JP2020176221A - Membrane vesicle - Google Patents

Membrane vesicle Download PDF

Info

Publication number
JP2020176221A
JP2020176221A JP2019080136A JP2019080136A JP2020176221A JP 2020176221 A JP2020176221 A JP 2020176221A JP 2019080136 A JP2019080136 A JP 2019080136A JP 2019080136 A JP2019080136 A JP 2019080136A JP 2020176221 A JP2020176221 A JP 2020176221A
Authority
JP
Japan
Prior art keywords
bacterium
vaccine
exogenous protein
present
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019080136A
Other languages
Japanese (ja)
Other versions
JP7462864B2 (en
Inventor
龍馬 中尾
Ryuma Nakao
龍馬 中尾
幹郎 庄子
Mikio Shoji
幹郎 庄子
浩次 中山
Hiroji Nakayama
浩次 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2019080136A priority Critical patent/JP7462864B2/en
Publication of JP2020176221A publication Critical patent/JP2020176221A/en
Application granted granted Critical
Publication of JP7462864B2 publication Critical patent/JP7462864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

To provide a membrane vesicle (MV) capable of carrying an exogenous protein antigen, applied to a vaccine body and discharged into the outside of a cell.SOLUTION: The bacterial MV having a 9 type secretion mechanism includes exogenous protein anchored to lipopolysaccharide served as the component part of an outer membrane. Antigen antibodies can be produced and induced to each portion of in-blood, a nasal cavity, a mouth and a lung by medicating vaccine including the MV mounting the exogenous protein in the nasal cavity.SELECTED DRAWING: Figure 1

Description

本発明は、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるメンブレンヴェシクルに関する。 The present invention relates to a membrane vesicle capable of carrying an exogenous protein antigen and applicable to a vaccine body.

細菌は、細胞外へメンブレンヴェシクル(以下、MV:membrane vesicleと称することがある。)と呼ばれるナノサイズの小胞を放出する。歴史的には、グラム陰性で偏性嫌気性非芽胞形成桿菌のBacteroides ruminicolaで類似する構造が電顕写真で1963年に報告された(非特許文献1)、様々なグラム陰性細菌がメンブレンヴェシクルを産生することが明らかとなっている(非特許文献2)。また、モデル生物である大腸菌でも1966年にはリジン要求性変異株をリジン制限下で培養したときの異常形態として報告されている(非特許文献3)。また、細菌の培養時に培養液に1.0〜1.2 w/v%のグリシンを添加することにより、細菌由来のMVの産生量が増大する手法(以下、この手法をグリシン誘導法と記載することがある。)が報告されている(非特許文献4、5)。 Bacteria release nano-sized vesicles called membrane vesicles (hereinafter sometimes referred to as MV: membrane vesicles) extracellularly. Historically, a similar structure in Bacteroides ruminicola, a gram-negative, obligately anaerobic non-spore-forming bacillus, was reported in 1963 on electromicrographs (Non-Patent Document 1), and various gram-negative bacteria were membrane vesicles. It has been clarified that it produces (Non-Patent Document 2). In addition, Escherichia coli, which is a model organism, was also reported in 1966 as an abnormal morphology when a lysine-requiring mutant was cultured under lysine restriction (Non-Patent Document 3). In addition, a method for increasing the production of MV derived from bacteria by adding 1.0 to 1.2 w / v% of glycine to the culture solution during bacterial culture (hereinafter, this method may be referred to as a glycine induction method). .) Has been reported (Non-Patent Documents 4 and 5).

メンブレンヴェシクルは細胞膜由来のリン脂質や膜タンパク質、リポポリサッカライド(本明細書においてLipopolysaccharide:LPSと記載することがある。)等で構成されるほか、核酸や酵素等の様々な物質を含有するため、多面的な機能を有し、新規ワクチン抗原のような応用展開も期待されている。例えば、ターゲットタンパク質を抗原として載せた大腸菌のMVを用いた簡便なワクチン製造として利用されている(非特許文献6)。外来性糖鎖を表層に局在させたMVのワクチン応用の可能性について報告されている(非特許文献7)。しかしながら、9型分泌機構を有する細菌を用いて、この細菌の表層に外来性タンパク質を局在させる技術は確立されていなかった。またこの9型分泌機構を有する細菌のMVをワクチン体として使用された報告はない。 Membrane vesicles are composed of cell membrane-derived phospholipids, membrane proteins, lipopolysaccharides (sometimes referred to as LPS in the present specification), etc., and also contain various substances such as nucleic acids and enzymes. Therefore, it has multifaceted functions and is expected to be applied to new vaccine antigens. For example, it is used as a simple vaccine production using MV of Escherichia coli carrying a target protein as an antigen (Non-Patent Document 6). It has been reported that MV vaccine application in which foreign sugar chains are localized on the surface layer can be applied (Non-Patent Document 7). However, a technique for localizing an exogenous protein on the surface layer of this bacterium using a bacterium having a type 9 secretory mechanism has not been established. In addition, there is no report that MV of a bacterium having this type 9 secretory mechanism was used as a vaccine body.

H.A.Bladen & J.F.Waters:J.Bacteriol.、 86、1339(1963).H.A.Bladen & J.F.Waters: J.Bacteriol., 86, 1339 (1963). Jain S、 Pillai J. Int J Nanomedicin.Bacterial membrane vesicles as novel nanosystems for drug delivery.12:6329-6341(2017)Jain S, Pillai J. Int J Nanomedicin. Bacterial membrane vesicles as novel nanosystems for drug delivery. 12: 6329-6341 (2017) K.W.Knox、M.Vesk & E.Work:J.Bacteriol.、92、1206(1966).K.W.Knox, M.Vesk & E.Work: J.Bacteriol., 92, 1206 (1966). Satoru Hirayama、 Ryoma Nakao.、 Budapest、 Hungary. Glycine strongly enhances immunoactive membrane vesicle production from flagella-deficient E. coli.、 12th Vaccine Congress. 9/16-19(2018)Satoru Hirayama, Ryoma Nakao., Budapest, Hungary. Glycine strongly enhances immunoactive membrane vesicle production from flagella-deficient E. coli., 12th Vaccine Congress. 9 / 16-19 (2018) 平山悟、中尾龍馬、日本農芸化学会2018名古屋.グリシンによる大腸菌メンブレンベシクル産生の増大とその特性解析.3/15-18(2018)Satoru Hirayama, Ryoma Nakao, Japan Society for Bioscience and Biotechnology 2018 Nagoya. Increase in E. coli membrane vesicle production by glycine and its characteristic analysis. 3 / 15-18 (2018) D.J.Chen、N.Osterrieder、S.M.Metzger、E.Buckles、A.M. Doody、M.P.DeLisa & D.Putnam:Proc.Natl.Acad.Sci.USA、107、3099(2010).D.J.Chen, N.Osterrieder, S.M.Metzger, E.Buckles, A.M.Doody, M.P.DeLisa & D.Putnam: Proc.Natl.Acad.Sci.USA, 107, 3099 (2010). Price NL、Goyette-Desjardins G、Nothaft H、Valguarnera E、Szymanski CM、Segura M、Feldman MF. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep. 22;6:24931(2016).Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, Feldman MF. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep. 22; 6: 24931 (2016).

本発明は、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるMVを提供することを目的とする。 An object of the present invention is to provide an MV capable of carrying an exogenous protein antigen and applicable to a vaccine body.

本発明にかかるMVは、9型分泌機構を有する細菌のMVであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とする。 The MV according to the present invention is a MV of a bacterium having a type 9 secretory mechanism, and is characterized in that an exogenous protein is anchored to lipopolysaccharide, which is a component of the outer membrane.

本発明によれば、外来性タンパク抗原を運ぶことができ、ワクチン体に応用できるMVが得られる。 According to the present invention, an MV capable of carrying an exogenous protein antigen and applicable to a vaccine body can be obtained.

T9SSによるタンパクの外膜へのアンカリングを説明する図である。It is a figure explaining the anchoring of a protein to the outer membrane by T9SS. GFPを導入したキメラメンブレンヴェシクルの作成を説明する図である。It is a figure explaining the preparation of the chimeric membrane vesicle which introduced GFP. 目的プラスミドがPCR等により導入されていることを確認したELISA解析の写真図である。It is a photograph figure of the ELISA analysis which confirmed that the target plasmid was introduced by PCR or the like. GFPを導入したPorphyromonas gingivalis のMVの免疫原性を説明する図である。It is a figure explaining the immunogenicity of MV of Porphyromonas gingivalis introduced with GFP.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are for facilitating understanding of the principles of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiment, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

本実施形態にかかるMVは、9型分泌機構を有する細菌のメンブレンヴェシクルであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とする(図1)。 The MV according to the present embodiment is a bacterial membrane vesicle having a type 9 secretory mechanism, and is characterized in that an exogenous protein is anchored to lipopolysaccharide, which is a component of the outer membrane (FIG. 1). ).

LPSはリピドAと呼ばれる脂質に、多分子の糖からなる糖鎖が結合した構造をとる。糖鎖部分は、コア多糖(またはコアオリゴ糖)と呼ばれる部分と、O多糖(O抗原)と呼ばれる部分から構成される。 LPS has a structure in which a sugar chain consisting of multiple molecules of sugar is bound to a lipid called lipid A. The sugar chain portion is composed of a portion called a core polysaccharide (or core oligosaccharide) and a portion called an O polysaccharide (O antigen).

本願発明者は、9型分泌機構を介して運ばれるC末ドメインタンパクは濃縮されてMVとして産生されること、9型分泌機構を有する細菌のMVに含まれるLPSの毒素活性は極めて低いことから、9型分泌機構を有する細菌のMVをワクチン体として使用することに成功し本発明を完成するに至った。例えばPorphyromonas gingivalisのMVに含まれるLPSの内毒素(Lipid A)活性は、大腸菌のMVに含まれるLPSの内毒素(Lipid A)活性の約0.1%程度であり、リポ多糖に外来性タンパク質がアンカリングされている9型分泌機構を有する細菌のMVは非常に安全性が高く、このMVをワクチン体として使用する場合、非常に有益である。 According to the present inventor, the C-terminal domain protein carried via the type 9 secretory mechanism is concentrated and produced as MV, and the toxin activity of LPS contained in the MV of bacteria having the type 9 secretory mechanism is extremely low. , MV of a bacterium having a type 9 secretory mechanism was successfully used as a vaccine body, and the present invention was completed. For example, the endotoxin (Lipid A) activity of LPS contained in the MV of Porphyromonas gingivalis is about 0.1% of the endotoxin (Lipid A) activity of LPS contained in the MV of Escherichia coli, and the foreign protein is anchored in lipopolysaccharide. The MV of a bacterium having a ringed type 9 secretory mechanism is very safe, and it is very beneficial when this MV is used as a vaccine body.

MVはグラム陰性菌等の膜が出芽や溶菌等で産生されるが、MV形成を誘発する経路はさまざま存在し、本実施形態にかかるMVの形成経路は特に限定されるものではない。 In MV, a membrane of Gram-negative bacteria or the like is produced by budding or lysis, but there are various pathways for inducing MV formation, and the MV formation pathway according to the present embodiment is not particularly limited.

MVを得る細菌は、9型分泌機構を有するBacteriodetes門の細菌であれば特に限定されるものではないが、例えば、Porphyromonas属、Bacteroides属、Prevotella属、Tannerella属、Chlorobium属、又は、Flavobacterium属の細菌である。本実施形態にかかる発明において、9型分泌機構を有する細菌は、好ましくはPorphyromonas属のジンジバリス菌等である。 The bacterium that obtains MV is not particularly limited as long as it is a bacterium of the phylum Bacteroodetes having a type 9 secretion mechanism, and is, for example, of the genus Porphyromonas, Bacteroides, Prevotella, Tannerella, Chlorobium, or Flavobacterium. It is a bacterium. In the invention according to the present embodiment, the bacterium having a type 9 secretory mechanism is preferably Porphyromonas genus Zingivalis or the like.

Rgpは2つの遺伝子(rgpA及びrgpB)、Kgpは1つの遺伝子(kgp)にコードされており、rgpAとkgpはプロテアーゼドメイン以外にHgp44やHbR(Hgp15)等のアドヘジンドメインをコードしている。ジンジパインをコードするrgpA、rgpB及びkgpにアドヘジン遺伝子であるhagAを加えた4遺伝子をジンジパイン遺伝子群と呼ぶが、これらの遺伝子の産物がどのように菌体表面及び菌体外に分泌されるかについては不明であった。rgpA rgpB kgp変異株は血液寒天培地上で非黒色集落を形成することはわかっている。トランスポゾン(Tn)変異導入法にて変異体ライブラリーを作製し、血液寒天培地での非黒色集落を形成する変異株を分離し、この非黒色変異株の1つではジンジパイン遺伝子群の産物がペリプラズムに蓄積していることがわかり、この変異遺伝子(porT)が分泌に関与する。porT 遺伝子のホモログ遺伝子を検索したところ、Bacteroidetes門内のCytophaga hutchinsoniiやFlavobacterium johnsoniae には存在するが、Bacteroides thetaiotaomicron やBacteroides fragilisには存在しないことがわかった。そこでこれらの遺伝子についてベン図解析を行い、porTと同様な存在様式を示す遺伝子についてP. gingivalisにて変異株を作製し、porT 変異株と同様な性質を示す11 個の遺伝子を発見した。この中の二成分制御系の2遺伝子を除く9遺伝子はporT同様に直接、ジンジパイン遺伝子群の産物を分泌する経路に関与するタンパク質をコードしていることが示唆され、これらのタンパク質による分泌機構が9型分泌機構(T9SS)である。 Rgp is encoded by two genes (rgpA and rgpB), Kgp is encoded by one gene (kgp), and rgpA and kgp encode adhesin domains such as Hgp44 and HbR (Hgp15) in addition to the protease domain. The four genes in which the adhesin gene hagA is added to rgpA, rgpB, and kgp, which encode gindipine, are called the gindipine gene group, and how the products of these genes are secreted on the cell surface and outside the cell. Was unknown. The rgpA rgpB kgp mutant has been shown to form non-black colonies on blood agar. A mutant library was prepared by the transposon (Tn) mutation introduction method, and mutant strains forming non-black colonies on blood agar were isolated. In one of these non-black mutant strains, the product of the gingipain gene group was peripulus. It is found that this mutant gene (porT) is involved in secretion. A search for the homologue gene of the porT gene revealed that it was present in Cytophaga hutchinsonii and Flavobacterium johnsoniae in the phylum Bacteroidetes, but not in Bacteroides thetaiotaomicron and Bacteroides fragilis. Therefore, Venn diagram analysis was performed on these genes, mutant strains were prepared by P. gingivalis for genes showing the same existence mode as porT, and 11 genes showing the same properties as the porT mutant strain were discovered. It has been suggested that nine genes, excluding the two genes of the two-component regulatory system, encode proteins that are directly involved in the secretory pathway of the products of the gindipine gene group, and the secretory mechanism by these proteins is It is a type 9 secretory mechanism (T9SS).

本発明によれば、9型分泌機構を有する細菌を用いて、この細菌に外来性タンパク質を表層に局在させて、この細菌のMVをワクチン抗原として使用することにより安全に抗体産生を誘導できる。この利点は外来性タンパク質を抗原として載せた大腸菌等の内毒素活性の強いMVを用いたワクチン体では得られない重要な効果である。 According to the present invention, it is possible to safely induce antibody production by localizing an exogenous protein on the surface layer of a bacterium having a type 9 secretory mechanism and using the MV of this bacterium as a vaccine antigen. .. This advantage is an important effect that cannot be obtained with a vaccine body using MV having strong endotoxin activity such as Escherichia coli carrying an exogenous protein as an antigen.

本実施形態においては、リポ多糖にアンカリングされる外来性タンパク質は、抗原性を有するタンパク質であれば特に限定されるものではない。 In the present embodiment, the exogenous protein anchored to the lipopolysaccharide is not particularly limited as long as it is a protein having antigenicity.

本実施形態にかかるワクチンは、本実施形態にかかるMV (即ち、9型分泌機構を有する細菌のMVであって、外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とするMV)を含むことを特徴とする。本実施形態にかかるワクチンは、本実施形態にかかるメンブレンヴェシクルを含む凍結乾燥状態のワクチン製剤とすることができ、例えば使用時に溶解して注射または噴霧溶液として、生体内あるいは生体表皮面・粘膜面へ投与される。 The vaccine according to the present embodiment is the MV according to the present embodiment (that is, the MV of a bacterium having a type 9 secretory mechanism, in which an exogenous protein is anchored to lipopolysaccharide which is a component of the outer membrane. It is characterized by including MV). The vaccine according to the present embodiment can be a lyophilized vaccine preparation containing the membrane vesicle according to the present embodiment. For example, it is dissolved at the time of use and used as an injection or spray solution in vivo or on the epidermal surface / mucosa of the living body. Administered to the face.

(1)GFP発現ベクターの作製方法
配列番号1記載のヌクレオチド配列からなるN末端モチーフ部分と、配列番号2記載のヌクレオチド配列からなるC末端モチーフ部分とにより、N末端とC末端領域とが付加されたGFPシーケンスの全ヌクレオチド配列(上流にプロモータ配列及び下流にターミネータ配列を含めて)をpTCBベクターへ導入したGFP発現ベクターを作成した(図2)。GFP発現ベクターの配列情報は配列番号3にて示される。
(1) Method for Producing a GFP Expression Vector The N-terminal and C-terminal regions are added by the N-terminal motif portion consisting of the nucleotide sequence set forth in SEQ ID NO: 1 and the C-terminal motif portion consisting of the nucleotide sequence set forth in SEQ ID NO: 2. A GFP expression vector was prepared by introducing the entire nucleotide sequence of the GFP sequence (including the promoter sequence upstream and the terminator sequence downstream) into the pTCB vector (Fig. 2). The sequence information of the GFP expression vector is shown by SEQ ID NO: 3.

(2)菌体への導入
このGFP発現ベクターをエレクトロポレーション法にてPorphyromonas gingivalisへ導入した。0.7マイクログラム/ミリリットルの濃度のテトラサイクリンを含む寒天培地にてセレクションを行い、目的のプラスミドがPCR等により導入されていることを確認した(図3)。これにより菌体へのGFP発現ベクター導入の完了が確認された。
(2) Introduction into cells This GFP expression vector was introduced into Porphyromonas gingivalis by the electroporation method. Selection was performed on an agar medium containing tetracycline at a concentration of 0.7 micrograms / ml, and it was confirmed that the target plasmid had been introduced by PCR or the like (Fig. 3). This confirmed the completion of the introduction of the GFP expression vector into the cells.

(3)GFPを導入したMVの免疫原性
配列番号3にて示される配列からなるGFP発現ベクターを使用してマウスに経鼻免疫した。GFPタンパクを固相化したEnzyme-Linked ImmunoSorbent Assay (ELISA)を実施した。陰性標準プラスミド(空ベクター)を導入したPgのMV (Pg MV)及びGFP発現ベクターを導入したPgのMV (Pg MV -GFP)をマウスに免疫して得られた血清を、それぞれ0.02% Tween 20含有PBS にて200倍希釈したものを血清抗体液として、上記ELISAプレートを用い、通法通りELISAを行なった。二次抗体には、アルカリフォスファターゼ(ALP)標識二次抗体であるAP-labeled anti-マウスIgG (インビトロジェン社製)を、ALP基質パラニトロフェニルリン酸を使用して、吸光値A405にて発色をプレートリーダーで検出した。図4は、Enzyme-Linked ImmunoSorbent Assay (ELISA)によるPorphyromonas gingivalisのメンブレンヴェシクルで免疫したマウス血清におけるGFP抗体の発現の解析結果を示す。図4に示されるように、配列番号3にて示される配列からなるGFP発現ベクターを使用して経鼻免疫したマウスでは、コントロールと比較してGFP抗体の産生が有意に上昇していた。
(3) Immunogenicity of MV into which GFP was introduced Nasal immunization was performed on mice using a GFP expression vector consisting of the sequence shown in SEQ ID NO: 3. An Enzyme-Linked ImmunoSorbent Assay (ELISA) in which the GFP protein was immobilized was performed. 0.02% Tween 20 of serum obtained by immunizing mice with Pg MV (Pg MV) introduced with a negative standard plasmid (empty vector) and Pg MV (Pg MV -GFP) introduced with a GFP expression vector. The serum antibody solution was diluted 200-fold with the contained PBS, and ELISA was performed as usual using the above ELISA plate. As the secondary antibody, AP-labeled anti-mouse IgG (manufactured by Invitrogen), which is an alkaline phosphatase (ALP) -labeled secondary antibody, is used, and the ALP substrate paranitrophenyl phosphate is used to develop color at an absorption value of A405. Detected with a plate reader. FIG. 4 shows the results of analysis of GFP antibody expression in mouse sera immunized with a membrane vesicle of Porphyromonas gingivalis by an Enzyme-Linked ImmunoSorbent Assay (ELISA). As shown in FIG. 4, nasal-immunized mice using the GFP expression vector consisting of the sequence shown in SEQ ID NO: 3 had significantly increased production of GFP antibody as compared with the control.

ワクチン体の作成に利用できる。 It can be used to create a vaccine body.

配列番号1:N末モチーフ
配列番号2:C末モチーフ
配列番号3:ベクター
SEQ ID NO: 1: N-terminal motif SEQ ID NO: 2: C-terminal motif SEQ ID NO: 3: Vector

Claims (3)

9型分泌機構を有する細菌のMVであって、
外膜の構成部分であるリポ多糖に外来性タンパク質がアンカリングされていることを特徴とする、MV。
A MV of a bacterium having a type 9 secretory mechanism,
An MV characterized by anchoring foreign proteins in lipopolysaccharide, which is a component of the outer membrane.
前記9型分泌機構を有する細菌は、Porphyromonas属、Bacteroides属、Prevotella属、Tannerella属、Chlorobium属、又は、Flavobacterium属等の細菌であることを特徴とする請求項1に記載のMV。 The MV according to claim 1, wherein the bacterium having the type 9 secretion mechanism is a bacterium of the genus Porphyromonas, Bacteroides, Prevotella, Tannerella, Chlorobium, Flavobacterium, or the like. 前記9型分泌機構を有する細菌は、Porphyromonas gingivalisであることを特徴とする請求項2に記載のMV。 The MV according to claim 2, wherein the bacterium having the type 9 secretory mechanism is Porphyromonas gingivalis.
JP2019080136A 2019-04-19 2019-04-19 Membrane Vesicles Active JP7462864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019080136A JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019080136A JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Publications (2)

Publication Number Publication Date
JP2020176221A true JP2020176221A (en) 2020-10-29
JP7462864B2 JP7462864B2 (en) 2024-04-08

Family

ID=72937620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080136A Active JP7462864B2 (en) 2019-04-19 2019-04-19 Membrane Vesicles

Country Status (1)

Country Link
JP (1) JP7462864B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096007A2 (en) * 2016-11-25 2018-05-31 Glaxosmithkline Biologicals S.A. Immunogenic conjugates and use thereof
JP2018521632A (en) * 2015-06-02 2018-08-09 デ スタート デル ネーデルランデン, ヴェルト. ドール デ ミニステル ヴァン ヴイダブリューエス ミニステリー ヴァン ボルクスゲツォントヘイト, ベルジーン エン シュポルトDe Staat Der Nederlanden, Vert. Door De Minister Van Vws Ministerie Van Volksgezondheid, Welzijn En Sport Surface presentation of antigen in gram-negative outer membrane vesicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521632A (en) * 2015-06-02 2018-08-09 デ スタート デル ネーデルランデン, ヴェルト. ドール デ ミニステル ヴァン ヴイダブリューエス ミニステリー ヴァン ボルクスゲツォントヘイト, ベルジーン エン シュポルトDe Staat Der Nederlanden, Vert. Door De Minister Van Vws Ministerie Van Volksgezondheid, Welzijn En Sport Surface presentation of antigen in gram-negative outer membrane vesicles
WO2018096007A2 (en) * 2016-11-25 2018-05-31 Glaxosmithkline Biologicals S.A. Immunogenic conjugates and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCIENTIFIC REPORTS, vol. 6, no. 24931, JPN6023013371, 2016, pages 1 - 9, ISSN: 0005026705 *
VACCINE, vol. 34, JPN6023013372, 2016, pages 4626 - 4634, ISSN: 0005026706 *

Also Published As

Publication number Publication date
JP7462864B2 (en) 2024-04-08

Similar Documents

Publication Publication Date Title
Holt et al. Virulence factors of Porphyromonas gingivalis
Doherty et al. CD8+ T-cell memory to viruses
Cleary et al. Immunization with C5a peptidase from either group A or B streptococci enhances clearance of group A streptococci from intranasally infected mice
Kajikawa et al. Dissimilar properties of two recombinant Lactobacillus acidophilus strains displaying Salmonella FliC with different anchoring motifs
KR19990081863A (en) Streptococcal C5A Peptidase Vaccine
CA2438833A1 (en) Lactic acid bacteria as agents for treating and preventing allergy
Chabalgoity et al. Expression and immunogenicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains
SK3642003A3 (en) Strain of lactic acid bacteria, food and pharmaceutical composition, a vaccine comprising same and its use
Monteiro‐Neto et al. Characterization of an outer membrane protein associated with haemagglutination and adhesive properties of enteroaggregative Escherichia coli O111: H12
Tebbey et al. Effective mucosal immunization against respiratory syncytial virus using purified F protein and a genetically detoxified cholera holotoxin, CT-E29H
Xue et al. Synthetic lipopeptide enhances protective immunity against Helicobacter pylori infection
Suvorov et al. Construction of the enterococcal strain expressing immunogenic fragment of SARS-Cov-2 virus
JP2005528085A (en) Modified bacterial surface protein
Niu et al. Immune evaluation of recombinant Lactobacillus plantarum with surface display of HA1-DCpep in mice
US8632784B2 (en) Nucleic acids and proteins from Streptococcus pneumoniae
US20070065466A1 (en) Clostridium difficile vaccine
JP2020176221A (en) Membrane vesicle
Reszka et al. Fasciola hepatica procathepsin L3 protein expressed by a baculovirus recombinant can partly protect rats against fasciolosis
Lee et al. Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5
Sharma et al. Expression of functional Porphyromonas gingivalis fimbrillin polypeptide domains on the surface of Streptococcus gordonii
Uriza et al. Development of an antigen delivery platform using lactobacillus acidophilus decorated with heterologous proteins: a sheep in wolf’s clothing story
TW201625298A (en) Adjuvant for mucosal vaccine
CN113234654B (en) Recombinant bacillus subtilis and application thereof
WO2003080113A1 (en) Mucosal immune vaccine for periodontal diseases
Kataoka et al. Secretion of functional salivary peptide by Streptococcus gordonii which inhibits fimbria-mediated adhesion of Porphyromonas gingivalis

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7462864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150