JP7465340B2 - Metal-air battery device - Google Patents

Metal-air battery device Download PDF

Info

Publication number
JP7465340B2
JP7465340B2 JP2022514370A JP2022514370A JP7465340B2 JP 7465340 B2 JP7465340 B2 JP 7465340B2 JP 2022514370 A JP2022514370 A JP 2022514370A JP 2022514370 A JP2022514370 A JP 2022514370A JP 7465340 B2 JP7465340 B2 JP 7465340B2
Authority
JP
Japan
Prior art keywords
metal
air
air battery
battery device
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022514370A
Other languages
Japanese (ja)
Other versions
JPWO2021205847A1 (en
JPWO2021205847A5 (en
Inventor
俊輔 佐多
章人 吉田
宏隆 水畑
知 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2021205847A1 publication Critical patent/JPWO2021205847A1/ja
Publication of JPWO2021205847A5 publication Critical patent/JPWO2021205847A5/ja
Application granted granted Critical
Publication of JP7465340B2 publication Critical patent/JP7465340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/253Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、金属空気電池装置に関する。本開示は、2020年4月7日に、日本に出願された特願2020-069047号に基づく優先権を主張するものであり、その内容をここに援用する。The present invention relates to a metal-air battery device. This disclosure claims priority to Japanese Patent Application No. 2020-069047, filed on April 7, 2020, the contents of which are incorporated herein by reference.

例えば、特許文献1には、複数の金属空気電池が収納された金属空気電池装置の一例が記載されている。特許文献1に記載の金属空気電池は、正極と、負極と、正極と負極との間に配されたセパレータと、電解液と、正極、負極、セパレータ及び電解液を収容する外装体とを有する。外装体の正極側の表面には、開口部が形成されている、外装体と正極との間には、撥水膜が配されている。For example, Patent Document 1 describes an example of a metal-air battery device that houses multiple metal-air batteries. The metal-air battery described in Patent Document 1 has a positive electrode, a negative electrode, a separator disposed between the positive and negative electrodes, an electrolyte, and an exterior body that houses the positive electrode, the negative electrode, the separator, and the electrolyte. An opening is formed on the surface of the exterior body on the positive electrode side, and a water-repellent film is disposed between the exterior body and the positive electrode.

特開2019-67616号公報JP 2019-67616 A

特許文献1に記載の金属空気電池装置においては、例えば、金属空気電池装置に備えられた各金属空気電池が放電に伴い膨張し、放電容量やレート特性が低下する等の電池特性の低下が懸念され得る。
本開示の主な目的は、電池特性の低下が抑制された金属空気電池装置を提供することにある。
In the metal-air battery device described in Patent Document 1, for example, each metal-air battery provided in the metal-air battery device expands upon discharging, which may cause a concern of a deterioration in battery characteristics, such as a decrease in discharge capacity and rate characteristics.
A main object of the present disclosure is to provide a metal-air battery device in which deterioration of battery characteristics is suppressed.

本発明の一形態の金属空気電池装置は、正極と、前記正極に対向して配置された負極と、前記正極および前記負極を内部に収容する外装体と、を有する少なくとも1つの金属空気電池と、前記少なくとも1つの金属空気電池に外部から接触して、前記少なくとも1つの金属空気電池を部分的に所定の厚さ以下に規制する規制部材と、を備える。A metal-air battery device according to one embodiment of the present invention comprises at least one metal-air battery having a positive electrode, a negative electrode arranged opposite the positive electrode, and an exterior body that houses the positive electrode and the negative electrode, and a restricting member that contacts the at least one metal-air battery from the outside and partially restricts the at least one metal-air battery to a thickness equal to or less than a predetermined thickness.

実施形態1の金属空気電池の一例を示す平面図である。FIG. 1 is a plan view illustrating an example of a metal-air battery according to a first embodiment. 図1におけるA-A断面図である。2 is a cross-sectional view taken along line AA in FIG. 1. 金属空気電池の別の例を示す図である。FIG. 1 is a diagram showing another example of a metal-air battery. 実施形態1の金属空気電池装置の一例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a metal-air battery device according to a first embodiment. 図4における規制部材の一例を示す平面図である。FIG. 5 is a plan view illustrating an example of a restricting member in FIG. 4 . 金属空気電池に規制部材を設けた状態の一例を示す正面図である。FIG. 2 is a front view showing an example of a state in which a restricting member is provided in a metal-air battery. 金属空気電池に別の例の規制部材を設けた状態を示す正面図である。FIG. 11 is a front view showing a state in which another example of a restricting member is provided in the metal-air battery. 金属空気電池にさらに別の例の規制部材を設けた状態を示す正面図である。FIG. 13 is a front view showing a state in which still another example of a restricting member is provided in the metal-air battery.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。Hereinafter, an example of a preferred embodiment of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiment.

<実施形態1>
本実施形態にかかる金属空気電池装置1に備えられる金属空気電池10の一例について、図1、図2に基づいて説明する。図1は、金属空気電池10の正面図である。図2は、図1におけるA-A矢視断面図である。
<Embodiment 1>
An example of a metal-air battery 10 provided in a metal-air battery device 1 according to the present embodiment will be described with reference to Figures 1 and 2. Figure 1 is a front view of the metal-air battery 10. Figure 2 is a cross-sectional view taken along the line AA in Figure 1.

図1に示すように、金属空気電池10は、第1樹脂フィルム11および第2樹脂フィルム12を貼り合せて構成される外装体を備える。さらに、金属空気電池10は、この外装体の内部に収容された、空気極(正極)13、金属負極(負極)14、セパレータ25および撥水膜16を備える。また、外装体の内部には、例えば、アルカリ水溶液(例えば、KOH水溶液)等の電解液(不図示)が充填されている。電解液は、空気極13と金属負極14との間に介在し、空気極13と金属負極14との間で電荷を移動させる電解質を含む。As shown in FIG. 1, the metal-air battery 10 includes an exterior body formed by bonding a first resin film 11 and a second resin film 12 together. The metal-air battery 10 further includes an air electrode (positive electrode) 13, a metal negative electrode (negative electrode) 14, a separator 25, and a water-repellent film 16 housed inside the exterior body. The interior of the exterior body is filled with an electrolyte (not shown), such as an alkaline aqueous solution (e.g., a KOH aqueous solution). The electrolyte is interposed between the air electrode 13 and the metal negative electrode 14 and includes an electrolyte that transfers electric charge between the air electrode 13 and the metal negative electrode 14.

第1樹脂フィルム11は、後述の第1収容部S11に空気を取り込むための開口として空気取込口111を有する。また、第1樹脂フィルム11は、公知の金属空気電池に採用される樹脂フィルムを用いることができる。より具体的には、第1樹脂フィルム11は、第2樹脂フィルム12との溶着が可能であり、耐アルカリ性に優れた熱可塑性樹脂により形成されることが好ましく、例えばポリプロピレンやポリエチレン等のポリオレフィン系の樹脂フィルムを用いることができる。なお、補強のために、第1樹脂フィルム11および第2樹脂フィルム12の外気側に対して、ナイロン(登録商標)あるいはポリエチレンテレフタレートなどの樹脂フィルム層やアルミニウム箔あるいはステンレス箔などの金属フィルム層を積層した構成であってもよい。また、第1樹脂フィルム11の厚さは、特に限定されないが、0.02mm~0.25mmが好ましい。第1樹脂フィルム11の厚さが0.02mm未満であれば、溶着時に十分に溶け合わず接合強度が不足するおそれがあり、一方で、第1樹脂フィルム11の厚さ0.25mmを超えると、フィルムが伸びにくくなるため、電池が膨張した際に溶着部に応力が集中し、溶着部が剥がれるおそれがある。また、第1樹脂フィルム11に対する空気取込口111の開口率は10%~70%であることが好ましい。The first resin film 11 has an air intake port 111 as an opening for taking in air into the first storage section S11 described later. The first resin film 11 can be a resin film used in known metal-air batteries. More specifically, the first resin film 11 can be welded to the second resin film 12 and is preferably formed from a thermoplastic resin having excellent alkali resistance, for example, a polyolefin resin film such as polypropylene or polyethylene. For reinforcement, a resin film layer such as nylon (registered trademark) or polyethylene terephthalate or a metal film layer such as aluminum foil or stainless steel foil may be laminated on the outside air side of the first resin film 11 and the second resin film 12. The thickness of the first resin film 11 is not particularly limited, but is preferably 0.02 mm to 0.25 mm. If the thickness of the first resin film 11 is less than 0.02 mm, the film may not be sufficiently fused when welded, resulting in insufficient bonding strength, whereas if the thickness of the first resin film 11 exceeds 0.25 mm, the film may be difficult to stretch, causing stress to concentrate at the welded portion when the battery expands, resulting in the welded portion peeling off. In addition, the opening ratio of the air intake 111 to the first resin film 11 is preferably 10% to 70%.

第2樹脂フィルム12は、第1樹脂フィルム11と対向して配置される。第2樹脂フィルム12は、第1樹脂フィルム11で用いられる樹脂フィルムから適宜用いることができる。第2樹脂フィルム12の厚さは、第1樹脂フィルム11と同様の理由で、0.02mm~0.25mmであることが好ましい。The second resin film 12 is disposed opposite the first resin film 11. The second resin film 12 can be appropriately selected from the resin films used for the first resin film 11. For the same reasons as for the first resin film 11, the thickness of the second resin film 12 is preferably 0.02 mm to 0.25 mm.

セパレータ15は第1樹脂フィルム11および第2樹脂フィルム12と対向して配置されている。つまり、セパレータ15は、第1樹脂フィルム11と第2樹脂フィルム12との間に設けられている。セパレータ15の周縁部は、第1樹脂フィルム11の周縁部に溶着されている。セパレータ15の周縁部は、第2樹脂フィルム12の周縁部に溶着されても良く、第1樹脂フィルム11の周縁部と第2樹脂フィルムの周縁部の両方に溶着されていても良い。セパレータ15は、第1樹脂フィルム11や第2樹脂フィルム12と溶着可能な材料であれば、金属空気電池の分野で一般的に用いられるセパレータ材料を用いることができる。セパレータ15の厚さは、特に限定されないが、0.05mm~0.4mmが好ましい。セパレータ15の厚さが0.05mm未満であれば、放電中の負極活物質の体積膨張に伴いセパレータ15が破断するおそれがあり、一方で、セパレータ15の厚さが0.4mmを超えると、内部抵抗の増加の結果、電池出力が低下するおそれがある。The separator 15 is disposed opposite the first resin film 11 and the second resin film 12. That is, the separator 15 is provided between the first resin film 11 and the second resin film 12. The peripheral portion of the separator 15 is welded to the peripheral portion of the first resin film 11. The peripheral portion of the separator 15 may be welded to the peripheral portion of the second resin film 12, or may be welded to both the peripheral portion of the first resin film 11 and the peripheral portion of the second resin film. The separator 15 may be made of a separator material commonly used in the field of metal-air batteries, as long as it is a material that can be welded to the first resin film 11 or the second resin film 12. The thickness of the separator 15 is not particularly limited, but is preferably 0.05 mm to 0.4 mm. If the thickness of separator 15 is less than 0.05 mm, there is a risk that separator 15 will break due to the volume expansion of the negative electrode active material during discharge. On the other hand, if the thickness of separator 15 exceeds 0.4 mm, there is a risk that the battery output will decrease as a result of an increase in internal resistance.

第1樹脂フィルム11とセパレータ15との間は第1収容部S11となっている。第1収容部S11には、空気極13および撥水膜16が収容される。より具体的には、撥水膜16は空気取込口111よりも一回り大きく、空気取込口111を内側から覆うようにして第1樹脂フィルム11に溶着されている。空気極13は、撥水膜16とセパレータ15との間に配置されている。The first storage section S11 is between the first resin film 11 and the separator 15. The first storage section S11 contains the air electrode 13 and the water-repellent film 16. More specifically, the water-repellent film 16 is slightly larger than the air intake 111 and is welded to the first resin film 11 so as to cover the air intake 111 from the inside. The air electrode 13 is disposed between the water-repellent film 16 and the separator 15.

撥水膜16は、空気取込口111から空気極13に空気を取り込むとともに、空気取込口111からの電解液の漏洩を防ぐために設けられており、空気透過性と気液分離機能とを有する。撥水膜16は、空気取込口111を内側から覆うように第1樹脂フィルム11に溶着などで固定される。撥水膜16の材料は、金属空気電池の分野で一般的に用いられ、第1樹脂フィルム11に固定できる材料であれば特に限定されない。撥水膜16の厚さは、0.05mm~0.5mmであることが好ましい。なお、本実施形態における撥水膜16は、金属空気電池10の外部に露出しており、外装体の一部ということができる。The water-repellent film 16 is provided to take in air from the air inlet 111 to the air electrode 13 and to prevent leakage of the electrolyte from the air inlet 111, and has air permeability and gas-liquid separation function. The water-repellent film 16 is fixed to the first resin film 11 by welding or the like so as to cover the air inlet 111 from the inside. The material of the water-repellent film 16 is not particularly limited as long as it is a material that is commonly used in the field of metal-air batteries and can be fixed to the first resin film 11. The thickness of the water-repellent film 16 is preferably 0.05 mm to 0.5 mm. In this embodiment, the water-repellent film 16 is exposed to the outside of the metal-air battery 10 and can be said to be part of the exterior body.

空気極13は、例えば、触媒層132および触媒層132の内部に配置された正極集電体131により構成されている。正極集電体131の一部は、外装体の外側に延伸され、金属空気電池10のリード部133となっている。正極集電体131は、金属空気電池の分野で一般的に用いられる金属等の導電性の材料であれば特に限定されるものではない。また、正極集電体131の厚さは特に限定されないが、0.05mm~0.5mmであることが好ましい。The air electrode 13 is composed of, for example, a catalyst layer 132 and a positive electrode collector 131 disposed inside the catalyst layer 132. A part of the positive electrode collector 131 extends outside the exterior body and serves as a lead portion 133 of the metal-air battery 10. The positive electrode collector 131 is not particularly limited as long as it is made of a conductive material such as a metal that is commonly used in the field of metal-air batteries. The thickness of the positive electrode collector 131 is not particularly limited, but is preferably 0.05 mm to 0.5 mm.

触媒層132は、少なくとも空気極触媒を含む。空気極触媒は、少なくとも酸化還元能を有する触媒である。空気極触媒としては、ケッチェンブラック、アセチレンブラック、デンカブラック、カーボンナノチューブ、フラーレン等の導電性カーボン、白金などの金属、酸化マンガンなどの金属酸化物、金属水酸化物、金属硫化物等が挙げられ、これらの1種又は2種以上を用いることができる。これにより、空気極触媒上において、酸素ガスと水と電子とが共存する三相界面を形成することが可能になり、放電反応を進行させることができる。本実施形態のように、金属空気電池10が一次電池である場合、触媒層132は、二酸化マンガンなどの触媒を含むものとすることができる。また、金属空気電池10は、二次電池であってもよく、この場合、触媒層132が酸素還元能を有する空気極触媒だけでなく、酸素発生能を有する触媒を含んでいてもよく、酸素発生能と酸素還元能との両方を有するBi-functional触媒を含んでいてもよい。The catalyst layer 132 includes at least an air electrode catalyst. The air electrode catalyst is a catalyst having at least an oxidation-reduction ability. Examples of the air electrode catalyst include conductive carbon such as ketjen black, acetylene black, denka black, carbon nanotubes, and fullerene, metals such as platinum, metal oxides such as manganese oxide, metal hydroxides, and metal sulfides, and one or more of these can be used. This makes it possible to form a three-phase interface in which oxygen gas, water, and electrons coexist on the air electrode catalyst, and allows the discharge reaction to proceed. When the metal-air battery 10 is a primary battery as in this embodiment, the catalyst layer 132 can include a catalyst such as manganese dioxide. In addition, the metal-air battery 10 may be a secondary battery, and in this case, the catalyst layer 132 may include not only an air electrode catalyst having oxygen reduction ability, but also a catalyst having oxygen generation ability, or may include a bi-functional catalyst having both oxygen generation ability and oxygen reduction ability.

触媒層132に含まれる空気極触媒の質量割合は、触媒層132の5質量%以上であることが好ましい。空気極触媒層は、空気極触媒以外に結着剤を含んでいてもよい。また、触媒層132には、ポリテトラフルオロエチレンなどの結着剤を用いることができる。触媒層132の厚みは、0.1mm以上1.0mm以下であることが好ましい。The mass ratio of the air electrode catalyst contained in the catalyst layer 132 is preferably 5 mass% or more of the catalyst layer 132. The air electrode catalyst layer may contain a binder in addition to the air electrode catalyst. In addition, a binder such as polytetrafluoroethylene can be used for the catalyst layer 132. The thickness of the catalyst layer 132 is preferably 0.1 mm or more and 1.0 mm or less.

第2樹脂フィルム12とセパレータ15との間は第2収容部S12となっている。第2収容部S12には金属負極14が収容される。尚、第2収容部S12においては、セパレータ15の周縁部が第2樹脂フィルム12の周縁部に溶着されていてもよい。但し、セパレータ15および第2樹脂フィルム12が溶着されている場合であっても、第2収容部S12の外周を形成しているのは、第1樹脂フィルム11と第2樹脂フィルム12との溶着部である。The second storage section S12 is between the second resin film 12 and the separator 15. The metal negative electrode 14 is stored in the second storage section S12. In the second storage section S12, the peripheral portion of the separator 15 may be welded to the peripheral portion of the second resin film 12. However, even when the separator 15 and the second resin film 12 are welded, it is the welded portion between the first resin film 11 and the second resin film 12 that forms the outer periphery of the second storage section S12.

金属負極14は、例えば、空気極13と対向して配置され、負極集電体141と負極活物質層142とを含む。負極活物質層142は、少なくとも負極活物質を含む。より具体的には、第2収容部S12に、負極集電体141と粒子状の負極活物質(例えば、亜鉛または酸化亜鉛)を別途投入して金属負極14が形成されている。負極集電体141の一部は、外装体の外側に延伸され、金属空気電池10のリード部143となっている。負極集電体141の厚みは特に限定されないが、0.05mm~0.50mmであることが好ましい。また、負極活物質の結着性やレオロジー特性を向上させるための樹脂添加剤などが適宜含まれていてもよい。The metal negative electrode 14 is, for example, disposed opposite the air electrode 13 and includes a negative electrode collector 141 and a negative electrode active material layer 142. The negative electrode active material layer 142 includes at least a negative electrode active material. More specifically, the metal negative electrode 14 is formed by separately putting the negative electrode collector 141 and a particulate negative electrode active material (e.g., zinc or zinc oxide) into the second storage section S12. A part of the negative electrode collector 141 extends to the outside of the exterior body and becomes the lead part 143 of the metal-air battery 10. The thickness of the negative electrode collector 141 is not particularly limited, but is preferably 0.05 mm to 0.50 mm. In addition, a resin additive for improving the binding property and rheological properties of the negative electrode active material may be appropriately included.

負極活物質は、金属空気電池の分野で一般的に用いられる材料から適宜採用される。例えば、負極活物質は、カドミウム種・リチウム種・ナトリウム種・マグネシウム種・鉛種・亜鉛種・錫種・アルミニウム種・鉄種などの金属種を用いることができる。例えば、金属空気電池10が二次電池の場合、負極活物質は、充電されることで還元されるため、金属酸化物の状態であってもよい。The negative electrode active material is appropriately selected from materials commonly used in the field of metal-air batteries. For example, metal species such as cadmium, lithium, sodium, magnesium, lead, zinc, tin, aluminum, and iron can be used as the negative electrode active material. For example, when the metal-air battery 10 is a secondary battery, the negative electrode active material may be in the form of a metal oxide since it is reduced when charged.

負極活物質は、平均粒子径が1nm~500μmであることが好ましい。より好ましくは5nm~300μmであり、さらに好ましくは100nm~250μmであり、特に好ましくは、200nm~200μmである。上記平均粒子径は、粒度分布測定装置を用いて測定することができる。The negative electrode active material preferably has an average particle diameter of 1 nm to 500 μm. More preferably, it is 5 nm to 300 μm, even more preferably, it is 100 nm to 250 μm, and particularly preferably, it is 200 nm to 200 μm. The above average particle diameter can be measured using a particle size distribution measuring device.

また、第2収容部S12には、負極活物質に用いられている金属種によって適宜選択される電解液(不図示)が収容されている。金属負極14は、電解液に負極活物質が分散されたスラリー状(言い換えるとスラリー状の負極活物質層142)であってもよい。その場合、負極活物質の重量に対する電解液の重量の比は0.3~2.0であることが好ましい。また、その場合、負極活物質の粒径は、10μm~800μmであることが好ましく、75μm~425μmであることがより好ましい。The second storage section S12 also contains an electrolyte (not shown) that is appropriately selected depending on the type of metal used in the negative electrode active material. The metal negative electrode 14 may be in the form of a slurry in which the negative electrode active material is dispersed in the electrolyte (in other words, a slurry-like negative electrode active material layer 142). In this case, the ratio of the weight of the electrolyte to the weight of the negative electrode active material is preferably 0.3 to 2.0. In this case, the particle size of the negative electrode active material is preferably 10 μm to 800 μm, and more preferably 75 μm to 425 μm.

本実施形態に係る金属空気電池10では、第1樹脂フィルム11、第2樹脂フィルム12、空気極13、金属負極14、セパレータ15、撥水膜16および電解液の何れも、金属空気電池の分野において従来用いられているものが使用可能である。In the metal-air battery 10 of this embodiment, the first resin film 11, the second resin film 12, the air electrode 13, the metal negative electrode 14, the separator 15, the water-repellent film 16 and the electrolyte can all be those conventionally used in the field of metal-air batteries.

続いて、金属空気電池10の製造方法の一例を説明する。Next, an example of a manufacturing method for the metal-air battery 10 will be described.

まず、第1樹脂フィルム11に空気取込口111を形成する(空気取込口111の形成された第1樹脂フィルム11を準備する)。First, an air intake port 111 is formed in the first resin film 11 (a first resin film 11 having an air intake port 111 formed therein is prepared).

そして、空気取込口111を覆うようにして、撥水膜16を第1樹脂フィルム11に接着する。このとき、撥水膜16は空気取込口111よりも一回り大きいサイズであり、撥水膜16を空気取込口111の縁部分(接着領域)で積層して熱溶着する。Then, the water-repellent film 16 is adhered to the first resin film 11 so as to cover the air intake 111. At this time, the water-repellent film 16 is slightly larger than the air intake 111, and the water-repellent film 16 is laminated and heat-welded to the edge portion (adhesive area) of the air intake 111.

続いて、撥水膜16の空気取込口111とは反対側の面に触媒層132を積層する。Next, a catalyst layer 132 is laminated on the surface of the water-repellent film 16 opposite the air intake port 111.

さらに、触媒層132上に正極集電体131を、1辺が接着領域より延伸するように積層し、これらをプレスで圧着する。尚、正極集電体131における延伸部に電気的に接続されたリード部133をさらに備え、リード部133の両面には、タブフィルムが貼付されていてもよい。Furthermore, the positive electrode collector 131 is laminated on the catalyst layer 132 so that one side extends beyond the adhesive region, and these are pressed together. The positive electrode collector 131 may further include a lead portion 133 electrically connected to the extension portion of the positive electrode collector 131, and a tab film may be attached to both sides of the lead portion 133.

続いて、正極集電体131上にセパレータ15を積層し、セパレータ15を第1樹脂フィルム11に熱溶着する。このとき、セパレータ15は撥水膜16よりも一回り大きいサイズであり、セパレータ15が第1樹脂フィルム11に重なる部分で溶着する。尚、リード部にタブフィルムが使用されている場合は、セパレータ15はタブフィルムとも重なる部分で熱溶着される。Next, the separator 15 is laminated on the positive electrode current collector 131, and the separator 15 is heat-welded to the first resin film 11. At this time, the separator 15 is slightly larger than the water-repellent film 16, and is welded to the first resin film 11 where it overlaps. If a tab film is used for the lead portion, the separator 15 is heat-welded to the tab film where it overlaps.

続いて、セパレータ15上に負極集電体141を積層する。負極集電体141に電気的に接続されたリード部143をさらに備え、リード部143の両面には、タブフィルムが貼付されていてもよい。Next, the negative electrode current collector 141 is laminated on the separator 15. A lead portion 143 electrically connected to the negative electrode current collector 141 may be further provided, and a tab film may be attached to both sides of the lead portion 143.

さらに、負極集電体141上に第2樹脂フィルム12を積層し、下辺(リード部133およびリード部143が外装体の外側へ延伸されていない辺、例えば、リード部133およびリード部143が外装体の外側へ延伸している辺と対向する辺)を除く3つの各辺を熱溶着する。このとき、2つの側辺では少なくとも第1樹脂フィルム11と第2樹脂フィルム12同士が重なった部分を熱溶着する。また、上辺では、少なくとも第1樹脂フィルム11、第2樹脂フィルム12が重なる部分を熱溶着する。Furthermore, the second resin film 12 is laminated on the negative electrode current collector 141, and each of the three sides except for the bottom side (the side where the lead portions 133 and 143 do not extend outside the exterior body, for example, the side opposite the side where the lead portions 133 and 143 extend outside the exterior body) is heat welded. At this time, at least the overlapping portions of the first resin film 11 and the second resin film 12 are heat welded on the two side sides. At least the overlapping portions of the first resin film 11 and the second resin film 12 are heat welded on the top side.

最後に、溶着されていない1辺(下辺)の開口より、例えば、負極活物質としての亜鉛粉および7M-KOH水溶液からなる電解液を入れたのち、その辺を接着する。このとき、セパレータ15は第1樹脂フィルム11と既に溶着されている。下辺では樹脂フィルム同士(第1樹脂フィルム11および第2樹脂フィルム12)が重なった部分を、例えば溶着幅が4mmとなるように熱溶着する。 Finally, an electrolyte consisting of, for example, zinc powder as the negative electrode active material and a 7M KOH aqueous solution is poured into the opening on the one side (bottom side) that is not welded, and then that side is glued. At this point, the separator 15 is already welded to the first resin film 11. On the bottom side, the overlapping portion of the resin films (first resin film 11 and second resin film 12) is heat welded so that the weld width is, for example, 4 mm.

なお、本実施形態における金属空気電池10は、上記の構成に限定されるものではなく、例えば、図3に示すように、上記の構成において、第2樹脂フィルムが設けられた部分に負極を挟んで、さらにセパレータ15、正極集電体131、触媒層132、撥水膜16、第1樹脂フィルム11を積層した、第2の空気極を有する構造であってもよい。また、第2の空気極に代えて、酸素発生触媒能を有する充電用の正極であってもよい。充電用の正極は、例えば、酸素発生触媒能を有するNiを含む電極である。 Note that the metal-air battery 10 in this embodiment is not limited to the above configuration, and may have a structure having a second air electrode in which a separator 15, a positive electrode current collector 131, a catalyst layer 132, a water-repellent film 16, and a first resin film 11 are laminated on top of a negative electrode sandwiched between the second resin film in the above configuration as shown in FIG. 3. In addition, instead of the second air electrode, a charging positive electrode having oxygen generation catalytic ability may be used. The charging positive electrode is, for example, an electrode containing Ni having oxygen generation catalytic ability.

次に、本実施形態にかかる金属空気電池装置1の一例について、図4、図5、図6に基づいて説明する。図4は、金属空気電池装置1の概略の側面図である。図5は、規制部材21の一例を示す平面図である。図6は、規制部材21が装着された金属空気電池の正面図である。Next, an example of a metal-air battery device 1 according to this embodiment will be described with reference to Figures 4, 5, and 6. Figure 4 is a schematic side view of the metal-air battery device 1. Figure 5 is a plan view showing an example of a restricting member 21. Figure 6 is a front view of a metal-air battery with the restricting member 21 attached.

本実施形態にかかる金属空気電池装置1は、図4に示すように、筐体20内に、空気極13と金属負極14とが積層された方向に並べられた少なくとも1つの金属空気電池10を備える。図4においては、3つの金属空気電池10を筐体20内に並べた場合を例示しているが、金属空気電池10の数は特に限定されるものではなく、複数であってよい。As shown in Fig. 4, the metal-air battery device 1 according to this embodiment includes at least one metal-air battery 10 arranged in a direction in which an air electrode 13 and a metal negative electrode 14 are stacked within a housing 20. Fig. 4 illustrates an example in which three metal-air batteries 10 are arranged within the housing 20, but the number of metal-air batteries 10 is not particularly limited and may be more than one.

規制部材21は、図5に示すように、例えば、直線状の棒状部21a・21b・21c・21d、連結部21e・21fを備える。規制部材21は、棒状部21a・21b・21c・21dが連結部21e・21fにより連結された構造を有している。また、規制部材21は、隣り合う棒状部21a・21bおよび連結部21e・21fで囲まれた輪状部21gを有する。同様に、隣り合う棒状部21b・21cおよび連結部21e・21fで囲まれた部分、ならびに隣り合う棒状部21c・21dおよび連結部21e・21fで囲まれた部分も輪状部となっている。各輪状部は輪状部21gと同様である。そして、各金属空気電池10は、輪状部21g、各輪状部に挿通している。規制部材21の材質は特に限定されるものではなく、例えば金属空気電池10の膨張に従う柔軟性を有してもよい。また 、規制部材21の厚みは特に限定されるものではなく、薄すぎると規制部材21が破損しやすくなり、厚すぎると金属空気電池10の空気取込口111を塞ぐことになり電池性能の低下に繋がる。規制部材21の厚みは、例えば、0.5mm以上5mm以下である。本実施形態においては、輪状部が3つ連なった構造となっているが、これに限定されるものではなく、輪状部は単数でも複数連なった構成であってよい。5, the restricting member 21 includes, for example, linear rod-shaped portions 21a, 21b, 21c, and 21d, and connecting portions 21e and 21f. The restricting member 21 has a structure in which the rod-shaped portions 21a, 21b, 21c, and 21d are connected by connecting portions 21e and 21f. The restricting member 21 also has a ring-shaped portion 21g surrounded by adjacent rod-shaped portions 21a and 21b and connecting portions 21e and 21f. Similarly, the portion surrounded by adjacent rod-shaped portions 21b and 21c and connecting portions 21e and 21f, and the portion surrounded by adjacent rod-shaped portions 21c and 21d and connecting portions 21e and 21f are also ring-shaped portions. Each ring-shaped portion is the same as the ring-shaped portion 21g. Each metal-air battery 10 is inserted through the ring-shaped portion 21g and each ring-shaped portion. The material of the restricting member 21 is not particularly limited, and may have flexibility in accordance with the expansion of the metal-air battery 10. The thickness of the restricting member 21 is not particularly limited, and if the restricting member 21 is too thin, it is easily damaged, and if it is too thick, it will block the air intake port 111 of the metal-air battery 10, leading to a decrease in battery performance. The thickness of the restricting member 21 is, for example, 0.5 mm or more and 5 mm or less. In this embodiment, the restricting member 21 has a structure in which three ring-shaped portions are connected together, but is not limited thereto, and may have a structure in which a single ring-shaped portion is connected together or a plurality of ring-shaped portions are connected together.

より具体的には、金属空気電池装置1における金属空気電池10(外装体)は、空気極13と金属負極14とが積層された積層方向に、外部から棒状部21aおよび棒状部21bにより挟まれている。この時の棒状部21aと棒状部21bとの間隔をL1とする。つまり、金属空気電池10は、棒状部21aと棒状部21bとの間の間隔L1に相当する厚さに規制される。そして、金属空気電池10には、棒状部21a・21bにより規制されて湾曲した湾曲部10aが形成され、棒状部21a・21bとの接触部を境に第1部分10bおよび第2部分10cに分けられる。言い換えれば、棒状部21a・21bが金属空気電池10、つまり外装体を湾曲させている。以上の構成により、金属空気電池10の湾曲部10aの厚さ、言い換えれば上記所定の厚さは、棒状部21aと棒状部21bとにより規制されていない場合の金属空気電池10の厚さよりも、薄くなっている。More specifically, the metal-air battery 10 (exterior body) in the metal-air battery device 1 is sandwiched from the outside by the rod-shaped portion 21a and the rod-shaped portion 21b in the stacking direction in which the air electrode 13 and the metal negative electrode 14 are stacked. The distance between the rod-shaped portion 21a and the rod-shaped portion 21b at this time is L1. In other words, the metal-air battery 10 is restricted to a thickness equivalent to the distance L1 between the rod-shaped portion 21a and the rod-shaped portion 21b. The metal-air battery 10 is formed with a curved portion 10a that is curved by the rod-shaped portions 21a and 21b, and is divided into a first portion 10b and a second portion 10c at the contact portion with the rod-shaped portions 21a and 21b. In other words, the rod-shaped portions 21a and 21b curve the metal-air battery 10, that is, the exterior body. With the above configuration, the thickness of the curved portion 10a of the metal-air battery 10, in other words the above-mentioned specified thickness, is thinner than the thickness of the metal-air battery 10 when it is not restricted by the rod-shaped portions 21a and 21b.

棒状部21a・21bの積層方向の幅は、特に限定されるものではないが、例えば金属空気電池10が膨張した際に隣り合う金属空気電池10の撥水膜16同士が接触して空気取込口111を塞がない程度の距離を保てればよく、できるだけ小さいほうが好ましい。棒状部21a・21bの幅を小さくすることにより、金属空気電池装置1をよりコンパクトにすることができる。言い換えれば、上記所定の厚さは、金属空気電池10が膨張した場合の最大の厚さよりも、薄いと言える。また、上記では棒状部21a・21bが直線状である例を挙げたが、これに限らず、例えば波状等の他の形状であってもよい。さらに、上記では、棒状部21a・21bの間に規制しているが、例えば、金属空気電池10を固定し、棒状部21a・21bのいずれか一方で規制するように構成してよい。The width of the rod-shaped parts 21a and 21b in the stacking direction is not particularly limited, but it is preferable that the width is as small as possible so that the water-repellent films 16 of adjacent metal-air batteries 10 do not come into contact with each other and block the air intake port 111 when the metal-air battery 10 expands. By reducing the width of the rod-shaped parts 21a and 21b, the metal-air battery device 1 can be made more compact. In other words, the above-mentioned predetermined thickness can be said to be thinner than the maximum thickness when the metal-air battery 10 expands. In addition, although the rod-shaped parts 21a and 21b are linear in the above example, they may have other shapes such as wavy shapes. Furthermore, although the rod-shaped parts 21a and 21b are restricted between them in the above example, the metal-air battery 10 may be fixed and restricted by one of the rod-shaped parts 21a and 21b.

なお、金属空気電池10は、放電に従い膨張し得る。金属空気電池10の放電していない場合の厚さは、つまり、金属空気電池10の放電していない初期段階(例えば、作成時)の厚さW1は、膨張時の厚さW2よりも小さな値となる。膨張時の厚さW2がL1よりも大きくなった場合には、金属空気電池10は、規制部材21に規制されて湾曲した湾曲部が形成される。このように、W1がL1よりも小さくとも、W2がL1よりも大きくなる場合、つまり金属空気電池10が膨張して規制部材により規制されて湾曲部が形成される場合も、金属空気電池10が湾曲部を有することになる。さらにまた、規制部材21は、金属空気電池10の一部分に接触して、金属空気電池10の一部分の厚みが増大することを抑制すると言い換えることができる。 The metal-air battery 10 may expand as it is discharged. The thickness of the metal-air battery 10 when it is not discharged, that is, the thickness W1 of the metal-air battery 10 at the initial stage (e.g., at the time of creation) when it is not discharged, is smaller than the thickness W2 when it is expanded. When the thickness W2 when it is expanded becomes larger than L1, the metal-air battery 10 forms a curved portion regulated by the regulating member 21. In this way, even if W1 is smaller than L1, when W2 is larger than L1, that is, when the metal-air battery 10 expands and forms a curved portion regulated by the regulating member, the metal-air battery 10 has a curved portion. Furthermore, it can be said that the regulating member 21 contacts a part of the metal-air battery 10 to suppress an increase in the thickness of the part of the metal-air battery 10.

湾曲部10aは、例えば、第1樹脂フィルム11、第2樹脂フィルム12および撥水膜16を含む外装体における、棒状部21a・21bと接触する領域に形成される。棒状部21a・21bにおける外装体と接触する部分の少なくとも一部は、曲面になっていることが好ましい。これにより、棒状部21a・21bが接触する外装体、特に撥水膜16の破損を抑制することができる。湾曲部10aでは、第1樹脂フィルム11、撥水膜16、触媒層132が積層された状態で湾曲していることが好ましく、さらに、正極集電体131、スラリー状の負極活物質層142が収容された第2収容部S12が積層されている状態で湾曲していることが好ましい。このように予め触媒層132および/または正極集電体131を湾曲させていることで、放電に伴う金属空気電池10の膨張を抑えることができる。そのため、金属空気電池10の膨張による電極間距離の変化に起因した空気極13の面方向による放電反応の不均一さを解消することができる。The curved portion 10a is formed, for example, in an area of the exterior body including the first resin film 11, the second resin film 12, and the water-repellent film 16 that contacts the rod-shaped portions 21a and 21b. It is preferable that at least a part of the portion of the rod-shaped portions 21a and 21b that contacts the exterior body is curved. This makes it possible to suppress damage to the exterior body that the rod-shaped portions 21a and 21b contact, particularly the water-repellent film 16. It is preferable that the curved portion 10a is curved in a state in which the first resin film 11, the water-repellent film 16, and the catalyst layer 132 are stacked, and further, it is preferable that the curved portion 10a is curved in a state in which the positive electrode collector 131 and the second storage portion S12 in which the slurry-like negative electrode active material layer 142 is stored are stacked. By previously bending the catalyst layer 132 and/or the positive electrode collector 131 in this way, it is possible to suppress the expansion of the metal-air battery 10 due to discharge. Therefore, it is possible to eliminate unevenness in the discharge reaction in the planar direction of the air electrode 13 caused by a change in the inter-electrode distance due to the expansion of the metal-air battery 10 .

本実施形態の金属空気電池装置1によれば、金属空気電池10は、棒状部21a・21bによって少なくとも部分的に所定の厚さ以下、つまり棒状部21aと棒状部21bとの間隔以下に規制されるため、負極活物質層142等の膨張があったとしても、正極集電体131と負極集電体141との間隔の変動が抑制される。特に、規制部材21は、棒状部21a・21b同士が、連結部21e・21fにより連結されているため、棒状部21aと棒状部21bとの間隔の変動をより抑制することができる。これにより、金属空気電池10における電池反応がより均一になり、レート特性や電池容量等の電池特性の低下を抑制することができる。なお、上記では、棒状部21aおよび棒状部21bの両端を連結部21eおよび連結部21fで連結しているが、連結部21eまたは連結部21fのいずれか一方で連結していてもよい。According to the metal-air battery device 1 of this embodiment, the metal-air battery 10 is at least partially restricted by the rod-shaped portions 21a and 21b to a predetermined thickness or less, that is, the distance between the rod-shaped portions 21a and 21b or less, so that even if the negative electrode active material layer 142 or the like expands, the variation in the distance between the positive electrode collector 131 and the negative electrode collector 141 is suppressed. In particular, since the rod-shaped portions 21a and 21b of the restricting member 21 are connected to each other by the connecting portions 21e and 21f, the variation in the distance between the rod-shaped portions 21a and 21b can be further suppressed. This makes the battery reaction in the metal-air battery 10 more uniform, and suppresses the deterioration of battery characteristics such as rate characteristics and battery capacity. In the above, both ends of the rod-shaped portions 21a and 21b are connected by the connecting portions 21e and 21f, but they may be connected by either the connecting portions 21e or the connecting portions 21f.

さらに、図5に示すように、輪状部21gにおける、規制部材21の棒状部21a・21bと連結部21e・21fとが連結された連結領域21hは、曲面となるように構成されている。これにより、金属空気電池10が膨張した際に規制部材21にかかる応力に耐え、規制部材21の破損を防止することができる。5, the connecting region 21h in the ring-shaped portion 21g where the rod-shaped portions 21a and 21b of the restricting member 21 are connected to the connecting portions 21e and 21f is configured to have a curved surface. This allows the restricting member 21 to withstand the stress applied thereto when the metal-air battery 10 expands, and prevents the restricting member 21 from being damaged.

金属空気電池10における正極集電体131および負極集電体141は、板状となっていることが好ましい。ここで、板状の正極集電体131または板状の負極集電体141とは、それぞれを構成するワイヤ状の導電性の材料を配列させ、または編み込み、湾曲させ、板状に形成したものも含む。さらに、正極集電体131は、規制部材21の棒状部21a・21bによって湾曲していることが好ましい。これにより、正極集電体131と負極集電体141との間隔の変動をより一層抑制し、金属空気電池10における電池反応をより均一にすることができ、レート特性や電池容量の低下をより抑制することができる。なお、正極集電体131および負極集電体141は、例えば、多孔質体であっても、メッシュ状であってもよい。また、負極集電体141の厚みは、特に限定しないが、湾曲できる程度の厚みであることが好ましい。The positive electrode collector 131 and the negative electrode collector 141 in the metal-air battery 10 are preferably plate-shaped. Here, the plate-shaped positive electrode collector 131 and the plate-shaped negative electrode collector 141 include those in which the wire-shaped conductive materials constituting the respective ones are arranged, woven, curved, and formed into a plate shape. Furthermore, it is preferable that the positive electrode collector 131 is curved by the rod-shaped parts 21a and 21b of the regulating member 21. This further suppresses the fluctuation of the gap between the positive electrode collector 131 and the negative electrode collector 141, making the battery reaction in the metal-air battery 10 more uniform, and further suppressing the decrease in rate characteristics and battery capacity. The positive electrode collector 131 and the negative electrode collector 141 may be, for example, porous or mesh-shaped. The thickness of the negative electrode collector 141 is not particularly limited, but is preferably thick enough to be curved.

さらに、棒状部21a・21bは、例えば、上記積層方向と略直交する方向に金属空気電池10の中央部を渡って金属空気電池10を規制している。ここで、略直交とは所定の方向に対して90°±5°のことであり、中央部とは上記積層方向と略直交する方向(つまり、各構成要素の面方向)における空気極の周縁部から4分の1よりも中央に位置する領域のことである。この構成により、金属空気電池10は、第1部分10bと第2部分10cとをほぼ均等な状態とすることができ、金属空気電池10における電池反応がより均一になり、レート特性や電池容量等の電池特性の低下をより抑制することができる。 Furthermore, the rod-shaped parts 21a and 21b, for example, restrict the metal-air battery 10 across the central part of the metal-air battery 10 in a direction substantially perpendicular to the stacking direction. Here, substantially perpendicular means 90°±5° to the predetermined direction, and the central part means a region located more than one-quarter of the way from the periphery of the air electrode in a direction substantially perpendicular to the stacking direction (i.e., the surface direction of each component). With this configuration, the metal-air battery 10 can have the first part 10b and the second part 10c in a substantially uniform state, making the battery reaction in the metal-air battery 10 more uniform and further suppressing the deterioration of battery characteristics such as rate characteristics and battery capacity.

なお、棒状部21b・21c、棒状部21c・21dも、上記棒状部21a・21bと同様の効果を奏する。 In addition, rod-shaped portions 21b and 21c and rod-shaped portions 21c and 21d also have the same effects as rod-shaped portions 21a and 21b.

また、規制部材21に複数の金属空気電池10を装着した場合、隣り合う金属空気電池10同士の間には、棒状部が配置されるため、隙間が設けられる。この隙間により、金属空気電池10における撥水膜16同士が接触して空気取込口111が塞がれることを防止でき、金属空気電池10へ空気を供給しやすくなる。In addition, when multiple metal-air batteries 10 are attached to the restricting member 21, a gap is provided between adjacent metal-air batteries 10 because the rod-shaped parts are arranged between them. This gap prevents the water-repellent films 16 of the metal-air batteries 10 from coming into contact with each other and blocking the air intake port 111, making it easier to supply air to the metal-air batteries 10.

さらに、規制部材21に複数の金属空気電池10を装着した場合、金属空気電池10が膨張するに伴い、隣り合う金属空気電池10との間に挟まれる棒状部を介して、隣り合う金属空気電池10に力が加わる。その加わる力により、隣り合う金属空気電池10は、棒状部によって押されて膨張が抑制される。複数の金属空気電池10が規制部材21に装着された場合に、複数の金属空気電池10の相互で同様に膨張を抑制する効果が得られるため、特に好ましい。これにより、複数の金属空気電池10それぞれの厚さをほぼ均一にすることができ、複数の金属空気電池10それぞれにおけるレート特性等の電池特性をそろえることができ、金属空気電池10間のばらつきを抑制することができる。Furthermore, when multiple metal-air batteries 10 are attached to the restricting member 21, as the metal-air batteries 10 expand, a force is applied to the adjacent metal-air batteries 10 via the rod-shaped portion sandwiched between the adjacent metal-air batteries 10. The applied force causes the adjacent metal-air batteries 10 to be pushed by the rod-shaped portion, suppressing their expansion. This is particularly preferable when multiple metal-air batteries 10 are attached to the restricting member 21, since it is possible to obtain the effect of suppressing the expansion of the multiple metal-air batteries 10 in the same manner. This allows the thickness of each of the multiple metal-air batteries 10 to be approximately uniform, and the battery characteristics such as rate characteristics of each of the multiple metal-air batteries 10 to be uniform, thereby suppressing variation between the metal-air batteries 10.

本実施形態における金属空気電池装置1は、金属空気電池10を規制部材21に装着して、筐体20に収納することにより容易に製造することができる。規制部材21の一部は、筐体20と内接していることが好ましい。例えば、金属空気電池10と筐体20との間に配される規制部材21の棒状部21aは、筐体20と内接していることがより好ましい。これにより、規制部材21によって規制された複数の金属空気電池10それぞれの厚さがより均一になる。そのため、同じ筐体20に含まれる複数の金属空気電池10それぞれにおけるレート特性等の電池特性をそろえることができ、金属空気電池10間のばらつきを抑制することができる。さらに、筐体20には、金属空気電池10が並べられた方向、および/または金属空気電池10が並べられた方向とは略直交する方向に、穴が設けられることが好ましい。この穴を形成することにより、金属空気電池10に空気を供給しやすくなり、電池特性の低下を抑制することができる。金属空気電池10が並べられた方向とは略直交する方向における筐体20の穴は、空気取込口111と平行な方向に空気が流れやすくなるため、金属空気電池10への空気の供給が容易となり好ましい。The metal-air battery device 1 in this embodiment can be easily manufactured by mounting the metal-air battery 10 on the restricting member 21 and storing it in the housing 20. It is preferable that a part of the restricting member 21 is in contact with the housing 20. For example, it is more preferable that the rod-shaped portion 21a of the restricting member 21 arranged between the metal-air battery 10 and the housing 20 is in contact with the housing 20. This makes the thickness of each of the multiple metal-air batteries 10 restricted by the restricting member 21 more uniform. Therefore, it is possible to make the battery characteristics such as the rate characteristics of each of the multiple metal-air batteries 10 contained in the same housing 20 uniform, and it is possible to suppress the variation between the metal-air batteries 10. Furthermore, it is preferable that a hole is provided in the housing 20 in the direction in which the metal-air batteries 10 are arranged and/or in a direction approximately perpendicular to the direction in which the metal-air batteries 10 are arranged. By forming this hole, it becomes easier to supply air to the metal-air battery 10, and it is possible to suppress the deterioration of the battery characteristics. Holes in the casing 20 in a direction approximately perpendicular to the direction in which the metal-air batteries 10 are arranged are preferable as they allow air to flow more easily in a direction parallel to the air intake 111, making it easier to supply air to the metal-air batteries 10.

また、筐体20における金属空気電池10が並べられた方向、つまり積層方向とは略直交する方向に対向する側壁の穴は、規制部材21により形成された金属空気電池10同士の間の空間に対向するように設けることが好ましい。これにより、各金属空気電池10に容易に空気を供給することができる。なお、上記側壁の穴は、1つでも複数であってもよい。In addition, it is preferable that the hole in the side wall facing the direction in which the metal-air batteries 10 are arranged in the housing 20, i.e., the direction approximately perpendicular to the stacking direction, is provided so as to face the space between the metal-air batteries 10 formed by the restricting member 21. This makes it possible to easily supply air to each metal-air battery 10. Note that the number of holes in the side wall may be one or more.

さらに、上記では、規制部材21の棒状部21a・21bで金属空気電池10の縦方向の中央部を規制する例を挙げたが、規制部材21の数、規制する部位は、これに限定されるものではない。複数の規制部材21で金属空気電池10を規制する場合、規制する部位は金属空気電池10の空気取込口111の縦方向および/または横方向を略等分する部位を規制することが好ましい。例えば、図7に示すように、2つの規制部材21を用いて金属空気電池10の空気取込口111の縦方向のみ規制する場合は、2つの規制部材21により、金属空気電池10の空気取込口111の縦方向を略3等分する部位を規制してもよいし、図8に示すように、4つの規制部材21を用いて金属空気電池10の空気取込口111の縦方向および横方向を規制する場合は、図7の構成に加えて、さらに金属空気電池10の空気取込口111の横方向を略3等分する部位を規制するようにしてもよい。複数の規制部材21により金属空気電池10を規制する部分を増やすことにより、より効率的に金属空気電池10の厚さW1を規制することができる。Furthermore, in the above, an example was given in which the rod-shaped parts 21a and 21b of the restricting member 21 restrict the center part of the vertical direction of the metal-air battery 10, but the number of restricting members 21 and the parts to be restricted are not limited to this. When restricting the metal-air battery 10 with a plurality of restricting members 21, it is preferable that the restricting parts are parts that divide the air intake 111 of the metal-air battery 10 into approximately equal parts in the vertical and/or horizontal directions. For example, as shown in FIG. 7, when two restricting members 21 are used to restrict only the vertical direction of the air intake 111 of the metal-air battery 10, the two restricting members 21 may restrict a part that divides the air intake 111 of the metal-air battery 10 into approximately three equal parts in the vertical direction, or as shown in FIG. 8, when four restricting members 21 are used to restrict the air intake 111 of the metal-air battery 10 in the vertical and horizontal directions, in addition to the configuration of FIG. 7, a part that divides the air intake 111 of the metal-air battery 10 into approximately three equal parts in the horizontal direction may be restricted. By increasing the number of portions that restrict the metal-air battery 10 using a plurality of restricting members 21, the thickness W1 of the metal-air battery 10 can be restricted more efficiently.

上記では、規制部材21と、筐体20とは別個に設けたが、これらを一体に形成した構成であってもよい。尚、本実施形態における金属空気電池装置1では、筐体20は、樹脂や金属等の一般的な材料を使用することができる。規制部材21と筐体20は、同じ材料を使用しても良く、異なる材料を用いても良い。In the above, the restricting member 21 and the housing 20 are provided separately, but they may be configured to be formed integrally. In the metal-air battery device 1 of this embodiment, the housing 20 can be made of a general material such as resin or metal. The restricting member 21 and the housing 20 may be made of the same material or different materials.

<実施例および比較例>
下記の要領で上記実施形態に係る金属空気電池10と実質的に同様の構成を有する金属空気電池を作製した。
<Examples and Comparative Examples>
A metal-air battery having substantially the same configuration as the metal-air battery 10 according to the above embodiment was fabricated in the following manner.

まず、第1樹脂フィルムとして、110mm×110mmの正方形状の樹脂フィルムを用意した。樹脂フィルムは、厚みが15μmのナイロン(登録商標)フィルムと、厚みが100μmのポリエチレン(PE)フィルムとの積層体である。この第1樹脂フィルムには、60×60mmの大きさの開口である空気取込口を形成した。First, a square resin film measuring 110 mm x 110 mm was prepared as the first resin film. The resin film was a laminate of a nylon (registered trademark) film with a thickness of 15 μm and a polyethylene (PE) film with a thickness of 100 μm. An air intake port, which was an opening measuring 60 x 60 mm, was formed in this first resin film.

次に、樹脂フィルムの空気取込口を被うように70mm×70mmの大きさの、厚みが200μmのポリテトラフルオロエチレンフィルムからなる撥水膜を配置し、樹脂フィルムに熱溶着した。溶着幅は、2mmとした。Next, a water-repellent film made of a 200 μm-thick polytetrafluoroethylene film measuring 70 mm x 70 mm was placed to cover the air intake of the resin film, and was heat-welded to the resin film. The weld width was 2 mm.

次に、樹脂フィルムと熱溶着された撥水膜の反対側の面上に、70mm×70mmの触媒層を積層した。触媒層は、酸素還元触媒としてのMnO、酸素還元触媒兼導電剤としてのアセチレンブラック、及びバインダーとしてのポリテトラフルオロエチレンを含む多孔質体(厚み:500μm)である。 Next, a catalyst layer of 70 mm x 70 mm was laminated on the surface opposite to the water-repellent film heat-welded to the resin film. The catalyst layer was a porous body (thickness: 500 μm) containing MnO2 as an oxygen reduction catalyst, acetylene black as an oxygen reduction catalyst and conductive agent, and polytetrafluoroethylene as a binder.

この触媒層の上に、リードが接続された77mm×70mmの正極集電体を積層した。正極集電体は、厚さ180μmのNiエキスパンドである。リードは、タブフィルムが貼付けされた50×10mm、100μm厚のNi箔を用いた。A 77 mm x 70 mm positive electrode current collector with a lead connected was laminated on top of this catalyst layer. The positive electrode current collector was a 180 μm thick Ni expand. The lead was a 50 x 10 mm, 100 μm thick Ni foil with a tab film attached.

次に、これらをプレス圧着により接着した。These were then glued together using a press.

次に、正極集電体の上に、セパレータを積層し、セパレータの周縁部を第1樹脂フィルムおよびリードのタブフィルムに熱溶着した。セパレータは、92mm×80mm、厚さ200μmのポリオレフィン不織布である。なお、セパレータと第1樹脂フィルム、セパレータとタブフィルムとの溶着幅は、2mmとした。Next, a separator was laminated on the positive electrode current collector, and the periphery of the separator was heat-welded to the first resin film and the tab film of the lead. The separator was a polyolefin nonwoven fabric with dimensions of 92 mm x 80 mm and a thickness of 200 μm. The welding width between the separator and the first resin film, and between the separator and the tab film, was 2 mm.

次に、セパレータの上に、77mm×70mmの負極集電体を積層した。負極集電体は、厚さ280μmのCuエキスパンドである。負極集電体は、50mm×10mm、厚さ100μmのNi箔からなるタブフィルムを貼り付けたリードを有する。Next, a negative electrode current collector measuring 77 mm x 70 mm was laminated on top of the separator. The negative electrode current collector was a Cu expand having a thickness of 280 μm. The negative electrode current collector had a lead attached to a tab film made of Ni foil measuring 50 mm x 10 mm and having a thickness of 100 μm.

次に、負極集電体の上に、第1樹脂フィルムと同様の110mm×110mmの正方形状の樹脂フィルムを第2樹脂フィルムとして積層した。そして、第1樹脂フィルムと第2樹脂フィルムとを、1辺を除く3つの辺を溶着幅が2mmとなるように相互に溶着した。熱溶着した。Next, a square resin film of 110 mm x 110 mm similar to the first resin film was laminated on the negative electrode current collector as the second resin film. The first resin film and the second resin film were then heat-welded to each other so that the welding width was 2 mm on three sides except for one side.

次に、第1樹脂フィルムと第2樹脂フィルムとの溶着されていない1辺から、電解液及び負極活物質を、セパレータと第2樹脂フィルムとの間に挿入した。電解液は、7MのKOH水溶液である。負極活物質粒子は、亜鉛粉である。所定量の電解液及び負極活物質を挿入した後、第1樹脂フィルムと第2樹脂フィルムとの残りの1辺を溶着した。具体的には、第1樹脂フィルム及び第2樹脂フィルムが重なった部分を4mmの溶着幅となるように溶着した。Next, the electrolyte and the negative electrode active material were inserted between the separator and the second resin film from the one side where the first resin film and the second resin film were not welded. The electrolyte was a 7M KOH aqueous solution. The negative electrode active material particles were zinc powder. After a predetermined amount of electrolyte and negative electrode active material were inserted, the remaining side between the first resin film and the second resin film was welded. Specifically, the overlapping portion of the first resin film and the second resin film was welded to a weld width of 4 mm.

作製された金属空気電池は、厚さが8mmであった。同様にして金属空気電池を作製した。The metal-air battery produced had a thickness of 8 mm. Metal-air batteries were produced in the same manner.

一方、各実施例の規制部材として、厚さ2mmの図5に示す形状のものを用意した。なお、各実施例における金属空気電池の初期段階の厚さW1、棒状部間の距離(輪状部の幅)L1は、下記の表1に示す通りである。L1は3つある輪状部で同様である。各実施例の各規制部材に上記で作製した3つの金属空気電池を図6に示す位置に装着し、筐体内に設置した。隣接する金属空気電池の正極と負極を連結することにより、各実施例にかかる金属空気電池装置を作製した。各実施例にかかる規制部材と筐体の材料として、ABS樹脂を使用した。なお、比較例1では、規制部材を使用せず、3つの金属空気電池を単に連結した金属空気電池装置を作製した。On the other hand, a 2 mm thick regulating member having the shape shown in FIG. 5 was prepared as the regulating member for each example. The initial thickness W1 of the metal-air battery in each example and the distance between the rod-shaped parts (width of the ring-shaped part) L1 are as shown in Table 1 below. L1 is the same for the three ring-shaped parts. The three metal-air batteries prepared above were attached to the regulating members of each example in the positions shown in FIG. 6 and placed in the housing. The metal-air battery device of each example was prepared by connecting the positive and negative electrodes of adjacent metal-air batteries. ABS resin was used as the material for the regulating member and housing of each example. In Comparative Example 1, a metal-air battery device was prepared by simply connecting three metal-air batteries without using a regulating member.

実施例および比較例の金属空気電池装置に関し、放電容量の試験を行った。放電試験は、金属空気電池装置を負荷装置に接続し、室温環境下、表1に示す放電レートにおいて電圧が2.4Vを下回るまで放電試験を行った。その結果を表1に示す。なお、放電容量は、実施例2を基準(100)とした相対値で示す。

Figure 0007465340000001
A discharge capacity test was conducted on the metal-air battery devices of the examples and comparative examples. The discharge test was conducted by connecting the metal-air battery device to a load device and conducting a discharge test in a room temperature environment until the voltage fell below 2.4 V at the discharge rate shown in Table 1. The results are shown in Table 1. The discharge capacity is shown as a relative value with Example 2 set as the reference (100).
Figure 0007465340000001

なお、実施例5では、初期段階ではL1がW1より大きいが、放電中に金属空気電池が膨張し、規制部材により規制されて湾曲部が形成された。In Example 5, L1 was larger than W1 in the initial stage, but the metal-air battery expanded during discharge and was restricted by the restricting member to form a curved portion.

表1に示す結果から、実施例における金属空気電池装置においては、比較例の金属空気電池装置に比べ、各放電レートにおいて放電容量が高いことが明らかとなった。 The results shown in Table 1 reveal that the metal-air battery device in the embodiment has a higher discharge capacity at each discharge rate than the metal-air battery device in the comparative example.

本発明は、上記実施の形態に限定されるものではなく、上記実施の形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。The present invention is not limited to the above-described embodiments, and may be replaced with a configuration that is substantially the same as the configuration shown in the above-described embodiments, a configuration that has the same effect, or a configuration that can achieve the same purpose.

Claims (15)

正極と、前記正極に対向して配置された負極と、前記正極および前記負極を内部に収容する外装体と、を有する少なくともつの金属空気電池と、
前記少なくともつの金属空気電池に外部から接触して、前記少なくともつの金属空気電池を部分的に所定の厚さ以下に規制し、樹脂または金属からなる規制部材と、
を備え、
前記少なくともつの金属空気電池は、前記規制部材により規制されて前記外装体が内部に向けて湾曲した湾曲部を有
前記規制部材は、前記正極と前記負極とが積層された積層方向と略直交する方向における前記少なくとも2つの金属空気電池の中央部に渡って直線状に規制する複数の棒状部を有し、
前記積層方向における前記複数の棒状部の間隔は、一定であり、
前記複数の棒状部のうちの1の棒状部は、前記少なくとも2つの金属空気電池が隣り合う金属空気電池同士の間に配置される、
金属空気電池装置。
At least two metal-air batteries each having a positive electrode, a negative electrode disposed opposite the positive electrode, and an exterior housing that houses the positive electrode and the negative electrode;
a restricting member that is in contact with the at least two metal-air batteries from the outside and restricts the at least two metal-air batteries to a partial thickness equal to or less than a predetermined thickness , the restricting member being made of resin or metal ;
Equipped with
the at least two metal-air batteries each have a curved portion in which the exterior body is curved inwardly by being restricted by the restricting member,
the regulating member has a plurality of rod-shaped portions that linearly regulate the at least two metal-air batteries in a direction substantially perpendicular to a stacking direction in which the positive electrode and the negative electrode are stacked,
The intervals between the rod-shaped portions in the stacking direction are constant,
One of the rod-shaped portions is disposed between adjacent metal-air batteries of the at least two metal-air batteries.
Metal-air battery device.
前記規制部材は、前記正極と前記負極とが積層された積層方向に、前記少なくともつの金属空気電池を挟むように設けられる、請求項1に記載の金属空気電池装置。 The metal-air battery device according to claim 1 , wherein the regulating member is provided so as to sandwich the at least two metal-air batteries in a stacking direction in which the positive electrodes and the negative electrodes are stacked. 前記規制部材は、前記複数の棒状部同士を連結する連結部を有する、請求項に記載の金属空気電池装置。 The metal-air battery device according to claim 1 , wherein the regulating member has a connecting portion that connects the plurality of rod-shaped portions to each other. 前記規制部材は、隣り合う棒状部同士が前記連結部により連結された輪状部を有し、前記輪状部に前記少なくともつの金属空気電池が挿通している、請求項に記載の金属空気電池装置。 The metal-air battery device according to claim 3 , wherein the regulating member has a ring-shaped portion in which adjacent rod-shaped portions are connected by the connecting portions, and the at least two metal-air batteries are inserted into the ring-shaped portion. 前記輪状部における前記複数の棒状部と前記連結部とが連結された連結領域が曲面になっている、請求項に記載の金属空気電池装置。 The metal-air battery device according to claim 4 , wherein a connecting region in the ring-shaped portion where the plurality of rod-shaped portions and the connecting portion are connected has a curved surface. 前記外装体の内部に収容された電解液を備える、請求項1~のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 5 , further comprising an electrolyte solution contained inside the exterior body. 前記正極と前記負極との間に設けられたセパレータを備える、請求項1~のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 6 , further comprising a separator provided between the positive electrode and the negative electrode. 前記正極は板状の正極集電体を有し、
前記負極は板状の負極集電体を有する、請求項1~のいずれか1項に記載の金属空気電池装置。
The positive electrode has a plate-shaped positive electrode current collector,
The metal-air battery device according to any one of claims 1 to 7 , wherein the negative electrode has a plate-shaped negative electrode current collector.
前記負極は、スラリー状の負極活物質を含む、請求項1~のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 8 , wherein the negative electrode contains a slurry-like negative electrode active material. 前記正極は、酸素還元能を有する触媒を含む触媒層を含み、
前記触媒層は、前記規制部材により規制されて前記外装体が湾曲した湾曲部を有する、請求項1~のいずれか1項に記載の金属空気電池装置。
The positive electrode includes a catalyst layer including a catalyst having oxygen reduction ability,
The metal-air battery device according to any one of claims 1 to 9 , wherein the catalyst layer has a curved portion where the exterior body is curved by being regulated by the regulating member.
前記規制部材における前記金属空気電池に接触する部分の一部が曲面である、請求項1~10のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 10 , wherein a part of the regulating member that comes into contact with the metal-air battery is a curved surface. 前記外装体は、前記正極と対向する面に設けられた開口部を有し、前記開口部を被う撥水膜を有する、請求項1~11のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 11 , wherein the exterior body has an opening provided on a surface facing the positive electrode, and has a water-repellent film covering the opening. 前記撥水膜は、前記規制部材と対向する、請求項12に記載の金属空気電池装置。 The metal-air battery device according to claim 12 , wherein the water-repellent film faces the regulating member. 前記金属空気電池は複数であり、前記正極と前記負極とが積層された積層方向に並ぶ前記複数の金属空気電池を収容する筐体を備える、請求項1~13のいずれか1項に記載の金属空気電池装置。 The metal-air battery device according to any one of claims 1 to 13 , further comprising a housing that houses the metal-air batteries arranged in a stacking direction in which the positive electrodes and the negative electrodes are stacked. 前記筐体は、前記積層方向に略直交する方向に対向する側壁を有し、前記側壁に前記筐体内の空気が供給される少なくとも1つの穴が設けられている、請求項14に記載の金属空気電池装置。 The metal-air battery device according to claim 14 , wherein the housing has side walls opposing each other in a direction substantially perpendicular to the stacking direction, and the side walls are provided with at least one hole through which air within the housing is supplied.
JP2022514370A 2020-04-07 2021-03-19 Metal-air battery device Active JP7465340B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020069047 2020-04-07
JP2020069047 2020-04-07
PCT/JP2021/011427 WO2021205847A1 (en) 2020-04-07 2021-03-19 Metal-air battery device

Publications (3)

Publication Number Publication Date
JPWO2021205847A1 JPWO2021205847A1 (en) 2021-10-14
JPWO2021205847A5 JPWO2021205847A5 (en) 2022-12-20
JP7465340B2 true JP7465340B2 (en) 2024-04-10

Family

ID=78023939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022514370A Active JP7465340B2 (en) 2020-04-07 2021-03-19 Metal-air battery device

Country Status (2)

Country Link
JP (1) JP7465340B2 (en)
WO (1) WO2021205847A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288571A (en) 2003-03-25 2004-10-14 Toshiba Battery Co Ltd Water-based metal-air cell and electronic apparatus using the same
JP2016012468A (en) 2014-06-29 2016-01-21 和之 豊郷 Press type battery case
JP2016081643A (en) 2014-10-14 2016-05-16 古河電池株式会社 Cartridge-type air battery and cartridge-type air battery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183369U (en) * 2013-02-25 2013-05-16 一般社団法人 Suwei Housing for air battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288571A (en) 2003-03-25 2004-10-14 Toshiba Battery Co Ltd Water-based metal-air cell and electronic apparatus using the same
JP2016012468A (en) 2014-06-29 2016-01-21 和之 豊郷 Press type battery case
JP2016081643A (en) 2014-10-14 2016-05-16 古河電池株式会社 Cartridge-type air battery and cartridge-type air battery system

Also Published As

Publication number Publication date
WO2021205847A1 (en) 2021-10-14
JPWO2021205847A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5782642B2 (en) Electrode assembly with minimized resistance difference between electrodes of tab-lead joint and electrochemical cell having the same
KR101387025B1 (en) Secondary electric cell with enhanced contact resistance
KR20080005623A (en) Safety kit for secondary battery
JP2024096240A (en) Energy Storage Module
EP2560230B1 (en) Secondary battery with improved safety
JP4976174B2 (en) Sealed secondary battery
JPWO2019087956A1 (en) Electrochemical cell and electrochemical cell stack
JP2017069059A (en) Power storage element and method for manufacturing power storage element
CN111971820A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7465340B2 (en) Metal-air battery device
KR100877811B1 (en) Safety Member for Secondary Battery Having Steps-formed End Portion at Bottom of Both Sides
JP7393109B2 (en) Lithium ion secondary battery
JP6913292B2 (en) Power storage element
US20220384852A1 (en) Laminated battery and manufacturing method for same
US20220416332A1 (en) Laminate battery
JP7316440B2 (en) metal air battery
KR20060097987A (en) Secondary battery and electrodes assembly using the same
CN113921751B (en) Electrode structure and electrochemical device
KR101264584B1 (en) Pouch for secondary battery and secondary battery using the same
CN219476825U (en) Laminated battery
JP2024042132A (en) Wound electrode body, secondary battery, and manufacturing method of secondary battery
JP2023114169A (en) battery module
CN118156579A (en) Secondary battery
JP2021132004A (en) Power storage module
JP2024061427A (en) battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7465340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150