JP7462864B2 - Membrane Vesicles - Google Patents

Membrane Vesicles Download PDF

Info

Publication number
JP7462864B2
JP7462864B2 JP2019080136A JP2019080136A JP7462864B2 JP 7462864 B2 JP7462864 B2 JP 7462864B2 JP 2019080136 A JP2019080136 A JP 2019080136A JP 2019080136 A JP2019080136 A JP 2019080136A JP 7462864 B2 JP7462864 B2 JP 7462864B2
Authority
JP
Japan
Prior art keywords
bacterium
mvs
vaccine
type
gfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019080136A
Other languages
Japanese (ja)
Other versions
JP2020176221A (en
Inventor
龍馬 中尾
幹郎 庄子
浩次 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIRECTOR-GENERAL NATIONAL INSTITUTE OF INFECTIOUS DISEASES
Original Assignee
DIRECTOR-GENERAL NATIONAL INSTITUTE OF INFECTIOUS DISEASES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIRECTOR-GENERAL NATIONAL INSTITUTE OF INFECTIOUS DISEASES filed Critical DIRECTOR-GENERAL NATIONAL INSTITUTE OF INFECTIOUS DISEASES
Priority to JP2019080136A priority Critical patent/JP7462864B2/en
Publication of JP2020176221A publication Critical patent/JP2020176221A/en
Application granted granted Critical
Publication of JP7462864B2 publication Critical patent/JP7462864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるメンブレンヴェシクルに関する。 The present invention relates to a membrane vesicle that can carry foreign protein antigens and can be used in vaccines.

細菌は、細胞外へメンブレンヴェシクル(以下、MV:membrane vesicleと称することがある。)と呼ばれるナノサイズの小胞を放出する。歴史的には、グラム陰性で偏性嫌気性非芽胞形成桿菌のBacteroides ruminicolaで類似する構造が電顕写真で1963年に報告された(非特許文献1)、様々なグラム陰性細菌がメンブレンヴェシクルを産生することが明らかとなっている(非特許文献2)。また、モデル生物である大腸菌でも1966年にはリジン要求性変異株をリジン制限下で培養したときの異常形態として報告されている(非特許文献3)。また、細菌の培養時に培養液に1.0~1.2 w/v%のグリシンを添加することにより、細菌由来のMVの産生量が増大する手法(以下、この手法をグリシン誘導法と記載することがある。)が報告されている(非特許文献4、5)。 Bacteria release nano-sized vesicles called membrane vesicles (hereinafter sometimes referred to as MV) outside the cell. Historically, a similar structure was reported in 1963 in electron micrographs of Bacteroides ruminicola, a gram-negative, obligately anaerobic, non-spore-forming bacillus (Non-Patent Document 1), and it has been revealed that various gram-negative bacteria produce membrane vesicles (Non-Patent Document 2). In 1966, it was also reported that a lysine-requiring mutant of Escherichia coli, a model organism, exhibited abnormal morphology when cultured under lysine-limited conditions (Non-Patent Document 3). In addition, a method has been reported in which the production of bacterial MV is increased by adding 1.0 to 1.2 w/v% glycine to the culture medium during bacterial culture (hereinafter this method may be referred to as the glycine induction method) (Non-Patent Documents 4 and 5).

メンブレンヴェシクルは細胞膜由来のリン脂質や膜タンパク質、リポポリサッカライド(本明細書においてLipopolysaccharide:LPSと記載することがある。)等で構成されるほか、核酸や酵素等の様々な物質を含有するため、多面的な機能を有し、新規ワクチン抗原のような応用展開も期待されている。例えば、ターゲットタンパク質を抗原として載せた大腸菌のMVを用いた簡便なワクチン製造として利用されている(非特許文献6)。外来性糖鎖を表層に局在させたMVのワクチン応用の可能性について報告されている(非特許文献7)。しかしながら、9型分泌機構を有する細菌を用いて、この細菌の表層に外来性タンパク質を局在させる技術は確立されていなかった。またこの9型分泌機構を有する細菌のMVをワクチン体として使用された報告はない。 Membrane vesicles are composed of phospholipids and membrane proteins derived from cell membranes, lipopolysaccharide (sometimes referred to as Lipopolysaccharide: LPS) and other substances, and contain various substances such as nucleic acids and enzymes, so they have multifaceted functions and are expected to be applied in the form of new vaccine antigens. For example, they are used to easily produce vaccines using Escherichia coli MVs carrying target proteins as antigens (Non-Patent Document 6). The possibility of using MVs with exogenous glycans localized on the surface as vaccines has been reported (Non-Patent Document 7). However, the technology to localize exogenous proteins on the surface of bacteria with type 9 secretion mechanisms has not been established. Furthermore, there have been no reports of the use of MVs from bacteria with type 9 secretion mechanisms as vaccine bodies.

H.A.Bladen & J.F.Waters:J.Bacteriol.、 86、1339(1963).H. A. Bladen & J. F. Waters: J. Bacteriol., 86, 1339 (1963). Jain S、 Pillai J. Int J Nanomedicin.Bacterial membrane vesicles as novel nanosystems for drug delivery.12:6329-6341(2017)Jain S, Pillai J. Int J Nanomedicin.Bacterial membrane vesicles as novel nanosystems for drug delivery.12:6329-6341(2017) K.W.Knox、M.Vesk & E.Work:J.Bacteriol.、92、1206(1966).K. W. Knox, M. Vesk & E. Work: J. Bacteriol., 92, 1206 (1966). Satoru Hirayama、 Ryoma Nakao.、 Budapest、 Hungary. Glycine strongly enhances immunoactive membrane vesicle production from flagella-deficient E. coli.、 12th Vaccine Congress. 9/16-19(2018)Satoru Hirayama, Ryoma Nakao. Budapest, Hungary. Glycine strongly enhances immunoactive membrane vesicle production from flagella-deficient E. coli. 12th Vaccine Congress. 9/16-19(2018) 平山悟、中尾龍馬、日本農芸化学会2018名古屋.グリシンによる大腸菌メンブレンベシクル産生の増大とその特性解析.3/15-18(2018)Satoru Hirayama, Ryoma Nakao, The Agricultural Chemical Society of Japan 2018 Nagoya. Enhancement of Escherichia coli membrane vesicle production by glycine and its characterization. 3/15-18(2018) D.J.Chen、N.Osterrieder、S.M.Metzger、E.Buckles、A.M. Doody、M.P.DeLisa & D.Putnam:Proc.Natl.Acad.Sci.USA、107、3099(2010).D. J. Chen, N. Osterrieder, S. M. Metzger, E. Buckles, A. M. Doody, M. P. DeLisa & D. Putnam: Proc. Natl. Acad. Sci. USA, 107, 3099 (2010). Price NL、Goyette-Desjardins G、Nothaft H、Valguarnera E、Szymanski CM、Segura M、Feldman MF. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep. 22;6:24931(2016).Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, Feldman MF. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep. 22;6:24931(2016).

本発明は、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるMVを提供することを目的とする。 The present invention aims to provide an MV that can carry foreign protein antigens and can be used as a vaccine.

本発明にかかるMVは、9型分泌機構を有する細菌のMVであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とする。 The MV of the present invention is a bacterial MV with type IX secretion system, and is characterized in that a foreign protein is anchored to lipopolysaccharide, which is a component of the outer membrane.

本発明によれば、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるMVが得られる。 According to the present invention, MVs capable of carrying foreign protein antigens and being applied to vaccines can be obtained.

T9SSによるタンパクの外膜へのアンカリングを説明する図である。FIG. 1 illustrates anchoring of proteins to the outer membrane by T9SS. GFPを導入したキメラメンブレンヴェシクルの作成を説明する図である。FIG. 1 is a diagram illustrating the preparation of a chimeric membrane vesicle into which GFP has been introduced. 目的プラスミドがPCR等により導入されていることを確認したELISA解析の写真図である。FIG. 1 is a photograph of an ELISA analysis that confirmed that the target plasmid was introduced by PCR or the like. GFPを導入したPorphyromonas gingivalis のMVの免疫原性を説明する図である。FIG. 1 illustrates the immunogenicity of GFP-introduced Porphyromonas gingivalis MV.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 The following describes in detail an embodiment of the present invention with reference to the attached drawings. However, this embodiment is intended to facilitate understanding of the principles of the present invention, and the scope of the present invention is not limited to the embodiment described below. Other embodiments in which a person skilled in the art appropriately replaces the configuration of the embodiment described below are also included in the scope of the present invention.

本実施形態にかかるMVは、9型分泌機構を有する細菌のメンブレンヴェシクルであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とする(図1)。 The MV in this embodiment is a membrane vesicle of a bacterium with type IX secretion system, and is characterized in that a foreign protein is anchored to lipopolysaccharide, which is a constituent part of the outer membrane (Figure 1).

LPSはリピドAと呼ばれる脂質に、多分子の糖からなる糖鎖が結合した構造をとる。糖鎖部分は、コア多糖(またはコアオリゴ糖)と呼ばれる部分と、O多糖(O抗原)と呼ばれる部分から構成される。 LPS has a structure in which a glycan consisting of many sugar molecules is bound to a lipid called lipid A. The glycan portion is composed of a part called a core polysaccharide (or core oligosaccharide) and a part called an O polysaccharide (O antigen).

本願発明者は、9型分泌機構を介して運ばれるC末ドメインタンパクは濃縮されてMVとして産生されること、9型分泌機構を有する細菌のMVに含まれるLPSの毒素活性は極めて低いことから、9型分泌機構を有する細菌のMVをワクチン体として使用することに成功し本発明を完成するに至った。例えばPorphyromonas gingivalisのMVに含まれるLPSの内毒素(Lipid A)活性は、大腸菌のMVに含まれるLPSの内毒素(Lipid A)活性の約0.1%程度であり、リポ多糖に外来性タンパク質がアンカリングされている9型分泌機構を有する細菌のMVは非常に安全性が高く、このMVをワクチン体として使用する場合、非常に有益である。 The inventors of the present application have succeeded in using MVs of bacteria with a type 9 secretion mechanism as a vaccine body, because C-terminal domain proteins transported via the type 9 secretion mechanism are concentrated and produced as MVs, and because the toxic activity of LPS contained in MVs of bacteria with a type 9 secretion mechanism is extremely low, and have completed the present invention. For example, the endotoxin (Lipid A) activity of LPS contained in MVs of Porphyromonas gingivalis is approximately 0.1% of the endotoxin (Lipid A) activity of LPS contained in MVs of Escherichia coli, and MVs of bacteria with a type 9 secretion mechanism in which a foreign protein is anchored to lipopolysaccharide are very safe, making them very beneficial when used as a vaccine body.

MVはグラム陰性菌等の膜が出芽や溶菌等で産生されるが、MV形成を誘発する経路はさまざま存在し、本実施形態にかかるMVの形成経路は特に限定されるものではない。 MVs are produced by the membranes of gram-negative bacteria and the like through budding, bacteriolysis, etc., but there are various pathways that induce MV formation, and the MV formation pathway in this embodiment is not particularly limited.

MVを得る細菌は、9型分泌機構を有するBacteriodetes門の細菌であれば特に限定されるものではないが、例えば、Porphyromonas属、Bacteroides属、Prevotella属、Tannerella属、Chlorobium属、又は、Flavobacterium属の細菌である。本実施形態にかかる発明において、9型分泌機構を有する細菌は、好ましくはPorphyromonas属のジンジバリス菌等である。 The bacterium from which MV is obtained is not particularly limited as long as it is a bacterium of the phylum Bacteriodetes that has a type 9 secretion system, but may be, for example, a bacterium of the genus Porphyromonas, Bacteroides, Prevotella, Tannerella, Chlorobium, or Flavobacterium. In the invention according to this embodiment, the bacterium having a type 9 secretion system is preferably a bacterium of the genus Porphyromonas, such as P. gingivalis.

Rgpは2つの遺伝子(rgpA及びrgpB)、Kgpは1つの遺伝子(kgp)にコードされており、rgpAとkgpはプロテアーゼドメイン以外にHgp44やHbR(Hgp15)等のアドヘジンドメインをコードしている。ジンジパインをコードするrgpA、rgpB及びkgpにアドヘジン遺伝子であるhagAを加えた4遺伝子をジンジパイン遺伝子群と呼ぶが、これらの遺伝子の産物がどのように菌体表面及び菌体外に分泌されるかについては不明であった。rgpA rgpB kgp変異株は血液寒天培地上で非黒色集落を形成することはわかっている。トランスポゾン(Tn)変異導入法にて変異体ライブラリーを作製し、血液寒天培地での非黒色集落を形成する変異株を分離し、この非黒色変異株の1つではジンジパイン遺伝子群の産物がペリプラズムに蓄積していることがわかり、この変異遺伝子(porT)が分泌に関与する。porT 遺伝子のホモログ遺伝子を検索したところ、Bacteroidetes門内のCytophaga hutchinsoniiやFlavobacterium johnsoniae には存在するが、Bacteroides thetaiotaomicron やBacteroides fragilisには存在しないことがわかった。そこでこれらの遺伝子についてベン図解析を行い、porTと同様な存在様式を示す遺伝子についてP. gingivalisにて変異株を作製し、porT 変異株と同様な性質を示す11 個の遺伝子を発見した。この中の二成分制御系の2遺伝子を除く9遺伝子はporT同様に直接、ジンジパイン遺伝子群の産物を分泌する経路に関与するタンパク質をコードしていることが示唆され、これらのタンパク質による分泌機構が9型分泌機構(T9SS)である。 Rgp is encoded by two genes (rgpA and rgpB), and Kgp is encoded by one gene (kgp). In addition to the protease domain, rgpA and kgp also encode adhesin domains such as Hgp44 and HbR (Hgp15). The four genes encoding gingipains, rgpA, rgpB, and kgp, plus the adhesin gene hagA, are called the gingipain gene cluster, but it was unclear how the products of these genes are secreted onto the bacterial surface and outside the bacterial cell. It is known that rgpA rgpB kgp mutants form non-black colonies on blood agar medium. A mutant library was created using transposon (Tn) mutagenesis, and mutants that form non-black colonies on blood agar medium were isolated. It was found that in one of these non-black mutants, the products of the gingipain gene cluster were accumulated in the periplasm, and this mutant gene (porT) is involved in secretion. A search for homologous genes of the porT gene revealed that they are present in Cytophaga hutchinsonii and Flavobacterium johnsoniae in the Bacteroidetes phylum, but not in Bacteroides thetaiotaomicron or Bacteroides fragilis. A Venn diagram analysis was then performed on these genes, and mutant strains were created in P. gingivalis for genes that show a similar existence pattern to porT, discovering 11 genes that show similar properties to the porT mutant strain. It was suggested that nine of these genes, excluding the two genes of the two-component control system, code for proteins directly involved in the pathway that secretes the products of the gingipain gene group, just like porT, and that the secretion mechanism by these proteins is the type 9 secretion system (T9SS).

本発明によれば、9型分泌機構を有する細菌を用いて、この細菌に外来性タンパク質を表層に局在させて、この細菌のMVをワクチン抗原として使用することにより安全に抗体産生を誘導できる。この利点は外来性タンパク質を抗原として載せた大腸菌等の内毒素活性の強いMVを用いたワクチン体では得られない重要な効果である。 According to the present invention, by using a bacterium with a type IX secretion system, localizing a foreign protein on the surface of the bacterium, and using the MV of this bacterium as a vaccine antigen, antibody production can be safely induced. This is an important advantage that cannot be obtained with a vaccine that uses the MV of E. coli or other bacteria with strong endotoxin activity that carries a foreign protein as an antigen.

本実施形態においては、リポ多糖にアンカリングされる外来性タンパク質は、抗原性を有するタンパク質であれば特に限定されるものではない。 In this embodiment, the exogenous protein anchored to the lipopolysaccharide is not particularly limited as long as it is an antigenic protein.

本実施形態にかかるワクチンは、本実施形態にかかるMV (即ち、9型分泌機構を有する細菌のMVであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とするMV)を含むことを特徴とする。本実施形態にかかるワクチンは、本実施形態にかかるメンブレンヴェシクルを含む凍結乾燥状態のワクチン製剤とすることができ、例えば使用時に溶解して注射または噴霧溶液として、生体内あるいは生体表皮面・粘膜面へ投与される。 The vaccine according to this embodiment is characterized by containing the MV according to this embodiment (i.e., the MV of a bacterium having a type IX secretion system, characterized in that a foreign protein is anchored to lipopolysaccharide, which is a constituent part of the outer membrane). The vaccine according to this embodiment can be a freeze-dried vaccine preparation containing the membrane vesicle according to this embodiment, which is dissolved at the time of use and administered into the body or to the epidermal or mucosal surface of the body, for example, as an injection or spray solution.

(1)GFP発現ベクターの作製方法
配列番号1記載のヌクレオチド配列からなるN末端モチーフ部分と、配列番号2記載のヌクレオチド配列からなるC末端モチーフ部分とにより、N末端とC末端領域とが付加されたGFPシーケンスの全ヌクレオチド配列(上流にプロモータ配列及び下流にターミネータ配列を含めて)をpTCBベクターへ導入したGFP発現ベクターを作成した(図2)。GFP発現ベクターの配列情報は配列番号3にて示される。
(1) Method for constructing a GFP expression vector A GFP expression vector was constructed by introducing into a pTCB vector the entire nucleotide sequence of the GFP sequence (including the promoter sequence upstream and the terminator sequence downstream) to which the N-terminal and C-terminal regions have been added, using the N-terminal motif portion consisting of the nucleotide sequence shown in SEQ ID NO:1 and the C-terminal motif portion consisting of the nucleotide sequence shown in SEQ ID NO:2 (Figure 2). The sequence information of the GFP expression vector is shown in SEQ ID NO:3.

(2)菌体への導入
このGFP発現ベクターをエレクトロポレーション法にてPorphyromonas gingivalisへ導入した。0.7マイクログラム/ミリリットルの濃度のテトラサイクリンを含む寒天培地にてセレクションを行い、目的のプラスミドがPCR等により導入されていることを確認した(図3)。これにより菌体へのGFP発現ベクター導入の完了が確認された。
(2) Introduction into the bacterial body This GFP expression vector was introduced into Porphyromonas gingivalis by electroporation. Selection was performed on an agar medium containing tetracycline at a concentration of 0.7 micrograms/milliliter, and it was confirmed by PCR that the target plasmid had been introduced (Figure 3). This confirmed the completion of introduction of the GFP expression vector into the bacterial body.

(3)GFPを導入したMVの免疫原性
配列番号3にて示される配列からなるGFP発現ベクターを使用してマウスに経鼻免疫した。GFPタンパクを固相化したEnzyme-Linked ImmunoSorbent Assay (ELISA)を実施した。陰性標準プラスミド(空ベクター)を導入したPgのMV (Pg MV)及びGFP発現ベクターを導入したPgのMV (Pg MV -GFP)をマウスに免疫して得られた血清を、それぞれ0.02% Tween 20含有PBS にて200倍希釈したものを血清抗体液として、上記ELISAプレートを用い、通法通りELISAを行なった。二次抗体には、アルカリフォスファターゼ(ALP)標識二次抗体であるAP-labeled anti-マウスIgG (インビトロジェン社製)を、ALP基質パラニトロフェニルリン酸を使用して、吸光値A405にて発色をプレートリーダーで検出した。図4は、Enzyme-Linked ImmunoSorbent Assay (ELISA)によるPorphyromonas gingivalisのメンブレンヴェシクルで免疫したマウス血清におけるGFP抗体の発現の解析結果を示す。図4に示されるように、配列番号3にて示される配列からなるGFP発現ベクターを使用して経鼻免疫したマウスでは、コントロールと比較してGFP抗体の産生が有意に上昇していた。
(3) Immunogenicity of MV with GFP Mice were immunized intranasally using a GFP expression vector consisting of the sequence shown in SEQ ID NO: 3. Enzyme-Linked ImmunoSorbent Assay (ELISA) was performed with GFP protein immobilized. Mice were immunized with Pg MV with a negative standard plasmid (empty vector) introduced (Pg MV) and Pg MV with a GFP expression vector introduced (Pg MV-GFP), and the serum obtained was diluted 200-fold with PBS containing 0.02% Tween 20 to prepare serum antibody solutions. ELISA was performed using the above ELISA plate as usual. The secondary antibody was AP-labeled anti-mouse IgG (Invitrogen), which is an alkaline phosphatase (ALP)-labeled secondary antibody, and the color development was detected with a plate reader at an absorbance value of A405 using the ALP substrate paranitrophenyl phosphate. Fig. 4 shows the results of analyzing the expression of GFP antibody in the serum of mice immunized with membrane vesicles of Porphyromonas gingivalis by Enzyme-Linked ImmunoSorbent Assay (ELISA). As shown in Fig. 4, in mice nasally immunized with a GFP expression vector consisting of the sequence shown in SEQ ID NO: 3, the production of GFP antibody was significantly increased compared to the control.

ワクチン体の作成に利用できる。 Can be used to create vaccine bodies.

配列番号1:N末モチーフ
配列番号2:C末モチーフ
配列番号3:ベクター
SEQ ID NO: 1: N-terminal motif SEQ ID NO: 2: C-terminal motif SEQ ID NO: 3: Vector

Claims (1)

9型分泌機構を有する細菌のMVであって、
前記細菌がPorphyromonas gingivalisであり、
前記MVが細胞外へ放出されたメンブレンヴェシクルであり
膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされており、前記外来性タンパク質が抗原性を有していることを特徴とする、MV。
MVs of a bacterium with a type 9 secretion system,
the bacterium is Porphyromonas gingivalis,
The MV is a membrane vesicle released outside the cell ,
MV is characterized in that a foreign protein is anchored to lipopolysaccharide, which is a component of the outer membrane , and the foreign protein has antigenicity.
JP2019080136A 2019-04-19 2019-04-19 Membrane Vesicles Active JP7462864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019080136A JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019080136A JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Publications (2)

Publication Number Publication Date
JP2020176221A JP2020176221A (en) 2020-10-29
JP7462864B2 true JP7462864B2 (en) 2024-04-08

Family

ID=72937620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080136A Active JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Country Status (1)

Country Link
JP (1) JP7462864B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096007A2 (en) 2016-11-25 2018-05-31 Glaxosmithkline Biologicals S.A. Immunogenic conjugates and use thereof
JP2018521632A (en) 2015-06-02 2018-08-09 デ スタート デル ネーデルランデン, ヴェルト. ドール デ ミニステル ヴァン ヴイダブリューエス ミニステリー ヴァン ボルクスゲツォントヘイト, ベルジーン エン シュポルトDe Staat Der Nederlanden, Vert. Door De Minister Van Vws Ministerie Van Volksgezondheid, Welzijn En Sport Surface presentation of antigen in gram-negative outer membrane vesicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521632A (en) 2015-06-02 2018-08-09 デ スタート デル ネーデルランデン, ヴェルト. ドール デ ミニステル ヴァン ヴイダブリューエス ミニステリー ヴァン ボルクスゲツォントヘイト, ベルジーン エン シュポルトDe Staat Der Nederlanden, Vert. Door De Minister Van Vws Ministerie Van Volksgezondheid, Welzijn En Sport Surface presentation of antigen in gram-negative outer membrane vesicles
WO2018096007A2 (en) 2016-11-25 2018-05-31 Glaxosmithkline Biologicals S.A. Immunogenic conjugates and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCIENTIFIC REPORTS,2016年,Vol.6, Article No.24931,p.1-9
Vaccine,2016年,Vol.34,p.4626-4634

Also Published As

Publication number Publication date
JP2020176221A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
Ward et al. A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic
Holt et al. Virulence factors of Porphyromonas gingivalis
Nakayama P orphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility
Duc et al. Bacterial spores as vaccine vehicles
JP2577280B2 (en) Recombinant poxvirus and streptococcal M protein vaccine
RU2294366C2 (en) Transformed lactic-acid bacteria reducing susceptibility to allergic reactions and uses thereof
Seto et al. Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding
KR20080111172A (en) Lactic acid bacteria as agents for treating and preventing allergy
Kondo et al. Involvement of PorK, a component of the type IX secretion system, in Prevotella melaninogenica pathogenicity
Chabalgoity et al. Expression and immunogenicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains
Monteiro‐Neto et al. Characterization of an outer membrane protein associated with haemagglutination and adhesive properties of enteroaggregative Escherichia coli O111: H12
Chavagnat et al. Purification, characterization, gene cloning, sequencing, and overexpression of aminopeptidase N from Streptococcus thermophilus A
JPH09500092A (en) Protein Rib, a cell surface protein that confers immunity to many strains of group B Streptococcus, a method for purifying the protein, a pharmaceutical kit and a pharmaceutical composition
Xue et al. Synthetic lipopeptide enhances protective immunity against Helicobacter pylori infection
JP2005528085A (en) Modified bacterial surface protein
JP7462864B2 (en) Membrane Vesicles
US8632784B2 (en) Nucleic acids and proteins from Streptococcus pneumoniae
US20070065466A1 (en) Clostridium difficile vaccine
WO2003080113A1 (en) Mucosal immune vaccine for periodontal diseases
US9610334B2 (en) Truncated secretory aspartyl proteinase 2
Mordkovich et al. Structural and functional organization of the signal peptide of pro-enterotoxin B from Staphylococcus aureus
Kataoka et al. Secretion of functional salivary peptide by Streptococcus gordonii which inhibits fimbria-mediated adhesion of Porphyromonas gingivalis
JP2009078995A (en) Immuno-vaccine for periodontal disease
KR20070001274A (en) Therapeutic peptides
Flambard et al. The autoproteolysis of Lactococcus lactis lactocepin III affects its specificity towards β-casein

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109