JP7467315B2 - Water system operation planning method and water system operation planning system - Google Patents

Water system operation planning method and water system operation planning system Download PDF

Info

Publication number
JP7467315B2
JP7467315B2 JP2020188222A JP2020188222A JP7467315B2 JP 7467315 B2 JP7467315 B2 JP 7467315B2 JP 2020188222 A JP2020188222 A JP 2020188222A JP 2020188222 A JP2020188222 A JP 2020188222A JP 7467315 B2 JP7467315 B2 JP 7467315B2
Authority
JP
Japan
Prior art keywords
inflow
water
prediction error
water system
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020188222A
Other languages
Japanese (ja)
Other versions
JP2022077382A (en
Inventor
一徳 岩渕
大 村山
勝利 廣政
淳二 森
崇 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020188222A priority Critical patent/JP7467315B2/en
Publication of JP2022077382A publication Critical patent/JP2022077382A/en
Application granted granted Critical
Publication of JP7467315B2 publication Critical patent/JP7467315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明の実施形態は、水系運用計画方法および水系運用計画システムに関する。 Embodiments of the present invention relate to a water system operation planning method and a water system operation planning system.

ダム水系に流入する水の水量は、一般に、上流地点の雨量のほか融雪や湧水などの要素により変化する。水系運用では、流入量に応じた発電量を得るために、ダム水系への流入量に合わせた発電用取水を計画し運用することが求められる。 The amount of water flowing into a dam water system generally varies depending on factors such as the amount of rainfall upstream as well as snowmelt and spring water. When operating the water system, it is necessary to plan and operate the water intake for power generation in accordance with the amount of water flowing into the dam water system in order to obtain the amount of power generation that corresponds to the amount of water flowing in.

特許文献1には、複数個所の雨量情報を用いて相関に基づく流量予測モデルで予測流量データを生成する流量予測装置が示されている。また、特許文献2には、ダム貯水量などの運用上の制約を考慮し、連接水系の発電量を最大限とするように、各発電機の発電使用水量の計画を作成する方法が提示されている。このような方法を組み合わせて利用することで、水系における発電量を向上するダム運用方法が知られている。 Patent Document 1 shows a flow prediction device that uses rainfall information from multiple locations to generate predicted flow data with a flow prediction model based on correlation. Patent Document 2 also shows a method for planning the amount of water used for power generation by each generator, taking into account operational constraints such as the amount of water stored in the dam, so as to maximize the amount of power generated by an interconnected water system. A dam operation method is known that uses a combination of these methods to improve the amount of power generated in a water system.

特許第4807565号公報Japanese Patent No. 4807565 特開2005-285032号公報JP 2005-285032 A

一般に、数時間程度先の直近の将来時刻におけるダム流入量は、近年の機械学習等を含む技術を駆使することで高精度に予測することが可能になっているが、予測対象が数日程度先の将来時刻となると流入量予測の難易度は上がり、流入量予測の誤差(予測誤差)が拡大する傾向がある。大雨や融雪に伴うダム流入量の急拡大時においても、一般的に、流入量を精度よく予測することは困難であることが多い。 In general, it is possible to predict dam inflows at a future time of about several hours with high accuracy by making full use of recent technologies including machine learning, but when the prediction is for a future time of about several days, the difficulty of predicting inflows increases and the error in inflow predictions (prediction error) tends to increase. Even when dam inflows suddenly increase due to heavy rain or snowmelt, it is generally often difficult to predict inflows with high accuracy.

一方、ダム運用ではダム基準の高水位に維持して継続的な高効率の発電運用が望まれるが、例えばダム流入量が予測よりも増加した場合にダム水位が運用上限を超えると放流することになるので実際の流入量に対して発電量が減少することになる。 On the other hand, when operating a dam, it is desirable to maintain the dam's standard high water level and operate it continuously and efficiently to generate electricity. However, for example, if the dam's inflow increases more than predicted and the dam's water level exceeds the upper operational limit, water will be released, resulting in a reduction in the amount of electricity generated relative to the actual inflow.

本発明は上記実情に鑑みてなされたものであり、流入量予測の誤差の影響を小さく抑えることができる、水系運用計画方法および水系運用計画システムを提供することを目的とする。 The present invention has been made in consideration of the above-mentioned circumstances, and aims to provide a water system operation planning method and a water system operation planning system that can minimize the impact of errors in inflow prediction.

実施形態によれば、水系に流入する水の時系列の流入量を予測する流入量予測工程と、過去の流入量予測と過去の流入量実績とに基づき、前記流入量予測工程で予測した流入量に対する時系列の予測誤差を推定する予測誤差推定工程と、前記流入量予測工程で予測した流入量と前記予測誤差推定工程で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する水系運用計画工程と、を含み、前記水系運用計画工程では、発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算を行うことにより水系の運用計画の情報を作成し、前記予測誤差推定工程で推定した予測誤差に対応した流入量の増減変動時の影響分を加算した目的関数を用いて前記最適化計算を行うことにより前記水系の運用計画を示す情報を作成する、コンピュータにより実行される、水系運用計画方法が提供される。
According to an embodiment, a water system operation planning method is provided which includes an inflow prediction step of predicting a time series inflow of water flowing into a water system, a prediction error estimation step of estimating a time series prediction error for the inflow predicted in the inflow prediction step based on past inflow predictions and past inflow actual results, and a water system operation planning step of creating information for a water system operation plan based on the inflow predicted in the inflow prediction step and the prediction error estimated in the prediction error estimation step, in which the water system operation planning step creates information for the water system operation plan by performing an optimization calculation aimed at any one of maximizing the amount of generated power, maximizing the value of generated power, minimizing the dam discharge amount, or maximizing the amount of water used for power generation, and creates information indicating the water system operation plan by performing the optimization calculation using an objective function to which an influence when the inflow increases or decreases corresponding to the prediction error estimated in the prediction error estimation step is added.

本発明によれば、流入量予測の誤差の影響を小さく抑えることができる。 The present invention makes it possible to minimize the impact of errors in inflow prediction.

一実施形態に係る水系運用計画方法を実現するための水系運用計画システムの機能構成の一例を示す図。FIG. 1 is a diagram showing an example of the functional configuration of a river system operation planning system for implementing a river system operation planning method according to an embodiment. 同実施形態において水系運用計画の対象とされる水系のモデルの一例を示す図。FIG. 2 is a diagram showing an example of a model of a river system that is the subject of a river system management plan in the embodiment. 水系運用計画のための処理手順の一例を示す図。FIG. 13 is a diagram showing an example of a processing procedure for a water system operation plan. 流入量の予測値である流入量予測Qin(t)および対応する予測誤差の推定値ΔQin(t)の回帰式による計算結果の例を示す図。FIG. 13 is a diagram showing an example of a calculation result of an inflow prediction Qin i (t), which is a predicted value of an inflow, and an estimated value ΔQin i (t) of a corresponding prediction error, using a regression equation. 各種の決定変数の時間ステップごとの関係を示す図。A diagram showing the relationship between various decision variables at each time step. 計画水位の上限を基準水位Hnmaxより下げるように補正する例を示す図。FIG. 13 is a diagram showing an example of correcting the upper limit of the planned water level to be lower than the reference water level Hnmax i . 予測誤差が大きい期間を含むことが見込まれる場合にその期間以前に発電取水量を増減させるよう発電出力P(t)を増減させる振替運用の例を示す図。FIG. 13 is a diagram showing an example of transfer operation in which, when a period with a large prediction error is expected to be included, the power generation output P i (t) is increased or decreased so as to increase or decrease the amount of water intake for power generation before that period.

以下、実施の形態について、図面を参照して説明する。 The following describes the embodiment with reference to the drawings.

図1は、一実施形態に係る水系運用計画方法を実現するための水系運用計画システムの機能構成の一例を示す図である。図2は、同実施形態において水系運用計画の対象とされる水系のモデルの一例を示す図である。 Figure 1 is a diagram showing an example of the functional configuration of a water system operation planning system for implementing a water system operation planning method according to one embodiment. Figure 2 is a diagram showing an example of a model of a water system that is the subject of a water system operation plan in the embodiment.

(構成)
図1に示される水系運用計画システム100は、例えば1つ又は複数の情報処理装置(コンピュータ)を用いて実現されるものであり、各種の処理機能として、流入量予測部10、予測誤差推定部20、および水系運用計画部30を備える。また、各種の記憶機能として、第1の記憶部DB1、第2の記憶部DB2、および第3の記憶部DB3を備える。
(composition)
1 is realized, for example, by using one or more information processing devices (computers), and includes, as various processing functions, an inflow prediction unit 10, a prediction error estimation unit 20, and a river system operation planning unit 30. Also, as various storage functions, the system includes a first storage unit DB1, a second storage unit DB2, and a third storage unit DB3.

なお、流入量予測部10、予測誤差推定部20、および水系運用計画部30は、コンピュータのプロセッサにより実行されるプログラムの機能として構成されてもよい。また、第1の記憶部DB1、第2の記憶部DB2、および第3の記憶部DB3は、コンピュータのプロセッサの制御のもとで読み書きできる記録媒体を用いて実現されてもよい。また、これらの各種の処理機能や記憶機能は、まとめて1つのコンピュータに搭載されていてもよいし、いくつかに分散して別々のコンピュータに搭載されていてもよい。 The inflow prediction unit 10, the prediction error estimation unit 20, and the water system operation planning unit 30 may be configured as functions of a program executed by a computer processor. The first memory unit DB1, the second memory unit DB2, and the third memory unit DB3 may be realized using a recording medium that can be read and written under the control of the computer processor. These various processing functions and storage functions may be integrated into one computer, or may be distributed across several computers and installed.

・流入量予測部10の機能
流入量予測部10は、水系に流入する水の時系列の流入量を予測する機能である。
Function of the inflow prediction unit 10 The inflow prediction unit 10 has a function of predicting the time-series inflow of water flowing into a water system.

この流入量予測部10は、外部から提供される気象予報や雨量情報、積雪情報を入力し、記憶部DB1に記憶される過去の気象予報、過去の雨量情報などを参照するとともに、記憶部DB2に記憶される各ダムの過去の流入量の実績データを参照し、各ダムへ流入する水の流入量の予測値QFを時系列で出力する。ここで、各ダムの流入量の実績データの代わりに、各ダムの放流量、発電用取水量、および水位変化の実績データを入力し、各ダムの流入量を計算で求めたものを使用することができる。また、各ダムの流入量の予測は、各ダムに流入する河川の流量の予測としてもよい。 This inflow prediction unit 10 inputs weather forecasts, rainfall information, and snowfall information provided from the outside, references past weather forecasts and past rainfall information stored in memory unit DB1, and references past actual data on inflows of each dam stored in memory unit DB2, and outputs a predicted value QF of the inflow of water flowing into each dam in chronological order. Here, instead of the actual data on inflows of each dam, actual data on the discharge amount, water intake amount for power generation, and water level change of each dam can be input, and the inflow of each dam calculated can be used. The prediction of the inflow of each dam may also be a prediction of the flow rate of the river flowing into each dam.

・予測誤差推定部20の機能
予測誤差推定部20は、記憶部DB2に記憶される各ダムの過去の流入量の実績データと記憶部DB3に記憶される各ダムの過去の流入量の予測データとに基づき、流入量予測部10で予測した流入量に対する時系列の予測誤差を推定する機能である。予測誤差の推定は、例えば一定時間内の所定の時間ステップごとの各時刻において予測される流入量に基づいて行われる。
Functions of the Prediction Error Estimation Unit 20 The prediction error estimation unit 20 is a function that estimates a time-series prediction error for the inflow predicted by the inflow prediction unit 10, based on the actual data of the past inflow of each dam stored in the memory unit DB2 and the predicted data of the past inflow of each dam stored in the memory unit DB3. The prediction error is estimated based on the inflow predicted at each time for each predetermined time step within a certain period of time, for example.

この予測誤差推定部20は、流入量予測部10が出力した流入量の予測値QFの時系列を入力し、各ダムの過去の流入量の予測データおよび各ダムの過去の流入量の実績データを参照して、流入量予測部10が出力した流入量の予測値QFに対応する予測誤差の推定値EEを時系列で出力する。 This prediction error estimation unit 20 inputs a time series of the predicted inflow values QF output by the inflow prediction unit 10, and by referring to the past predicted inflow data for each dam and the past actual inflow data for each dam, outputs a time series of the prediction error estimate value EE corresponding to the predicted inflow value QF output by the inflow prediction unit 10.

・水系運用計画部30の機能
水系運用計画部30は、流入量予測部10で予測した流入量と予測誤差推定部20で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する機能である。水系運用計画の情報は、例えば予測誤差推定部20で推定した予測誤差に対応した流入量の増減変動時の影響分を加算した目的関数を用いた最適化計算を行うことによって、作成するようにしてもよい。あるいは、予測誤差推定部20で推定した予測誤差に対応したダム水位変化の影響分の水位制約または貯水量制約を付け加える、あるいは水位制約または貯水量制約を狭めるように変更し、その上で最適化計算を行うことによって、作成するようにしてもよい。
Functions of the River System Operation Planning Unit 30 The river system operation planning unit 30 is a function that creates information on a river system operation plan based on the inflow predicted by the inflow prediction unit 10 and the prediction error estimated by the prediction error estimation unit 20. The information on the river system operation plan may be created, for example, by performing an optimization calculation using an objective function that adds the influence of an increase or decrease in the inflow corresponding to the prediction error estimated by the prediction error estimation unit 20. Alternatively, the information on the river system operation plan may be created by adding a water level constraint or a water storage volume constraint that is influenced by a change in the dam water level corresponding to the prediction error estimated by the prediction error estimation unit 20, or by changing the water level constraint or the water storage volume constraint to be narrowed, and then performing an optimization calculation.

この水系運用計画部30は、流入量予測部10が出力した流入量の予測値QFの時系列、予測誤差推定部20が出力した予測誤差の推定値EEの時系列を入力し、発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算で算出した発電所の取水量QP、ダムゲートからの水の放流量QRを含む対象水系運用の計画情報を出力する。 This water system operation planning unit 30 inputs a time series of the inflow prediction values QF output by the inflow prediction unit 10 and a time series of the prediction error estimate values EE output by the prediction error estimation unit 20, and outputs planning information for the target water system operation including the power plant's water intake volume QP and the water discharge volume QR from the dam gate calculated by optimization calculations aimed at maximizing the amount of generated power, maximizing the value of generated power, minimizing the dam discharge volume, or maximizing the amount of water used for power generation.

なお、上述した流入量予測部10、予測誤差推定部20、および水系運用計画部30は、対象となる水系の近傍に備えられてもよい。また、例えば水系から地理的に離れた遠隔地のサーバ等に、携帯電話通信網やインターネットを経由して雨量情報等のデータを収集・記録し、水系運用計画を演算する装置を設け、水系運用計画の情報を水系運用者が使用する装置に伝送する構成としてもよい。 The inflow prediction unit 10, prediction error estimation unit 20, and water system operation planning unit 30 described above may be provided near the target water system. In addition, a device that collects and records data such as rainfall information via a mobile phone communication network or the Internet and calculates a water system operation plan may be provided in a server or the like in a remote location geographically distant from the water system, and information on the water system operation plan may be transmitted to a device used by the water system operator.

・水系モデル
図2に示されるモデルは、複数のダム1,2,3…が連接するダム水系を対象とするモデルの例である。ダム1,2,3,…には、それぞれ、各ダムからの取水で発電を行う発電機11,12,13,…が備えられる。各ダムの発電機で使用された後の水は、各ダムから放流される水と共に、次段のダムへと送られる。
Water system model The model shown in Figure 2 is an example of a model for a dam water system in which multiple dams 1, 2, 3, ... are connected to each other. Dams 1, 2, 3, ... are each equipped with generators 11, 12, 13, ... that generate electricity by taking in water from each dam. After being used by the generators of each dam, the water is sent to the next dam together with the water discharged from each dam.

ダム1,2,3,…に水が流入する流入量を、それぞれ、Qin,Qin,Qin,…とする。 The amounts of water flowing into dams 1, 2, 3, . . . are denoted as Qin 1 , Qin 2 , Qin 3 , .

ダム1,2,3,…の水位を、それぞれ、H,H,H,…とする。 The water levels of dams 1, 2, 3, . . . are assumed to be H 1 , H 2 , H 3 , .

ダム1,2,3,…の貯水量を、それぞれ、V,V,V,…とする。 The water volumes of dams 1, 2, 3, . . . are denoted as V 1 , V 2 , V 3 , .

ダム1,2,3,…から発電機11,12,13,…に供給される水の取水量(発電用取水量)を、それぞれ、Qp,Qp,Qp,…とする。 The intake amounts of water (intake amounts for power generation) supplied from the dams 1 , 2 , 3 , . . . to the generators 11, 12, 13, .

ダム1,2,3,…のダムゲートから放流される水の放流量を、それぞれ、Qr,Qr,Qr,…とする。 The amounts of water discharged from the dam gates of dams 1, 2, 3, . . . are denoted as Qr 1 , Qr 2 , Qr 3 , .

発電機11,12,13,…の発電量を、それぞれ、P,P,P,…とする。 The amounts of power generated by the generators 11, 12, 13, . . . are denoted as P 1 , P 2 , P 3 , .

(処理手順)
次に、図3を参照して、水系運用計画のための処理手順の一例を説明する。
(Processing Procedure)
Next, an example of a processing procedure for a water system operation plan will be described with reference to FIG.

ここでは、図1で説明したような流入量の予測値QFを利用して、対象水系の発電量に関する評価関数とダム水系運用の制約条件を元に、発電取水量QPと放流量QRの計画情報を算出するものとする。また、図2で説明した水系のモデルを対象に、ダム数をMとし、毎日定時刻(t=0)に、時間間隔ΔtごとにNステップ先の時間までの各時刻t=1,…,Nにおける流入量予測、予測誤差推定、水系運用計画を行うものとする。なお、水系運用計画の時間間隔Δtは、30分や1時間などを選定することができる。 Here, the predicted inflow value QF as explained in Figure 1 is used to calculate the planned information for the power generation intake QP and discharge QR based on the evaluation function for the power generation volume of the target water system and the constraints on the dam water system operation. Also, for the water system model explained in Figure 2, the number of dams is M, and at a fixed time every day (t = 0), inflow prediction, prediction error estimation, and water system operation planning are performed for each time t = 1, ..., N up to the time N steps ahead at time intervals Δt. The time interval Δt for the water system operation plan can be selected to be 30 minutes, 1 hour, etc.

ステップS1の流入量予測では、流入量予測部10において、気象予報や複数地点の雨量情報に基づき、過去の気象予報、過去の雨量情報、各ダムの過去の流入量の実績データを参照して、機械学習等を使用して水系運用計画の時間間隔Δtごとの流入量の予測値QFを算出する。ここで、流入量の予測値QFは、ダムiの流入量予測Qin(t)(ただし、i=1,…,M、t=1,…,N)のデータである。 In the inflow prediction in step S1, the inflow prediction unit 10 calculates a predicted value QF of the inflow for each time interval Δt of the water system operation plan based on weather forecasts and rainfall information at multiple points, and by referring to past weather forecasts, past rainfall information, and past actual data on inflows of each dam, using machine learning or the like. Here, the predicted value QF of the inflow is data on the inflow prediction Qin i (t) (where i = 1, ..., M, t = 1, ..., N) of dam i.

また、過去の気象予報、過去の雨量情報、各ダムの過去の流入量の実績データを参照し、機械学習等としてニューラルネットワーク、ディープラーニングなどの手法を適用することで、気象予報や雨量情報を入力して流入量の予測値QFを算出するモデルを構成してもよい。さらに積雪情報の実績も参照するように流入量の予測値QFを算出するモデルを構成することで、積雪情報を入力に加えて流入量予測の精度を高めるように処理してもよい。 A model may be constructed that inputs weather forecasts and precipitation information to calculate the predicted inflow value QF by referring to past weather forecasts, past precipitation information, and past actual inflow data for each dam, and by applying techniques such as neural networks and deep learning as machine learning, etc. Furthermore, a model may be constructed that calculates the predicted inflow value QF so as to also refer to actual snowfall information, and the accuracy of the inflow prediction may be improved by adding snowfall information as an input.

ステップS2の予測誤差推定では、予測誤差推定部20において、各ダムの過去の流入量の予測データと各ダムの過去の流入量の実績データとから、流入量の予測値QFに対応する予測誤差の推定値EEの期待値を流入量の予測値QFと時刻tの関数で推定する式を構成する。予測誤差の推定値EEは、各ダムの流入量予測と流入量実績との差異の推定値ΔQin(t)であり、次式の回帰式で表すことができる。 In the prediction error estimation in step S2, the prediction error estimation unit 20 constructs an equation for estimating the expected value of the prediction error estimate EE corresponding to the predicted inflow QF as a function of the predicted inflow QF and time t from the past inflow prediction data and past actual inflow data of each dam. The prediction error estimate EE is an estimate ΔQin i (t) of the difference between the predicted inflow and actual inflow of each dam, and can be expressed by the following regression equation.

ΔQin(t)=β1i・Qin(t)+β2i・t+β3i …(1)
ここで、tは所定の時間ステップごとの時刻であり、β1、β2i、β3は各ダムの回帰式の係数である。回帰式の係数は、各ダムの過去の流入量の予測データおよび各ダムの過去の流入量の実績データから重回帰分析の手法で選定することができる。
ΔQin i (t) = β1 i · Qin i (t) + β2 i · t + β3 i ... (1)
Here, t is the time for each predetermined time step, and β1i , β2i , and β3i are the coefficients of the regression equation for each dam. The coefficients of the regression equation can be selected by multiple regression analysis from the predicted data of the past inflow of each dam and the actual data of the past inflow of each dam.

なお、予測誤差の推定値EEの計算方法としては、上記のほか、予測誤差を確率分布で表現し、予測誤差の増加側分布の期待値を予測誤差の推定値EEとしてもよい。 In addition to the above, the method of calculating the prediction error estimate EE may also involve expressing the prediction error as a probability distribution and taking the expected value of the increasing distribution of the prediction error as the prediction error estimate EE.

図4は、流入量の予測値である流入量予測Qin(t)および対応する予測誤差の推定値ΔQin(t)の回帰式による計算結果の例をグラフで示したものである。このグラフの例では、ΔQin(t)は、Qin(t)が大きくなる時間帯では大きくなるが、その時間帯の経過後にQin(t)が小さくなるとそれに追従して同様に小さくなるわけではなく、経過時刻tに応じて比較的大きめの値で推移する傾向が見られる。 4 is a graph showing an example of the calculation results of the inflow prediction Qin i (t), which is the predicted value of the inflow, and the corresponding estimated value ΔQin i (t) of the prediction error by the regression equation. In this example graph, ΔQin i (t) becomes large in the time period when Qin i (t) becomes large, but when Qin i (t) becomes small after the time period has passed, it does not follow suit and become small in the same way, but tends to remain at a relatively large value according to the elapsed time t.

ステップS3の水系運用計画では、水系運用計画部30において、ダム貯水量V(t)、ダム水位H(t)、発電用取水量Qp(t)、放流量Qr(t)、発電量P(t)を決定変数とし、水系運用の制約下で総発電量を目的関数として最大化する水系運用計画の情報を作成する。 In the water system operation plan of step S3, the water system operation planning unit 30 creates information for a water system operation plan that uses the dam water volume V i (t), dam water level H i (t), power generation water intake Qp i (t), discharge Qr i (t), and power generation P i (t) as decision variables and maximizes the total power generation as an objective function under the constraints of water system operation.

ここで、図5に、各種の決定変数の時間ステップごとの関係を示す。なお、図5中においては、発電用取水量Qp(t)と放流量Qr(t)とを、総じてQ(t)と表記している。図5に示すように、V(t)、H(t)は、時刻t=0から時間間隔Δtごとに時刻t=N+1に至るまでの個々の時刻に対応した値を示す。一方、Q(t)、P(t)は、個々の時刻間の時間間隔Δtに対応した値を示す。 Here, Fig. 5 shows the relationship between various decision variables for each time step. In Fig. 5, the amount of water intake for power generation Qp i (t) and the amount of discharge Qr i (t) are collectively represented as Q i (t). As shown in Fig. 5, V i (t) and H i (t) indicate values corresponding to each time from time t = 0 to time t = N + 1 at each time interval Δt. On the other hand, Q i (t) and P i (t) indicate values corresponding to the time interval Δt between each time.

目的関数は、等式制約、不等式制約とともに、以下のように設定するものとする。 The objective function, along with the equality and inequality constraints, is set as follows:

目的関数:
max ΣΣ{C(t)・P(t)} …(2)
等式制約:
(t+1)-V(t)
={Qin(t)+Qpi-1(t)-Qp(t)+Qri-1(t)-Qr(t)}Δt …(3)
(t)=ah・V(t)+bh …(4)
(t)=ap・Qp(t)+bp・{H(t)-Hi0}+cp …(5)
不等式制約:
Hnmin ≦ H(t) ≦ Hnmax …(6)
Pmin ≦ P(t) ≦ Pmax または P(t)=0 …(7)
0 ≦ Qp(t) ≦ Qpmax …(8)
Qrmin ≦ Qr(t) ≦ Qrmax …(9)
ここで、C(t)は時間ごとの電力価値(売電単価)、ah、bhはダムの貯水量と水位の特性を表す係数、ap、bp、cpは発電所の発電出力特性を表す係数、Qrmin、Qrmaxはそれぞれ各ダムの最小維持放流量、最大放流量を示している。
Objective function:
max Σ i Σ t {C(t) · P i (t)} ... (2)
Equality constraints:
V i (t+1) - V i (t)
= {Qin i (t) + Qp i-1 (t) - Qp i (t) + Qr i-1 (t) - Qr i (t)} Δt ... (3)
H i (t) = ahi · V i (t) + bhi ... (4)
P i (t) = a p i · Q p i (t) + b p i · { H i (t) - H i0 } + c p i ... (5)
Inequality constraints:
Hnmin i ≦ H i (t) ≦ Hnmax i ... (6)
Pmin i ≦ P i (t) ≦ Pmax i or P i (t) = 0 ... (7)
0≦ Qpi (t)≦ Qpmaxi ... (8)
Qrmin i ≦ Qr i (t) ≦ Qrmax i ... (9)
Here, C(t) is the hourly electricity value (unit price of electricity sales), ahi and bhi are coefficients representing the characteristics of the dam's water storage volume and water level, api , bpi and cpi are coefficients representing the power generation output characteristics of the power plant, and Qrmini and Qrmaxi are the minimum maintained discharge and maximum discharge of each dam, respectively.

式(2)に示す目的関数は、発電電力量P(t)の総和の最大化または発電電力価値C(t)・P(t)の総和の最大化のほか、放流量Qr(t)の総和の最小化、発電用取水量Qp(t)の総和の最大化のいずれかを採用してもよい。 The objective function shown in equation (2) may be either maximization of the sum of the generated power amounts P i (t) or maximization of the sum of the generated power values C(t) x P i (t), or minimization of the sum of the discharge amounts Qr i (t) or maximization of the sum of the water intake amounts for power generation Qp i (t).

ここで、予測誤差の推定値ΔQin(t)がダム運用の水位上限Hmaxと基準水位Hnmaxとの間の貯水量を上回る可能性があるダムの計画期間では、次の方法1の不等式制約の補正、または方法2の目的関数の補正を適用することができる。 Here, in the planning period of the dam where the estimated value of the prediction error ΔQin i (t) may exceed the water storage volume between the upper water level limit Hmax i for dam operation and the reference water level Hnmax i , the following correction of the inequality constraint in Method 1 or the correction of the objective function in Method 2 can be applied.

・方法1(制約式の補正)
図6に例示するように、予測誤差の推定値ΔQin(t)が閾値より大きい計画時刻tで、ダム水制約における計画水位の上限を基準水位Hnmaxより下げるように式(6)をΔH(t)分だけ補正する。
Method 1 (correction of constraint equations)
As illustrated in FIG. 6, at the planning time t when the estimated value ΔQin i (t) of the prediction error is greater than the threshold value, equation (6) is corrected by ΔH i (t) so that the upper limit of the planned water level in the dam water constraint is lowered below the reference water level Hnmax i .

Hnmin ≦ Hnmin ≦ H(t) ≦ Hnmax-ΔH(t) …(6A)
なお、等価な貯水量V(t)に関する不等式制約を用いてもよい。ΔH(t)は、式(4)の係数を利用して次のように見積もることができる。
Hnmin i ≦ Hnmin i ≦ H i (t) ≦ Hnmax i − ΔH i (t) … (6A)
In addition, an inequality constraint regarding the equivalent water storage volume V i (t) may be used. ΔH i (t) can be estimated as follows using the coefficients of equation (4).

ΔH(t)=ah・ΔQin(t)Δt+bh-(Hmax-Hnmax) …(10)
なお、計画水位の下限についても運用水位下限Hnminに対して同様な補正を行うことで、水位下限を下回らないようにすることができる。
ΔH i (t) = ahi · ΔQin i (t) Δt + bhi - (Hmax i - Hnmax i ) ... (10)
In addition, by performing a similar correction on the operational water level lower limit Hnmin i , the lower limit of the planned water level can be prevented from falling below the water level lower limit.

・方法2(目的関数の補正)
放流量が増加することに伴う発電量P(t)の減少分の期待値ΔL(t)を減ずるように式(2)の目的関数を補正する。
Method 2 (correction of objective function)
The objective function of equation (2) is corrected so as to reduce the expected value ΔL i (t) of the decrease in the amount of generated power P i (t) accompanying an increase in the discharge amount.

max ΣΣ{C(t)・(P(t)-ΔL(t) )} …(2A)
ここでΔL(t)は、式(5)の係数を利用して近似で見積もることができる。
max Σ i Σ t {C(t) · (P i (t) - ΔL i (t) )} ... (2A)
Here, ΔL i (t) can be approximately estimated using the coefficients in equation (5).

ΔL(t)=ap(t)・ΔQin(t)+cp …(11)
このようにした場合も、方法1と同様の効果が得られる。
ΔL i (t) = a p i (t) · ΔQ in i (t) + c p i ... (11)
In this case, the same effect as in method 1 can be obtained.

そのほか、ダム容量が大きいダムに対して方法1、ダム容量が小さいダムに対して方法2を適用するように、それぞれの式を使い分けて併用するようにしてもよい。また、方法1で最適化計算の解が得られなくなった場合に方法2に切り替えて再計算するように処理してもよい。 In addition, it is also possible to use each formula in combination, applying method 1 to dams with large dam capacity and method 2 to dams with small dam capacity. Also, if a solution to the optimization calculation cannot be obtained using method 1, the process can be switched to method 2 and recalculated.

このステップS3の水系運用計画では、線形計画法や混合整数計画法のソルバを利用することでより最適な解が得られるように処理してもよい。 In the water system operation plan of step S3, a linear programming or mixed integer programming solver may be used to process the plan to obtain a more optimal solution.

なお、予測誤差の影響を減ずるために、数時間おきにその時点で最新の流入量予測を取得し、予測誤差推定と水系運用計画の情報を作成することで再計画を行ってもよい。 In order to reduce the impact of prediction errors, the latest inflow forecasts can be obtained every few hours, and replanning can be performed by creating prediction error estimates and water system operation plan information.

また、流入量予測部10、水系運用計画部30に相当する処理部を備える既設の水系運用計画を行う計算機システムに対して、予測誤差推定部20の処理を追加し、水系運用計画部を上述した実施形態の処理と同じになるように変更することで、水系運用計画を実施するようにしてもよい。 In addition, a water system operation plan may be implemented by adding the processing of the prediction error estimation unit 20 to an existing computer system that performs water system operation planning and has processing units equivalent to the inflow prediction unit 10 and the water system operation planning unit 30, and modifying the water system operation planning unit so that it is the same as the processing of the above-mentioned embodiment.

(効果)
将来時刻の水系への流入量を予測し、予測誤差を推定し、予測誤差に伴う発電量や放流量への影響を抑えるように最適計画問題の水位制約や目的関数を補正し、それらに基づいて発電用取水量や放流量を含む水系運用の最適計画の情報を算出することで、流入量予測に誤差がある場合にも水系運用計画の最適性の低下を小さく抑える水系運用計画を実現することができる。
(effect)
By predicting the inflow into the water system at a future time, estimating the prediction error, and correcting the water level constraints and objective function of the optimal planning problem to minimize the impact of the prediction error on power generation and discharge volumes, and calculating information for the optimal plan for water system operation, including water intake and discharge volumes for power generation, based on this, it is possible to realize a water system operation plan that minimizes the decrease in optimality of the water system operation plan even when there is an error in the inflow prediction.

また、水系運用計画において、予測誤差が大きい期間を含むことが見込まれる場合には、例えば図7に示すように、その期間以前に発電取水量を増減させるよう、発電出力上限を超えない範囲で発電出力P(t)を増減させる振替運用を行うことが有効であるが、予測誤差の影響を含む最適化計算にこれを適用することで、複数のダムが連接するダム水系を対象に、振替期間と振替発電量の情報を含むより最適な水系運用計画を実現することができる。 Furthermore, when a river system operation plan is expected to include a period with large prediction errors, it is effective to carry out transfer operation to increase or decrease the power generation output P i (t) within a range that does not exceed the power generation output upper limit so as to increase or decrease the power generation water intake before that period, as shown in Figure 7, for example. By applying this to optimization calculations that include the effects of prediction errors, it is possible to realize a more optimal river system operation plan that includes information on the transfer period and transfer power generation amount for a dam river system in which multiple dams are connected.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents described in the claims.

10…流入量予測部、20…予測誤差推定部、30…水系運用計画部、100…水系運用計画システム。 10...inflow prediction unit, 20...prediction error estimation unit, 30...water system operation planning unit, 100...water system operation planning system.

Claims (6)

水系に流入する水の時系列の流入量を予測する流入量予測工程と、
過去の流入量予測と過去の流入量実績とに基づき、前記流入量予測工程で予測した流入量に対する時系列の予測誤差を推定する予測誤差推定工程と、
前記流入量予測工程で予測した流入量と前記予測誤差推定工程で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する水系運用計画工程と、
を含み、
前記水系運用計画工程では、
発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算を行うことにより水系の運用計画の情報を作成し、
前記予測誤差推定工程で推定した予測誤差に対応した流入量の増減変動時の影響分を加算した目的関数を用いて前記最適化計算を行うことにより前記水系の運用計画を示す情報を作成する、
コンピュータにより実行される、水系運用計画方法。
an inflow prediction step of predicting a time series inflow amount of water flowing into the water system;
a prediction error estimating step of estimating a time series prediction error for the inflow predicted in the inflow prediction step based on past inflow predictions and past inflow results;
a river system operation planning step of creating information on an operation plan of the river system based on the inflow predicted in the inflow prediction step and the prediction error estimated in the prediction error estimation step;
Including,
In the water system operation planning step,
Create information for the operation plan of the water system by performing optimization calculations aimed at maximizing the amount of generated power, maximizing the value of generated power, minimizing dam discharge, or maximizing the amount of water used for power generation.
generating information showing an operation plan for the water system by performing the optimization calculation using an objective function that includes an influence of an increase or decrease in the inflow amount corresponding to the prediction error estimated in the prediction error estimation step;
A computer-implemented method for planning water system operations.
水系に流入する水の時系列の流入量を予測する流入量予測工程と、
過去の流入量予測と過去の流入量実績とに基づき、前記流入量予測工程で予測した流入量に対する時系列の予測誤差を推定する予測誤差推定工程と、
前記流入量予測工程で予測した流入量と前記予測誤差推定工程で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する水系運用計画工程と、
を含み、
前記水系運用計画工程では、
発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算を行うことにより水系の運用計画の情報を作成し、
前記予測誤差推定工程で推定した予測誤差に対応したダム水位変化の影響分の水位制約または貯水量制約を付け加える、あるいは水位制約または貯水量制約を狭めるように変更し、その上で前記最適化計算を行うことにより前記水系の運用計画を作成する、
コンピュータにより実行される、水系運用計画方法。
an inflow prediction step of predicting a time series inflow amount of water flowing into the water system;
a prediction error estimating step of estimating a time series prediction error for the inflow predicted in the inflow prediction step based on past inflow predictions and past inflow results;
a river system operation planning step of creating information on an operation plan of the river system based on the inflow predicted in the inflow prediction step and the prediction error estimated in the prediction error estimation step;
Including,
In the water system operation planning step,
Create information for the operation plan of the water system by performing optimization calculations aimed at maximizing the amount of generated power, maximizing the value of generated power, minimizing dam discharge, or maximizing the amount of water used for power generation.
a water level constraint or a water storage volume constraint corresponding to the influence of the dam water level change corresponding to the prediction error estimated in the prediction error estimation step is added, or the water level constraint or the water storage volume constraint is changed to be narrowed, and then the optimization calculation is performed to create an operation plan for the water system.
A computer-implemented method for planning water system operations.
前記予測誤差推定工程は、
一定時間内の所定の時間ステップごとの各時刻において予測される流入量に基づいて、予測誤差を推定することを含む、
請求項1又は2に記載の水系運用計画方法。
The prediction error estimation step includes:
estimating a prediction error based on a predicted inflow volume at each time for each predetermined time step within a certain period of time;
The water system operation planning method according to claim 1 or 2 .
複数のダムが連接するダム水系を対象とする、
請求項1乃至3のいずれか1項に記載の水系運用計画方法。
This is for dam water systems with multiple dams connected to each other.
A method for planning a water system operation according to any one of claims 1 to 3 .
水系に流入する水の時系列の流入量を予測する流入量予測手段と、
過去の流入量予測と過去の流入量実績とに基づき、前記流入量予測手段で予測した流入量に対する時系列の予測誤差を推定する予測誤差推定手段と、
前記流入量予測手段で予測した流入量と前記予測誤差推定手段で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する水系運用計画手段と、
を備え
前記水系運用計画手段は、
発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算を行うことにより水系の運用計画の情報を作成し、
前記予測誤差推定手段で推定した予測誤差に対応した流入量の増減変動時の影響分を加算した目的関数を用いて前記最適化計算を行うことにより前記水系の運用計画を示す情報を作成する、
水系運用計画システム。
An inflow prediction means for predicting a time series inflow amount of water flowing into the water system;
a prediction error estimation means for estimating a time series prediction error for the inflow predicted by the inflow prediction means based on past inflow predictions and past inflow results;
a river system operation planning means for creating information on an operation plan of the river system based on the inflow predicted by the inflow prediction means and the prediction error estimated by the prediction error estimation means;
Equipped with
The water system operation planning means includes:
Create information for the operation plan of the water system by performing optimization calculations aimed at maximizing the amount of generated power, maximizing the value of generated power, minimizing dam discharge, or maximizing the amount of water used for power generation.
generating information showing an operation plan for the water system by performing the optimization calculation using an objective function obtained by adding an influence of an increase or decrease in the inflow amount corresponding to the prediction error estimated by the prediction error estimation means;
Water system operational planning system.
水系に流入する水の時系列の流入量を予測する流入量予測手段と、
過去の流入量予測と過去の流入量実績とに基づき、前記流入量予測手段で予測した流入量に対する時系列の予測誤差を推定する予測誤差推定手段と、
前記流入量予測手段で予測した流入量と前記予測誤差推定手段で推定した予測誤差とに基づいて、水系の運用計画の情報を作成する水系運用計画手段と、
を備え
前記水系運用計画手段は、
発電電力量の最大化、発電電力価値の最大化、ダム放流量の最小化、発電使用水量の最大化、のいずれかを目的とする最適化計算を行うことにより水系の運用計画の情報を作成し、
前記予測誤差推定手段で推定した予測誤差に対応したダム水位変化の影響分の水位制約または貯水量制約を付け加える、あるいは水位制約または貯水量制約を狭めるように変更し、その上で前記最適化計算を行うことにより前記水系の運用計画を作成する、
水系運用計画システム。
An inflow prediction means for predicting a time series inflow amount of water flowing into the water system;
a prediction error estimation means for estimating a time series prediction error for the inflow predicted by the inflow prediction means based on past inflow predictions and past inflow results;
a river system operation planning means for creating information on an operation plan of the river system based on the inflow predicted by the inflow prediction means and the prediction error estimated by the prediction error estimation means;
Equipped with
The water system operation planning means includes:
Create information for the operation plan of the water system by performing optimization calculations aimed at maximizing the amount of generated power, maximizing the value of generated power, minimizing dam discharge, or maximizing the amount of water used for power generation.
adding a water level constraint or a water storage volume constraint for the influence of the dam water level change corresponding to the prediction error estimated by the prediction error estimation means, or modifying the water level constraint or the water storage volume constraint to be narrower, and then performing the optimization calculation to create an operation plan for the water system.
Water system operational planning system.
JP2020188222A 2020-11-11 2020-11-11 Water system operation planning method and water system operation planning system Active JP7467315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020188222A JP7467315B2 (en) 2020-11-11 2020-11-11 Water system operation planning method and water system operation planning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020188222A JP7467315B2 (en) 2020-11-11 2020-11-11 Water system operation planning method and water system operation planning system

Publications (2)

Publication Number Publication Date
JP2022077382A JP2022077382A (en) 2022-05-23
JP7467315B2 true JP7467315B2 (en) 2024-04-15

Family

ID=81654279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020188222A Active JP7467315B2 (en) 2020-11-11 2020-11-11 Water system operation planning method and water system operation planning system

Country Status (1)

Country Link
JP (1) JP7467315B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031821A (en) 2003-07-09 2005-02-03 Hitachi Ltd Hydroelectric power station operation plan preparing device, method, and program
JP2011170808A (en) 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2015125665A (en) 2013-12-27 2015-07-06 株式会社日立製作所 Water system planning apparatus and water system planning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031821A (en) 2003-07-09 2005-02-03 Hitachi Ltd Hydroelectric power station operation plan preparing device, method, and program
JP2011170808A (en) 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2015125665A (en) 2013-12-27 2015-07-06 株式会社日立製作所 Water system planning apparatus and water system planning method

Also Published As

Publication number Publication date
JP2022077382A (en) 2022-05-23

Similar Documents

Publication Publication Date Title
JP4807565B2 (en) Flow prediction device
Herrera et al. Predictive models for forecasting hourly urban water demand
JP7079662B2 (en) Power demand forecasting system, learning device and power demand forecasting method
EP3380948B1 (en) Environmental monitoring systems, methods and media
Guo et al. A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems
Castelletti et al. Model predictive control of water resources systems: A review and research agenda
JP2023009541A (en) Rainwater inflow amount prediction device, rainwater inflow amount prediction method, and computer program
JP5932466B2 (en) Water distribution operation control device
JP2006092058A (en) Flow rate estimation device
Zéphyr et al. Approximate stochastic dynamic programming for hydroelectric production planning
Ferreira et al. Optimal and adaptive operation of a hydropower system with unit commitment and water quality constraints
Ashrafi et al. Applying wavelet transformation and artificial neural networks to develop forecasting-based reservoir operating rule curves
Mohammad Ashrafi Two-stage metaheuristic mixed integer nonlinear programming approach to extract optimum hedging rules for multireservoir systems
JP2023169099A (en) Inflow prediction system
Haguma et al. Hydropower plant adaptation strategies for climate change impacts on hydrological regime
Lee Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search
JP2007226450A (en) Apparatus, method and program for predicting flow rate
JP7467315B2 (en) Water system operation planning method and water system operation planning system
Safavi et al. Conjunctive use of surface and ground water using fuzzy neural network and genetic algorithm
CN109376957B (en) Method for predicting load of thermal power plant
CN109034485B (en) Water resource optimal configuration method based on feedback mechanism
Yonus et al. The Impact of Climate Change on Stochastic Variations of the Hydrology of the Flow of the Indus River
Liu et al. Bi-objective Optimization for Resource-constrained Robust Construction Project Scheduling
Omonayajo et al. Ethereum gas price prediction using facebook prophet model
JP4407420B2 (en) Water distribution prediction device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403

R150 Certificate of patent or registration of utility model

Ref document number: 7467315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150