102には還元電流が流れ、中間電極102が銅色に戻った。これより、亜鉛の溶解反応によって電解電極103の表面で水素ガスが発生することが確認できた。
以上の結果より、電解電極103から水素ガスと酸素ガスを異なるタイミングで発生させて、水素と酸素を個別に取り出せることが確認できた。
(評価2)
図1の構成の水電気分解装置を作製し、評価1と同様に電力を入力後、電子負荷を接続して特性評価を行った。10mA/cm2の電流密度で通電したところ、評価1と同様に中間電極102が銅色に戻り、電解電極103の表面から水素の気泡が発生した。中間電極102と電解電極103との間の電圧は0.45Vであった。この結果から、図1の構成の水電気分解装置において、還元体106として入力電力を貯蔵した後、負荷を接続することで中間電極102と電解電極103との間で電力を取り出すことが確認できた。
(評価3)
図2の構成の水電気分解装置を作製し、特性評価を行った。中間電極202には銅メッシュ、電解電極には酸素発生極203にイリジウムを担持したチタンのエキスパンドメタルを、水素発生極204に白金メッシュを使用した。電解質水溶液208には硫酸亜鉛を溶解した硫酸ナトリウム水溶液を使用した。隔壁205には多孔質ポリエチレン薄膜を使用した。
Thereafter, the input of electric power was stopped, and the electrolytic electrode 103 and the intermediate electrode 102 were short-circuited. As a result, a reduction current flowed through the electrolytic electrode 103 and hydrogen bubbles were generated from the surface of the electrolytic electrode 103.
In addition, a reduction current flowed through the intermediate electrode 102, and the intermediate electrode 102 returned to copper color. From this, it was confirmed that hydrogen gas was generated on the surface of the electrolytic electrode 103 by the zinc dissolution reaction.
From the above results, it was confirmed that hydrogen gas and oxygen gas were generated from the electrolytic electrode 103 at different timings, and hydrogen and oxygen could be extracted individually.
(Evaluation 2)
A water electrolysis apparatus having the configuration shown in FIG. 1 was manufactured, and after inputting electric power in the same manner as in Evaluation 1, the characteristics were evaluated by connecting an electronic load. When the current was applied at a current density of 10 mA / cm 2 , the intermediate electrode 102 returned to copper color as in Evaluation 1, and hydrogen bubbles were generated from the surface of the electrolytic electrode 103. The voltage between the intermediate electrode 102 and the electrolytic electrode 103 was 0.45V. From this result, it can be confirmed that in the water electrolysis apparatus having the configuration shown in FIG. 1, after the input power is stored as the reductant 106, the power is taken out between the intermediate electrode 102 and the electrolytic electrode 103 by connecting a load. It was.
(Evaluation 3)
A water electrolysis apparatus having the configuration shown in FIG. 2 was produced and evaluated for characteristics. The intermediate electrode 202 was made of a copper mesh, the electrolytic electrode was made of titanium expanded metal carrying iridium on the oxygen generating electrode 203, and the platinum mesh was used for the hydrogen generating electrode 204. As the electrolyte aqueous solution 208, a sodium sulfate aqueous solution in which zinc sulfate was dissolved was used. A porous polyethylene thin film was used for the partition wall 205.
まず、電源209から入力電力として中間電極202と酸素発生極203の間に2.3V通電したところ、酸素発生極203には酸化電流が流れ、電極表面からは酸素の気泡が発生した。また、中間電極202には還元電流が流れ、灰色に変色した。これにより、酸素発生と亜鉛の析出が進行することが確認できた。 First, when 2.3 V was passed between the intermediate electrode 202 and the oxygen generation electrode 203 as input power from the power source 209, an oxidation current flowed through the oxygen generation electrode 203, and oxygen bubbles were generated from the electrode surface. Further, a reduction current flowed through the intermediate electrode 202, and the color changed to gray. This confirmed that oxygen generation and zinc precipitation proceeded.
その後、電力の入力を中止し、水素発生極204と中間電極202の間に電子負荷を接続して10mA/cm2の電流密度で通電したところ、水素発生極204には還元電流が流れ、水素発生極204の表面から水素の気泡が発生した。また、中間電極202には還元電流が流れ、中間電極102が銅色に戻った。中間電極202と水素発生極間204との間の電圧は0.6Vであった。この結果から、図2の三極式の水電気分解装置においても、任意に配線の接続を替えることで水素と酸素を個別に取り出し、かつ中間電極と水素発生極間で電力を得ることが確認できた。 Thereafter, the input of electric power is stopped, an electronic load is connected between the hydrogen generation electrode 204 and the intermediate electrode 202, and energization is performed at a current density of 10 mA / cm 2. As a result, a reduction current flows through the hydrogen generation electrode 204, Hydrogen bubbles were generated from the surface of the generation electrode 204. Further, a reduction current flowed through the intermediate electrode 202, and the intermediate electrode 102 returned to a copper color. The voltage between the intermediate electrode 202 and the hydrogen generation electrode 204 was 0.6V. From this result, it is confirmed that the tripolar water electrolyzer in FIG. 2 also takes out hydrogen and oxygen individually by arbitrarily changing the wiring connection and obtains power between the intermediate electrode and the hydrogen generating electrode. did it.
101 水素発生装置
102 中間電極
103 電解電極
104 隔壁
105 中間生成物の酸化体
106 中間生成物の還元体
107 電解質水溶液
108 電源
109 酸素ガス
110 負荷
111 水素ガス
112 電解槽
DESCRIPTION OF SYMBOLS 101 Hydrogen generator 102 Intermediate electrode 103 Electrode electrode 104 Partition 105 Intermediate product oxidant 106 Intermediate product reductant 107 Electrolyte aqueous solution 108 Power supply 109 Oxygen gas 110 Load 111 Hydrogen gas 112 Electrolyzer
Claims (12)
酸化還元反応を繰り返す中間生成物を含む電解質水溶液と、水を電気分解する電解電極と、前記中間生成物の酸化還元反応を行う中間電極と、これらを収容する電解槽とを備え、
前記中間電極および中間生成物の水素発生電位よりも中間生成物の酸化還元電位が高く、かつ、中間生成物の酸化還元電位が前記電解電極の水素発生電位よりも低いことを特徴とする水電気分解装置。 A water electrolyzer that electrolyzes water to generate hydrogen and oxygen,
An aqueous electrolyte solution containing an intermediate product that repeats the oxidation-reduction reaction, an electrolytic electrode that electrolyzes water, an intermediate electrode that performs an oxidation-reduction reaction of the intermediate product, and an electrolytic cell that accommodates these,
Hydroelectricity characterized in that the redox potential of the intermediate product is higher than the hydrogen generation potential of the intermediate electrode and the intermediate product, and the redox potential of the intermediate product is lower than the hydrogen generation potential of the electrolytic electrode. Disassembly equipment.
酸化還元反応を繰り返す中間生成物を含む電解質水溶液と、水を電気分解する電解電極と、前記中間生成物の酸化還元反応を行う中間電極と、これらを収容する電解槽とを備え、
前記中間電極が亜鉛であり、前記中間生成物が亜鉛または亜鉛イオンであり、前記電解電極が白金、ロジウム、ニッケル、鉄のいずれか1種以上を含む金属であることを特徴とする水電気分解装置。 A water electrolyzer that electrolyzes water to generate hydrogen and oxygen,
An aqueous electrolyte solution containing an intermediate product that repeats the oxidation-reduction reaction, an electrolytic electrode that electrolyzes water, an intermediate electrode that performs an oxidation-reduction reaction of the intermediate product, and an electrolytic cell that accommodates these,
Water electrolysis characterized in that the intermediate electrode is zinc, the intermediate product is zinc or zinc ions, and the electrolytic electrode is a metal containing at least one of platinum, rhodium, nickel, and iron. apparatus.
酸化還元反応を繰り返す中間生成物を含む電解質水溶液と、水を電気分解する電解電極と、前記中間生成物の酸化還元反応を行う中間電極と、これらを収容する電解槽とを備え、
前記電解電極で酸素が発生するときには前記中間電極で中間生成物の還元反応が進行し、前記電解電極で水素が発生するときには前記中間電極で中間生成物の酸化反応が進行し、前記電解槽の内部において酸素もしくは水素が異なるタイミングで発生することを特徴とする水素発生装置。 A water electrolyzer that electrolyzes water to generate hydrogen and oxygen,
An aqueous electrolyte solution containing an intermediate product that repeats the oxidation-reduction reaction, an electrolytic electrode that electrolyzes water, an intermediate electrode that performs an oxidation-reduction reaction of the intermediate product, and an electrolytic cell that accommodates these,
When oxygen is generated at the electrolytic electrode, the reduction reaction of the intermediate product proceeds at the intermediate electrode. When hydrogen is generated at the electrolytic electrode, the oxidation reaction of the intermediate product proceeds at the intermediate electrode. A hydrogen generator, wherein oxygen or hydrogen is generated at different timings inside.
前記水電気分解装置が請求項1に記載の水電気分解装置であることを特徴とするエネルギー貯蔵・供給システム。 Renewable energy power generation means for converting renewable energy into electric energy, water electrolysis apparatus for electrolyzing water using the power generated by the renewable energy power generation means, and manufactured by the water electrolysis apparatus In an energy storage and supply system comprising a hydrogen-based power generation means for generating power using hydrogen,
The energy storage / supply system according to claim 1, wherein the water electrolysis apparatus is the water electrolysis apparatus according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013215941A JP2017020053A (en) | 2013-10-17 | 2013-10-17 | Water electrolysis device and energy storage-feed system using the same |
PCT/JP2014/077142 WO2015056641A1 (en) | 2013-10-17 | 2014-10-10 | Water electrolysis device and energy storage and supply system using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013215941A JP2017020053A (en) | 2013-10-17 | 2013-10-17 | Water electrolysis device and energy storage-feed system using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017020053A true JP2017020053A (en) | 2017-01-26 |
Family
ID=52828086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013215941A Pending JP2017020053A (en) | 2013-10-17 | 2013-10-17 | Water electrolysis device and energy storage-feed system using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017020053A (en) |
WO (1) | WO2015056641A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020525644A (en) * | 2017-06-27 | 2020-08-27 | ユニバーシティ オブ サリー | Hydrogen generator |
WO2020241129A1 (en) * | 2019-05-31 | 2020-12-03 | 旭化成株式会社 | Method for operating electrolysis apparatus |
KR20220073264A (en) * | 2020-11-26 | 2022-06-03 | 인하대학교 산학협력단 | Asymmetric water electrolysis system with low overpotential using vanadium redox flow system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3079529B1 (en) * | 2018-04-03 | 2024-04-26 | Ergosup | ELECTROCHEMICAL PROCESS FOR PRODUCING GASEOUS HYDROGEN UNDER PRESSURE BY ELECTROLYSIS THEN BY DEPOLARIZATION |
FR3079530B1 (en) * | 2018-04-03 | 2024-04-26 | Ergosup | ELECTROCHEMICAL PROCESS FOR PRODUCING GASEOUS HYDROGEN UNDER PRESSURE BY ELECTROLYSIS THEN BY ELECTROCHEMICAL CONVERSION |
NL2022332B1 (en) * | 2018-12-31 | 2020-07-23 | Univ Delft Tech | Electrolytic cell for H2 generation |
FR3125069A1 (en) * | 2021-07-07 | 2023-01-13 | Totalenergies Se | Hydrogen generation process by electrolysis of decoupled water |
US20230366106A1 (en) * | 2022-05-11 | 2023-11-16 | Nooter/Eriksen, Inc. | Hydrogen generation and chemical energy storage |
FR3142469A1 (en) * | 2022-11-30 | 2024-05-31 | C3 Chaix Et Associes, Consultants En Technologie | Process and installation for producing dihydrogen by catalytic activation |
SI26469A (en) * | 2023-01-31 | 2024-08-30 | Marko Klobčič | System for storing electrical energy in matter and recovering electrical energy from matter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7169497B2 (en) * | 2003-05-15 | 2007-01-30 | The Gillette Company | Electrochemical cells |
CN1854063A (en) * | 2005-04-28 | 2006-11-01 | 黄潮 | Electrochemical zinc-water hydrogen making and storing method |
-
2013
- 2013-10-17 JP JP2013215941A patent/JP2017020053A/en active Pending
-
2014
- 2014-10-10 WO PCT/JP2014/077142 patent/WO2015056641A1/en active Application Filing
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020525644A (en) * | 2017-06-27 | 2020-08-27 | ユニバーシティ オブ サリー | Hydrogen generator |
JP7169674B2 (en) | 2017-06-27 | 2022-11-11 | ユニバーシティ オブ サリー | hydrogen generator |
WO2020241129A1 (en) * | 2019-05-31 | 2020-12-03 | 旭化成株式会社 | Method for operating electrolysis apparatus |
JPWO2020241129A1 (en) * | 2019-05-31 | 2021-12-23 | 旭化成株式会社 | How to operate the electrolyzer |
JP7228692B2 (en) | 2019-05-31 | 2023-02-24 | 旭化成株式会社 | How to operate the electrolyzer |
KR20220073264A (en) * | 2020-11-26 | 2022-06-03 | 인하대학교 산학협력단 | Asymmetric water electrolysis system with low overpotential using vanadium redox flow system |
KR102510553B1 (en) | 2020-11-26 | 2023-03-16 | 인하대학교 산학협력단 | Asymmetric water electrolysis system with low overpotential using vanadium redox flow system |
Also Published As
Publication number | Publication date |
---|---|
WO2015056641A1 (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015056641A1 (en) | Water electrolysis device and energy storage and supply system using same | |
Zeng et al. | Recent progress in alkaline water electrolysis for hydrogen production and applications | |
CN105734600B (en) | A kind of device and method of the double electrolytic cell two-step method water electrolysis hydrogen productions of three-electrode system | |
CN108431303B (en) | Buck electrolytic method | |
KR101721860B1 (en) | Method for the cogeneration of electrical and hydrogen power | |
CN103820807B (en) | Device and method for producing hydrogen and generating electricity | |
US20080190781A1 (en) | Electrochemical Method for Producing and Storing Hydrogen by the Redox of Zinc and Water | |
Aslam et al. | Electrochemical hydrogen production: sustainable hydrogen economy | |
CN105463497B (en) | It is a kind of can be with the cell apparatus of electrolysis water hydrogen making | |
JP5827953B2 (en) | Hydrogen production apparatus and hydrogen production system | |
JP5836016B2 (en) | Water electrolyzer | |
Guo et al. | A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H 2/O 2 generation and solar to hydrogen conversion | |
JP2016520982A (en) | Cathode operable in electrochemical reaction, and associated cell, apparatus, and method | |
CN101514462A (en) | Ultra-pure water membrane electrolyser | |
CN113454268B (en) | For H2Electrolytic cell produced | |
CN114729461B (en) | Method and device for electrolysis of water | |
JPWO2012073383A1 (en) | Natural energy storage system | |
Giddey et al. | Low emission hydrogen generation through carbon assisted electrolysis | |
JP2016204743A (en) | Hydrogen production apparatus comprising third electrode and hydrogen production method | |
CN108475802A (en) | Regenerative fuel cell | |
JP2020525644A (en) | Hydrogen generator | |
AU2011232794A1 (en) | Non-diffusion liquid energy storage device | |
JP4601647B2 (en) | Hydrogen generator and fuel cell system using the same | |
McEvoy | Fundamentals and applications of electrochemistry | |
KR20160082057A (en) | Intermittent electrochemical reduction system of carbon dioxide |